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Abstract—Today, drought has become part of the identity as
well as the fate of many countries. In fact, drought is considered
among the most damaging natural disasters. The severe conse-
quences resulting from drought affect the nature and society at
different levels. Proper and efficient management is not possible
without accurate prediction of drought and the identification of
its various aspects. Thus, the existence of a considerable body of
literature on drought monitoring. However, significant growth
of remote sensing databases as will an increased amount of
available data related to drought have been detected. Therefore,
a more adequate approach should be developed. During the past
decades, Data Mining (DM) methods have been introduced for
drought monitoring. According to the best of our knowledge,
a review of drought monitoring using remote sensing data and
DM methods is lacking. Thereby, the purpose of this paper is to
review and discuss the applications of DM methods. This paper
consolidates the finding of drought monitoring, models, tasks,
and methodologies.

Index Terms—Drought monitoring, drought index, Data Min-
ing, remote sensing, knowledge, prediction

I. INTRODUCTION

Drought is a precarious natural hazard that affects economic,
social, and environmental sectors, resulting in significant dam-
ages. Thus, four types of droughts have been identified that
include hydrological, agricultural, meteorological, and socio-
economic droughts [1] [2] [3].Drought is usually quantified
using drought indices such as the Standardized Precipitation
Index (SPI), Standardized Precipitation Evapotranspiration In-
dex (SPEI) [4] , the Reconnaissance Drought Index (RDI)

[5], the Comprehensive Drought Index (CDI) [6], the Surface
Water Supply Index (SWSI) [17], the Crop Moisture Index
(CMI) [8], the Palmer Drought Severity Index (PDSI) [9].
Some of the most important DIs are developed from remote
sensing data such as Normalized Difference Vegetation Index
(NDVI). All along with a big remote sensing data set a huge
amount of data related to drought are used by decision makers
in order to extract time/space characteristics of drought. In
fact, one of the main challenges is the inability to predict
drought conditions accurately for months or years in advance.
To address this issue, many methods has been developed.
This paper mainly focuses on drought monitoring using DM
methods.

In the literature, several DM-based methodologies have
been proposed for drought monitoring (c.f. Section 2). Thus,
this paper reviews the related studies reported in the period
between 2004 and 2018, with the focus on the use of DM
methods for monitoring drought. The main research questions
considered in this review paper are:

• Q1: For what purpose has the DM applied in drought
monitoring?

• Q2: How have DM methods been applied to drought
monitoring using remote sensing data?

• Q3: Which DM methods have been applied?
• Q4: What are the limitations of the current work and

future directions?
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II. DATA MINING METHODS FOR DROUGHT MONITORING

In the last few years, DM methods have been shown to
yield high performance in discovering hidden patterns and
handling the growing amount of data [10]. In addition, DM
methods, aims to generate new knowledge (i.e. models, cart,
rules, etc.) that leads to a better understanding and prediction.
Figure 1 presents a flowchart of a generic methodology of
drought monitoring using DM. The DM methods applied for
droughts modelling identified among the reviewed papers are
summarized in Table 1.

Fig. 1. Flowchart of the drought modelling via data mining methods

A. Association Rules (AR)

AR is a descriptive DM method proposed by Agrawal in
1993 [28]. In fact, AR is defined as the procedure for finding
frequent relationships, associations, or correlations between
data in databases [28]. As an example Tadesse et al. proposed
two-time series DM algorithms, namely the Representative
Episodes Association Rules (REAR) and the Minimal Oc-
currences with Constraints and Time Lags (MOWCATL) [1].
The ARs were generated based on the relationships between
climate and oceanic indices (PNA, MEI, NAO, PDO, and
SOI) and drought indices (SPI and PDSI) in Nebraska for
the period from 1950 to 1999. The REAR algorithm provides
a discrete representation of time-series data to identify the
episodes that occur together within the same time intervals.
This algorithm is based on counting the frequency of episodes
where the rules depend on the minimum frequency, the
window width, and the minimum confidence values. On the
other hand, the MOWCATL algorithm is used to identify the
number of minimal occurrences as a support of the episode
in the generating rules. It has three window parameters: the
time lag, the maximum window width for the antecedent
and for the consequent. The implementation of REAR and
MOWCATL enhances discovering the relationships between
the drought episodes and SOI, MEI and PDO. The REAR
algorithm is usually used to identify drought episodes without
a time lag, while MOWCATL is designed to identify minimal
occurrences of an episode in the existing lag in time between
the occurrence of oceanic parameters and drought episodes.
Thavorntam et al. analyzed monthly correlation between VCI
and SPI to generate the ARs using the A priori algorithm [11].
The objective was to determine drought severity, frequency,

TABLE I
DATA MINING METHODS FOR DROUGHT MONITORING, MULTIVARIATE EL

NINO AND SOUTHERN OSCILLATION INDEX (MEI), NORTH ATLANTIC
OSCILLATION INDEX (NAO), SOUTHERN OSCILLATION INDEX (SOI),

PACIFIC/NORTH AMERICAN INDEX(PNA), NAO, PRINCIPAL COMPONENT
ANALYSIS (PCA), PACIFIC DECADAL OSCILLATION (PDO), SEASONAL

RAINFALL SERIES (SRS), MADDEN-JULIAN OSCILLATION (MJO),
STANDARDIZED SEASONAL GREENNESS(SSG), SEA SURFACE

TEMPERATURE ANOMALIES (SST), STANDARDIZED DEVIATION OF
NORMALIZED DIFFERENCE VEGETATION INDEX (SDNDVI), VEGETATION
CONDITION INDEX (VCI), INDEPENDENT COMPONENT ANALYSIS (ICA),

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS (ANFIS), SUPPORT
VECTOR MACHINE (SVM), AND AUTOREGRESSIVE INTEGRATED

MOVING AVERAGE MULTIVARIATE TIME SERIES (ARIMAX).

Article Inputs Data mining meth-
ods

Output

[1] SPI, PDSI, SOI, MEI, PNA,
MEI, PNA, NAO and PDO.

Association Rules
(AR)

Rules

[11] SPI and VCI. AR Rules
[2] NDVI, SPI, Start of the Sea-

son (SOS), Soil moisture and
Land Cover.

Regression Trees
(RT)

Rules and
Maps

[12] PDSI, SPI, SOI, MEI, PDO,
AMO, PNA, NAO, MJO, SST,
land cover type, available soil
water capacity, percent of ir-
rigated land, ecosystem type
and SSG.

RT Maps

[13] SPI, Seasonal Rainfall Series
and Annual Rainfall Series.

Decision Trees
(DT)

Rules

[14] Precipitation, Wind, Humidity
and Temperature.

DT Rules

[15] SPI and monthly precipita-
tion.

DT Tree
model

[16] Precipitation and Tempera-
ture.

Artificial Neural
Network (ANN)

Knowledge

[?] SPI, precipitation and
monthly rainfalls.

ANN Model

[25] SPI, precipitation, tempera-
ture (minimum and maxi-
mum) and the humidity levels.

MultiLayer
Perceptron ANN,
ANFIS, SVM, and
ARIMAX.

-

[18] Number of rainy days, Rain-
fall amount, Average tempera-
ture, average soil moisture and
average wind speed.

Fuzzy Logic (FL) Knowledge

[19] SPI and VCI. ICA and AR Rules
[20] Rainfall and Temperature. AR and DT Model
[21] VCI and NDVI. Image mining and

FL.
Maps

[22] SEVIRI and NDVI. Image mining and
FL.

Knowledge

[23] Land cover, SPI, PDO, AMO,
NAO, PNA, MEI, DEM and
SDNDVI.

ANN and RT Knowledge,
model
and cart

[24] Monthly precipitation and
SST

DT and AR Model

[25] NDVI and SPI. Random Forest
(RF), BRT and
Cubist.

Maps

[27] NDVI, self-calibrated PDSI,
SPI, elevation and land cover.

RT and CART. Rules

and the future drought occurrence. They used rainfall data sets
for the period from 1980 to 2009 and NDVI data collected
for the period from 2001 to 2009 in the northeastern region
of Thailand. For each vegetation cover, VCI was calculated
within the extracted SPI values. Results were evaluated, based
on confidence, support, and lift; there values indicated the
accuracy of the derived rules.
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B. Decision trees (DT)/Regression Trees (RT)

DT are often used in classification and prediction as a super-
vised approach. The DT presents a model that is represented
in the form of a tree structure with rules that require human
interpretation [29].

Tadesse et al. [2] presented a rule-based RT model as an
application of DM. Cubist DM Software was used to generate
models of vegetation stress due to drought in Nebraska and
South Dakota. Rule-based RT models were generated to iden-
tify relationships between the input data. the historical data
integrated satellite, climate, and biophysical data from 1989
to 2002. For the climate data, the authors used SPI, PDSI and
self-calibrated PDSI, while the PASG represented the satellite
data calculated based on seasonal greenness (start and end of
the season) and temporal NDVI. On the other hand, the land-
cover type, available soil water capacity, percent of irrigated
farm land, and ecological type represented the biophysical
data. In this study, the rule-based models were generated,
based on the absence or presence of a time lag (e.g. 2, 4, and
6 weeks), and reported the average error of the prediction and
correlation coefficient values between the given parameters.
According to Tadesse et al, RT used based on historical data
from 1989 to 2005 [12]. The RT is available in the Cubist DM
software. The aim of this paper was to identify temporal and
spatial relationships among the historical data. In this study,
the Vegetation Outlook (VegOut) model was used to generate
rules based on climate, oceanic, biophysical, and satellite data.
The authors used monthly climatic data as PDSI and SPI
values. As satellite based data, the SSG was calculated from
NDVI values using the seasonal greenness data. On the other
hand, eight oceanic/climatic indices (SOI, MEI, PDO, AMO,
PNA, NAO, MJO, and SST) were also used in modeling. This
study used the VegOut to provide a future prediction of the
SSG based on earlier conditions. The aim of using RT was to
analyze the input data and generate rules at different 3 time
intervals (i.e., 2, 4, and 6 weeks). The study could detect a
higher prediction accuracy (R2 > 0.90) for the three periods
(2-, 4-, 6-week predictions).

In the Cekerek watershed, Turkey Yurekli et al. applied
the DT on the SPI to predict drought constituted from a
series of rainfall [13]. The main objective was to predict
drought categories for each region by applying the DT rules
obtained from the training phase of the k-reference periods for
the rainfall data sets. The results revealed that there was no
significant difference between drought categories calculated
from the SPI algorithm and DT approaches. Further, the
accuracy of prediction by the DM was greater than 94% k-
reference periods.

Another use of DT recorded by Sattari et al. [14]. The DT
used Based on the use of precipitation, wind, humidity, and
temperature data taken from 18 meteorological stations in the
Ankara region between 1926 and 2006. In this study, the SPI
values were used with statistical attributes (mean (mm), stan-
dard error, standard deviation, kurtosis, skewness, maximum
(mm) and minimum (mm)). The rules were created in the

form of “if-then” to provide reliable predictions for drought.
According to the training and test results, the decrease in the
quantity of data could lead to a decrease in the performance
of modeling. For the first time for drought prediction the
Sattari et al. [15] applied the M5 rule tree model using the
data from the Maragheh region located in the southwest of
East Azarbaijan Province, Iran. The M5 rule tree model used
monthly precipitation data from 1965 to 1989 to calculate
SPI-6 values. Therefore, this article showed the efficiency of
the M5 rule tree model for drought prediction. The proposed
solution was evaluated, based on performance measurements
such as correlation coefficient R and the Root Mean Square
Error (RMSE). The proposed solution was based on previously
taken decisions using a linear regression equation. The M5
model has a tree structure with roots, branches, nodes, and
leaves. The tree was built in two steps. The first step consisted
of data splitting. Hence, the standard deviation of the data
must be reduced in the child nodes. However, in the case that
the standard deviation could not be reduced. The M5 selected
the branches with the least expected error from the accurate
branches resulting via the branching process in the child
nodes. On the other hand, the second step consisted of using
Weka software to create the tree model using linear regression
functions. Overall, this article highlighted the ability of the M5
tree model in predicting drought and making decisions.

C. Artificial Neural Network (ANN)

The ANN is classified under the discovery-driven tech-
niques. ANN is considered as a prediction model which has
been widely used for time-series forecasting. As a classifi-
cation technique, the ANN has also been used to deal with
complicated or imprecise data to identify involved hidden
patterns [30]. The study of Razmkhah et al. used ANN to
model drought using SPI as a commonly used drought index
and the data between 1999 and 2009 for Kohgilooyeh-and-
Boyer Ahmad Province, Iran [16]. The objective was to control
the frequency of dry period based on time scales and to
find an NN model to monitor drought. The areas, altitudes,
temperature, and precipitation were used as input data. They
used the MultiLayer Feed-Forword-Back Propagation (MLFF-
BP) as the most commonly used ANN algorithms. To develop
the NN models, the data was normalized for the training
process. In this study, the authors tested three different train-
ing algorithms, the Levenberg-Marquardt algorithm, BP with
Steepest Descent, Conjugate Gradient Descent and Quasi-
Newton, described by Haykin. Based on the results, the Quasi-
Newton training algorithm was the best for SPI3 and 6, while
for SPI 1, 9, 12, 24 and 48, Levenberg-Marquardt led to
better results. The effect of hidden node number was also
investigated in the study.

Other use of ANN in Karaman, Iran by Sattari et al. [?].
This study used the FFBPANN to train the ANN based on
the monthly rainfall data and the SPI values collected from
1975 to 2009. Based on the historical precipitation data,
the ANN model was able to reliably provide future SPI for
different time periods. In other words, the ANN model was
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trained to be able to make decisions for future conditions.
The training of networks was repeated until the relationship
between the input variables from earlier examples of the ANN
and the predicted variables was revealed. The momentum
training rule and activation function hyperbolic within -1 and
+1 tangent function was used for the training input data,
while the back-spread algorithm was used to reduce the error
between computed and observed values. The learning process
performed the adjustment of weights and bias to generate an
efficient estimation, based on the efficiency criterion.

Based on SPI, Jalalkamali et al. compared the MLP-NN
to three models, namely ANFIS, SVM, and ARIMAX to
monitor meteorological drought [25]. In fact, the authors
used precipitation and temperature time-series for the period
between 1961 and 2012 from the Yazd synoptic station in
Iran. In addition, the humidity levels were calculated using
SPI for two different periods: short-term (3 and 6 months) and
long-term (9, 12, 18, and 24 months). Results showed that
the ARIMAX was better performed compared to the SVM,
ANFIS, and MLP models.

D. Fuzzy Logic (FL)

Zandvakili et al. used the fuzzy system to monitor drought in
Iran [18]. This kind of DM method was applied, based on the
SPI index and other related data. The fuzzy systems were used
to handle certain types of data, such as vague, imprecise and
qualitative data. For this purpose, they used the open method
to provide an acceptable accuracy of the resulting models. In
addition, this article used the number of rainy days, rainfall
amount, temperature, soil moisture, and wind speed as data
collected from the meteorological stations from 1961 to 2005.
The first step in the fuzzy process was to extract and calculate
the dominant parameters from the available data. Then, the
authors used the extracted 18 rules obtained from the output
of the SPI in the proposed system. The output of the fuzzy
system and the output of the SPI were the same. The third step
was to identify the type, range of changes, and the numbers
of fuzzy member functions for each input parameter. The final
step consisted of evaluating and validating the model. Thus,
the results of this analysis led to using the rainfall amount
or rainy days as input in the proposed model due to their
association with drought. The presented model was able to
produce reliable output with acceptable accuracy.

E. Hybrid methodologies

Several studies presented hybrid approaches for increasing
the efficiency of drought monitoring systems taking the ad-
vantage of the fusion between different techniques.

In the state of Karnataka in India, the AR and the Indepen-
dent ICA used as a spatio-temporal process to find hidden
patterns and relationships in temporal NDVI and rainfall
datasets [19]. Three categories of data were used for this
study, rainfall data for the period of 1970 to 2004, NOAA-
AVHRR NDVI for the period of 1981 to 2003 as a satellite
data set, and the field data. In the study area, the SPI indices
were used at time-scales 1 and 2 to monitor the occurrence

of drought. The first technique was an A priori DM algorithm
used to generate AR and identify the relationship between
SPI and VCI. Five steps were required as pre-processing
of the time series. Discretizing the data was the first step.
The second step was to formulate target episodes. Step three
was to identify the minimum confidence and support as a
criterion of selection in an A priori analysis. Step 4 was to
generate the AR. Finally, step five consisted of selecting the
best rules using the goodness of the rules measure. The second
technique, ICA, was used to analyze the output of the PCA
technique in the spatio-temporal process. In this technique,
PC1 and PC2 were applied to the pre-processed VCI images
to identify spatial and temporal components. The algorithm
Natural Gradient Flexible -ICA was executed two times to
observe the performance of ICA generated from the three
leading PCs.

Rajput developed a DM technique for drought monitoring
by combining climatic and meteorological parameters [20].
The study presented a hybrid method to take advantage of DT
as a classification technique and the AR mining to discover
the patterns involved in the databases. In the AR, the Apriori
algorithm was used to find a frequent item set. The author used
rainfall and temperature data from Sagar District in India for
1997-2010. In the study, two examinations were performed
after data pre-processing. The first examination was made to
generate AR from the data set, while the second examination
was made for the DT. The generated tree from Weka was the
base for decision making. To build the DT, the J48 was used
and the results were compared with the ID3 results.

In two studies, Rulinda used remote sensing data, image
mining and fuzzy classification as a DM technique [21] [22].
In the first study, Rulinda used 18 NDVI images to produce
deviation maps collected in East Africa from December 2005
to February 2006. In this research, the fuzzy classification
was used to solve the mixed pixel problem. In fact, author
developed a framework that uses image mining techniques to
monitor drought by considering both vegetation stress intensity
and duration. A selected function was then used to characterize
drought.

Rulinda applied a membership function to Meteosat SEVIRI
images for the months of September to December between
2005 and 2007 in eight crop field locations in drought prone
areas of eastern Africa [22]. Like in the 2007 research the DM
was used to handle a large amount of data and the Fuzzy theory
to handle the uncertainties of drought effect on vegetation [21].
Rulinda suggested the use of an object-oriented approach for
drought monitoring. The author improved modeling using the
space-time drought object on the basis of a group of pixels
instead of individual pixels. The idea that drought can be seen
as a spatial object was suggested in 2010 by Rulinda and
explored in 2013 [23].

Berhan et al. developed a new approach that can be used
for identifying and predicting drought using satellite images in
Ethiopia [23]. In fact, the authors applied ANN and RT with
the fuzzy segmentation approach. In this research, the drought
was presented as a spatial object that was identified and
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evaluated using DM techniques and remote sensing imaginary.
Accordingly, 11 attributes of the drought object were used:
the soil water holding capacity, land cover and ecological
regions (ecosystems of Ethiopia presented by veg-Ethiopia) as
biophysical parameters, the SPI (3-month SPI) with telecon-
nections, and climatic/oceanic indices such as the PDO, AMO,
NAO, PNA and MEI, DEM as climate data and the SDNDVI
images from the NOAA AVHRR satellite for 1983 to 2006. In
the DM step, the ANN was used for predicting 1 to 4 months
of the SDNDVI values using the identified 11 key attributes.
Then, the required rules were developed and tested using the
cubist RT DM technique. After creating the network object,
it was trained to learn the relationship between independent
attributes and dependent inputs using the NN Toolbox. To
validate the drought object-ANN model, a comparison was
performed between the predictions and the target data. In
the RT modeling, the RT (CART) algorithm was used in
Cubist software. The output was visualized as an image,
named drought map. To evaluate the model, the average error,
relative error, and correlation coefficients were calculated and
compared. According to the results, the low-resolution data
led to uncertainties in the models and prediction maps. This
study indicated the potential of using either ANN or RT for
the prediction of future drought events (prediction horizon of
4 months).

Nourani et al. suggest another hybrid application contain
DT and AR using SPI values (from Tabriz and Kermanshah
synoptic stations) and de-trend TSST data (from the Black,
Mediterranean and Red Seas) [24]. The method followed some
major steps, such as data classification and dominant input
selection. As an advance for the presented hybrid DM method,
this study demonstrated a capacity in grouping the input data
with flexible bounds. While in other studies, the classification
had been made within rigid and fix bounds. The first step
in the data pre-processing was to discretize the monthly de-
trended SST data using a DT algorithm. The second step was
to discretize the monthly SPI. In the third step, the C4.5
DT algorithm was used to select the most effective groups
of SST data for each sea and for different lag times. The
fourth step was to extract AR based on the SST and SPI
values. The proposed DM process can help discover the hidden
information involved in the huge amount of data. A high
confidence was demonstrated between the monthly SPI values
and the SST of the seas for the stations used. This might be
related to the existence of a relative correlation between the
Mediterranean, Black, and the Red SST data and drought. In
another study the same data were used via a threshold-based
DM technique for precipitation forecasting.

In order to monitor meteorological (1-month to 12-month
SPI index) and agricultural (e.g. Corn and soybean) droughts,
Park et al. proposed the use of DM techniques [26]. The RT
was implemented based on the collected data from MODIS
and TRMM satellite sensors in the arid, humid, and combined
regions in the USA between 2000 and 2012. For regression
tasks, RF, BRT and Cubist were used as machine learning ap-
proaches. The modeling result was presented as maps showing

the drought distribution over the region. The RF was created,
based on classification and RT, to produce a CART using out-
of-bag (OOB) in selecting data implemented in R software.
The BRT also produced cart, but using the entire training
samples with a combination of two algorithms of RT and
boosting. On the other hand, the Cubist is a DM software
that operates, based on a modified RT to produce the rules.
The results proved that the RF results were better than the
results of other approaches. The LST, ET, NMDI, NDVI, and
NDWI) as dominant variables were identified by RF and were
used in the modeling in terms of 3- month SPI and crop yield.
Their weighted combinations were used as drought indicators.

The VegDRI-SKorea proposed by Nam et al. [27] utilizes
the classification and RT (CART) modelling approach in South
Korea from 2001 to 2013. A collection of remote-sensing
data sets was used as input data in the model (e.g. NDVI,
Climate data of SPI, Self-calibrated PDSI and biophysical
data of DEM, Soil AWC, Ecological regions ECO). The
VegDRI-SKorea modeling was started by assembling a train-
ing database from the used data set from each station for 13
years. Then the VegDRI-SKorea model was generated using
an RT analysis. The authors used the CART to generate a
series of rule, while each rule was included in a corresponding
linear regression to produce the values of the models, thus
to categorize the values into one of seven drought severity
classes. According to this article, thirteen VegDRI-SKorea
maps were produced using MapCubist. The maps were pro-
duced by applying the rule sets from the Cubist model to
the gridded image. The proposed DM model provided more
spatially detailed drought patterns.

III. DISCUSSION

Our review paper illustrates that a wide variety of DM
algorithms have been applied to drought monitoring using
remote sensing data. Following an in-depth research, we are
able to present a list of DM techniques applied at present
for drought monitoring. However, the extracted knowledge is
vastly dependent on several parameters (e.g. the study area, the
data sets, the data size, etc.). Some of the important indexes are
developed from remote sensing data such as the NDVI, which
highlights the importance of remote sensing data in drought
forecasting. Thus, the importance of combining remote sensing
data to another type of data collected from the study area
location and which are in relation to drought. That implies a
high heterogeneity among the drought monitoring data sets.
This data sets characteristic detected through the previous
works listed above. Figure 2 presents a classification of those
input data (i.e. remote sensing, climatic, biophysical, oceanic,
and atmospheric data.).

This review highlight many advantages of DM methods:
Identifying the relationships between parameters that occur
together or with time lags. In fact, DM methods are not
aected by errors associated with the physical relationships
of parameters. DM methods could provide a high efficiency
and scalability in data pre-processing. After a training phase,
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Fig. 2. The input data classification for a drought monitoring system

DM methods provide drought estimates almost extremely and
immediate, thereby efficient for near real-time applications.

IV. CONCLUSION AND FUTURE DIRECTIONS

This paper identifies the strengths and weaknesses of the
most relevant works in the area of drought forecasting using
DM methods and remote sensing published from 2004 to 2018.
In fact, after selecting different existing works, each study is
classified according to the DM methods used (e.g. AR, DT,
ANN, FL and Hybrid solution). Then, a summary of each
DM method is provided by explaining the objectives of each
research work, data used, revealed steps, and experiments.
However, in recent years, significant advances have been made
in recording various meteorological parameters and climatic
data. In addition, as the remote sensing technology makes
more and more progress, with the development of GIS and
GPS, the real-time monitoring droughts over larger areas can
be achieved. These recent advances in data gathering can help
provide large data warehouses, related to weather, climate, soil
parameters, and long-term memory of drought phenomena. On
matter of facts, detecting the limits of those earlier studies
could create new horizons for the new researches. Therefore,
the reductions of drought crises.
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