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Abstract: Vegetation has been effectively monitored using remote sensing time-series vegetation
index (VI) data for several decades. Drought monitoring has been a common application with
algorithms tuned to capturing anomalous temporal and spatial vegetation patterns. Drought stress
models, such as the Vegetation Drought Response Index (VegDRI), often use VIs like the Normalized
Difference Vegetation Index (NDVI). The EROS expedited Moderate Resolution Imaging Spectrora-
diometer (eMODIS)-based, 7-day NDVI composites are integral to the VegDRI. As MODIS satellite
platforms (Terra and Aqua) approach mission end, the Visible Infrared Imaging Radiometer Suite
(VIIRS) presents an alternate NDVI source, with daily collection, similar band passes, and moderate
spatial resolution. This study provides a statistical comparison between EROS expedited VIIRS
(eVIIRS) 375-m and eMODIS 250-m and tests the suitability of replacing MODIS NDVI with VIIRS
NDVI for drought monitoring and vegetation anomaly detection. For continuity with MODIS NDVI,
we calculated a geometric mean regression adjustment algorithm using 375-m resolution for an
eMODIS-like NDVI (eVIIRS’) eVIIRS’ = 0.9887 × eVIIRS − 0.0398. The resulting statistical compar-
isons (eVIIRS’ vs. eMODIS NDVI) showed correlations consistently greater than 0.84 throughout the
three years studied. The eVIIRS’ VegDRI results characterized similar drought patterns and hotspots
to the eMODIS-based VegDRI, with near zero bias.

Keywords: visible infrared imaging radiometer suite; eVIIRS; moderate resolution imaging spectro-
radiometer; eMODIS; normalized difference vegetation index; vegetation drought response index;
VegDRI; remote sensing satellites; geometric mean regression

1. Introduction

Drought conditions can range from moderate to exceptional and with varying du-
ration, requiring continuous, operational monitoring. The longer a drought lasts and
the more exceptional its effects on vegetation and water resources, the more a drought
can alter services for humans and modify natural systems. Drought effects include the
degradation of habitat for wildlife and water quality, reduced access to water resources [1],
and increases in disturbances like fire events [2]. Drought can also affect agriculture, water
supplies, energy production, and many other aspects of society [3]. Drought monitoring is
therefore critical for researchers, land managers, and decision makers to identify regions
where drought mitigation and planning are necessary. Satellite-based remote sensing has
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proven useful for drought and vegetation monitoring because of its synoptic coverage, high-
temporal repeat cycle, and continuous, moderate-resolution observations of satellite-based
sensors [3].

In the United States, the U.S. Drought Monitor (USDM) (http://droughtmonitor.
unl.edu/, accessed on 11 February 2021) is the key, national-level monitoring tool that
integrates various types of in situ, remotely sensed and modeled information along with
drought expert input to characterize and map drought conditions on a weekly basis [4].
Instead of relying on a single drought indicator or index, the USDM authors use several
dozen inputs in which the attributes of all are considered, utilizing the strengths that
each provides in a hybrid approach. This “convergence of evidence” approach allows
the USDM authors to utilize many resources that include drought indices, surface data,
hydrology data, soil moisture data, modeled data, and remotely sensed data as well as
input from local drought experts. The use of remote sensing to support the USDM has
greatly increased over the past decade with many new tools created to characterize various
vegetation and hydrologic conditions [5]. Given the weekly, operational mandate of the
USDM to map national-level drought conditions, applicable remote sensing tools must
also be operational and have a long-term data continuity plan to produce near real-time
products into the future. From a remote sensing perspective, long-term data consistency
and continuity is a challenge as satellite-based sensors such as the Moderate Resolution
Imaging Spectroradiometer (MODIS) degrade and are eventually taken out of operation at
the end of their life span and replaced by new sensors such as Visible Infrared Imaging
Radiometer Suite (VIIRS) that may have different sensor characteristics.

The Vegetation Drought Response Index (VegDRI) is an operational drought moni-
toring tool covering the continental United States since 2009. VegDRI is often used by the
USDM and other drought applications developed to detect near real-time drought-related
vegetation stress using satellite-based Normalized Difference Vegetation Index (NDVI)
and other input data (e.g., climate data, soils, and land cover/land use). The current
operational VegDRI production relies on weekly, EROS expedited Moderate Resolution
Imaging Spectroradiometer (eMODIS) NDVI data produced at the U.S. Geological Survey
(USGS) Earth Resources Observation and Science (EROS) Center since 2008. The USGS
EROS Center developed eMODIS NDVI to offer the user community an “enhanced,” “ex-
pedited,” and “expandable” MODIS product, based on both Terra and Aqua data [6,7]
(https://doi.org/10.5066/F7H41PNT, accessed on 11 February 2021). The Land Atmo-
sphere Near real-time Capability for Earth Observing System (EOS) (LANCE) provides
daily MODIS products that are ingested into expedited MODIS NDVI composites in order
to meet the 24-h latency production of VegDRI on a weekly schedule. The eMODIS data
have not only been used in VegDRI, but also to study a broad range of other land process
topics including ecosystem performance in the Yukon River Basin of Alaska [8], die-off
of cheatgrass in the northern Great Basin [9], and forest and rangeland dynamics in the
Greater Platte and the Upper Colorado River Basins [10].

MODIS platforms, Terra (morning data acquisition) and Aqua (afternoon acquisi-
tion), were launched in 2000 and 2002, respectively, and have been vigorously used for
almost two decades in many studies, including monitoring vegetation anomalies such as
drought [6,11–13], fire danger monitoring [14], estimating crop yields [15,16], and mapping
of invasive species [9]. MODIS has also been frequently used to produce vegetation indices
such as the enhanced vegetation index, NDVI, and the drought severity index [6,11–13].
As the MODIS sensors approach the end of their life span, the data have started to show
sensor degradation [17], impacting the quality of eMODIS. Wang et al. [17] found that
Collection 5 Terra and Aqua MODIS NDVI values began to show negative bias in NDVI
trends after analyzing reflectance data from 2002 to 2010. There is strong indication that
the aging C6 Aqua MODIS sensor’s NDVI will develop a similar trend in the future until
data reprocessing fixes the negative bias [17]. Before negative NDVI trends affect C6
Aqua MODIS without reprocessing, vegetation anomaly models such as VegDRI and other
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eMODIS applications are looking to transition from eMODIS or the standard MODIS data
products to data from VIIRS, which provides time-series vegetation index (VI) data.

The VIIRS sensor, on board the joint National Aeronautics and Space Administration
(NASA) and National Oceanic and Atmospheric Administration (NOAA) Suomi National
Polar-orbiting Partnership (Suomi-NPP) satellite, was launched in October 2011, with the
potential to interchange with standard MODIS surface reflectance data. VIIRS consists of 22
spectral bands: 16 are 750-m moderate resolution bands (M-bands), five are 375-m imagery
resolution bands (I-bands), and one consists of night and day data [18,19]. The Level 3
products, often used for comparison studies, are the outcome of the best selected Level 2
pixels based on observation coverage, low sensor angle, no cloud or cloud shadow, and
aerosol loading, and spatially and temporally aggregated to 1-km (more precisely 963-m)
and 500-m (more precisely 463-m) for the M- and I-bands, respectively [19,20]. The VIIRS
sensor was designed as the follow-on Earth observation instrument to MODIS [20,21], and
is already being utilized by several monitoring applications [22,23].

VegDRI uses eMODIS rolling 7-day NDVI composites ending with each Sunday
processing period for a Monday delivery. To match this schedule, it would need to ingest a 7-
day temporal composite from VIIRS rather than NASA’s standard 8-day VIIRS composites.
To rectify this temporal mismatch, EROS has presented an expedited version of VIIRS
referred to as eVIIRS. Daily VIIRS products are also acquired from the LANCE system to
fulfil a 24-h latency production for VegDRI as required for USDM analysis. The eVIIRS
dataset includes rolling 7-day expedited NDVI composites at 375-m and 1-km spatial
resolutions (https://doi.org/10.5066/P9Q3B2A7, accessed on 11 February 2021).

NDVI has been analyzed between multiple sensors to determine if any bias
exists [20,24–26]. One recent study [20] compared 8-day composites (500-m resolution) and
daily Climate Model Grid (0.05◦ resolution) from VIIRS and MODIS surface reflectance
data from 2012 to 2016, finding that VIIRS and MODIS NDVI can be interchangeable with
low error (root mean square error (RMSE) less than 0.02 to 0.05). The low uncertainties
and strong correlations were due to an applied spectral adjustment to VIIRS Red (I1) and
Near-Infrared (NIR) (I2) bands before producing NDVI values, which is known as the dis-
tributed method. Skakun et al. [20] noted that the spectral adjustment reduced the potential
bias in their comparisons. An earlier study compared VIIRS, MODIS, and Advanced Very
High Resolution Radiometer (AVHRR) datasets and showed strong compatibility in the
NIR band passes between VIIRS and MODIS [25]. Because NDVI calculations are strongly
influenced by the NIR band, Miura et al. [25] also found that VIIRS and MODIS NDVI val-
ues were highly compatible with each other. The compatibility results of Miura et al. [25]
illustrate that a transformation equation can be developed from MODIS and VIIRS NDVI
values.

Kogan et al. [23] analyzed VIIRS NDVI-based drought detection capabilities compared
with AVHRR, using the vegetation health index, demonstrated in applications since 2005.
These authors found that the use of VIIRS data improved drought detection in its area, in-
tensity, duration, and drought impacts compared to previous sensor products (i.e., AVHRR
and MODIS) [23].

Building on the studies comparing NDVI with VIIRS and MODIS, we compare 7-day
composite surface reflectance NDVI-based vegetation anomaly products (VegDRI) from
both eVIIRS and eMODIS to determine their compatibility. This comparison is needed
because eMODIS is the source data for current operational drought monitoring in VegDRI,
which the USGS plans to continue producing in the future. This study has two main
objectives: (1) develop an algorithm to convert eVIIRS NDVI to eMODIS-like NDVI (refer-
ring to the transformed eVIIRS NDVI as eVIIRS’) and compare the eMODIS and eVIIRS
NDVI datasets; and (2) test eVIIRS’ NDVI and subsequent derivative vegetation anomaly
products for use in the VegDRI drought monitoring production systems and investigate
the propagation and influence of any differences that may exist between the NDVI datasets
in VegDRI. We hypothesize that eVIIRS NDVI-based vegetation anomaly products are
closely comparable to their eMODIS-based counterparts, provided that the NDVI data are

https://doi.org/10.5066/P9Q3B2A7
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corrected for bias. This work will ameliorate future anticipated restrictions on MODIS due
to degradation or end of mission data stoppage. A broadly usable and robust national-level
NDVI transformation is based on previous years’ eMODIS and eVIIRS comparisons prefer-
entially selected to have low RMSE. This work expands on previous studies by introducing
real world applications to near real-time data, along with transitioning from native 250-m
eMODIS to 375-m eVIIRS NDVI, and applying a three-year transformation regression on
an independent year of data.

2. Materials and Methods
2.1. Study Area

The study area was the conterminous United States (CONUS), the same extent as
that of VegDRI products. The area where NDVI pixel values were flagged as good quality,
based on the associated eVIIRS and eMODIS composite quality products, were extracted to
calculate our transformation equation. The overlapping eVIIRS and eMODIS good quality
pixels were utilized to eliminate pixels which included NDVI values that had poor quality
in one product and good quality in the other. For example, if the eVIIRS 375-m quality
product labeled a pixel as “good” and the eMODIS 250-m quality product labeled that same
area as “poor,” then those pixels were thrown out. Poor quality pixels are defined as either
water, clouds, cloud shadows, snow, bad band quality (based on band quality information),
or fill values according to the eVIIRS or eMODIS quality band layers. These masks were
used to define locations within CONUS that had good quality pixels and had identical
conditions for producing an NDVI relation between eVIIRS and eMODIS. This procedure
was performed on every set of eVIIRS and eMODIS weekly composites in the time series to
produce unique good quality pixel boundaries. Within each good quality pixel boundary,
100,000 points were randomly distributed and used to extract the overlapping pixels of the
different resolutions.

2.2. Data

This study involves eVIIRS 7-day rolling NDVI composites. To create these composites,
daily 375-m VIIRS surface reflectance data (products VNP09 and NPP_IMFTS_L1) were
downloaded from LANCE and a weekly 7-day download from Level-1 and Atmosphere
Archive and Distribution System (LAADS). The eVIIRS data are temporally composited
using the enhanced maximum value composite at spatial resolutions of 375-m and 1-km
(https://doi.org/10.5066/P9Q3B2A7, accessed on 11 February 2021). The enhanced maxi-
mum value composite algorithm fills in the pixel value with the highest NDVI within the
7-day composite for the current pixel and takes into account band quality, cloud mask, neg-
ative surface reflectance, and view angle for eVIIRS processing [7]. The NDVI calculations
for the composites used the imagery bands I1 0.600–0.680 µm (red) and I2 0.846–0.885 µm
(NIR) [19,23]. An NDVI adjustment calculation was derived from historical 375-m eVIIRS
data for 2016–2018. To test the performance of the geometric mean regression (GMR)
adjustment, eVIIRS 375-m and 1-km NDVI composites from 2020 were used. The 2020
eVIIRS includes recent composites that are created in near real-time, which are created
within a day of the 7-day composite, unlike the gathering of historical data which creates
7-day composites from historical daily NDVI products.

The other product for comparison was Collection 6 (C6) Aqua eMODIS NDVI devel-
oped by the USGS EROS Center, downloaded from EarthExplorer (https://doi.org/10.506
6/F7H41PNT, accessed on 11 February 2021). The eMODIS NDVI product was developed
from the C6 Aqua MODIS daily surface reflectance (MYD09GQ 250-m) and MODIS C6
Daily MYD09GA products (L2G Global 1-km and 500-m). Daily surface reflectance is also
downloaded from LANCE and LAADS; further developmental details on eMODIS are
provided here: https://doi.org/10.5066/F7H41PNT, accessed on 11 February 2021. The
parameters and specific details of eMODIS are comparable to MODIS C6 products. The
eMODIS NDVI data at 250-m and 1-km resolution were developed from MODIS bands B1
0.62–0.67 µm (red) and B2 0.841–0.876 µm (NIR) for evaluating compatibility with VIIRS

https://doi.org/10.5066/P9Q3B2A7
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I1 and I2, respectively [7,19]. The eMODIS composite period is a rolling 7-day composite
with a temporal coverage for this study from 2016–2018. The eMODIS NDVI composites
used for comparison in our study consist of 250-m NDVI composites from the historical
data and a 1-km composite from 2020 eMODIS. The expedited composites are important
for testing because these NDVI composites are one of the components that fuel the VegDRI
model output.

For drought anomaly testing, separate VegDRI data products were generated for four
7-day composites during the recent 2020 western U.S. drought using both the eVIIRS and
eMODIS NDVI data as input, respectively. VegDRI data products were generated over
the CONUS for composite Weeks 29–32 starting with the first 7-day composite period on
20 July 2020, and ending with the fourth and final composite on 09 August 2020. VegDRI
products were created in parallel with eMODIS NDVI and the transformed eVIIRS (eVIIRS’)
NDVI for each of these composite periods.

2.3. Methods

NDVI data from eVIIRS and eMODIS (native spatial resolutions of 375-m and 250-m,
respectively) were used in this study to identify a transformation algorithm. Figure 1
shows both datasets at their native resolution, which was more effective at screening out
noise (e.g., cloud cover, cloud shadows, filler values, etc.) in the data than using the
spatially-aggregated 1-km resolution NDVI that is used in VegDRI. Coarser resolution
(1-km) may interfere with our transformation by including other land cover classes, as
compared to higher resolution (250-m or 375-m) pixels which are more likely to have similar
land cover. We noticed a visually cleaner NDVI composite image with less noise artifacts
in eVIIRS data than eMODIS data as shown in Figure 1 during a visual quality assurance
exercise. To transform eVIIRS NDVI to an eMODIS-like (hereafter the transformed eVIIRS
NDVI is referred to as eVIIRS’) NDVI, we used the lumped method (using the NDVI
data to calculate a transformation equation for the new NDVI) for a simplistic approach
to accommodate eMODIS users. This approach involved transforming NDVI-to-NDVI
instead of translating using the distributed method (transforming the red and NIR bands
to calculate a transformed NDVI) Band-to-NDVI [27]. The eVIIRS NDVI was transformed
using the GMR developed from our eVIIRS and eMODIS correlation statistics described
in the results section [28,29]. The GMR transformation was selected because the inverse
can be used to transform historical eMODIS NDVI to eVIIRS-like NDVI values if this
transformation is needed to create similar historical continuity in NDVI values, but for our
study we adhere to transforming eVIIRS NDVI to eVIIRS’ [30,31].

Four composites of eVIIRS NDVI data over the CONUS for mid-summer were trans-
formed and analyzed using the new GMR developed from 2016–2018 data. Figure 2
illustrates the process for transforming eVIIRS NDVI by applying the GMR. The process
evaluated if previous years could predict, or transform, a subsequent year and how robust
the function was to transform eVIIRS NDVI to eMODIS-like NDVI values. We used 2016–
2018 NDVI data to test this robustness with the current year’s (2020) data, which gave us a
year and a half gap from the last data received from MODIS (2018 in this situation) to the
current processing year (2020).
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Figure 1. Expedited Moderate Resolution Imaging Spectroradiometer (eMODIS) 250-m Normalized Difference Vegetation
Index (NDVI) (a) and expedited Visible Infrared Imaging Radiometer Suite (eVIIRS) 375-m NDVI (b) for composite (Julian
day of year 215–221), 2016. Highlighted location in eastern Kansas shows an example of how eVIIRS composites have less
noise artifacts than eMODIS composites.
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Figure 2. Methods for the geometric mean regression (GMR) transformation from expedited Visible
Infrared Imaging Radiometer Suite (eVIIRS) to transformed eVIIRS (eVIIRS’).

Our NDVI samples were derived by randomly selecting 100,000 pixels per NDVI
composite. First, we applied our study area mask to gather sample data so that only good
quality pixels would be used to derive the translation. We extracted NDVI pixels based
on the pixel quality information for both eVIIRS and eMODIS. To ensure pixels that were
randomly selected for comparison were “good quality” pixels in both eVIIRS and eMODIS,
we intersected the boundaries of each composite. Furthermore, the translation formula
was restrained within the “good quality” boundary by pixels that were acquired on the
same Julian day-of-year (DOY) based on the acquisition band for each composite.

The standard NDVI formula was used for VIIRS bands I1 and I2:

NDVI = (ρNIR − ρred)/(ρNIR + ρred), (1)

where ρNIR represents the NIR band (VIIRS I2) and ρred represents the red band (VIIRS
I1) [32].

The eVIIRS and eMODIS data are composited for an entire year (52, 7-day composites)
and were used for statistical comparison. We compared eVIIRS NDVI and eMODIS NDVI
data from individual years (one year at a time) and three-year composites (stacked across
2016, 2017, and 2018). We investigated many different approaches to develop the GMR
transformation based on varying criteria for the NDVI values used and found that using
NDVI values from all composites greater than 0.09 created the best results. We chose NDVI
values of greater than 0.09 because lower values were associated with bare ground and
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dormant vegetation [8,33]. The 0.09 NDVI threshold eliminated noise that biased the GMR
slope from a 1-to-1 relation, compared to slope closer to 1 when applying the threshold.
The total number of pixels evaluated changed, depending on if we included all NDVI
values or only NDVI values greater than 0.09 per composite.

We replaced four weekly composites of eMODIS NDVI 2020 data with four weekly
composites from eVIIRS’ NDVI 2020 data that were coincident in time in VegDRI calcu-
lations to see near real-time results. Then we extracted a new set of random pixel values
using the previously described method for each of the four NDVI composites to compare
the eVIIRS’ and eMODIS VegDRI results over the CONUS to determine how well the
drought patterns correlated when these two different NDVI datasets were used in the index
calculation.

A statistical approach used to determine correlation agreement was the Agreement
Coefficient (AC) [30]. The AC value measures the total agreement between two images,
which includes data distances between the actual observations, 1-to-1 line, and regression
line [30]. The AC was used to compare eVIIRS and eMODIS because it was found to be more
suitable than other approaches based on linear regression as it compares different satellite
images based on their slope relative to a 1-to-1 line [30]. To identify the linear regression
between eVIIRS and eMODIS NDVI, we use the GMR because it has a more symmetrical
property and can be interchanged with the x and y variables [22,24,25,30,31]. The AC was
also used to relate to the coefficient of determination (R2) based on the Ordinary Least
Squares regression [31]. AC values showed the spread of points relative to the 1-to-1 line
and R2 measured the points around the regression line, both considered to have perfect
agreement/correlation when the calculation equals 1.

To determine accuracy and error, we used mean bias error (MBE) and RMSE
(Equations (2) and (3):

MBE =
1
N ∑N

i=1(yi − xi), (2)

RMSE =

√
1
N ∑N

i=1(yi − xi)
2, (3)

where N is the total number of sample points, yi is eVIIRS NDVI value, and xi is eMODIS
NDVI value. MBE and RMSE are considered perfect when equal to zero. Relative root
mean square error (RRMSE) is calculated by dividing the RMSE by the mean value of
measured data (eVIIRS NDVI) and multiplied by 100 [34,35]. The RRMSE was used to
determine whether the transformed eVIIRS NDVI values were a good fit compared to
eMODIS NDVI. For eVIIRS to be an excellent fit, an RRMSE value of less than 10% is
required, for a good fit the RRMSE value will be between 10% and 20%, a fair fit is between
20% to 30%, and a poor fit has values that are greater than 30% [34,35].

3. Results
3.1. NDVI Transformation

When transforming eVIIRS NDVI to eVIIRS’ NDVI, we first evaluated the correlation
between eVIIRS and eMODIS at their native resolutions of 375-m and 250-m, respectively.
This approach builds upon Skakun et al. [20] who compared reflectance bands (red and NIR)
and NDVI products at their 8-day composites and Climate Model Grid native resolutions
without pixel aggregation. With three years of historical eVIIRS data, we were able to
develop a GMR transformation algorithm (Equation (4) to apply to the three individual
years and then to four eVIIRS NDVI 2020 composites.

eVIIRS’ = 0.9887 × eVIIRS − 0.0398, (4)

where eVIIRS variable are eVIIRS NDVI composites and eVIIRS’ are the eMODIS-like
NDVI results. In Table 1, the correlation statistics represent the comparison between native
resolution eVIIRS 375-m and eMODIS 250-m for each year consisting of 52 7-day NDVI
composites.
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The native eVIIRS and eMODIS are highly correlated, with R2 values above 0.84 in
each year (2016–2018). The data also have strong ACs with all NDVI comparisons above
0.84, which represents good image-to-image comparison [30] compared to the 1-to-1 line.
There is a slight positive bias (MBE between 0.043 and 0.051) in the eVIIRS NDVI relative
to eMODIS, a finding also reported by Skakun et al. [20].

Once the GMR transformation was applied to 2020 eVIIRS NDVI to create 2020
eVIIRS’ NDVI, bias decreased by more than 62%, and RMSE decreased by more than
17%. In Figure 3d, a slight bias toward 2020 eVIIRS’ NDVI is shown with the 1-to-1 line
(dashed) and GMR (solid), based on the four expedited composites we tested. Although
the correlation statistics remained similar, the AC increased, resulting in less bias from the
1-to-1 relation between eVIIRS’ and eMODIS NDVI.
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Figure 3. Expedited Visible Infrared Imaging Radiometer Suite (eVIIRS) and expedited Moderate Resolution Imaging
Spectroradiometer (eMODIS) Normalized Difference Vegetation Index (NDVI) comparisons with all composites, (a) 2016–
2018 eMODIS NDVI vs. eVIIRS NDVI, (b) 2016–2018 eMODIS NDVI vs. eVIIRS’ NDVI, (c) 2020 eMODIS NDVI vs. eVIIRS
NDVI, and (d) 2020 eMODIS NDVI vs. eVIIRS’ NDVI. The eVIIRS NDVI composites are 375-m and eMODIS NDVI
composites are 250-m. The visual aspects of eVIIRS’ and eMODIS are shown in Figure 4, where the corresponding composite
week’s comparisons are illustrated in Figure 4c,d. Point density increases from low (blue) to moderate (green) to high (red),
the geometric mean regression (solid line) and the 1-to-1 line (dashed line).
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Table 1. Expedited Visible Infrared Imaging Radiometer Suite (eVIIRS) Normalized Difference Vegetation Index (NDVI)
comparison to expedited Moderate Resolution Imaging Spectroradiometer (eMODIS) NDVI. In the 2020 column, the results
include the four 375-m and 1-km 7-day NDVI composites, starting with composites Julian day of year 196–202 through
217–223. The plain text values represent eVIIRS compared to eMODIS and the bold text values represent transformed
eVIIRS (eVIIRS’) compared to eMODIS. Pearson’s R significance test resulted in p-values <2.2 × 10−16 for all of the years
processed.

eVIIRS vs. eMODIS
eVIIRS’ vs. eMODIS

2016
(375-m)

2017
(375-m)

2018
(375-m)

2020
(375-m)

2020
(1-km)

2016–2018
(375-m)

Pearson’s R
0.9390 0.9176 0.9171 0.9059 0.9162 0.9243
0.9391 0.9176 0.9171 0.9059 0.9162 0.9243

R2 0.8818 0.8419 0.8411 0.8206 0.8394 0.8543
0.8818 0.8419 0.8411 0.8206 0.8394 0.8543

AC
0.8766 0.8471 0.8467 0.8255 0.8337 0.8570
0.8774 0.8296 0.8305 0.8236 0.8459 0.8415

MBE/Accuracy 0.0506 0.0434 0.0434 0.0701 0.0786 0.0454
0.0051 −0.0020 −0.0035 0.0228 0.0312 0.0000

RMSE/Uncertainty 0.0937 0.1028 0.1029 0.1318 0.1293 0.1000
0.0786 0.0926 0.0934 0.1107 0.1067 0.0886

RRMSE (%)
20.3513 22.3428 22.8878 21.8264 21.7363 21.8790
17.0683 20.1326 20.7917 18.7904 17.9322 19.3747Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 17 
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Figure 4. Expedited Moderate Resolution Imaging Spectroradiometer (eMODIS) (a) and transformed expedited Visible
Infrared Imaging Radiometer Suite (eVIIRS’) (b) Normalized Difference Vegetation Index (NDVI) comparison for Week
32, 2020, at 1-km resolution. (c) Statistical comparison between eVIIRS’ and eMODIS for Week 32, 2020, which is one
composite from the 2020 1-km column in Table 1. Point density increases from low (blue) to moderate (green) to high (red),
the geometric mean regression (solid line) and the 1-to-1 line (dashed line). (d) Differences between each pixel whether
eMODIS NDVI is greater than eVIIRS’ NDVI (red) or eVIIRS’ is greater than eMODIS (blue).
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3.2. Vegetaion Anomaly Results

After evaluating eVIIRS’ 1-km results, the eVIIRS’ NDVI 1-km inputs for four weeks
of CONUS VegDRI products were tested from July 20 through August 9, 2020. With
a bias toward higher eVIIRS’ NDVI, we would have expected a negative bias (i.e. less
drought than eMODIS) in the VegDRI products, but the bias was near zero with MBE
of −0.122. Correlations are moderately strong between eVIIRS’ and eMODIS VegDRI
products (Table 2). Statistically, the values have a positive correlation and modestly robust,
but near 1-to-1 relation (Figure 5) with all four weeks above 0.42 (Table 2).

Table 2. Transformed expedited Visible Infrared Imaging Radiometer Suite (eVIIRS’) Vegetation
Drought Response Index (VegDRI) and expedited Moderate Resolution Imaging Spectroradiometer
(eMODIS) VegDRI comparison statistics.

eVIIRS’ vs. eMODIS VegDRI Week 29 Week 30 Week 31 Week 32 1 Weeks 29–32

Pearson’s R 0.6522 0.6492 0.6612 0.6857 0.6631
R2 0.4254 0.4214 0.4371 0.4702 0.4397
AC 0.1389 0.1318 0.1703 0.2455 0.1752

MBE/Accuracy −0.0501 −0.0794 −0.1369 −0.2238 −0.1223
RMSE/Uncertainty 22.7448 22.9173 23.2202 23.0702 22.9742

RRMSE (%) 18.1620 18.1265 18.2916 18.4921 18.2676
1 Week 32 is illustrated in Figure 5c.
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Figure 5. Comparison of Vegetation Drought Response Index (VegDRI) results from expedited Moderate Resolution Imaging
Spectroradiometer (eMODIS) (a) and transformed expedited Visible Infrared Imaging Radiometer Suite (eVIIRS’) (b) for
week 32, 2020 (August 3, 2020 to August 9, 2020). (c) Relation between eMODIS and eVIIRS’ VegDRI values, associated
statistics are presented in Table 2, week 32 column. Point density increases from low (blue) to moderate (green) to high
(red), the geometric mean regression (solid line) and the 1-to-1 line (dashed line). (d) VegDRI classification differences pixel
by pixel.
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A visual comparison of eVIIRS’ VegDRI product from week 32 (Figure 5) shows a
comparable product to eMODIS VegDRI. Because VegDRI has continuous values, a bias
near zero creates a linear relation near the 1-to-1 line. Clearly eVIIRS’ drought hotspots
geographically match those detected in the eMODIS VegDRI. An example is illustrated at
the border of South Dakota and Minnesota where eMODIS VegDRI identified a small area
of moderate to severe drought and the same location is also identified in eVIIRS’ VegDRI
(Figure 5a,b). The same hotspot parallelism is also noticed with the moist vegetation
condition. An example is illustrated near the Alabama and Tennessee border where
eMODIS VegDRI identified a small area of Extremely Moist to Very Moist, and the same
location is identified in eVIIRS’ VegDRI (Figure 5a,b).

The starker spatial differences that occur in eVIIRS’ VegDRI products are most likely
the cause of the weak correlation between the two products. Drought severity classes are
predominately the same or within one class in the eVIIRS’ and eMODIS VegDRI products
(Figure 5d). Analyzing these products in Figure 5, the spatial distribution of the drought
severity classification patterns is visually very similar between the two VegDRI products.
The four weekly VegDRI products based on a pixel-level drought class comparison per-
centage between eVIIRS’ VegDRI and eMODIS VegDRI within eVIIRS’ VegDRI classes are
summarized in Figure 6. Over the CONUS, 54% of the 1-km pixels had zero classification
difference, 33% of the pixels had a one-class difference (e.g., moderate vs. severe drought)
and only 13% of the pixels had a two or more class difference. Most drought class differ-
ences occur within eVIIRS’ VegDRI midrange of the spectrum (Predrought to Unusually
Moist categories).
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Figure 6. Total pixel classification difference between transformed expedited Visible Infrared Imaging Radiometer Suite
(eVIIRS’) and expedited Moderate Resolution Imaging Spectroradiometer (eMODIS) Vegetation Drought Response Index
(VegDRI). For example, 37.96% of pixels were classified by eVIIRS’ as “near-normal” and were classified as the same by
eMODIS, and 10.53% of the pixels called “near-normal by eVIIRS’ were within 1 class in eMODIS. The percentage is based
on all pixels not including changes in the Out-of-Season or water classification for all four weeks (29,131,856 pixels).

4. Discussion
4.1. NDVI Comparison

We created a simplistic transformation model to maintain data continuity following
mission end of the Aqua MODIS platform. Data continuity is needed to support appli-
cations such as drought monitoring, where a sustained historical time-series may often
require inter-sensor NDVI data. This transformation can be used by other MODIS and
eMODIS users to transition from MODIS to VIIRS NDVI data for their own applications.
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These transformations allow historical longevity of NDVI data, which lengthens historical
data for statistical input utilized in anomaly models. These transformations are important
because transitioning from one satellite platform to another can lead to gaps in operational
products like VegDRI when a sensor’s life cycle ends. The Suomi-NPP VIIRS sensor helps
to extend NDVI’s continuous data in support for the next VIIRS missions. The longevity
of VIIRS sensor products will continue to be produced with four NASA-NOAA Joint
Polar Satellite System (JPSS) missions continuing through 2031 [36]. Therefore, in the
transition from one satellite sensor to another, it is important to calculate comparable
inter-sensor NDVI datasets to continue the historical record and provide a historically
consistent, long-term NDVI dataset used for many types of environmental monitoring.

The results from this study demonstrated the use of eVIIRS’ NDVI in a vegetation
anomaly model (VegDRI). The eVIIRS and eMODIS NDVI composites showed a high
correlation and AC using the GMR transformation equation. The errors approached zero
after applying the GMR transformation. The consistent statistics throughout the three
years gives us confidence to utilize these eVIIRS products in other applications. Using the
lumped method (NDVI-to-NDVI) to transform eVIIRS NDVI provided a direct approach
to transitioning drought models from eMODIS NDVI to eVIIRS’ NDVI.

We determined that filtering out low NDVI values provides a more robust GMR
transformation. Using the GMR transformation method allows a more relatable approach
for changing eVIIRS NDVI to eVIIRS’ NDVI, because untransformed eVIIRS yearly NDVI
values have a linear relation and using a quadratic regression may manipulate the values
off the 1-to-1 line more than using the linear GMR. The GMR transformation also provides
an inverse adjustment that changes eMODIS values to eVIIRS-like NDVI with a simple
algebraic coefficient calculation [30]. We used 2016–2018 NDVI data to test this robustness
with the 2020 data, which gave us a year and a half gap from the last data received from
MODIS (2018, our hypothetical situation). This transformation is useful for when MODIS
approaches its end of life and models need to continue producing data, but do not have
the capabilities of switching to VIIRS.

Some uncertainties come from the native resolution of the two surface reflectance
datasets, which in eVIIRS NDVI is 50% larger than eMODIS NDVI. The spatial resolution
difference causes the pixel heterogeneity to vary between sensor footprints, meaning that
pixel values from one sensor will differ many times from the pixel values of the other sensor.
To best prevent highly heterogenous pixels, we narrowed our GMR pixel selection by
masking water and poor-quality pixels throughout CONUS. To achieve a similar reflectance
with each pixel, we ensured that the pixels used in our GMR transformation development
were acquired on the same day, similar to Skakun et al. [20]. However, bias was still present
for 2020 eVIIRS NDVI. A potential future solution to this problem would be selecting a
larger sample of years that would consist of a variety of vegetation conditions and NDVI
values, yielding a broadened GMR transformation.

A limitation that may affect our NDVI transformation was not applying a bidirec-
tional reflectance distribution function (BRDF) on surface reflectance. The BRDF was
not considered in our study because the transformation algorithm was created using the
existing national-level eMODIS NDVI, which was not BRDF-corrected. Our approach for a
non-BRDF corrected surface reflectance was similar to that of Skakun et al. [20], who did
not apply a BRDF correction on their 500-m products. This approach worked well with our
composites from source daily VIIRS and MODIS granules from LANCE that are delivered
approximately three hours after overpass, and supports users that require expedited data.
Another limitation includes the rigid terrain that may influence NDVI. Matsushita et al. [37]
studied the topographic effects on vegetation indices (Enhanced Vegetation Index [EVI] and
NDVI) and found some topographic influence on these indices. With further investigation,
Matsushita et al. [37] found indices that include variables without band ratioing (EVI)
need to remove the topographic effect, whereas band ratioing indices (NDVI) reduces the
topographic effect and can be ignored [37].
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Another factor that could affect the results was MODIS degradation. With its end of
life approaching, degradation may explain the larger bias in 2020 expedited composites
compared to 2016–2018 NDVI composites. For a higher correlation in future work, we could
use the smoothed NDVI values to create a GMR transformation algorithm. Brown et al. [6]
found the smoothed NDVI results had a higher R2 correlation than the unsmoothed NDVI
values used in this study.

4.2. VegDRI Comparison

The GMR transformation, calculated from 2016–2018 MODIS-VIIRS data overlap
period will be applied to eVIIRS to provide a historically consistent NDVI dataset that
can be used in operational VegDRI production. This study demonstrated that eVIIRS’
NDVI data can produce a near-identical VegDRI model output to that produced from
the eMODIS NDVI. The current VegDRI model and products are produced using Aqua
eMODIS NDVI as training data. With the Aqua MODIS platform lifespan ending soon, the
GMR transformation is in place for continuity of VegDRI products.

The results of introducing eVIIRS’ into VegDRI applications are closely comparable
to their eMODIS-based counterparts. With the GMR transformation applied during the
VegDRI process, eVIIRS’ NDVI values will perform satisfactorily for drought monitoring.
The RRMSE values for all VegDRI products were 18%, which means the eVIIRS’ VegDRI
product values are a good fit compared to eMODIS VegDRI. Our confidence in replacing
eMODIS with eVIIRS’ in VegDRI is strong because most of the classification changes occur
within a one-class difference between eVIIRS’ VegDRI and eMODIS VegDRI products.
Drought monitoring activities using VegDRI, such as the USDM, are generally used to
make decisions based on the categorical drought designation, and a one-class difference
would have minimal impact compared to two or more classes of difference. We plan to
continue to build eVIIRS’ VegDRI products until our models are retrained using eVIIRS.

We have featured VegDRI drought monitoring as one main operational application for
the newly derived eVIIRS NDVI composites. Other applications involving research and/or
product development that have utilized eMODIS composites and are likely to benefit
from this research on translation of eVIIRS include (but are not limited to) phenological
studies [38], irrigation land use [39], wildfire fuel load modeling [40], invasive grassland
vegetation dynamics [41], and Famine Early Warning System Network [42].

5. Conclusions

The GMR transformation algorithm allows continuity for drought monitoring models
that rely on eMODIS NDVI. In August 2020, the LANCE Aqua MODIS formatting outage
malfunctioned and did not produce data for an extended period, and there was a complete
shutdown onboard the platform transmission. In this event, the 24-hour latency production
of VegDRI used daily VIIRS data from LANCE to develop eVIIRS’ NDVI for continuity.
In the future, if Aqua MODIS has another outage or ends its service, this simple-to-apply
GMR transformation enables continuity between eMODIS to eVIIRS expedited transitions.
This transformation is useful for when Aqua MODIS approaches its end of life in 2022 [20]
and models need to continue producing data but do not yet have the capability of switching
to VIIRS. This study may help other users who are hesitant about switching over to VIIRS
because they are unsure of how to utilize this input in their models. Our simplistic approach
to transferring our model from eMODIS to eVIIRS demonstrates the ease of use of NDVI
GMR transformation for model continuity and longevity.

As the USDM process continues to evolve and more data and tools become available,
one key feature is the continuation of legacy products into the USDM map. With tools
that have been developed to enhance drought monitoring in the United States, such as
VegDRI, it is important to see that these tools continue even if changes need to be made.
The datasets and tools that have the longest duration are key in the USDM process as
they have a history through many wet and dry events to compare against, and losing
them would be detrimental to the USDM process. Even within the limits of how long all
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satellite-based products have been around, the high-resolution attributes associated with
VegDRI are important when identifying drought and drought intensity, and transitioning
to another platform would ensure that VegDRI would continue to be available to the USDM
process going forward. Future study is planned to include a more comprehensive study
of eVIIRS across a year (a seasonal performance study) and across multiple years for a
range of drought events (e.g., moderate, severe and extreme cases). We also plan to retrain
the VegDRI model with eVIIRS NDVI products. We plan to compare the eVIIRS-trained
VegDRI with our eMODIS and eVIIRS’ VegDRI products to gain more information on our
GMR transformation accuracy.

Author Contributions: Conceptualization, J.F.B., T.D.B. and S.P.B.; Methodology, T.D.B. and D.M.H.;
Software, T.D.B. and K.A.E.; Validation, B.A.F., B.D.W. and T.T.; Formal Analysis, T.D.B.; Investigation,
T.D.B.; Resources, T.D.B.; Data Curation, T.D.B. and K.A.E.; Writing—Original Draft Preparation,
T.D.B.; Writing—Review & Editing, T.D.B., J.F.B., S.P.B., D.M.H., B.A.F., B.D.W., T.T. and K.A.E.;
Visualization, T.D.B.; Supervision, D.M.H., J.F.B. and S.P.B.; Project Administration, D.M.H., J.F.B.
and S.P.B.; Funding Acquisition, J.F.B. and S.P.B. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the U. S. Geological Survey National Land Imaging Program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in EarthExplorer
at https://doi.org/10.5066/F7H41PNT, accessed on 11 February 2021 (eMODIS) and https://doi.
org/10.5066/P9Q3B2A7, accessed on 11 February 2021 (eVIIRS). The data presented for VegDRI are
openly available at https://www.usgs.gov/core-science-systems/eros/droughtstress, accessed on
11 February 2021, and https://doi.org/10.3133/fs20103114, accessed on 11 February 2021.

Acknowledgments: Support for T. Benedict, J. Brown, S. Boyte, K. Evenson, and D. Howard was
provided by funding from the U.S. Department of the Interior, U. S. Geological Survey, National Land
Imaging Program under the Core Science Systems Mission Area. The authors also wish to thank M.
Rigge for his review, and the reviewers of the manuscript for their helpful suggestions. Any use of
trade, firm, or product names is for descriptive purposes only and does not imply endorsement by
the U.S. Government.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brown, J.F.; Wardlow, B.D.; Tadesse, T.; Hayes, M.J.; Reed, B.C. The Vegetation Drought Response Index (VegDRI): A new

integrated approach for monitoring drought stress in vegetation. GIScience Remote Sens. 2008, 45, 16–46. [CrossRef]
2. Littell, J.S.; Peterson, D.L.; Riley, K.L.; Liu, Y.; Luce, C.H. (Eds.) Fire and Drought; U.S. Department of Agriculture, Forest Service,

Washington Office: Washington, DC, USA, 2016.
3. Tadesse, T.; Demisse, G.B.; Zaitchik, B.; Dinku, T. Satellite-based hybrid drought monitoring tool for prediction of vegetation

condition in Eastern Africa: A case study for Ethiopia. Water Resour. Res. 2014, 50, 2176–2190. [CrossRef]
4. Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D.; et al.

The drought monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [CrossRef]
5. Fuchs, B.A. National Drought Mitigation Center; University of Nebraska-Lincoln: Lincoln, NE, USA, 2021.
6. Brown, J.F.; Howard, D.; Wylie, B.; Frieze, A.; Ji, L.; Gacke, C. Application-ready expedited MODIS data for operational land

surface monitoring of vegetation condition. Remote Sens. 2015, 7, 16226–16240. [CrossRef]
7. Jenkerson, C.B.; Maiersperger, T.; Schmidt, G. eMODIS: A User-Friendly Data Source: U.S. Geological Survey Open-File Report

2010–1055; U.S. Geological Survey EROS Center: Sioux Falls, SD, USA, 2010; p. 10. [CrossRef]
8. Wylie, B.K.; Zhang, L.; Bliss, N.; Ji, L.; Tieszen, L.L.; Jolly, W.M. Integrating modelling and remote sensing to identify ecosystem

performance anomalies in the boreal forest, Yukon River Basin, Alaska. Int. J. Digit. Earth 2008, 1, 196–220. [CrossRef]
9. Boyte, S.P.; Wylie, B.K.; Major, D.J. Mapping and monitoring cheatgrass dieoff in rangelands of the Northern Great Basin, USA.

Rangel. Ecol. Manag. 2015, 68, 18–28. [CrossRef]
10. Rigge, M.; Wylie, B.K.; Gu, Y.; Belnap, J.; Phuyal, K.; Tieszen, L.L. Monitoring the status of forests and rangelands in the western

United States using ecosystem performance anomalies. Int. J. Remote Sens. 2013, 34, 4049–4068. [CrossRef]
11. Gulácsi, A.; Kovács, F. Drought monitoring of forest vegetation using MODIS-based normalized difference drought index in

Hungary. Hung. Geogr. Bull. 2018, 67, 29–42. [CrossRef]

https://doi.org/10.5066/F7H41PNT
https://doi.org/10.5066/P9Q3B2A7
https://doi.org/10.5066/P9Q3B2A7
https://www.usgs.gov/core-science-systems/eros/droughtstress
https://doi.org/10.3133/fs20103114
http://doi.org/10.2747/1548-1603.45.1.16
http://doi.org/10.1002/2013WR014281
http://doi.org/10.1175/1520-0477-83.8.1181
http://doi.org/10.3390/rs71215825
http://doi.org/10.3133/ofr20101055
http://doi.org/10.1080/17538940802038366
http://doi.org/10.1016/j.rama.2014.12.005
http://doi.org/10.1080/01431161.2013.772311
http://doi.org/10.15201/hungeobull.67.1.3


Remote Sens. 2021, 13, 1210 16 of 17

12. Haroon, M.A.; Zhang, J.; Yao, F. Drought monitoring and performance evaluation of MODIS-based drought severity index (DSI)
over Pakistan. Nat. Hazards 2016, 84, 1349–1366. [CrossRef]

13. Hunt, E.R., Jr.; Ustin, S.L.; Riaño, D. Remote sensing of leaf, canopy, and vegetation water contents for satellite environmental
data records. In Satellite-Based Applications on Climate Change; Springer: Dordrecht, The Netherlands, 2013; Volume 9789400758728,
pp. 335–357.

14. Nelson, K. Fire Danger Forecast—A Comparison of Fire Potential Index Rasters Derived from AVHRR and MODIS data.
Available online: https://www.usgs.gov/ecosystems/lcsp/fire-danger-forecast/a-comparison-fire-potential-index-rasters-
derived-avhrr-and (accessed on 2 January 2021).

15. Becker-Reshef, I.; Vermote, E.; Lindeman, M.; Justice, C. A generalized regression-based model for forecasting winter wheat
yields in Kansas and Ukraine using MODIS data. Remote Sens. Environ. 2010, 114, 1312–1323. [CrossRef]

16. Johnson, D.M. A comprehensive assessment of the correlations between field crop yields and commonly used MODIS products.
Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 65–81. [CrossRef]

17. Wang, D.; Morton, D.; Masek, J.; Wu, A.; Nagol, J.; Xiong, X.; Levy, R.; Vermote, E.; Wolfe, R. Impact of sensor degradation on the
MODIS NDVI time series. Remote Sens. Environ. 2012, 119, 55–61. [CrossRef]

18. Vermote, E.; Franch, B.; Claverie, M. VIIRS/NPP Surface Reflectance 8-Day L3 Global 500 m SIN Grid V001 [Dataset]. Available
online: https://lpdaac.usgs.gov/products/vnp09h1v001/#using (accessed on 30 November 2020).

19. Roger, J.C.; Vermote, E.F.; Devadiga, S.; Ray, J.P. Suomi-NPP VIIRS Surface Reflectance User’s Guide. Available online: https:
//viirsland.gsfc.nasa.gov/PDF/VIIRS_Surf_Refl_UserGuide_v1.3.pdf (accessed on 23 November 2020).

20. Skakun, S.; Justice, C.O.; Vermote, E.; Roger, J.C. Transitioning from MODIS to VIIRS: An analysis of inter-consistency of NDVI
data sets for agricultural monitoring. Int. J. Remote Sens. 2018, 39, 971–992. [CrossRef]

21. Justice, C.O.; Román, M.O.; Csiszar, I.; Vermote, E.F.; Wolfe, R.E.; Hook, S.J.; Friedl, M.; Wang, Z.; Schaaf, C.B.; Miura, T.; et al.
Land and cryosphere products from Suomi NPP VIIRS: Overview and status. J. Geophys. Res. Atmos. 2013, 118, 9753–9765.
[CrossRef] [PubMed]

22. Zhang, X.; Liu, L.; Liu, Y.; Jayavelu, S.; Wang, J.; Moon, M.; Henebry, G.M.; Friedl, M.A.; Schaaf, C.B. Generation and evaluation
of the VIIRS land surface phenology product. Remote Sens. Environ. 2018, 216, 212–229. [CrossRef]

23. Kogan, F.; Goldberg, M.; Schott, T.; Guo, W. Suomi NPP/VIIRS: Improving drought watch, crop loss prediction, and food security.
Int. J. Remote Sens. 2015, 36, 5373–5383. [CrossRef]

24. Ji, L.; Gallo, K.; Eidenshink, J.C.; Dwyer, J. Agreement evaluation of AVHRR and MODIS 16-day composite NDVI data sets. Int. J.
Remote Sens. 2008, 29, 4839–4861. [CrossRef]

25. Miura, T.; Turner, J.P.; Huete, A.R. Spectral Compatibility of the NDVI Across VIIRS, MODIS, and AVHRR: An Analysis of
Atmospheric Effects Using EO-1 Hyperion. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1349–1359. [CrossRef]

26. Miura, T.; Muratsuchi, J.; Vargas, M. Assessment of cross-sensor vegetation index compatibility between VIIRS and MODIS using
near-coincident observations. J. Appl. Remote Sens. 2018, 12. [CrossRef]

27. Fan, X.; Liu, Y. A comparison of NDVI intercalibration methods. Int. J. Remote Sens. 2017, 38, 5273–5290. [CrossRef]
28. Ricker, W.E. Computation and use of central lines. Can. J. Zool. 1984, 62, 1897–1905. [CrossRef]
29. Laws, E.A.; Archie, J.W. Appropriate use of regression analysis in marine biology. Mar. Biol. 1981, 65, 13–16. [CrossRef]
30. Ji, L.; Gallo, K. An agreement coefficient for image comparison. Photogramm. Eng. Remote Sens. 2006, 72, 823–833. [CrossRef]
31. Ji, L.; Wylie, B.; Ramachandran, B.; Jenkerson, C. A comparative analysis of three different MODIS NDVI datasets for Alaska and

adjacent Canada. Can. J. Remote Sens. 2010, 36, S149–S167. [CrossRef]
32. Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA Special

Publication: Washington, DC, USA, 1974; Volume 351.
33. Jia, G.J.; Epstein, H.E.; Walker, D.A. Spatial heterogeneity of tundra vegetation response to recent temperature changes. Glob.

Chang. Biol. 2006, 12, 42–55. [CrossRef]
34. Despotovic, M.; Nedic, V.; Despotovic, D.; Cvetanovic, S. Evaluation of empirical models for predicting monthly mean horizontal

diffuse solar radiation. Renew. Sustain. Energy Rev. 2016, 56, 246–260. [CrossRef]
35. Li, M.F.; Tang, X.P.; Wu, W.; Liu, H.B. General models for estimating daily global solar radiation for different solar radiation zones

in mainland China. Energy Convers. Manag. 2013, 70, 139–148. [CrossRef]
36. Wolfe, R. Visible Infrared Imaging Radiometer Suite (VIIRS). Available online: https://ladsweb.modaps.eosdis.nasa.gov/

missions-and-measurements/viirs/ (accessed on 29 January 2021).
37. Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G. Sensitivity of the enhanced vegetation index (EVI) and normalized difference

vegetation index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors 2007, 7, 2636–2651. [CrossRef]
[PubMed]

38. Brown, J.F.; Ji, L.; Gallant, A.; Kauffman, M. Exploring relationships of spring green-up to moisture and temperature across
Wyoming, U.S.A. Int. J. Remote Sens. 2019, 40, 956–984. [CrossRef]

39. Brown, J.F.; Pervez, M.S. Merging remote sensing data and national agricultural statistics to model change in irrigated agriculture.
Agric. Syst. 2014, 127, 28–40. [CrossRef]

40. Li, Z.; Shi, H.; Vogelmann, J.E.; Hawbaker, T.J.; Peterson, B. Assessment of fire fuel load dynamics in shrubland ecosystems in the
western United States using MODIS products. Remote Sens. 2020, 12, 1911. [CrossRef]

http://doi.org/10.1007/s11069-016-2490-y
https://www.usgs.gov/ecosystems/lcsp/fire-danger-forecast/a-comparison-fire-potential-index-rasters-derived-avhrr-and
https://www.usgs.gov/ecosystems/lcsp/fire-danger-forecast/a-comparison-fire-potential-index-rasters-derived-avhrr-and
http://doi.org/10.1016/j.rse.2010.01.010
http://doi.org/10.1016/j.jag.2016.05.010
http://doi.org/10.1016/j.rse.2011.12.001
https://lpdaac.usgs.gov/products/vnp09h1v001/#using
https://viirsland.gsfc.nasa.gov/PDF/VIIRS_Surf_Refl_UserGuide_v1.3.pdf
https://viirsland.gsfc.nasa.gov/PDF/VIIRS_Surf_Refl_UserGuide_v1.3.pdf
http://doi.org/10.1080/01431161.2017.1395970
http://doi.org/10.1002/jgrd.50771
http://www.ncbi.nlm.nih.gov/pubmed/25821661
http://doi.org/10.1016/j.rse.2018.06.047
http://doi.org/10.1080/01431161.2015.1095370
http://doi.org/10.1080/01431160801927194
http://doi.org/10.1109/TGRS.2012.2224118
http://doi.org/10.1117/1.JRS.12.045004
http://doi.org/10.1080/01431161.2017.1338784
http://doi.org/10.1139/z84-279
http://doi.org/10.1007/BF00397062
http://doi.org/10.14358/PERS.72.7.823
http://doi.org/10.5589/m10-015
http://doi.org/10.1111/j.1365-2486.2005.01079.x
http://doi.org/10.1016/j.rser.2015.11.058
http://doi.org/10.1016/j.enconman.2013.03.004
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/viirs/
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/viirs/
http://doi.org/10.3390/s7112636
http://www.ncbi.nlm.nih.gov/pubmed/28903251
http://doi.org/10.1080/01431161.2018.1519642
http://doi.org/10.1016/j.agsy.2014.01.004
http://doi.org/10.3390/rs12121911


Remote Sens. 2021, 13, 1210 17 of 17

41. Boyte, S.P.; Wylie, B.K.; Major, D.J. Cheatgrass percent cover change: Comparing recent estimates to climate change—Driven
predictions in the Northern Great Basin. Rangel. Ecol. Manag. 2016, 69, 265–279. [CrossRef]

42. Funk, C.; Shukla, S.; Thiaw, W.M.; Rowland, J.; Hoell, A.; McNally, A.; Husak, G.; Novella, N.; Budde, M.; Peters-Lidard, C.; et al.
Recognizing the famine early warning systems network over 30 years of drought early warning science advances and partnerships
promoting global food security. Bull. Am. Meteorol. Soc. 2019, 100, 1011–1027. [CrossRef]

http://doi.org/10.1016/j.rama.2016.03.002
http://doi.org/10.1175/BAMS-D-17-0233.1

	Exploring VIIRS Continuity with MODIS in an Expedited Capability for Monitoring Drought-Related Vegetation Conditions
	Authors

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	Methods 

	Results 
	NDVI Transformation 
	Vegetaion Anomaly Results 

	Discussion 
	NDVI Comparison 
	VegDRI Comparison 

	Conclusions 
	References

