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Abstract: Milk has been shown to contain a specific fraction of extracellular particles that are reported
to resist digestion and are purposefully packaged with lipids, proteins, and nucleic acids to exert
specific biological effects. These findings suggest that these particles may have a role in the quality
of infant nutrition, particularly in the early phase of life when many of the foundations of an
infant’s potential for health and overall wellness are established. However, much of the current
research focuses on human or cow milk only, and there is a knowledge gap in how milk from
other species, which may be more commonly consumed in different regions, could also have these
reported biological effects. Our review provides a summary of the studies into the extracellular
particle fraction of milk from a wider range of ruminants and pseudo-ruminants, focusing on how
this fraction is isolated and characterised, the stability and uptake of the fraction, and the reported
biological effects of these fractions in a range of model systems. As the individual composition of
milk from different species is known to differ, we propose that the extracellular particle fraction
of milk from non-traditional and minority species may also have important and distinct biological
properties that warrant further study.

Keywords: milk; extracellular vesicle; exosome; ruminant; MISEV

1. Introduction

Milk is the only food that has evolved to meet the nutritional needs of newborns,
supporting growth and development while also being a significant source of nutrients
in adults [1–3]. The domestication of livestock was a pivotal step in the consumption of
non-human milk which has become a substantial source of essential nutrients in many diets
globally [4–6]. To meet this demand, the production of milk increased from 708 million
tonnes in 2009 to 883 million tonnes in 2019, with cow and buffalo milk accounting for 81%
and 15% of production, respectively (Supplementary Table S1) [7].

In early life, major milk components such as lactose (energy source), minerals (muscu-
loskeletal development), and high-value biological proteins provide essential nutrition [8,9].
Milk consumption throughout life can also address malnutrition and can represent a signif-
icant proportion of overall nutrient intake in developing nations [10].

While the milk macro- and micronutrient composition is largely well established,
there is considerable interest in milk-derived extracellular vesicles (EVs) and their cargoes
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as a source of nutrients in the classical sense, such as nucleosides, and amino acids, or
as a nutritional component that influences biological functions by regulating biochemical
pathways and/or interactions with the host’s gut microbiome [11–18]. Evolutionary theory
suggests that milk-derived EVs and their cargoes must have a biological purpose to justify
the metabolic cost required to produce them during lactation.

Our review covers the following: a summary of the nutritional composition of the
types of milk that have been used to study milk-derived EVs, the nature and composition
of these vesicles and their cargoes, the evidence for their stability and uptake in the
gastrointestinal tract, their reported biological effects, and some of the key challenges in
using them for studies. Methods used to identify peer-reviewed studies are shown in
Figure 1. Our review excludes any studies on plant-derived milk alternatives.

Figure 1. Schematic diagram for selection of included studies.

2. Nutritional Composition of Milk

Milk from minority dairy species, i.e., not cow milk, is more widely consumed in
regions with a harsh environment which requires animals with specific adaptations [9].
It has generally not been studied in as much detail for nutrition or bioactivity as cow
milk despite the evidence of substantial compositional differences in the different types of
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proteins, lipids, micronutrients, and bioactive components between milk from different
species. The macronutrient composition of milk from different mammals has been exten-
sively studied and is readily available in the public domain. A list of the milk composition
from different mammals is collated in Table 1, based on the different quantification meth-
ods used and data reporting across different databases (the conversion can be found in
Supplementary Table S2).

Table 1. Gross composition of milk of different mammals obtained from available food composition databases. Data are
presented as an average (±standard deviation) per 100 g.

Species Energy (kJ) Carbohydrate (g) Fat (g) Protein (g) Water (g) Ref.

Buffalo 473 (66) 4.9 (0.4) 8.3 (1.4) 4.7 (1.3) 80.9 (2.2) [19–21]
Camel 273 (42) 4.2 (1.6) 3.8 (0.4) 3.6 (1.3) 87.6 (2.2) [19,21,22]

Cow (≥3% fat) 277 (22) 4.7 (0.5) 3.8 (0.5) 3.3 (0.2) 87.3 (0.7) [19,20,22–27]
Cow (1–2.9% fat) 196 (14) 4.9 (0.1) 1.5 (0.4) 3.4 (0.2) 89.6 (0.3) [19,22–27]

Cow (<1% fat) 151 (7) 4.9 (0.2) 0.2 (0.2) 3.6 (0.2) 90.3 (0.6) [19,22,23,25–27]
Donkey 175 6.1 1.0 2.0 90.4 [19]

Goat (≥3% fat) 288 (39) 4.6 (0.3) 4.0 (0.7) 3.4 (0.4) 87.5 (1.5) [20,22–26]
Goat (<3% fat) 212 3.9 2.4 2.7 90.2 [24]

Horse 177 5.4 1.1 2.1 91.0 [28]
Sheep 406 (16) 4.9 (0.2) 6.2 (0.5) 5.6 (0.3) 82.7 (0.6) [22,23,26]

Human
Colostrum 242 (7) 6.8 (0.3) 2.6 (0.0) 2.0 (0.1) 88.2 (0.0) [22,23,29]

Transitional 267 (18) 6.7 (0.2) 3.4 (0.5) 1.5 (0.1) 87.1 (0.6) [19,23,26]
Mature 293 (9) 7.3 (0.7) 4.2 (0.2) 1.2 (0.1) 87.3 (0.3) [19,22,23,25,27]

2.1. Carbohydrate

Lactose is the primary carbohydrate in milk, providing 30% to 60% of energy depend-
ing on the species of milk [10,30–32]. It also enhances intestinal mineral absorption (e.g.,
calcium, sodium, magnesium, and phosphorus), utilisation of vitamin D, and stool soft-
ness [4,10,30,33]. Hydrolysis of lactose by the enzyme lactase into a simpler form of sugars
is essential for intestinal absorption in humans [10,34]. Lactase deficiency contributes to
the fermentation of lactose in the colon by microorganisms, producing gases (hydrogen,
carbon dioxide, and methane), organic acids (acetic, butyric, and propionic acid), and
excess water in stool, leading to uncomfortable bowel activity such as diarrhoea, flatulence,
and bloating [1,10,35,36].

Many forms of oligosaccharides are also present in milk, contributing to the gut
microbiome diversity in infants [17]. In humans, milk oligosaccharides are the third
most abundant macronutrients (7 to 20 g/L) after lactose and lipids [31,37], but in other
mammals, the milk oligosaccharides content is 10 to 100 times lower [37].

2.2. Fat

Milk fat occurs in emulsified droplets known as milk fat globules (MFGs) that are
mainly triacylglycerols (97–98% of total lipids by weight, including a large number of
esterified fatty acids and phospholipids), as well as proteins and fat-soluble vitamins [10,38].
The tri-layered phospholipid membrane of an MFG is designed to protect its contents from
lipolysis and oxidation [38]. The roles of milk lipids and MFGs in health have recently
been reviewed [39,40]. German and Dillard [41] reviewed the composition, structure,
function, absorption, and bioactivity of human and cow milk lipids, noting the importance
of considering the role of MFGs.

In general, the lipid composition of milk fat also differs from one species to another.
Zou et al. [42] compared the lipid composition of five mammalian milks (cow, buffalo,
donkey, sheep, and camel) to human milk by evaluating the degree of the chemical similar-
ity of the samples. This showed that although the total fatty acid composition of certain
non-human milks was highly similar to that of human milk (e.g., 96.4% similarity in sheep’s



Nutrients 2021, 13, 2505 4 of 28

milk), there were substantial differences when it came to the individual chemical species
(e.g., only 20.2% similarity in polyunsaturated fatty acids of sheep’s milk). Devle et al. [43]
measured the fatty acid profiles in the milk of three ruminants (cow, goat, and sheep)
and two non-ruminants (donkey and horse) and found a substantial diversity in the oc-
currence and abundance of them between species and their degree of correlation with
health attributes.

2.3. Protein

Depending on the species, there is between 1.2 and 5.6 g of protein per 100 g of
milk. Caseins (αs1-, αs2-, β-, and κ-casein) are the most abundant insoluble proteins
in milk [44,45]. The soluble proteins in the whey fraction of milk mainly consist of sol-
uble milk serum proteins (β-lactoglobulin, α-lactalbumin, immunoglobulins, serum al-
bumins, etc.), proteose peptones (casein-derived low-molecular weight peptide and pro-
teose peptone component 3), and membrane proteins (i.e., milk fat globule membrane
(MFGM)) [10,44,46,47].

The unique ability of milk caseins to form macromolecule aggregates (casein micelles)
with minerals such as calcium and phosphorus improves the bioavailability, delivery,
and intestinal absorption of these minerals [4]. The industrial importance of ruminant
milk proteins in cheese production and secondary transformation products has led to
the extensive study of these components, such as the proteomic analysis of several forms
of milk: as a whole [45], the whey fraction [48,49], and sub-fractions of whey such as
caseins [50] and MFGMs [51–54].

Roncada et al. [55] reviewed advancements and challenges in the proteomic analysis
of milk from farm animals, together with an overview of the different components in the
milk fractions. Similarly, Malacarne et al. [56] systemically reviewed the composition of
horse, human, and cow milk from the perspective of protein and lipid fractions, proposing
that the nourishment provided by horse milk is more similar to human milk than that
provided by cow milk.

2.4. Micronutrients

Micronutrients are essential nutrients that cannot be synthesised by humans and
must be provided through our diet or other means [57]. The consumption of two to
three servings of milk or milk products provides the required nutrient intakes for several
important micronutrients (calcium, magnesium, selenium, riboflavin, vitamin B12, and
pantothenic acid) [10]. Milk has comparatively fewer absorption inhibitors (e.g., oxalate
and phytates) than other foods, which improves the bioavailability and absorption of these
micronutrients [8,10].

The major milk minerals, calcium and phosphorus, which are required for optimal
bone health are more bioavailable due to the mineralisation of casein micelles in both the
insoluble organic colloid and mineral forms [58]. Medhammar et al. [9] highlighted the
differences between the mineral profiles of different milk species, with moose and reindeer
milk having the highest concentration of most essential minerals, and horse and donkey
milk having the lowest. Milk also provides water- and fat-soluble vitamins due to the
dual-phase matrix of lipid micelles suspended in the aqueous environment. Milk vitamin
profiles are broadly consistent, with vitamin C having the highest concentration, and
vitamins B12 and D having the lowest concentrations, with some species differences [9,59].
Graulet [57] reviewed the role of ruminant milk, with an emphasis on cow’s milk, in
meeting the required vitamin consumption by humans.

2.5. Other Milk Components

Admyre et al. [60] identified the presence of immune-modulatory exosomes in human
milk which led to research into how exosomes (one type of EV) and their cargoes may have
a role in inter-cellular, inter-individual, or inter-species communication. There has been sub-
stantial interest in milk-derived EVs as a novel bioactive fraction of milk [11,12,16,61–63].
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However, the majority of research has focused on human or cow’s milk, and not minority
dairy species, and therefore this paper reviews the key technical challenges and reported
biological activities of ruminant and pseudo-ruminant milk-derived EVs.

3. Milk-Derived EVs

According to the Minimal Information for Studies of Extracellular Vesicles 2018 (MI-
SEV2018) guidelines, “extracellular vesicle is the generic term for any particle naturally
released from the cell that is delimited by a lipid bilayer and cannot replicate, i.e., do
not contain a functional nucleus” [64]. Due to historical differences in how these vesicles
were isolated, characterised, and named, the guidelines recommend using the term “ex-
tracellular vesicle” instead of other terms such as “exosome” or “microvesicle”, except
when the biogenesis or release pathway is investigated [64]. However, in this review, the
terminology used in the original paper cited will be used. The MISEV guidelines provide
experimental and reporting guidelines specific to the field of EVs [64–66], and several
curated public knowledgebases promote the transparency and reproducibility of EV exper-
imental studies [67–75]. Recent advances in the use of flow cytometry to study EVs have
led to a standardised experiment and reporting framework (MIFlowCyt-EV) [64,76,77].

EVs are heterogenous populations that are categorised based on their biogenesis
pathway. In brief, exosomes (~30 to 150 nm) originate from the intraluminal vesicles
via the endosome trafficking pathway, while microvesicles (100 nm to 1 µm) result from
direct budding from the plasma membrane of the parental cell, and apoptotic bodies (1
to 5 µm) are shed from cells undergoing apoptosis [78,79]. To date, most of the available
methodologies cannot isolate a pure subpopulation of EVs; therefore, a defined mixed
population is widely used for studies. The progress in understanding EV biology in the
context of inter- or intra-species signal mediators, due to their diverse cargo (mRNA,
miRNA, protein, etc.), has spawned a growing interest among the research community.
An in-depth review of EV heterogeneity [78] and cell biology [80] proposed a need for a
clear definition of the different subpopulations, based on cargo composition, trafficking
pathways, and biological functions. Several other detailed reviews focused on other aspects
of EVs such as biogenesis [81,82], delivery or target mechanisms [83–85], and current
advances in knowledge [86]. The majority of publications on EVs have been focused on
human growth, development, homeostasis, and disease progression, and several other
reviews of milk-derived EVs are summarised in Table 2.

Table 2. Recent review articles of milk-derived EVs.

Authors Scope of Review Ref.

Galley et al. Update on the therapeutic potential of human milk-derived EVs in disease, with an emphasis on
necrotising enterocolitis. [11]

Sanwlani et al. Discussed the mediator role of milk-derived EV crosstalk from inter-cellular to cross-species and
highlighted the emerging therapeutic potential of milk-derived EVs. [12]

Melnik et al. Reviewed epidemiological and translational evidence on how dairy milk-derived exosomes
(along with their cargo) contribute to the pathogenesis of common Western diseases. [13]

Munir et al. Highlighted the role of food-derived exosomes on human physiological and pathological events,
as well as their potential as a therapeutic agent. [14]

Zempleni et al. Discussed the bioavailability and the distribution of milk-derived exosomes and their cargo
(emphasis on miRNA). [63]

de la Torre et al.
Summarised the general biophysical features and roles in health and disease of EVs. The authors
also focused on human breast milk-derived exosomes in maternal and infant health, based on an
in-depth discussion on two proteomic datasets of human breast milk exosome studies.

[16]

Le Doare et al. Discussed the role of human milk microbiota, milk oligosaccharides, and EVs in the development
of the infant gut microbiome and immune system. [17]

Foster et al. Summarised the knowledge about EVs derived from human biofluids, with emphasis on the
human reproductive system. [18]
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3.1. Isolation of Milk-Derived EVs

From complex biofluids to simpler in vitro cell culture media, different isolation
methods may be employed to minimise the presence of unwanted artefacts which could
jeopardise the downstream analysis. Review articles or book chapters on EV isolation
techniques are readily available in the literature, from providing a brief overview [87–92]
to a comprehensive discussion [93–96].

EVs’ isolation relies on their separation from contaminants such as proteins and
other particles through the use of known biophysical and/or biochemical properties: size,
buoyant density, surface charge, surface molecules’ expression and their composition.
Several articles dedicated to a specific scope of isolation techniques are worth mention-
ing. Li et al. [97] discussed the different isolation strategies for human biofluid-derived
EVs which have been employed in mass spectrometry (MS)-based proteomic studies
for the past decade (2009–2019). Another review article highlighted the usefulness of
size exclusion chromatography (SEC) in EV isolation, given that this approach is highly
scalable and adaptable while maintaining the EVs’ characteristics [98]. A three-step filtra-
tion protocol comprising dead-end filtration, tangential-flow filtration, and track-etched
membrane filtration was proposed by Heinemann and Vykoukal [99] to provide an ap-
proach to concentrate and fractionate samples with minimal forces applied on EVs. The
progression in microfluidics-based platforms in the past decade has enabled the rapid
separation of EVs from small sample volumes. A review by Meng et al. [100] highlighted
the interesting advancements in the microfluidic separation of EVs based on the different
separation principles.

Characterisation of isolated EVs still largely uses immunochemical (e.g., ELISA, West-
ern blot), MS-based, and optical (e.g., nanoparticle tracking analysis (NTA), microscopy,
and flow cytometry) methods. However, any of the single aforesaid detection approaches
may not be sufficient to address the issues of specificity, efficiency, and consistency in EV
detection. More often, multiple detection approaches are employed within the research
community when it comes to EV characterisation. The progression in analytical sciences
has pushed for the development of new and innovative instruments to meet the abovemen-
tioned challenges. Recent review articles have summarised the emerging new technologies
available that are specifically developed for EV characterisation [94,101–104].

Methods for the isolation and characterisation of milk-derived EVs have no significant
differences compared to those for isolation from other biofluids or cell culture media;
thus, any protocol, technique, or technology for isolation of EVs of different origin can
also be used for those from milk. The only difference between these types of samples is
the unwanted artefacts present in different biofluids (e.g., lipoproteins in blood serum,
or casein aggregates in milk). A simple method for isolating EVs from breast milk was
described by Wang [50], which only requires a proprietary precipitation reagent (ExoQuick),
a benchtop centrifuge, and a few common lab consumables; however, this method isolates
a crude preparation of EVs. Several other approaches have been developed and used to
study EVs (Table 3).

Table 3. Methods used to study EVs and exosomes from milk.

Species Methodology Findings Ref.

Extracellular Vesicle

Human DC + PR EV isolation from human milk via precipitation
using ExoQuick. [105,106]

Human DC + top-down DG-UC,
DC + bottom-up DG-UC

DC + top-down DG-UC was efficient and
reproducible with a heterogeneous population of
EVs (sizes and types).

[107]

Cow UC, SEC, PR, membrane affinity column,
PS-affinity isolation

SEC-based qEV column (Izon Science) yielded high
purity (high EV count per mg protein) and a large
amount of RNA with minimal operation time.

[108]
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Table 3. Cont.

Species Methodology Findings Ref.

Cow DC + UC, DC + EDTA + UC, DC + DG-UC DC + DG-UC yielded the highest abundance of
miRNA with EV surface protein markers. [109]

Cow UC, HCl or AA

EV concentration was significantly higher for
samples treated with acidification, suggesting
efficient removal of casein. However,
acidification was reported to partially degrade
EV surface proteins (i.e., CD9 and CD81). TEM
images revealed a rough surface of EVs isolated
with acids.

[110]

Cow AA+UC, C + UC

AA+UC method yielded lower protein content,
but EV protein markers (CD81, Rab5B, TSG101,
and Hsc70) were reported to be present in high
abundance. Proteome analysis revealed C/UC
EV fraction contains whey proteins such as
casein, albumin, lactoferrin, and lactoglobulin.

[111]

Cow
Total particles and Annexin V+ particles

measured using flow cytometry (Canto II and
Cytoflex) and NTA (NanoSight)

Significant correlation of total particle counts
using Cytoflex and NanoSight and for Annexin
V+ particles using Canto II and Cytoflex.

[112]

Cow + HCT
116 cell

line + As-
caris suum

AFM-based force spectroscopy (FS)
Demonstrated an AFM-based characterisation
strategy with the ability to discriminate EVs
from contaminants.

[113]

Exosome

Human Novel solid-phase extraction in tip-based format

Demonstrated successful recovery of spiked
lyophilised human urine exosomes from 3
different matrices (mock urine, reconstituted
non-fat milk, and foetal bovine serum).

[114]

Cow UC, IP

IP had a better efficiency in removing casein and
reduced operator time. TEM revealed
precipitated exosomes had rough surfaces. Other
features of exosomes isolated were not
significantly different.

[115]

Cow DC + DG-UC, DC + SEC Increased yield and better purity of intact
exosomes with DC + SEC method. [116]

Cow PR, UC + PR, UC + DG-UC, Filtration + UC

PR alone and Filtration + UC unsuitable due to
the species difference. UC + PR was useful for
rapid isolation with increased recovery. UC +
DG-UC suitable for efficient purification with
native form intact.

[117]

Human +
Cow DC + SEC

Evaluation of Vaswani et al. [116] on human
milk. The enrichment profile of exosomes was
similar to that obtained in cow milk in their
previous study, suggesting the method was
suitable for use on human milk.

[118]

Human +
Cow

UC (milk serum) + SEC,
C+ UC (fluff layer) + SEC

Isolation and characterisation of EVs from both
milks compared to conventional UC. [119]

The terminology used is based on the reference cited, and this division reflects older thinking and is a “pool” of EVs that are responsible
for the effects (AA, acetic acid; AFM, atomic force microscopy; C, centrifugation; DC, differential centrifugation; DG-UC, density
gradient ultracentrifugation; EDTA, ethylenediaminetetraacetic acid; IP, isoelectric precipitation; NTA, nanoparticle tracking analysis; PR,
precipitation reagent; PS, phosphatidylserine; SEC, size-exclusion chromatography; UC, ultracentrifugation).

3.2. Protein Composition of Milk-Derived EVs

The application of MS-based proteomic profiling and protein quantification has been
of substantial significance in EV research to allow the identification and quantification of
EV proteomes from various cultured systems, organs, body fluids, or plants. Several review
articles provide a high-level overview of the MS-based methodological approaches widely
used in EV studies [79,120–123]. MS-based proteomic quantitative analysis can be achieved
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with either a labelled (e.g., isobaric tags for relative and absolute quantification (iTRAQ);
stable-isotope labelling of amino acids (SILAC)) or label-free approach which quantifies
proteins based on their spectral intensity or counts [79,120]. Data generated from MS consist
of large datasets with functional analysis of these data needed for the identification of
biological processes, which includes the Gene Ontology (GO) term annotation, enrichment
analysis, and/or pathway analysis [124].

The early discovery of several EV-enriched protein markers (tetraspanins, heat shock
proteins, annexins, etc.) from isolated EVs derived from in vitro cell models using MS-
based proteomic characterisation occurred in the early 2000s [125–127]. Admyre et al. [60]
first reported the investigation of the mammalian milk-derived EV proteome using a
tandem MS approach to verify several important EV protein markers (tetraspanins, heat
shock proteins, MUC-1, etc.) from the human colostrum and mature breast milk-derived
exosomes, respectively. Building on this, Reinhardt et al. [128] identified 2107 proteins
in a comprehensive study of cow milk-derived exosomes by utilising two-dimensional
liquid chromatography-based separation coupled with tandem mass spectrometry. These
studies led to several characterisation papers, summarised in Table 4 [128–137]. The
literature demonstrates that milk-derived EVs have a distinctive proteome compared to
other milk fractions and that a significant proportion of these proteins have reported
immune-regulatory properties.

Table 4. Major findings of analytical techniques used to characterise the protein composition of milk-derived EVs
and exosomes.

Species Technique Findings Ref.

Extracellular Vesicle

Human µLC-MS/MS Identified 258 EV membrane surface proteins
(surfaceome) that contributed to antiviral activity. [138]

Human nLC-MS/MS, LC-MS/MS

Identified 1963 proteins (198 novel). Construction of
human milk proteome (n = 39 individual studies)
found 2698 unique proteins (633 previously reported
in EVs).

[130]

Human nLC-MS/MS Identified 73 proteins and the presence of several
exosomal protein markers. [60]

Cow CDMS vs. nLC-MS/MS

Detected 57,350 particles in 8 distinct subpopulations
(2D Gaussian model). nLC-MS/MS data corroborated
exosome enrichment in CDMS samples and identified
162 proteins and 43 exosome-specific proteins.

[131]

Cow nLC-MS/MS

Identified 1330 proteins (118 unique to infection) in
bovine leukaemia virus (BLV)-infected cattle.
Presented 3 proteomic datasets of milk-derived EVs
from healthy and BLV-infected cattle.

[139,140]

Cow nLC-MS/MS Identified 1899 proteins (20 and 41 specific to 35 K and
100 K pellets, respectively). [132]

Cow nLC-MS/MS A novel subset of EVs with unique proteins and
other cargoes. [133]

Camel nLC-MS/MS

Identified 1010 functional groups of proteins. Total of
890 proteins in all 3 species, with 5 specific to
C. dromedaries, 31 to C. bacterianus, and 12 to
hybrid camels.

[134]

Cow + donkey + goat UHPLC-HRMS
Metabolomic analysis of 5 different pools of fractions
obtained from differential centrifugation from
3 different species.

[141]
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Table 4. Cont.

Species Technique Findings Ref.

Exosome

Human iTRAQ-labelled, nLC-MS/MS

Total of 70 peptides from 28 proteins in preterm milk
exosomes differentially expressed compared to
full-term milk exosomes, with 47 upregulated and
23 downregulated.

[135]

Human + Cow iTRAQ-labelled, nLC-MS/MS
Total of 920 proteins identified with 575 proteins
differentially expressed between colostrum and
mature milk in both species.

[142]

Cow nLC-MS/MS
Total of 9430 proteins identified, with 1264, 1404, 963,
and 1306 unique proteins (24, 48, and 72 h colostrum
and mature milk, respectively).

[136]

Cow µLC-MS/MS, 2D LC-MS

Insufficient exosomes from saliva and urine for
analyses. Validation of TSG101 protein milk and
plasma exosomes. Total of 86 proteins unique to milk
exosomes and 37 proteins unique to plasma
exosomes identified.

[137]

Cow iTRAQ-labelled, nLC-MS/MS

Total of 2971 proteins identified, of which 1490, 302,
and 334 were unique to exosomes, whey, and MFGMs,
respectively. Total of 90 exosome proteins were
differentially regulated by mastitis.

[143]

Cow iTRAQ labelled, nLC-MS/MS

Total of 2107 proteins identified. Major MFGM
proteins were abundant in exosomes but only
represented 0.4% to 1.2% of the total exosomal
proteome compared to 15% to 28% of that of the
MFGM proteome.

[128]

Pig Nlc-MS/MS Total of 2313 peptides from 639 proteins, with 68 novel
proteins identified. [129]

Horse MALDI-ToF Identification of exosome-associated proteins, CD81
and CD63, in horse milk. [144]

The terminology used is based on the reference cited, and this division reflects older thinking and is a “pool” of EVs that are responsible for
the effects (µLC-MS/MS, micro-flow liquid chromatography-tandem mass spectrometry; CDMS, charge detection mass spectrometry;
iTRAQ, isobaric tags for relative and absolute quantification; MALDI-ToF, matrix-assisted laser desorption ionisation-time of flight; MFGM,
milk fat globule membrane; nLC-MS/MS, nano-flow liquid chromatography-tandem mass spectrometry).

3.3. Lipid Composition of Milk-Derived EVs

As different EV subtypes (exosomes, microvesicles, and apoptotic bodies) are cat-
egorised, in part, based on their respective biogenesis pathways, the membrane lipid
composition of EVs resembles that of the parent pathway [93,145]. Understanding the lipid
composition of EVs, such as sphingolipids, ceramides, phosphatidylserine, and the lipid
raft component cholesterol, is an essential part of their biology, biogenesis, and biologi-
cal function [121,146]. Several of the analytical chromatography and mass spectrometry
techniques routinely used in EV proteomics have also been used for the qualitative and
quantitative assessment of EV lipids. The challenges, limitations, and current knowledge
of EV lipidomics have been reviewed elsewhere [121,145,147–150].

There are particular challenges in isolating lipids from milk-derived EVs due to the
co-isolation of milk lipids (i.e., MFGs), and in milk EV isolates with a high triacylglycerol
content (TAG), since MFGs contain a greater amount of TAGs in their core than EVs [38,119],
potentially interfering with accurate EV lipidomic studies. In this review, MFG lipidomic
studies are not included because the biophysical properties (tri-layered membrane) and
cargoes of MFGs are distinctly different from those of EVs.

To date, two studies have specifically examined the lipid composition of EVs [119,151].
Blans et al. [119] successfully applied size exclusion chromatography to human and cow
milk samples to isolate distinct fractions of EVs and MFGs; these were partly charac-
terised by the notably higher TAG-to-cholesterol ratio in human and cow MFGMs in MFGs
when compared to EVs. The authors also reported a higher proportion of sphingomyelin,
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phosphatidylserine (PS), and phosphatidylcholine (PC), and a lower proportion of phos-
phatidylethanolamine (PE) in EVs compared to MFGs. Yassin et al. [151] reported concen-
trations of ~10 to 15 µg/mL of phosphatidylinositol, PS, and PE, and ~20 to 25 µg/mL of
PC in dromedary milk exosomes which were consistent during different lactation periods.

Phospholipids, such as those reported in EVs, have been associated with beneficial
health effects [152–156]. We recognise that there is a knowledge gap in the understanding of
the lipid composition of mammalian milk-derived EVs, which is essential to understanding
the biology of their function and biogenesis mechanisms [157].

3.4. Nucleic Acid Composition of Milk-Derived EVs

Milk-derived EVs contain nucleic acid cargoes, proposed to be derived from mammary
epithelial cells, encased within the cytosol of a lipid bilayer vesicle [158,159]. Studies
characterising the milk-derived EV transcriptome are summarised in Table 5.

Of interest is the presence of microRNA (miRNA) in milk; these are short nucleic acids
of ~22 nucleotides and are known for their role in post-transcriptional regulation. In milk,
these miRNAs are present in two main forms: bound to RNA-binding proteins, or encapsu-
lated in EVs [12]. The abundance of miRNAs in milk has generated substantial interest and
research into whether these miRNAs are bioavailable and bioactive. Many studies have
focused on the potential involvement of milk-derived EV miRNA in inter-cellular crosstalk,
inter-individual communication (breastfeeding), and cross-species communication (due
to human consumption of other mammalian milk throughout adulthood). However, it is
noted that the concept of ingested miRNA from another species surviving digestion and
being absorbed in sufficient quantities to elicit a quantifiable biological effect remains to be
convincingly shown, despite several promising studies [109,160–162].

Several review articles on milk-derived EV nucleic acid cargoes are available, which
include their functional implications [61,163,164] and future applications [165,166]. Addi-
tionally, with development in the application of next-generation sequencing (NGS), several
nucleic acid profiling studies (with an emphasis on miRNA) have reported their findings
from milk-derived EVs in humans [167–173], cows [158,174–179], pigs [129,170,180,181],
sheep [182], and buffaloes [183]. In silico insights from these data suggest potential reg-
ulation of several key pathways, but for the most part, these predictions have not been
validated in vitro or in vivo.

However, the presence of miRNA in milk-derived EVs suggests that they have a poten-
tial role as natural or modifiable therapeutic agents to improve or enhance human and ani-
mal health. For instance, there are studies evaluating the milk-derived EV transcriptome for
use as nanotherapeutic agents [184–186], as disease biomarkers [158,179,187], differential
mediators [188,189], and as a health assessment tool for lactating animals [175]. Conversely,
the role of milk-derived EVs as a functional regulator has also generated concerns because
continuous consumption of dairy may contribute to the pathogenesis of common Western
diseases such as type 2 diabetes mellitus, allergies, and cancers [13,190–194].

In brief, there are two broad schools of thought regarding the specific role of milk-
derived miRNAs in postnatal development: (1) the functional hypothesis, which proposes
that these miRNAs are purposefully transferred by the parent to the offspring to exert
meaningful epigenetic regulatory functions in the infant’s development, and (2) the nu-
tritional hypothesis, which proposes that the degradation of miRNAs in the gut during
digestion into nucleotides means that they are only nutritional “building blocks” for the
infant only and do not exert any meaningful regulatory functions [191].

The studies listed in Table 5 show that: (1) RNA (especially miRNA) is present in
milk-derived EVs and other extracellular particles, (2) some of these miRNAs are conserved
between species, (3) some of these miRNAs are specifically found in extracellular particles,
and (4) biological dysfunction, such as disease, can alter miRNA abundance. On the
assumption that conservation of the miRNA sequence implies conservation of function,
much of the research into the biological effects of milk-derived EVs has focused on their
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miRNA cargoes and their effects on immune regulation. These studies, and others, are
reviewed later.

Table 5. Major findings of nucleic acid studies conducted on EVs of different mammalian milk used to characterise the RNA
composition of milk-derived EVs and exosomes.

Species Technique Findings Ref.

Extracellular Vesicle

Human NGS Total of 1523 miRNAs identified with more than one read in 70%
of samples from the Faroe Islands cohort (364 mothers). [195]

Human qPCR

Total of 55 lncRNAs identified with 11 lncRNA detected in >50%
of the breast milk samples and 5 in >90%. The authors suggested
the packing of highly correlated lncRNAs is regulated by the
same pathway.

[196]

Human NGS

Total of 5 miRNA stably expressed in all groups. Total of
4 (probiotic+) and 5 (atopic dermatitis+) miRNAs differentially
expressed. No evidence of maternal probiotic ingestion altering
miRNA abundance, unlikely for probiotic protective effect to be
transferred to the infants.

[172]

Human + Pig qPCR, NGS
Identified 309 (human) and 218 (pig) mature miRNAs. In silico
analyses demonstrated evolutionary conservation of the top
20 most abundant miRNAs between human, cow, pig, and panda.

[170]

Cow qPCR, NGS Identified more than 200 cow milk-derived EV miRNAs. [109]

Cow qPCR, NGS
Enrichment of small RNA profiles in 4 fractions (12 k, 35 k, 70 k,
and 100k× g). Distinct differences in small RNA biotypes
between fractions.

[174]

Cow qPCR, NGS
Total circRNAs: 39,276 identified, with 17,169 unique to
Staphylococcus aureus-infected cows. Demonstrated the selective
circRNA packaging mechanism regulated by the infection.

[197]

Cow Microarray mRNA profiles are altered by viral load and lactate
dehydrogenase concentration. [187]

Cow qPCR, NGS Total of 276 miRNAs identified with 9 differentially expressed
between forage-fed and non-forage fibre source-fed cows. [175]

Cow qPCR
Demonstrated an enriched subset of miRNAs in EVs prepared at
12,000 and 35,000× g, which were traditionally discarded
during preparation.

[133]

Cow + Sheep qPCR, NGS
Identified 685 miRNAs (601 novel) in sheep samples. In silico
comparison of the top 20 expressed miRNA in both milks that
have immune-related functions.

[182]

Exosome

Human qPCR, NGS
Identified 221 and 48 mature miRNAs (fresh and 4-week-old milk
stored at 4 ◦C, respectively) detected in 1 mL samples. No reliable
detection of miRNAs in infant formula.

[167]

Human qPCR, NGS Total miRNAs: 631 detected, with 208 novel miRNAs. Total of 9
miRNAs differentially abundant in type 1 diabetes samples. [168]

Human qPCR, NGS
Identified 602 miRNAs with 59 miRNAs that are immune-related.
Demonstrated resistance and stability of exosomal miRNAs
against harsh conditions.

[173]

Human and Pig In silico Reported the presence of plant miRNA in both human and pig
milk exosomes based on publicly available sequencing data. [198]

Cow Qpcr
Demonstrated the bioavailability of cow milk exosomal miRNAs
in human plasma without eliciting a cytokine response ex vivo
(human PBMCs).

[199]

Cow PCR, NGS

Total miRNAs: 290 detected, with 69 novel miRNAs. Total of 37
miRNAs differentially expressed due to infection. The predicted
target genes for 2 miRNAs highly expressed in infected samples,
bta-miR-378 and bta-miR-185, were functionally validated with
target genes.

[200]
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Table 5. Cont.

Species Technique Findings Ref.

Cow qPCR, NGS

Total miRNAs: 1472 detected, with 480 novel miRNAs. Total of 18
miRNAs differentially expressed due to mastitis. Presented
miRNA expression profiles of both healthy and infected cows.
bta-miR-223 and bta-miR-142-5 were considered potential early
mastitis detection targets.

[158]

Cow qPCR Reported the effects of fermentation on the expression of miR-29b
(unaffected) and miR-21 (significantly reduced by fermentation). [201]

Cow qPCR,
Microarray

Microarray profiling of miRNA (79) and mRNA (19,320) on
exosome obtained via ultracentrifugation and its supernatant. [178]

Cow NGS

Total miRNAs: 417 detected, with 303 novel miRNAs. Two
differential expression analyses revealed 6 miRNAs with
significant differential presence. Total of 2 miRNAs were
proposed as potential biomarkers for early infection.

[179]

Cow and Buffalo NGS, in silico

Total miRNAs: 558 detected in all species (buffalo, cow, pig,
human, and panda), with the top 10 highly expressed miRNAs
conserved across species. Total of 48 miRNAs were differentially
expressed in buffalo, compared to other species.

[183]

Pig qPCR, NGS
Total mRNAs: 16,304 detected, with 2409 novel mRNAs. A
random selection of 14 mRNAs among the top 50 was further
confirmed using qPCR.

[129]

Pig qPCR, NGS Total miRNAs: 491 detected, with 315 novel miRNAs. [180]

Pig qPCR, NGS
Total pre-miRNAs: 180 detected, with 40 novel pre-miRNAs,
corresponding to 237 mature and 234 unique miRNAs.
Immune-related miRNAs are most abundant in colostrum.

[181]

Camel qPCR Stable expression of the casein family genes between mid and late
lactation periods. [151]

Microvesicle/Nanovesicle

Human qPCR
Microarray

Total of 281 miRNAs detected. Expression of miR-181a and
miR-17 was detected in CD63-positive human milk exosomes. [202]

Cow qPCR

Six different cow colostrum exosome isolation methods were
compared. Method 2 (conventional: differential centrifugation)
had the highest purity and greatest amount of microvesicular
miRNAs quantified.

[203]

Cow qPCR
Identification of selected mRNA and miRNA in microvesicles,
unaffected by acidification, and in vitro transfer of RNA
from samples.

[204]

Buffalo qPCR

The expression of 6 nanovesicular miRNAs from three biofluids
was evaluated, and 2 of them (miR-21 and miR-500) were
reported to be stably expressed during different household
storage conditions.

[205]

The terminology used is based on the reference cited, and this division reflects older thinking and is a “pool” of EVs that are responsible
for the effects (circRNA, circular RNA; lncRNA, long non-coding RNA; miRNA, micro-RNA; NGS, next-generation sequencing; qPCR,
quantitative PCR).

4. Stability and Uptake of Milk-Derived EVs

The studies reported in the previous sections described how EVs contain a range
of lipids, proteins, and nucleic acids. The stability, i.e., resistance to degradation due
to processing or digestion, of milk EVs and cargoes, and how they are taken up by
the recipient cells have been studied in cows [159,160,169,177,178,201,204,206–215], hu-
mans [167,171,173,202,216,217], goats [218], and buffaloes [205]. These studies are sum-
marised in Table 6.

These studies show that the structure of EVs protects them against harsh conditions,
such as low pH, temperature variations, or high concentrations of RNase. This capacity to
resist degradation and digestion underpins the study of their potential biological effects,
either as nutrient delivery or as drug delivery vehicles.
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Table 6. Major findings of studies on the general stability and uptake of mammalian milk-derived EVs.

Species Findings Ref.

Extracellular vesicle

Human Stability and uptake of natural and synthetic EVs loaded with locked nucleic acid anti-sense
oligonucleotides in vitro (PHH, NCI-H460 cell line, and hPSC) and in vivo (mice). [216]

Cow The impact of industrial processing on milk EVs’ structural integrity and
molecular composition. [219]

Cow Cellular internalisation of EVs in vitro (hPAEC and NRCM). [109]

Cow Development of non-invasive fluorescent labelling of EVs in vitro (Caco-2 cell line),
demonstrating internalisation and co-localisation of labelled EVs. [220]

Cow Time-dependent uptake of colostral miRNA, EV proteins, and isomiRs after feeding
in vivo (calves). [221]

Cow Demonstrated that microwaving, but not autoclaving, agitation, or freezing, reduced
miR-220c abundance. [207]

Exosome

Human Resistance of exosomes isolated from preterm human milk to in vitro digestion and
internalisation in vitro (HIEC). [169]

Human
Exosomal protein markers resist degradation by in vitro digestion, pH 4.5, and the
uptake of digested and undigested exosomes, based on immunofluorescence imaging
of exosomal protein markers in vitro (HIEC).

[171]

Human
Resistance of miRNA to degradation caused by incubation at 26 ◦C over 24 h, six
freeze–thaw cycles at −20 ◦C, treatment with RNase A and RNase T1, and incubation
at 100 ◦C for 10 min.

[173]

Human Demonstrated the uptake of RNA ex vivo (macrophages). [217]

Human + Cow Storage at 4 ◦C substantially reduced the exosome content, especially miRNA, of
human milk over time, and the infant formulae tested had no detectable miRNA. [167]

Cow Assessed the accumulation and effects of milk exosomes and miRNA cargoes on
embryo development in C57BL/6 mice. [222]

Cow Resistance of lncRNA to degradation by in vitro digestion. [177]

Cow Resistance of paclitaxel (chemotherapeutic), encapsulated in these exosomes, to
degradation and loss of efficacy from long-term storage at −80 ◦C for 4 weeks. [213]

Cow Resistance of 5 miRNAs to degradation by an in vitro digestion method and in vitro
internalisation of exosomes. [159]

Cow Uptake of exosomes and exosome-encapsulated siRNA (both digested and
undigested) in vitro (Caco-2 cell line). [208]

Cow
Fermentation of milk exosomes with probiotic Streptococcus thermophiles, Lactobacilli,
and Bifidobacteria reduces miR-29b and miR-21 abundance and total
protein concentration.

[201]

Cow Challenged the findings from a previous study [160] regarding the dietary transfer of
cow milk-derived miRNA in humans. [214]

Cow
Demonstrated that miR-223 and miR-125b persist in high abundance after simulated
in vitro digestion (TNO TIM-1 model). Authors found that exosomes may not be the
only carrier of these miRNAs in milk.

[211]

Cow Uptake and bioavailability of fluorescent-labelled exosomes and their miRNA cargoes
via endocytosis in vivo (C57BL/6 mice) and in vitro (HUVEC). [210]

Cow Resistance of native miRNA and anticancer compounds encapsulated in these
exosomes to degradation from long-term storage at −80 ◦C for 6 months. [212]

Cow Uptake of miRNA in differentiated and undifferentiated THP-1 cells. [178]
Cow Uptake and transport of miRNA by endocytosis in vitro (Caco-2 and IEC-6 cell lines). [209]

Cow
Uptake of miR-29b and miR-200c in a randomised crossover feeding study, in
C57BL/6J mice (± miRNA depletion), and human peripheral blood mononuclear
cells (PBMCs).

[160]

Cow + Pig + Mice Cross-species biodistribution profile of miRNAs in mice and pig model. [223]

Goat + cancer cell lines A novel approach of covalently labelled exosomes with commercial fluorophores
in vitro (U87 and B16F10 cell lines) and in vivo (C57BL/6 mice). [224]

Goat
Uptake, bioavailability, and tissue distribution of radiolabelled (reduced technetium,
99mTc (IV)) exosomes using non-invasive single-photon emission computed
tomography imaging in Balb/C mice.

[218]
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Table 6. Cont.

Species Findings Ref.

Microvesicles/Nanovesicles/Other

Human
Presence of immune-related miRNA in human milk, two of which were present in
exosomes. miR-21 and miR-181a were resistant to degradation by RNase, pH 1, and
freeze–thaw, indicating an extracellular protective mechanism.

[202]

Cow

Pasteurisation and homogenisation, but not 4 ◦C storage, substantially reduce the
abundance of miR-200c and miR29b in four types of milk tested. Somatic cells in the
milk accounted for <1% of the abundance of these miRNAs in milk, consistent with
these miRNAs packaged in extracellular structures such as EVs.

[215]

Cow
Presence of mRNA and miRNA which were resistant to degradation by RNase, pH 2,
incubation at 37 ◦C, but not Triton X-100, indicating an extracellular
protective mechanism.

[206]

Cow Presence of mRNA and miRNA in both samples. These RNAs were resistant to
degradation by pH 2, indicating an extracellular protective mechanism. [204]

Buffalo Demonstrated that 4 ◦C storage and multiple freeze–thaws reduced the abundance of
miR-21 and miR-500. [205]

The terminology used is based on the reference cited, and this division reflects older thinking and is a “pool” of EVs that are responsible for
the effects (HIEC, human intestinal epithelial crypt-like cell; hPAEC, human pulmonary artery endothelial cell; hPSC, human pluripotent
stem cell; HUVEC, human umbilical vein endothelial cell; NRCM, neonatal rat cardiomyocyte; PBMC, peripheral blood mononuclear cell;
PHH, primary human hepatocyte).

5. Biological Effects of Milk-Derived EVs

The previous sections indicate that milk-derived EVs may contain bioactive compo-
nents, which are protected against degradation and digestion. The studies to date that
have focused on the biological effects of milk-derived EVs are highlighted in Table 7. The
majority of these studies used human or cow milk EVs, and there is a clear knowledge gap
regarding whether milk from other species has similar or different effects.

The studies researched the effects of EVs and exosomes on the gut microbiota [201,223,225],
on the use of a delivery vehicle [111,159,184,208,213,226–231], in the immune re-
sponse [60,178,185,203,217,232–237], in diseases such as cancer, [188,189,209,228,231,236,238–247],
and in other aspects of cell biology [129,162,248–253]. These studies show that milk-derived
EVs can have meaningful biological effects in the model systems used, forming a basis for
future research.

Whether these effects in animal and in vitro models translate into humans is unclear.
A question remains concerning whether the effects are solely due to EVs and their cargoes
or also due to other variable contaminants (e.g., RNA-binding proteins) in the vesicle
preparations used in the published studies. The increased rigour and reporting required to
comply with the MISEV guidelines are intended to enable more thorough validation of
EV research.

Table 7. Major findings of studies on the biological effects of mammalian milk-derived EVs.

Species Findings Ref.

Extracellular vesicle

Human Protective effect in vitro (MA-104 and Hep-2 cell lines) against human rotavirus and
respiratory syncytial virus. [254]

Human In vitro (HFF-1 cell line) antiviral activity against human cytomegalovirus via
inhibition of viral replication. [138]

Human Antiviral activity against Zika and Usutu in vitro (Vero cell line). [255]

Human Coagulant potential of human milk, owing to the presence of tissue factor
(TF)-exposing EVs, but not found in cow milk. [256]
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Table 7. Cont.

Species Findings Ref.

Human Protective effect against experimental-induced NEC in vitro (IEC-6 and FHs 74 Int cell
lines) and in vivo (Sprague Dawley pups). [257]

Human + Cow Attenuation of inflammatory cytokine expression and nuclear factor (NF)-κB
activation in vitro (LPS-stimulated RAW 264.7). [258]

Cow Promotion of osteogenesis via proliferation and differentiation of osteoblasts in vitro
(Saos-2 cell line) and in vivo (Sprague Dawley rats). [259]

Cow Improved small intestinal dysfunction in malnutrition C57BL/6J mouse model. [260]

Cow Enhancement of curcumin cell uptake and permeability in an intestinal model in vitro
(Caco-2 cell line). [261]

Cow Osteoprotective effects in vivo (BALB/c and C57BL/6 mice), and decreased the
RANKL/OPG ratio in vitro (MLO-Y4 cell line). [249]

Cow Induction of phenotypical changes in hPAEC and NRCM cell lines. [109]

Cow
Modulation of gut microbiota composition, SCFA profiles, and enhancement of
intestinal immune regulation by EVs in vitro (RAW 264.7 cell line) and in vivo
(C57BL/6J mice).

[225]

Cow Differential improvements in DSS-induced colitis of two EV subsets via different
mechanisms in vivo (C57BL/6J mice). [188]

Cow Modulation of agricultural dust-induced lung inflammation by EVs in vitro (MH-S
cell line) and in vivo (C57BL/6J mice). [232]

Cow Demonstrated sonication effects on EV skeletal muscle biomarkers in vivo (Fischer
344 rats). [262]

Cow Biocompatibility and potential use as a non-immunogenic delivery vehicle of EVs
in vitro (RAW 264.7) and in vivo (ICR mice). [111]

Cow

Demonstrated EVs do not cause genotoxicity and contain bioactive TGF-β in vitro
(NIH/3T3 cell line), and EVs facilitate differentiation of naive T cells into pathogenic
Th17 cells (ex vivo DBA/1J mice). The panel of toxicology studies found differences in
toxicological profiles in vitro (HL-60, RAW 264.7, and CHO-K1 cell lines) and ex vivo
(human blood).

[234]

Cow
Increased osteocytes number and osteoblast differentiation in vivo (DBA/1J mice),
and increased osteoblast differentiation transitioning into osteocytes in vitro
(human MSCs).

[263]

Cow
EVs significantly delayed arthritis development in vivo (IL-1Ra-/- and DBA/1J mice).
EV uptake demonstrated via ex vivo (mouse ileal cells and splenocytes) and in vitro
(RAW 264.7 cells).

[238]

Cow EVs contain bioactive TGF-β in vitro (NIH/3T3 cell line), and EVs facilitate
differentiation of naive T cells into pathogenic Th17 cells (ex vivo DBA/1J mice). [233]

Exosome

Human Protective effect of both raw and pasteurised exosomes against NEC in vivo
(C57BL/6 mice) and ex vivo (neonatal mice intestinal organoids). [239]

Human

Demonstrated that miR-148a influenced the proliferation, morphology, and protein
expression of transformed cells more so than normal cells in vitro (LS123 and CCD841
cell lines). The role of miR-148a was validated using a knockdown model in vitro
(293T cell line).

[189]

Human Protection against H2O2-induced oxidative stress in NEC in vitro (IEC-6 cell line). [240]

Human
Showed uptake of exosomes, increased expression of miR-148a, and decreased
expression of DNA-methyltransferase 1 in vitro (CRL-1831, K-562, and LIM1215
cell lines).

[250]

Human TGF-β2 influences epithelial–mesenchymal transition in vitro (MCF-7 and MCF 10A
cell lines). [244]

Human Inhibition of HIV-1 viral transfer to CD4+ T cells ex vivo (human MDC organoids). [235]

Human
The abundance and composition of exosomes vary due to lactation stage, maternal
sensitisation, and lifestyle, which influence the regulation of the allergic outcome in
the child.

[247]

Human
The presence of MHC classes I and II, CD63, CD81, and CD86 on exosomes, inhibition
of anti-CD3-induced cytokine production, and an increase in Foxp3+ CD4+ CD25+ T
regulatory cells ex vivo (human PBMCs).

[60]
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Table 7. Cont.

Species Findings Ref.

Cow The loading of miRNA (hsa-miR-148a-3p) as a nanocarrier in vitro (HepG2 and
Caco-2 cell lines). [264]

Cow Activation of immune cells ex vivo (human PBMCs) under inflammatory conditions. [265]

Cow Restoration of small intestinal epithelial architecture and barrier function in
malnourished C57BL/6J mice. [266]

Cow Exosomes influence macrophage proliferation and protect against cisplatin-induced
cytotoxicity in vitro (RAW 264.7 cell line). [236]

Cow Exosomes have cytoprotective and anti-inflammatory activity in ulcerative colitis
in vivo (Kindlin 2−/− mice). [237]

Cow Protective effects in vitro (IEC-6 cell line) against oxidative stress. [267]

Cow
Osteoporosis prevention in in vitro (MC3T3-E1 and RAW 264.7 cell lines) and in vivo
(C57BL/6J mice) models. Additionally, the restoration of gut microbiota affected by
osteoarthritis.

[268]

Cow

Exosomes can be used as an siRNA delivery vehicle in vitro (A549 cell line) and have
anti-tumour activity against lung tumour xenografts in vivo (athymic nude mice) and
in vitro (MDA-MB-231, MCF7, A549, H1299, PANC-1, Mia PaCa-2, and A2780
cell lines).

[227]

Cow
The use of exosomes as an oral delivery vehicle in xenografts, which enhanced gut
absorption and retention involving neonatal Fc receptor in vivo (Balb/c mice,
CT26 cells).

[229]

Cow Enhanced goblet cell activity, improved response against NEC in vivo
(C57BL/6 mice), and increased mucin production in vitro (LS174T cell line). [242]

Cow

Bilberry anthocyanins encapsulated in exosomes were preferentially taken up by
colonic cancer cells in vitro (HCT 116, HT-29, CCD-18Co cell lines), and therapeutic
enhancement with encapsulated anthocyanins showed no significant differences
in vivo (C57BL/6J mice).

[228]

Cow Depletion in dietary milk exosomes and their miRNA aggravates irritable bowel
disease in vivo (Mdr1a−/− mice). [269]

Cow Exosomes have a minimal effect on skeletal muscle biology in vivo (C57BL/5 mice),
suggesting that other tissues may be the targets of exosomes. [245]

Cow The use of paclitaxel encapsulated in exosomes as a drug delivery vehicle in vivo
(athymic nude and C57BL/6 mice). [213]

Cow Enhancement of skeletal muscle protein synthesis and anabolism in skeletal muscle
cells independent of amino acids in vitro (C2C12 myoblast). [246]

Cow Resistance of exosomes to in vitro digestion and subsequent internalisation and
trans-epithelial transport in vitro (Caco-2 cell line). [159]

Cow
The effects on exosomes of in vitro fermentation using three combinations of probiotic
bacteria, uptake of these exosomes, and increased proliferation due to the
upregulation of ERK1/2 and p38 in vitro (IEC-6 cell line).

[201]

Cow
The use of encapsulated celastrol as a drug delivery vehicle, and anti-tumour activity
against lung tumour xenografts in vivo (athymic nude mice, A549 and H1299
cell lines).

[231]

Cow

The use of both encapsulated hydrophilic and lipophilic small molecules as a delivery
vehicle, with tumour targetability, cross-species tolerance, and enhanced drug efficacy
compared to free drugs in vivo (athymic nude mice) and in vitro (A549, H1299,
MDA-MB-231, T47D, and Beas-2B cell lines).

[212]

Cow The uptake, transport kinetics, and presence of exosomal surface glycoproteins and
inhibitors of endocytosis in vitro (Caco-2 and IEC-6 cell lines). [209]

Cow + ASC + Coconut Promotion of bacterial growth and alteration of gene expression in vitro (Escherichia
coli K-12 MG1655 and Lactobacillus plantarum WCFS1 cultures). [251]

Cow + Mice+ Pig Inter-species and intra-species bioavailability and distribution of exosomes in vivo
(Balb/c mice). [223]

Cow + Yak Higher growth efficiency in vitro (IEC-6 cell line) under hypoxic conditions when
supplemented with yak exosomes rather than cow milk-derived exosomes. [270]

Buffalo Increased stability, solubility, and bioavailability of digested and undigested
EV-encapsulated curcumin in vitro (Caco-2 cell line). [226]
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Table 7. Cont.

Species Findings Ref.

Camel Anticancer effects, via induction of apoptosis, inhibition of oxidative stress, reduced
angiogenesis, and metastasis, in vivo (albino rats) and in vitro (MCF7 cell line). [252]

Rat Rat milk-derived exosomes promote intestinal epithelial cell viability, enhance
proliferation, and stimulate intestinal stem cell activity in vitro (IEC-18 cell line). [243]

Pig Protective effect against deoxynivalenol (DON)-induced intestinal damage in vivo
(Kunming mice) and in vitro (IPEC-J2 cell line). [271]

Pig Protective effects of exosomes against LPS-induced effects in vivo (Kunming mice)
and in vitro (IPEC-J2 cell line). [185]

Pig

Promotion of digestive tract development, alteration in the expression of
proliferation-related genes in vivo (Kunming mice), and altered cell proliferation,
proliferation-related gene expression, and miRNA concentration in vitro
(IPEC-J2 cell line).

[272]

Pig Expression of miRNA during different lactation stages, and a higher uptake of
colostrum-derived immune-related miRNA in vivo (piglets). [181]

Pig + Cow Both cow and pig milk exosomes alter serum miRNAs in vivo (piglets), and exosomal
miRNA is taken up in vitro (IPEC-J2 cell line). [162]

Microvesicle/Nanovesicle

Cow Suitability of nanovesicles and encapsulated siRNA as a therapeutic delivery vehicle
in vivo (zebrafish) and ex vivo (C57BL/6 splenocytes). [184]

Cow Demonstrated successful uptake of PKH67-labelled microvesicles in vitro
(RAW 264.7 cell line). [203]

The terminology used is based on the reference cited, and this division reflects older thinking and is a “pool” of EVs that are responsible
for the effects (ASC, adipose-derived stem cell; DSS, dextran sulphate sodium; hPAEC: human pulmonary artery endothelial cell; MDC,
monocyte-derived dendritic cell; MSC, mesenchymal stem cell; NEC, necrotising enterocolitis; NRCM, neonatal rate cardiac myocyte;
PBMC, peripheral blood mononuclear cell; SCFA, short-chain fatty acid; LPS, lipopolysaccharide).

6. Conclusions

Not all types of milk provide the same nutritional value for inter-species consumption.
Species-dependent differences are evident in the macromolecule composition (fat, sugars,
etc.), vitamin and mineral content, and how it is digested after consumption [30,273,274].
Furthermore, milk has differences in its molecular composition and conservation of function
that influence its specific biological value depending on the species of origin. It is reasonable
to propose that EVs in milk from different species may have a differing composition that
may affect their nutritional value from an EV-mediated view. Infant formula derived from
cow’s milk is still the largest source of non-human infant foods worldwide, but there are
areas of the world where cow’s milk is not traditionally consumed.

What nutritional effects that EVs from non-traditional and minority milk may have is
poorly understood and represents a substantial gap in our knowledge. We have provided a
brief summary of nutritional aspects of mammalian milk and summarised the research on
milk-derived EVs of human and common mammalian livestock. We have also discussed
research around therapeutic attributes, cargoes of milk-derived EVs, and techniques for
working with them.

However, isolating, characterising, and assigning biological effects to milk-derived
EVs are challenging due to the highly complex nature of milk as a biofluid. Careful consid-
eration and reporting of standardised methods, i.e., MISEV guidelines, are critical to studies
seeking to identify true and meaningful biological effects. The stability and bioavailability
of nutrients, combined with their subtle effects (compared to pharmaceuticals), mean that
any research on milk EVs needs to be carefully designed to correctly assign their functions
in supporting human health.
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