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Reverse genetics systems as tools to overcome the
genetic diversity of Lassa virus
Brett Beitzel, Christine E Hulseberg and Gustavo Palacios

Lassa virus is endemic in a large area of sub-Saharan Africa,

and exhibits a large amount of genetic diversity. Of the four

currently recognized lineages, lineages I–III circulate in Nigeria,

and lineage IV circulates in Sierra Leone, Guinea, and Liberia.

However, several newly detected lineages have been

proposed. LASV genetic diversity may result in differences in

pathogenicity or response to medical countermeasures,

necessitating the testing of multiple lineages during the

development of countermeasures and diagnostics.

Logistical and biosafety concerns can make it difficult to obtain

representative collections of divergent LASV clades for

comparison studies. For example, lack of a cold chain in

remote areas, or shipping restrictions on live viruses can

prevent the dissemination of natural virus isolates to

researchers. Reverse genetics systems that have been

developed for LASV can facilitate acquisition of hard-to-obtain

LASV strains and enable comprehensive development of

medical countermeasures.
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Introduction and taxonomic organization of
the Arenaviridae
In the 42 years since the Arenaviridae were formally

recognized as a family [1], the taxon has grown to

recognize 41 member species [2], a quarter of which have

been added within the last two years. Shortly following

the discovery of arenaviruses in boas and pythons,

the Arenaviridae monophyly was split into the

Mammarenavirus and Reptarenavirus in 2014 [3], and, in

2018, the reptile-borne arenaviruses were again separated

into distinct genera, Hartmanivirus and Reptarenavirus [2].

The largest of these three current genera is the

Mammarenavirus, which is further divided into two

distinct groups: the Old World (OW) and the New World

(NW) arenaviruses. In addition to the geographic basis for

their separate groupings, OW and NW arenaviruses are

segregated by their serological, epidemiological, and

phylogenetic relationships. As are the majority of the

other OW arenavirus members of the Mammarenavirus,
Lassa virus (LASV) is a rodent-borne virus whose area of

endemicity is geographically confined to Africa.

Molecular properties of arenaviruses
The genome of the arenaviruses is carried on two RNA

fragments, each with two non-overlapping genes arranged

in opposing orientation. The L RNA fragment encodes

the RNA-dependent RNA polymerase (L) and the RING

finger matrix-like protein (Z), while the S RNA fragment

encodes the glycoprotein (GPC) and the nucleoprotein

(NP). The ribonucleoproteins, which consist of the

viral genome fully encapsidated by NPs, and the L

polymerase, is replication and transcription-competent

[4]. The two genes on each RNA segment are separated

by a �65–200 nucleotide intergenic region (IGR) that

forms a stable hairpin structure(s). While both IGRs

function in transcription termination, there is substantial

difference in their predicted folded structures. The

50-termini and 30-termini of the RNAs have 19–25 highly

conserved nucleotides that form panhandle structures on

each genome segment. These noncoding regions act in cis
with the segment’s IGR to support both genome

replication and transcription [5].

Established and emerging Lassa lineages
Current guidelines for the genetic distinction of arenavi-

rus species require �12% amino acid difference in the NP

sequence [6]. Circulating strains of LASV in West Africa

(some of which, despite exceeding the 12% allowable

difference in amino acid sequence cutoff, are still recog-

nized as LASV species) typically fall into four established

lineages which are highly correlated to the geographical

range of the rodent reservoir for LASV, Mastomys
natalensis. Lineages I–III strains circulate throughout

Nigeria, and lineage IV strains are endemic throughout

the Mano River Union (MRU) region shared by Sierra

Leone, Guinea, and Liberia, roughly 2500 km away.

As additional LASV isolates are collected and studied, an

increasingly complex picture of the genetic diversity of

LASV — particularly in recent years — is developing.
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The possible emergence of a fifth lineage was suggested

by Manning et al. in 2015 [7�]. Bayesian analysis of L, NP,

and GPC genes of isolates from Mali and the Ivory Coast

suggested that these strains may have split from lineage

IV strains some 250 years ago [7�]. In 2016, LASV was

isolated from hitherto unrecognized rodent carriers in

Nigeria (Mastomys erythroleucus and Hylomyscus pamfi)
and Guinea (M. erythroleucus) [8]. Phylogenetic analysis

of both the nucleotide and amino acid sequences on a

newly identified strain isolated from H. pamfi in Kako,

Nigeria indicated that, while clustering nearer the other

Nigerian lineages, this isolate did not belong to any of

them [8]. Yet another possible lineage emerged later in

2016, when a cluster of cases originating in Togo was

sequenced and found to have poorly supported

phylogenies with other LASV strains. The resulting trees,

generated from the L, NP, and GPC sequences, showed

considerable topological variability depending upon

which gene(s) were used in the analysis, and, in all cases,

long branches suggest distant relationships with the other

lineages of LASV [9].

Sources and implications of genetic
diversification in Lassa virus
As with other riboviruses, LASV has an error-prone poly-

merase. Accordingly, the main driving force for the

evolution and diversification of arenaviruses is largely

ascribed to the high mutation rates that occur during

replication [5,10,11�]. Examination of the genetic vari-

ability of transmission chains during multiple outbreaks

consistently supports the predominance of rodent-to-

human rather than human-to-human spread [12�,13,14];
however, human-to-human transmission may still account

for nearly 20% of human infections [12�,13–16].

Reassortment in segmented viruses is another potential

source of diversity, particularly when closely related

strains coinfect a susceptible host. Comparison of

phylograms constructed from full length sequences of

the arenaviral genes suggests that it is unlikely that

natural reassortment has contributed significantly to the

evolutionary history of LASV [17,18]). Nonetheless,

when the L and S segments of 162 LASV isolates from

Nigeria and Sierra Leone were sequenced, three (�1.8%)

of these isolates were found to be reassortants [12�].

The many challenges associated with developing medical

countermeasures (MCM) against a heterogeneous viral

target such as LASV have long been appreciated. For one,

some evidence suggests that strain pathogenicity may

track with geographical distance. Strains circulating in

the easternmost ranges of the Lassa Belt, that is, lineages

I–III, reportedly have increased pathogenicity relative to

lineage IV; accordingly, case fatality rates are typically

higher in Nigeria than in the MRU [19,20]. By extension,

noted differences in pathogenicity may call into question

whether conclusions based on work using the ‘classic’

prototypical strain, Josiah — the lineage IV strain that

serves as the workhorse for the vast majority of basic and

translational LASV work [21��] — will necessarily hold

true for other strains.

An example of potentially critical differences in strain

selection is given by an early LASV vaccine study, in

which the GA391 strain from northern Nigeria (lineage

III) was used to challenge a group of vaccinated outbred

Hartley guinea pigs [22]. While typically only 20% or less

of Hartley guinea pigs infected with Josiah strain LASV

die [23], in this particular study, all of the control guinea

pigs infected with GA391 strain died. Another example of

lineage-dependent responses to an MCM is a 2018 study

evaluating the efficacy of two arenavirus entry inhibitors,

LHF-535 and ST-193 [24]. The inhibitory concentrations

for LHF-535 generally clustered within a 10-fold, sub-

nanomolar range with the exception of the lineage I strain

LP, which was �100-fold less sensitive than all other

strains. Lineage-dependent and even strain-dependent

variability in response to ST-193 was more pronounced,

although, as with LHF-535, the sensitivity of LP strain

LASV to ST-193 was reduced compared to other lineages.

Given the tremendous effort, time, and expense needed

to advance MCMs through clinical trials, tractable

experimental systems are needed to account for LASV’s

formidable genetic diversity.

Reverse genetics
The breadth of LASV diversity can make it difficult to

obtain virus stocks representing a comprehensive

collection of Lassa lineages. Additionally, the relatively

recent development of field-deployable high-throughput

sequencing (e.g. Oxford Nanopore MinION and Illumina

iSEQ) will likely increase the number of viruses for which

genome sequence is available in the absence of natural

isolates. In cases where natural isolates are difficult to

obtain or are nonexistent, reverse genetics can be used to

generate virus stocks for study [25�].

Virus reverse genetics systems allow the generation or rescue

of replication-competent viruses from plasmid DNA,

facilitating detailed study of the virus lifecycle. Precise

changes to the virus genome can be made in the plasmid

clones using standard molecular biology techniques, and

viruses can then be rescued from those clones to examine the

resulting changes to the virus phenotype.

The first description of reverse genetics involved the

cloning of the full genome of the RNA bacteriophage

Qb [26]. After cloning a complete copy of the phage

genome cDNA into a plasmid, Taniguchi et al. were able

to rescue viable Qb phage by transforming the plasmid

into susceptible Escherichia coli. This was followed several

years later by the first eukaryotic virus reverse genetics

system for poliovirus [27]. Racaniello et al. cloned the

complete poliovirus genome into a plasmid, and
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generated infectious poliovirus upon transfection of the

full genome plasmid into susceptible cells. Both Qb and

poliovirus are positive-stranded RNA viruses, meaning

that introduction of the viral genomic RNA into a host cell

can lead to virus production since the viral proteins can be

translated directly from the genomic RNA by the host cell

machinery. Reverse genetics systems for negative-

stranded RNA viruses are not as straight-forward, since

the deproteinated RNA genome cannot be directly trans-

lated by the host machinery. In order to be transcribed

and replicated, the genome segments of negative-

stranded RNA viruses (NSVs) must be in a ribonucleo-

protein (RNP) complex with the viral nucleoprotein (N)

and the RNA-dependent RNA polymerase (L). Rescuing

NSVs by reverse genetics requires the polymerase and

nucleoproteins to be provided in trans as ‘helper’ proteins.

The helper proteins can either be provided via a

co-infecting helper virus [28], or they can be provided

by expression plasmids. The first described reverse

genetics system for a NSV from cDNA only (i.e. no helper

virus was used) was developed for rabies virus [29].

Schnell et al. showed that infectious rabies virus could

be rescued upon expression of the viral antigenomic RNA

in addition to the N, P, and L proteins in trans (which

make up the viral replication complex).

Arenavirus reverse genetics
Reverse genetics strategies developed for arenaviruses

have generally followed those for NSVs. In the genomic

RNA of arenaviruses, the L and NP genes are encoded in

the antisense orientation, so the proteins that they encode

must be provided in trans in order to generate the

replication and transcription-competent RNP complex.

Lassa reverse genetics Beitzel, Hulseberg and Palacios 93
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Two strategies for arenavirus reverse genetics.

In the four-plasmid arenavirus reverse genetics system (a), L and NP proteins are provided in trans from Pol II or T7-driven expression plasmids.

The genomic (or antigenomic) RNA segments are generated from a T7-driven expression plasmid. A hepatitis delta virus ribozyme sequence (HDV)

generates a precise 30 end of the transcribed RNA. Encapsidation of the genomic RNAs by L and NP kickstarts virus production. In the two-

plasmid system (b), antigenomic RNAs are produced from a T7 expression construct. L and NP proteins are produced by translation of these

antigenomic RNAs, and in turn encapsidate the antigenomic RNAs. The antigenomic RNAs are replicated to produce genomic RNAs which can

then be packaged into progeny virus.
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Development of reverse genetics systems for many NSVs

has usually started with the development of minigenome

or replicon systems. Minigenomes are partial viral

genome segments that contain all of the cis-acting
elements required for replication and transcription, but

in which many or all of the protein coding regions have

been replaced with reporter proteins such as GFP, CAT,

or luciferase. Viral proteins required for replication and

transcription of the minigenome are provided in trans to

drive expression of the encoded reporter protein.

Minigenomes allow for elucidation of the cis-acting and

trans-acting factors required for replication and transcrip-

tion, and can guide the development of full-genome

systems that can generate replication competent viruses.

The first arenavirus minigenome system was developed

for LCMV [30]. Lee et al. designed an S segment mini-

genome in which the NP gene had been replaced by

CAT. In addition, the GPC coding region was removed,

leaving the 50 UTR and IGR. This system showed that

the 50 and 30 UTRs, along with the IGR, were sufficient

cis-acting sequences for CAT expression, and that NP and

L were the minimal viral trans-acting factors for CAT

expression. A similar strategy was used by Hass et al. to

generate a LASV minigenome system that showed NP

and L were also the minimal trans-acting viral proteins

required for replication and expression, and that the 50

and 30 UTRs and the IGR were sufficient cis-acting
sequences. In addition, expression from the LASV

minigenome was shown to be inhibited by ribavirin

and interferon alpha similarly to replicating LASV, indi-

cating that the minigenome system could serve as a

surrogate to LASV in screens to identify antiviral com-

pounds 31]. This LASV minigenome system was also

used for fine mapping of the LASV promoter residing in a

19-nucleotide region of the 50 and 30 termini of the

S segment [32].

Following development of arenavirus minigenome

systems, two general strategies have been developed

for rescuing replication-competent viruses. In the first

(Figure 1a), the L and NP proteins are supplied in trans
via pol II or T7 promoter-driven expression plasmids [33].

RNA analogs of the L and S segments are generated by

expression from T7-driven plasmids and become encap-

sidated by the expressed NP and L proteins to form the

functional RNP complex required for viral replication,

kickstarting production of progeny virions. The second

strategy for arenavirus rescue (Figure 1b) is a two-plasmid

system: one plasmid expressing the antigenomic

L segment, and one plasmid expressing the antigenomic

S segment [34]. Antigenomic RNAs are produced via T7-

driven expression, and L and NP are translated from the

antigenomic RNAs. The L and NP proteins can then

form RNP complexes with the antigenomic RNAs,

facilitating replication into genomic RNAs and generation

of progeny viruses. Both of these strategies have been

used successfully to rescue recombinant LASV [35,36].

Arenavirus reverse genetics systems have been used in

a wide variety of studies. As previously mentioned,

minigenome systems have been used to define the mini-

mal cis-acting and trans-acting factors required for viral

replication, map critical residues of the viral promoter,

and serve as virus surrogates in assays to identify antiviral

compounds [30–32,37–39]. Rescue of replication-

competent recombinant arenaviruses bearing engineered

changes in the genome has allowed studies of virus–host

interactions [36,40], mapping functionally important

regions of the virus genome [34,35,41], and generating

tagged viruses to simplify countermeasure development

[39,42].

Rescue of replication-competent engineered arenaviruses

has also introduced several intriguing strategies for the

generation of attenuated vaccines. Swapping the locations

of GPC and NP on the S segment of LCMV resulted in

strong attenuation in a mouse model, but could protect

from challenge with a virulent strain [43]. Recombinant

LCMVs bearing codon-deoptimized GP or NP are also

attenuated in vivo, and can protect from subsequent

challenge [44�,45]. Novel tri-segmented recombinant

arenaviruses have been developed by splitting the

GPC and NP genes onto two separate S segment analogs

[43,46,47]. The tri-segmented recombinant viruses are

only partially attenuated in a mouse model, but surviving

mice develop protective immunity, warranting further

study of the tri-segmented viruses as a vaccine platform

[46]. A similar approach has recently been developed

using non-pathogenic Pichinde virus as a vaccine

vector to express heterologous antigens [48]. Finally, a

hyper-attenuated chimeric Mopeia virus bearing the

LASV GPC has been shown to be protective in a LASV

NHP challenge study [49�].

As described above, LASV lineages can potentially

respond differently to medical countermeasures (MCMs),

and also vary in their ability to be detected by current

diagnostic assays [24,50]. These variable responses

highlight the need to test new MCMs and diagnostic

assays against a wide variety of LASV samples from

different lineages. Reverse genetics can facilitate the

acquisition of divergent strains to characterize differences

in lineages response. Future directions involve

the production of diverse isolates of LASV via reverse

genetics to test responses to MCMs and analyze

the sensitivity of diagnostic assays.

Conclusions
LASV genomic diversity reflects the large area of

endemicity throughout sub-Saharan Africa. MCMs

developed against one LASV lineage may not work

against other lineages, highlighting the importance of

testing against divergent strains. Although the advent

of high-throughput sequencing has made it increasingly

easy to obtain full viral genome sequences at the source of

94 Lassa viruses
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an outbreak, dissemination of natural virus isolates to the

research community is becoming increasingly difficult

due to logistical, biosafety, and political concerns.

Reverse genetics systems developed over the past decade

can be used to acquire diverse LASV strains when natural

isolates are difficult to obtain, enabling testing of MCMs

and diagnostic assays against the breadth of LASV

lineages.
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