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ABSTRACT

In this study, the potential utility of using rapid temporal changes in drought indices to provide early warning of

an elevated risk for drought development over subseasonal time scales is assessed. Standardized change anom-

alies were computed each week during the 2000–13 growing seasons for drought indices depicting anomalies in

evapotranspiration, precipitation, and soil moisture. A rapid change index (RCI) that encapsulates the accu-

mulated magnitude of rapid changes in the weekly anomalies was computed each week for each drought index,

and then a simple statistical method was used to convert the RCI values into drought intensification probabilities

depicting the likelihood that drought severity as analyzed by theU.S.DroughtMonitor (USDM)wouldworsen in

subsequent weeks. Local and regional case study analyses revealed that elevated drought intensification proba-

bilities often occur several weeks prior to changes in the USDM and in topsoil moisture and crop condition

datasets compiled by theNationalAgricultural Statistics Service. Statistical analyses showed that theRCI-derived

probabilities aremost reliable and skillful over the central and easternUnited States in regionsmost susceptible to

rapid drought development. Taken together, these results suggest that tools used to identify areas experiencing

rapid changes in drought indices may be useful components of future drought early warning systems.

1. Introduction

Drought is an intrinsic feature of the climate system that

adversely affects the economy and can lead to substantial

social displacements owing to job losses and lower eco-

nomic output. During the past decade, severe drought

conditions have enveloped large areas of the United

States, with some regions remaining entrenched in drought

for many years. According to the U.S. Drought Monitor

(USDM; http://droughtmonitor.unl.edu/) (Svoboda et al.

2002), at the peak of the 2012 drought, over 80% of the

contiguous United States (CONUS) was characterized by

abnormal dryness, with nearly half of the country expe-

riencing from severe (D2) to exceptional (D4) drought

conditions. The extreme drought severity led to sub-

stantial yield losses for grain farmers in the Corn Belt and

to smaller livestock herds in the south-central United

States, as ranchers were forced to sell or relocate animals

owing to a lack of forage and high feed prices. Federal

crop indemnity payments for 2012 exceeded $17 billion

(USDA2013), with the total cost of the drought estimated

to surpass $35 billion (Aon Benfield 2013), making it one

of themost expensive natural disasters inU.S. history. The

Corresponding author address: Jason A. Otkin, Cooperative In-

stitute forMeteorological Satellite Studies, University ofWisconsin–

Madison, 1225W. Dayton St., Madison, WI 53706.

E-mail: jason.otkin@ssec.wisc.edu

88 JOURNAL OF HYDROMETEOROLOGY VOLUME 16

DOI: 10.1175/JHM-D-14-0064.1

� 2015 American Meteorological Society

http://droughtmonitor.unl.edu/
mailto:jason.otkin@ssec.wisc.edu


high economic cost combined with other societal impacts

and changes in natural ecosystems all demonstrate the

continued vulnerability of the United States to extreme

drought events.

With the recent occurrence of high impact drought

events across the United States and elsewhere around

the world, it has become increasingly clear that there

is an urgent need to enhance the accuracy and scope of

existing drought forecasting systems to assist the de-

velopment and implementation of drought mitigation

plans by vulnerable stakeholders. Indeed, the creation

of robust drought early warning systems that can be

objectively verified and are capable of providing prob-

abilistic drought forecasts with spatial and temporal

resolutions sufficient for users to make informed man-

agement decisions is one of the primary goals of the Na-

tional Integrated Drought Information System (NIDIS).

Though drought at its most basic level is simply the

manifestation of decreased precipitation relative to the

expected climatology, a uniform definition of drought is

difficult to construct because its impact varies with lo-

cation and economic sector. For instance, water re-

source managers are typically most concerned about

long-term drought conditions that decrease the water

supply for municipalities, irrigated agriculture, and in-

dustry, whereas dryland farmers are susceptible to

drought over much shorter time periods. Significant

yield losses can occur even in the absence of long-term

rainfall deficits if acute moisture stress occurs during

a critical stage of crop development (e.g., Rotter and van

deGeijn 1999; Saini andWestgate 1999; Ciais et al. 2005;

Mittler 2006; Barnabás et al. 2008; Li et al. 2009; Mishra

and Cherkauer 2010; Prasad et al. 2011; Swain et al.

2011; Kebede et al. 2012; Pradhan et al. 2012; Hunt et al.

2014). The combined impact of below-normal rainfall,

extreme heat, abundant sunshine, and strong winds can

rapidly deplete soil moisture owing to higher evapotrans-

piration (ET) rates, thereby leading to rapid increases in

vegetation stress and the development of ‘‘flash drought’’

conditions (Svoboda et al. 2002; Mozny et al. 2012; Otkin

et al. 2013). Flash droughts can be especially disruptive

owing to their rapid rate of development and thus require

drought early warning systemswith daily or weekly update

cycles (Pozzi et al. 2013) that consider not only rainfall

departures, but also other drought indicators, such as ET,

vegetation health, and soil moisture.

Various methods have been developed in recent years

to generate drought onset and intensification forecasts

at regional to global scales. Many studies have employed

statistical techniques such as artificial neural networks,

stochastic autoregressive models, and Markov chain

models to predict future drought conditions (e.g., Loaiciga

and Leipnik 1996; Steinemann 2003; Kim et al. 2003;

Mishra and Desai 2005, 2006; Sen and Boken 2005;

Barros and Bowden 2008; Hwang and Carbone 2009;

Lyon et al. 2012; Özger et al. 2012). Seasonal drought
forecasts can also be created using output from sophis-

ticated hydrologic and coupled atmosphere–ocean–land

general circulation models (e.g., Wood et al. 2002; Luo

et al. 2007; Luo andWood 2008; Quan et al. 2012; Dutra

et al. 2013; Yuan et al. 2013; Yuan and Wood 2013; Bell

et al. 2013; Pan et al. 2013; Kirtman et al. 2014). The

Climate Prediction Center (CPC) also produces sea-

sonal and monthly Drought Outlook forecast products

that identify areas likely to experience changing drought

conditions. The CPC products are created each month

by propagating the existing drought state, as embodied

by the USDM, forward to the next forecasting period

using long-range temperature and precipitation forecasts.

Though seasonal drought forecasts tend to be closely tied

to anomalous circulation patterns associated with the El

Niño–Southern Oscillation phenomenon (e.g., Hoerling

and Kumar 2003; Schubert et al. 2007), intrinsic atmo-

spheric variability and land surface feedbacks acting over

subseasonal time scales are also important (e.g., Kumar

et al. 2013; Guo and Dirmeyer 2013). This is especially

true in the midlatitudes, where remote forcing due to

tropical sea surface temperature anomalies is weaker

(Madden 1976; Kumar andHoerling 1997; Schubert et al.

2004). Indeed, the devastating 2012 flash drought across

the central United States resulted primarily from natural

variations in weather rather than external forcing due to

tropical sea surface temperatures (Hoerling et al. 2014).

Most drought forecasting systems only have monthly

update cycles and produce seasonal to annual forecasts

more suitable for hydrological applications; therefore,

they lack the temporal resolution required to provide

early warning of drought development over weekly time

scales potentially useful for other stakeholder groups.

Given the high economic cost associated with recent

drought events, the development of new methods that

can be used to provide forecasts over weekly to monthly

time scales is imperative. A promising approach is to use

rapid changes in satellite-derived drought indices such as

the evaporative stress index (ESI) (Anderson et al. 2007c,

2011) to identify areas with an elevated risk for rapid

drought development. Case study analyses have shown

that rapid decreases in the ESI, which represents stan-

dardized anomalies in the ratio of actual to reference ET,

often precede periods of rapid drought intensification in

the USDM by up to several weeks (Anderson et al. 2013;

Otkin et al. 2013). Since anomalous weather patterns

conducive to drought development can persist for many

weeks, Otkin et al. (2014) developed a newmetric known

as the rapid change index (RCI) that expresses the cu-

mulative magnitude of the weekly ESI change anomalies
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during each rapid change event. Their results showed

that drought severity, as classified by the USDM, was

more likely to intensify when the RCI was negative, with

the highest risk relative to the baseline climatology en-

compassing the central and eastern United States in

areas most susceptible to rapid drought development.

For instance, during the 2012 drought, the RCI became

strongly negative across a large portion of the central

United States more than one month before the USDM

drought depiction underwent a rapid deterioration from

no drought to extreme drought conditions. This event

occurred in the absence of strong external forcing, with

little to no warning of its rapid development evident in

traditional drought metrics or in climate model simula-

tions (Kumar et al. 2013). These results suggest that the

temporal tendency of drought indices may provide useful

drought early warning signals that could potentially aug-

ment existing drought monitoring and forecasting systems

based on prognostic climate and hydrological models.

In this paper, we assess the ability of rapid changes in

three drought indices that depict anomalies in ET, pre-

cipitation, and soil moisture, respectively, to provide early

warning of an elevated risk for drought development

across the CONUS during the warm season when vege-

tation is growing (April–October). RCI variables are

constructed in a similar manner for each dataset, with

a simple statistical approach used to convert the weekly

RCI values into drought intensification probabilities de-

picting the likelihood that the USDM drought depiction

will change during different time periods. Sections 2 and 3

contain descriptions of the various datasets and the

methodology used to construct the drought intensification

forecasts. Results are shown in section 4, with conclusions

provided in section 5.

2. Datasets

a. Evaporative stress index

The ESI represents standardized anomalies in ET frac-

tion (ET/Fref), where Fref is a reference ET flux based on

the Penman–Monteith formulation (Allen et al. 1998) that

is used to minimize the impact of non-moisture-related

drivers on ET, such as the seasonal cycle in solar radiation.

ActualET estimates used to compute theESI are obtained

from the Atmosphere–Land Exchange Inverse (ALEXI)

model (Anderson et al. 1997, 2007b). ALEXI is a two-

source energy balance model (Norman et al. 1995) that

uses remotely sensed land surface temperatures (LSTs)

obtained from geostationary satellite thermal infrared

(TIR) imagery to compute energy fluxes for bare soil and

vegetated components of the land surface. The surface

energy budget is inferred using the observed rise in LST

from ;1.5h after local sunrise until 1.5 h before local

noon. Closure of the energy balance equations over the

morning integration period is obtained using an atmo-

spheric boundary layer (ABL) model developed by

McNaughton and Spriggs (1986). Because ALEXI uses

the morning rise in LST to compute evapotranspiration,

it can only be applied to pixels that remain clear during

the morning. Though most cloudy pixels are successfully

removed using a cloud mask algorithm, optically thin

clouds aremore difficult to detect and can lead to spurious

ET retrievals if they are not correctly identified. Errors

due to incomplete cloud screening are reduced using

a temporal smoothing algorithm that identifies days with

ET estimates that differ greatly from surrounding times

since large differences are likely owing to cloud contam-

ination rather than to abrupt changes in soil moisture

content (Anderson et al. 2013). The remaining clear-sky

ET estimates are composited over longer multiweek time

periods to achievemore complete domain coverage.Daily

ET values are typically computed at least once per week

for 75% of the grid points, with 95% of the domain up-

dated at least once every 20 days. Though compositing

may delay the response time of the ET composites to

changing soil moisture conditions, this delay should be

minor because droughts are typically associated with clear

skies that promote more frequent ET updates (Anderson

et al. 2007b).

The ALEXI model is run each day over the CONUS

with 10-km horizontal grid spacing using insolation esti-

mates from theGeostationaryOperationalEnvironmental

Satellite (GOES) imager (Otkin et al. 2005) and hourly

LST estimates retrieved from GOES sounder observa-

tions. Vegetation cover fraction estimates used to partition

the LST and energy fluxes between soil and vegetation

components were derived from the Moderate Resolution

Imaging Spectroradiometer (MODIS) leaf area index

product (MOD15A) (Myneni et al. 2002). Boundary layer

temperature lapse rates used by the ABL model were

taken from the North American Regional Reanalysis

(NARR) (Mesinger et al. 2006). For a complete de-

scription of the ALEXI model, the reader is referred to

Anderson et al. (2007a).

ESI anomalies, expressed as pseudo z scores normalized

to amean of 0 and a standard deviation of 1, are computed

each week during the nominal growing season (April–

October) for 2- and 4-week composite periods. Data from

the 2000–13 ALEXI period of record are used to compute

the mean ET fraction and standard deviation at each grid

point for each composite period. Standardized anomalies

are computed as

ESI(w, y)5
hV(w, y)i2 1

ny
�hV(w, y)i

s(v)
, (1)
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where the first term (within angle brackets) in the numer-

ator is the composite value for weekw and year y at a given

grid point, the second term is the mean condition for week

w averaged over all years, and the denominator is the

standard deviation. With this formulation, negative (posi-

tive) values indicate lower (higher) soil moisture content

and poorer (better) than average vegetation health.

b. Standardized precipitation index

Accumulated precipitation obtained from the CPC uni-

fied analysis of daily precipitation reports from official

National Weather Service reporting stations and coop-

erative observers (Higgins et al. 2000) was used to com-

pute the standardized precipitation index (SPI) (McKee

et al. 1993, 1995). The SPI is widely employed to detect

meteorological drought conditions and uses precipitation

as its sole input. It is a standardizedquantity so that values

less than zero indicate that the observed precipitationwas

less than the climatological median precipitation over

a given time period.Daily precipitation from 1948 to 2013

was interpolated from the 0.258-resolution grid to the

ALEXI model domain using a nearest neighbor ap-

proach and was then used to compute 4- and 8-week SPI

values at weekly intervals.

c. North American Land Data Assimilation System

Soil moisture anomalies were computed using data from

the North American Land Data Assimilation System

(NLDAS) maintained by the National Centers for Envi-

ronmental Prediction (Xia et al. 2012a,b). Soil moisture

content in the top 2m of the soil profile was obtained from

the Noah (Ek et al. 2003; Barlage et al. 2010; Wei et al.

2013), Mosaic (Koster and Suarez 1994, 1996), and Vari-

able Infiltration Capacity (Liang et al. 1996; Bowling and

Lettenmaier 2010) models. Though each model simu-

lates surface energy and water balance, and soil mois-

ture in multiple layers, their treatment of infiltration,

drainage, vegetation rooting depth, canopy uptake, and

soil evaporation differs, which can lead to different

responses owing to local climate, soil, and vegetation

characteristics. Validation studies have shown that the

skill of the models is good in terms of anomaly corre-

lations; however, errors in the simulated soil moisture

magnitude can be large for any particular model. Given

this variability, the ensemble average was computed

since this has been shown to more accurately depict

drought conditions (Xia et al. 2014). Soil moisture

data from 1979 to 2013 were interpolated from the

0.1258-resolution grid to theALEXIdomain using a nearest

neighbor approach, with 2- and 4-week standardized

total column (0–2m) soil moisture anomalies (hereafter

referred to as NTC) computed at weekly intervals using

the ensemble mean.

d. USDM

The drought intensification probabilities described in

section 3 were computed using USDM analyses that

classify dryness/drought into five categories ranging from

abnormal dryness to exceptional drought (Svoboda et al.

2002). The USDM is created each week through expert

synthesis of numerous data streams, including drought

diagnostic metrics, surface streamflow, soil moisture,

rainfall anomalies, crop and range conditions, and local

impact reports from observers across the country. For this

study, USDM analyses from the National Drought Miti-

gation Center were interpolated to theALEXI domain by

assigning numerical values to each drought category, with

no drought set to21, abnormally dry (D0)5 0, moderate

drought (D1) 5 1, severe drought (D2) 5 2, extreme

drought (D3) 5 3, and exceptional drought (D4) 5 4.

e. Soil moisture and crop condition data

The drought intensification probabilities computed

with respect to the USDM will also be compared to

changes in crop and soil moisture conditions compiled

each week by the U.S. Department of Agriculture Na-

tional Agricultural Statistics Service (NASS) using

county-level surveys by local experts. Crop conditions are

reported for all major agricultural crops, including corn,

soybeans, spring wheat, winter wheat, cotton, peanuts,

sorghum, oats, barley, and rice, along with pasture and

range conditions. Categorical assessments ranging from

very poor to excellent are made for each crop, with the

latter indicating the absence of drought stress. For this

study, numerical values were assigned to each category

(very poor, poor, fair, good, and excellent), with the

average condition computed at each grid point using

all crop condition reports available during a given

week. Categorical topsoil moisture (0–15 cm) assess-

ments ranging from very short to surplus are also

available, with the former indicating that soil moisture

is significantly less than required for normal plant

development. Because of the confidential nature of these

datasets, themonthly county-level valueswere interpolated

to the 10-km ALEXI grid and then spatially smoothed

using a 3 3 3 pixel square moving window. Though these

datasets are qualitative, they still provide a useful in-

dependent assessment of drought impacts experienced by

agricultural crops.

3. Methods

As discussed in the introduction, a recent study by

Otkin et al. (2014) has shown that temporal changes in

the ESI, as embodied by the RCI, can convey useful

information about the rate at which moisture stress is
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increasing and can thus provide early warning of an

elevated risk for drought development. In this paper,

a simple method is used to convert weekly RCI values

into probabilistic drought intensification forecasts that

are easier to interpret and also incorporate the effects

of local climatology. The same methodology is also

applied to SPI and NTC anomalies to investigate the

general utility of using temporal changes in drought

indices to predict short-term drought development.

a. Rapid change index

The RCI for a given variable, such as the 4-week ESI

composite, is computed using standardized anomalies in

the difference between two time periods:

DV(w1,w2, y)5

V(w2, y)2V(w1, y)2
1

ny
�
ny

y51

[V(w2, y)2V(w1, y)]

s(w1,w2)
, (2)

where w1 and w2 are the weeks used in the difference

computation, y is the year, V is the variable being differ-

enced, and the denominator is the standard deviation. The

RCI can be computed using change anomalies derived

from any composite and time differencing combination;

however,Otkin et al. (2013) have shown that variableswith

shorter time periods typically provide earlier warning of

drought development because they respond more quickly

to changing conditions. Thus, to emphasize fast response

times, four RCI variables were computed for each dataset

using 1- and 2-week time differencing intervals (denoted

CH1 and CH2, respectively) and two short-duration

composite periods. For the ESI and NTC datasets, 2- and

4-week anomalies were used, whereas anomalies over

longer 4- and 8-week time periods were used for the SPI

dataset because the episodic nature of rainfall can in-

troduce large weekly oscillations if shorter time periods are

used. In addition, since soilmoisture anomalies depicted by

the shorter-duration ESI and NTC composites represent

the impact of rainfall departures occurring over a longer

time period, longer-duration SPI anomalies promote

a similar effective response time for all three datasets.

At the beginning of each growing season, nominally

defined as 1 March, each RCI variable is set to zero. The

RCI then decreases (increases) during subsequent weeks

only if the corresponding DV change anomaly [Eq. (2)] is

below (above) a certain threshold. Following Otkin et al.

(2014), this threshold was set to 60.75 to highlight areas

of unusually large moisture changes. For a given week,

the RCI is computed as

RCI5RCIprev2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abs(DV)2 0:75

p
if DV, 2 0:75;

(3)

RCI5RCIprev1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DV2 0:75

p
if DV. 0:75, (4)

where RCIprev is the RCI value from the previous week.

The RCI will reset to zero if the sign of the DV anomaly

is opposite that of the prior week, but it will remain

unchanged if the DV anomaly has the same sign as the

prior week but is less than the threshold value. The RCI

is not reset to zero in these situations to help prevent the

separation of long-duration rapid change events into

multiple shorter events. With this formulation, negative

(positive) RCI values correspond to periods of rapidly

increasing (decreasing) moisture stress.

Values for the full suite of 12 RCI variables (two

composite and two change intervals for each of the three

drought indices) were computed each week during

2000–13. Because each variable responds differently to

changing conditions, a limited number of sensitivity tests

were then performed to identify suitable weights with

which to combine the four RCI variables computed for

each drought index into a single RCI value, hereafter

referred to as RCI_ESI, RCI_NTC, and RCI_SPI.

These tests, which consisted of a qualitative analysis of

drought events across the central and eastern United

States, showed that a weighted average emphasizing the

shorter differencing and composite periods provided

good drought early warning signals, such that

RCI_ESI5 0:63CH1_02WK1 0:3

3CH1_04WK1 0:13CH2_02WK, (5)

RCI_NTC5 0:63CH1_02WK1 0:3

3CH1_04WK1 0:13CH2_02WK, and

(6)

RCI_SPI5 0:63CH1_04WK1 0:3

3CH1_08WK1 0:13CH2_04WK. (7)

While a detailed analysis of optimal forms for these

equations is beyond the scope of the current study, future

work will investigate further refinements to optimize

performance.

92 JOURNAL OF HYDROMETEOROLOGY VOLUME 16



b. Drought intensification probabilities

After computing average RCI values for each drought

index, a simple method was used to convert the weekly

RCI values into drought intensification probabilities at

each grid point. Ten years (2000–09) of RCI data are

used as a training period to compute the necessary pa-

rameters, with the following four years (2010–13) used

to validate the method. First, for each week during the

training period with a negative RCI value, themaximum

increase in USDM drought severity was computed for

subsequent 2-, 4-, and 8-week time periods. The negative

RCI valueswere then separated into one-unit bins ranging

from 0 to210, with the complete sample for each forecast

lead time used to compute the probability that theUSDM

drought depictionwill worsen by at least one, two, or three

categories for RCI values in each bin. A linear least

squares line was then fit through the computed probabil-

ities to determine the y intercept and slope for each

forecast and intensification combination for each drought

index. These parameters were then used to convert the

weekly RCI values into drought intensification probabil-

ities during the training and validation periods. Because

the slope and intercept values are computed at each grid

point, this method accounts for the local climatology by

potentially converting the same RCI value into different

intensification probabilities for different parts of the

United States. Thus, the probabilities may contain more

useful information than the unconverted RCI values.

4. Results

a. Regional drought case study

In this section, the spatial and temporal congruence

between the RCI and RCI-derived drought intensification

probabilities and changes in the corresponding USDM

and NASS datasets is examined for a rapid onset drought

event that occurred across the central United States

during the training period. Figure 1 shows the evolution

of the USDM, NASS, and RCI datasets at 2-week in-

tervals from 3 June to 12 August 2002, with the corre-

sponding drought intensification probabilities shown in

Fig. 2. At the beginning of June, moderate to extreme

drought conditions (D1–D3) were present across the

central high plains with abnormally dry conditions (D0)

extending farther to the north. By this time, large RCI

values and drought intensification probabilities had de-

veloped across South Dakota and Minnesota in response

to a prolonged period of dry weather. The topsoil mois-

ture and crop health status subsequently deteriorated

across South Dakota as severe drought expanded north-

ward; however, heavy rainfall farther east prevented

drought emergence over Minnesota.

By the beginning of July, very hot temperatures and

below-normal rainfall led to rapidly increasing moisture

stress along the northeastern periphery of the core

drought region, with a wide band of negative RCI_ESI

values developing from western South Dakota to east-

ern Kansas. Except for a large gap in central Nebraska

where change anomalies were negative but did not ex-

ceed the 20.75 threshold, the RCI_SPI and RCI_NTC

datasets also indicate that conditions were deteriorating

across the region. The drought intensification probabil-

ities (Fig. 2) showed that many locations had at least

a 20% chance that the USDM drought analysis would

deteriorate by at least two categories during an 8-week

period, which is much higher than the average proba-

bility based on the 2000–12 climatology (Otkin et al.

2014). Indeed, conditions rapidly worsened during the

next few weeks, with an extensive area experiencing at

least a two-category increase in drought severity.

Though the NASS topsoil moisture anomalies remained

relatively constant during this time period, very large

crop condition anomalies developed across the region

by the middle of August (Fig. 1). Drought continued to

expand southeastward into eastern Kansas and western

Missouri during late summer (not shown) within the

region of high intensification probabilities at the end of

July. This example presents evidence that unusually

rapid changes in the ESI, SPI, and NTC datasets can

provide early warning of drought development in the

USDM that is consistent with observed changes in the

NASS crop condition and soil moisture datasets.

b. Local drought case studies: Training period

This section examines the evolution of two drought

events that occurred during the statistical training period

through a comparison of drought indicators, meteoro-

logical data, crop conditions, and RCI-derived drought

intensification probabilities. To more easily display the

wealth of information provided by these variables, a new

visualization method was developed. Figure 3 shows the

evolution of the USDM, weekly rainfall, NARR surface

temperature anomalies, NASS topsoil moisture and crop

conditions, and ESI, SPI, and NTC anomalies, along with

each of the RCI variables and their associated drought

intensification probabilities, averaged over all grid points

in the ‘‘Rolling Plains of Texas’’ (CPC climate division 2)

during 2003. This region contains a mixture of range and

farmland, with wheat, sorghum, cotton, and forage being

the dominant crops.

Though weather conditions during April were cooler

than normal, negative ESI, SPI, and NTC anomalies in-

dicate that moisture stress remained elevated across the

region owing to a lack of heavy rainfall. Drought in-

tensification probabilities computed using the RCI_ESI
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and RCI_NTC datasets indicated a high probability that

drought would worsen during the next few weeks. These

probabilities were much higher than those derived from

theRCI_SPI dataset because light rain events throughout

the month prevented a more rapid decrease in the SPI.

Moderate drought conditions subsequently developed

at the beginning of May and persisted for several

weeks before a prolonged period of cool, wet weather

eliminated drought conditions by the beginning of July.

All variables indicated favorable conditions during June,

with intensification probabilities at or near zero. Very dry

weather returned to the area by the middle of July,

however, with temperatures at or above normal. The less

favorable conditions led to rapid decreases in the ESI,

SPI, and NTC anomalies and to the rapid appearance of

large intensification probabilities during the first half of

FIG. 1. Temporal evolution of USDM drought depiction, NASS topsoil moisture anomaly, NASS crop condition anomaly, RCI_ESI,

RCI_SPI, and RCI_NTC from 3 Jun to 12 Aug 2002.
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July, even though the underlying indices remained

positive. The initial appearance of the high probabili-

ties occurred at the same time as the reintroduction of

abnormal dryness in the USDM but occurred several

weeks prior to the rapid transition from abnormal

dryness to severe drought during August. The en-

hanced risk for drought development indicated by the

RCI variables at the beginning of July also preceded

a rapid deterioration in the soil moisture and crop

condition datasets.

Figure 4 depicts the evolution of a slower-developing

drought event that occurredwithin an intensivelymanaged

agricultural landscape across east-central Nebraska

during the summer of 2006. Severe drought conditions

were present across the region during late winter (not

shown); however, heavy rainfall during the spring led to

more favorable conditions, as evidenced by the mostly

positive SPI and NTC anomalies during April. Drier

weather returned during May, with rapid decreases in

the SPI and NTC datasets resulting in large drought in-

tensification probabilities. The ESI-derived probabilities

were much lower because the ESI exhibited less recov-

ery during the spring, thereby leading to smaller weekly

changes duringMay and smallerRCI values. TheRCI_ESI

FIG. 2. Temporal evolution of the USDM drought depiction from 3 Jun to 12 Aug 2002 (first column). The probability of at least a one-

category increase in the USDM drought depiction over a 4-week period computed using the RCI_ESI, RCI_SPI, and RCI_NTC variables is

shown in columns 2–4, with columns 5–7 showing the probability of at least a two-category increase occurring over an 8-week period.
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and associated probabilities began to increase more

rapidly during the latter part of May when much

warmer temperatures enveloped the region because

the combination of hot temperatures and dry weather

can quickly deplete soil moisture reserves (Otkin et al.

2013). A continuation of generally warm and dry weather

during the summer caused conditions to steadily de-

teriorate, with abnormal dryness introduced in the

USDM during the second week of June before tran-

sitioning to moderate drought at the beginning of July

and severe drought several weeks later. Heavy rainfall

during August began to erode the drought conditions

and led to intensification probabilities at or near zero

for the rest of the growing season.

c. Local drought case studies: Validation period

To further assess the ability of the drought intensi-

fication probabilities to provide useful drought early

warning signals, this section examines the evolution of two

drought events that occurred during the validation period.

The first event (Fig. 5) occurred across east-central

Oklahoma during 2011 within a region characterized by

a mixed landscape of pasture, range, and forest. Mod-

erate drought conditions were present across the region

at the beginning of the growing season owing to below-

normal winter precipitation; however, very heavy rain-

fall duringApril andMay eliminated drought conditions

according to the USDM and led to a rapid transition to

strongly positive 4- and 8-week SPI anomalies. Though

the NTC and ESI anomalies also improved during this

time period, their recovery was less impressive than

what may have been expected based on the SPI because

the soil was unable to absorb a large portion of the

rainfall owing to very high rainfall rates, thereby limiting

soil moisture recharge and vegetation recovery. By the

beginning of June, the wetter and cooler-than-normal

weather pattern underwent a rapid transition to very hot

and dry conditions that persisted throughout the rest of

FIG. 3. Drought evolution across the Rolling Plains of Texas (CPC division 2) during 2003. The weekly USDM

drought category is shown in column 1, with 1-week rainfall (cm) in column 2, 2-week surface temperature (K)

z anomalies in column 3, andNASS topsoil and crop condition anomalies in columns 4 and 5. ESI z anomalies for 2- and

4-week composite periods are shown in columns 6 and 7, with 4- and 8-week SPI and 2- and 4-week NTC z anomalies

shown in columns 8 and 9 and 10 and 11, respectively. RCI_ESI, RCI_SPI, andRCI_NTC values are shown in columns

12–14. One-category USDM drought intensification probabilities for 2-, 4-, and 8-week time periods and two-category

probabilities for 4- and 8-week periods computed using RCI_ESI, RCI_SPI, and RCI_NTC data are shown in columns

15–19, 20–24, and 25–29, respectively.
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the summer. Drought rapidly developed across the re-

gion, with the USDMdrought analysis degrading by one

category for three consecutive weeks before stabilizing

at an extreme drought (D3) severity level only six weeks

after the area was drought free. The NASS topsoil

moisture assessment also transitioned from normal

conditions to a severe moisture deficit during this time

period. Each of the RCI variables became negative by

the second week of June, with elevated intensification

probabilities thereafter. For this event, rapid changes

in the ESI provided the earliest sustained warning of

an enhanced risk for drought development. Drought

probabilities computed using changes in the NTC

dataset provided slightly earlier warning, but were

more variable with time. Using a longer anomaly pe-

riod would help remove some of the weekly variability

but would also delay the response time to changing

conditions.

The final drought event examined in this section

affected south-central Wisconsin during the summer of

2012 (Fig. 6). Record warm temperatures during March

combined with below-normal precipitation during the

preceding winter resulted in large negative NTC anom-

alies during April. The unusually warmweather, however,

also promoted much earlier vegetation emergence and

growth across the region and thus led to large positive

ESI anomalies due to enhanced ET rates. After re-

ceiving near-normal rainfall during April and the first

half of May, which helped recharge topsoil moisture

content, a prolonged period of extremely hot and dry

weather during the next two months (June–July) led to

a very rapid increase in moisture-related stress. ESI

and NTC anomalies rapidly became strongly negative

by the middle of May, with the SPI anomalies un-

dergoing a similar transition several weeks later. Very

high drought intensification probabilities occurred in

the ESI-derived dataset several weeks before the

NASS soil moisture and crop condition datasets rapidly

deteriorated and up to two months before an unpre-

cedented deterioration of oneUSDMcategory per week

for four consecutive weeks started at the end of June.

The NTC-derived probabilities were also very high, but

their initial appearance was later. Compared to the ESI

andNTC datasets, weekly changes in the SPI weremuch

smaller, which greatly limited the intensification prob-

abilities computed using the RCI_SPI data. These re-

sults suggest that a greater reliance on drought indices

depicting anomalies in soil moisture and vegetation

during the USDM mapping process may promote an

earlier drought onset depiction, especially for flash

FIG. 4. As in Fig. 3, but for drought evolution across east-central Nebraska (CPC division 6) during 2006.
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drought events that are driven by more than just rainfall

departures.

d. Statistical analysis

The accuracy of the drought intensification probabil-

ities is further assessed in this section using data from the

independent 4-yr validation period (2010–13). Figure 7

shows reliability diagrams for RCI predictions of one-

category USDM changes occurring over 2-, 4-, and

8-week periods, two-category changes over 4- and 8-week

periods, and three-category changes over 8-week pe-

riods, computed separately for the western and eastern

United States. Reliability diagrams depict how often

a forecasted event occurs relative to the predicted like-

lihood of that event and can be used to assess the fore-

cast confidence. Perfect reliability is achieved when the

predicted and actual probabilities are identical, with the

values lying along the diagonal line in the reliability

diagram.

Overall, the results indicate that the probabilistic fore-

casts aremost reliable over the easternUnited States for all

intensity change and forecast lead-time combinations, with

very low reliability over thewesternUnited States. The low

reliability in this region may be due to the conservative

nature of the USDM, which will cause forecasts based on

rapid changes in drought indices to be overconfident since

the USDM analyses in the western United States tend to

change only when dry conditions have persisted for a long

period of time. This tendency of the USDM to depict long-

term drought conditions in the western United States will

reduce the reliability of theRCI-derived probabilities since

they are sensitive to moisture stress changes occurring over

shorter time periods. A detailed comparison of the RCI

datasets shows that the ESI-derived probabilities are

generally the most reliable, with the best forecasts oc-

curring for one-category USDM changes over all fore-

cast lead times and for two-category changes over an

8-week period. Except for where the climatological prob-

ability exceeds the predicted probability, such as the left

side of Fig. 7c, the forecast probabilities are too confident,

with most points located below the diagonal line. The

observed probabilities, however, are usually higher than

climatology, which provides evidence that drought de-

velopment is often preceded by rapid changes in these

drought indices. The overconfidence may be due to sam-

pling differences in the training and validation datasets

since two of themost intense droughts occurred during the

validation period (e.g., 2011 and 2012). Inclusion of these

recent drought events in the training dataset may improve

future drought forecasts.

FIG. 5. As in Fig. 3, but for drought evolution across east-central Oklahoma (CPC division 6) during 2011.
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Figure 8 shows Brier skill scores for one-category

USDM changes occurring over 2-, 4-, and 8-week pe-

riods, two-category changes over 4- and 8-week periods,

and three-category changes over 8-week periods, com-

puted at each grid point using data from the 2010–13

validation period. Brier skill scores greater than zero in-

dicate that the forecast skill is greater than that achieved

using a reference forecast based on climatology (Wilks

2011). For one-category changes, the forecast skill is

generally small for shorter lead times but increases

greatly for 8-week forecast periods. The lower skill for

shorter lead times is due to the tendency for these

forecasts to be overconfident (refer to Fig. 7), thereby

leading to a higher false alarm rate. For larger two- and

three-category changes in theUSDM, there is no forecast

skill over the western United States; however, some skill

is evident across the central United States within areas

most susceptible to flash drought development (Otkin

et al. 2014). Comparison of the RCI datasets shows that

the forecast skill is higher for probabilities derived from

changes in the SPI and NTC datasets, which may be due

to their previous inclusion in the USDM mapping pro-

cess. Differences in the spatial patterns of the skill scores

also suggest that some combination of the RCI datasets

may provide the most skillful drought forecasts.

e. Comparison to NASS soil moisture and crop
condition datasets

In this section, the ability of rapid changes in the ESI,

SPI, and NTC datasets, as encapsulated by the RCI, to

provide early warning of deteriorating conditions is

further assessed through a correlation analysis with the

NASS soil moisture and crop condition datasets.

Figure 9 shows the correlation between the maximum

RCI value for a given rapid change event and the max-

imum decrease in the categorical topsoil moisture and

crop condition status from the beginning of an event

(defined as the first week with a negative RCI value)

until two weeks after its conclusion. The correlations

were computed separately for each grid point and RCI

variable using data from 2002 to 2012.

Overall, correlations between the RCI variables and

changes in soil moisture and crop condition status are

highest (.0.35) across agricultural areas in the central

and easternUnited States that contain a dense observing

network and widespread nonirrigated farmland. For top-

soil moisture (Figs. 9a–c), the highest correlations were

obtained when using the RCI_NTC dataset, which is not

surprising given that this dataset depicts soil moisture. The

correlations were slightly weaker for the ESI and SPI

FIG. 6. As in Fig. 3, but for drought evolution across south-central Wisconsin (CPC division 8) during 2012.
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datasets; however, the positive correlations still indicate

that a relationship exists between rapid changes in these

datasets and subsequent decreases in the soil moisture

status. For crop conditions (Figs. 9d–f), weaker correla-

tions (.0.25) occurred for each RCI dataset, with the

largest decreases relative to the soil moisture correlations

occurring for the NTC and SPI datasets. The lower cor-

relations may indicate reduced sensitivity of the RCI to

changes in crop health status; however, it is also possible

that the weaker correlations are simply due to the lag

time between increasing soil moisture deficits and ob-

served changes in crop health (e.g., columns 2 and 3 in

Figs. 3–6). Vegetation can appear healthy to human

observers even as the moisture stress increases because

drought signals often become apparent only after signif-

icant damage has already occurred to the plants. Thismay

lower the correlations because there is more time for

heavy rainfall to prevent large deteriorations in crop

health even if soil moisture deficits are increasing. A new

version of the ESI, developed at 4-km resolution using

LST retrievals from the GOES Imager, appears to have

improved sensitivity to moisture conditions across the

western United States in comparison with the 10-km

sounder-based ESI dataset evaluated during this study.

These spatial analyses will be reevaluated with the new

4-km product in future studies.

FIG. 7. Reliability diagrams for the drought intensification probabilities computed using the RCI_ESI (black circle), RCI_SPI (red

circle), and RCI_NTC (green circle) datasets over the western and eastern United States. Diagrams are shown for one-, two-, and three-

category USDM increases over 2-, 4-, and 8-week periods.
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FIG. 8. Brier skill scores computed using drought intensification probabilities derived from the RCI_ESI, RCI_SPI, and RCI_NTC

datasets. Images are shown for one-, two-, and three-category USDM increases over 2-, 4-, and 8-week periods.
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5. Conclusions and discussion

This study examined the potential utility of using rapid

changes in drought indices depicting anomalies in

evapotranspiration, precipitation, and soil moisture to

provide early warning of an increased risk for drought

development across the CONUS for subseasonal forecast

lead times. Standardized change anomalies were com-

puted each week during the 2000–13 growing seasons

using ESI, SPI, and NTC anomalies. A new RCI metric

first described by Otkin et al. (2014) was then used to en-

capsulate the accumulated magnitude of rapid changes in

these variables, defined as standardized change anomalies

greater than 60.75, during a given rapid change event.

After computing the RCI for each drought index, a simple

linear least squares statistical method was used to convert

the weekly RCI values into drought intensification prob-

abilities depicting the likelihood that the USDM drought

depiction would deteriorate by at least one, two, or three

categories during subsequent weeks.

Overall, the results revealed that unusually rapid

changes in the ESI, SPI, and NTC datasets often precede

periods of drought intensification in the USDM and

therefore may provide effective early warning of an in-

creased risk for drought development that could poten-

tially be a useful component of future drought early

warning systems. Local case study analyses showed that

very high RCI-derived intensification probabilities, often

several times higher than the background climatology,

frequently occurred several weeks prior to changes in the

USDM. Statistical analyses showed that the ESI-derived

intensification probabilities were most reliable, especially

across the eastern two-thirds of theUnited States, whereas

the SPI and NTC-derived datasets had the highest skill

scores, possibly owing to their prior inclusion in theUSDM

mapping process. Correlation analyses showed that there

is also a strong relationship between rapid changes in the

drought indices and subsequent deteriorations in the

NASS soil moisture and crop condition datasets. Given

that these datasets were not used to compute the

drought intensification probabilities, the positive corre-

lations provide additional evidence that the RCI vari-

ables contain useful drought early warning signals.

Though this study provides a preliminary proof of con-

cept that rapid changes in drought indices can be used to

identify areas susceptible to drought development and to

produce probabilistic drought intensification forecasts

over subseasonal time scales, it should not be viewed as the

final answer becausemany additional studies are necessary

to optimize and refine these results. For instance, sensi-

tivity studies are necessary to explore whether using dif-

ferent change anomaly threshold values [e.g., Eqs. (3) and

(4)] and variable combinations [e.g., Eqs. (5)–(7)] when

computing the RCI can improve forecast skill. Using

a longer time period to compute the anomalies may result

in a smoother drought early warning signal by reducing the

large variability that short-term anomalies can exhibit;

however, this may also result in a delayed signal since

longer term variables tend to respond more slowly to

rapidly changing conditions (e.g., Otkin et al. 2013). One

FIG. 9. Correlation between the maximum RCI value for each rapid change event and the maximum decrease in the NASS topsoil

moisture classification from the beginning of an event until two weeks after its end for the (a) RCI_ESI, (b) RCI_SPI, and (c) RCI_NTC

variables. (d)–(f) As in (a)–(c), but for the correlation between the maximum RCI value for each rapid change event and the maximum

decrease in the NASS crop condition classification.
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potential approach would be to generalize the method so

that change variables computed using different composit-

ing and differencing intervals are used to create an average

RCI at each grid point rather than being applied uniformly

across the entire domain, as is done in this study. This may

be optimal since the vegetation response to drying condi-

tions may depend on the location and vegetation type. In

addition, the statistical method used to convert the

weekly RCI values to drought intensification probabil-

ities is very simple. More advanced methods should be

explored. Finally, a blended approach that combines

information frommultiple droughtmetrics may enhance

the robustness and accuracy of the RCI-derived in-

tensification probabilities by providing additional data

masks that together provide a more complete depiction

of the current drought status. Differences in regional

forecast skill and correlations shown during this study

support this possibility.
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