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Abstract: Seeds of castor (Ricinus communis) are enriched in oil with high levels of the industrially
valuable fatty acid ricinoleic acid (18:1OH), but production of this plant is limited because of the
cooccurrence of the ricin toxin in its seeds. Lesquerella (Physaria fendleri) is being developed as an
alternative industrial oilseed because its seeds accumulate lesquerolic acid (20:1OH), an elongated
form of 18:1OH in seed oil which lacks toxins. Synthesis of 20:1OH is through elongation of 18:1OH
by a lesquerella elongase, PfKCS18. Oleic acid (18:1) is the substrate for 18:1OH synthesis, but
it is also used by fatty acid desaturase 2 (FAD2) and FAD3 to sequentially produce linoleic and
linolenic acids. To develop lesquerella that produces 18:1OH-rich seed oils such as castor, RNA
interference sequences targeting KCS18, FAD2 and FAD3 were introduced to lesquerella to suppress
the elongation and desaturation steps. Seeds from transgenic lines had increased 18:1OH to 1.1–26.6%
compared with that of 0.4–0.6% in wild-type (WT) seeds. Multiple lines had reduced 18:1OH levels
in the T2 generation, including a top line with 18:1OH reduced from 26.7% to 19%. Transgenic lines
also accumulated more 18:1 than that of WT, indicating that 18:1 is not efficiently used for 18:1OH
synthesis and accumulation. Factors limiting 18:1OH accumulation and new targets for further
increasing 18:1OH production are discussed. Our results provide insights into complex mechanisms
of oil biosynthesis in lesquerella and show the biotechnological potential to tailor lesquerella seeds to
produce castor-like industrial oil functionality.

Keywords: hydroxy fatty acid; ricinoleic acid; lesquerolic acid; triacylglycerol; Physaria fendleri;
lesquerella; seed oil; RNA interference; genetic transformation

1. Introduction

The conventional source of hydroxy fatty acid (HFA) is castor (Ricinus communis),
which contains 90% ricinoleic acid (18:1OH) in its seed oil. The fatty acid and its derivatives
are used as feedstocks for numerous industrial products, such as lubricants, plastics and
surfactants [1,2]. The production of castor oil is hampered by the presence of the toxin
ricin [3,4] and hyper-allergenic 2S albumins [5–7] in its seeds. Lesquerella (Physaria fendleri,
Brassicaceae) seed oil contains a major HFA, lesquerolic acid (20:1OH) at 55–60% [8–11], and
seeds of this plant lack any known toxins. As such, efforts have been made through plant
breeding to develop lesquerella as a new oilseed crop that is a safe source of HFA [12,13].
With the success of lesquerella biotechnology [14,15] and the deep knowledge of genes
for fatty acid and seed oil biosynthesis [16–18], lesquerella oil can be improved through
metabolic engineering [15].

Seed oil (triacylglycerol, TAG) starts from de novo fatty acid (FA) biosynthesis in
plastid and TAG assembly in endoplasmic reticulum (ER) [16]. Simplified pathways and
genes in lesquerella TAG synthesis are shown in Figure 1.
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Figure 1. Simplified pathways for fatty acid and triacylglycerol synthesis in lesquerella seeds. Blue
arrows indicate reactions involved in the Kennedy pathway. Purple arrows indicate reactions in-
volved in acyl editing by LPCAT. Brown arrows indicate PDAT-mediated pathways. Green arrow
indicates reactions involved in PC-derived DAG synthesis. Dotted lines indicate PC-derived DAG
utilized by DGAT and PDAT. The red arrow indicates the elongation step by KCS18. Enzymes
catalyzing these reactions are underlined. Red fonts are the targeted enzymes in this study. Fatty
acid numerical symbols: 18:1, oleic acid; 18:1OH, ricinoleic acid; 20:1OH, lesquerolic acid; 20:2OH,
auricolic acid; 18:2, linoleic acid; 18:3, linolenic acid. Abbreviations: CoA, co-enzyme A; PC, phos-
phatidylcholine; LPCAT, lysophosphatidylcholine acyltransferase; LPC, lysophosphatidylcholine;
FAH12, ∆12 oleic acid hydroxylase; KCS18, 3-ketoacyl-CoA synthase 18; G3P, glycerol-3-phosphate;
LPA, lysophosphatidic acid; PA, phosphatidic acid; DAG, diacylglycerol; GPAT, glycerol 3-phosphate
acyltransferase; LPAT, lysophosphatidic acid acyltransferase; PAP, phosphatidic acid phosphatase;
DGAT, diacylglycerol acyltransferase; PDAT, phospholipid:DAG acyltransferase; PDCT, PC:DAG
cholinephosphotransferase; TAG, triacylglycerol.

During lesquerella seed development, oleic acid (18:1) is synthesized in plastid, ex-
ported and activated to 18:1-Coenzyme A (CoA) in the cytosol. The 18:1-CoA can be
acylated directly into membrane lipid phosphatidylcholine (PC) in the ER by the forward-
ing reaction of lyso-PC acyltransferase (LPCAT) [19–21] resulting in 18:1-PC (Figure 1).
The 18:1-PC is the substrate of oleate 12-hydroxylase (FAH12) [22–25] which hydroxylates
18:1-PC to form 18:1OH-PC (Figure 1). Lesquerella PfFAH12 is bi-functional FAD2-related
oleate ∆12-hydroxylase:desaturase that converts 18:1-PC to both 18:1OH-PC and linoleic
acid (18:2)-PC [25]. Through the reverse reaction of LPCAT (Figure 1), or phospholipase A
(PLA2)–type activity [26], the 18:1OH can be removed from PC, following its synthesis on
this lipid, and transferred back to cytosol to be activated as 18:1OH-CoA. A lesquerella seed
fatty acid condensing enzyme (PfKCS18) (also known as KCS3 or FAE1, all designations
used in this article) elongates 18:1OH-CoA to 20:1OH-CoA [27] (Figure 1). Rapid acylation
and de-acylation by LPCAT (or by PLA2), and in conjunction with efficient elongation by
PfKCS18 leads to enrichment of 20:1OH-CoA in cytosol. PC is also the substrate for FA
desaturase 2 (FAD2) [28] and FA desaturase 3 (FAD3) [29] that sequentially converts 18:1
to 18:2 and 18:2 to linolenic acids (18:3), respectively (Figure 1). In addition to 20:1OH,
18:1OH, 18:1, 18:2 and 18:3, lesquerella oil contains auricolic acid (20:2OH), also formed by
FAD3 [30,31]. Lesquerella PfFAD3-1 is a key enzyme producing 18:3 and 20:2OH [32]. FA-
CoA in cytosol or FA-PC in ER are assembled to TAG through multiple mechanisms [16,19]
(Li 2013; Bates 2016). Kennedy pathway [33] is the major route for FA esterification into
TAG, which consists of three sequential acylations of FA-CoAs to a glycerol-3-phosphate
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(G3P) backbone. The sn-1 position of G3P is acylated by glycerol-3-phosphate acyltrans-
ferase (GPAT) to produce lysophosphatidic acid (LPA). The sn-2 position of LPA is acylated
by LPA acyltransferase (LPAT) to generate phosphatidic acid (PA). PA is then converted to
1,2-sn-diacylglycerol (DAG, or de novo DAG) by PA phosphatase (PAP). Finally, the sn-3
position of DAG is acylated by 1,2-sn-diacylglycerol acyltransferase (DGAT) to produce
TAG. Lesquerella TAGs contain ~60% 20:1OH, and almost all of 20:1OH are acylated to the
sn-1 and sn-3 positions, and the sn-2 positions of lesquerella TAGs are exclusively occupied
by unsaturated FAs, i.e., 18:1, 18:2 and 18:3 [34–37]. The reason for lack of HFA at the
sn-2 position of TAG has been suggested, in part, by the selectivity of lesquerella LPAT
(PfLPAT) for unsaturated FA [15], which is a common feature for most plant microsomal
LPAT [38]. PC can be converted to DAG (PC-derived DAG) through the removal of the
head group from the PC by PC:DAG cholinephosphotransferase (PDCT) [39–41] (Figure 1);
therefore, acyl-CoAs on the PC are directed to DAG for TAG synthesis. PC-derived DAG
can be produced by the reverse action of CDP-choline: DAG cholinephosphotransferase
(CPT) [42], a lipase-based mechanism using phospholipase C (PLC), or phospholipase D
plus PAP [19,43]. Because FAs in sn-2-PC can be modified, (e.g., desaturation and hydroxy-
lation), the conversion of PC into DAG also provides a means to increase the amount of
modified FAs (mFAs) such as 18:2, 18:3 and 18:1OH, in sn-2-TAG. Moreover, FA on the sn-2
PC can be transferred to the sn-3 position of DAG by phospholipid:DAG acyltransferase
(PDAT) [44–46] (Figure 1).

Castor genes are introduced into non-HFA-oilseed arabidopsis (Arabidopsis thaliana)
or camelina (Camelina Sativa) to study the HFA biosynthesis mechanism [47]. Castor
RcFAH12 was first isolated and demonstrated to be responsible for HFAs synthesis in
transgenic seeds up to 17% [24,48,49]. Additional genes, castor RcDGAT2 [50], RcPDAT1-2
(or RcPDAT1-A) [45,46], and RcPDCT [41], RcPLCL1 [43], RcLPAT2 [51,52], RcLPAT3B and
RcLPATB [52], and RcGPAT9 together with RcLPAT2 and RcPDAT1A [53], are demonstrated
to increase the HFAs content of transgenic arabidopsis or camelina from 17 to 28%.

One of our research goals is to generate a castor-oil producing lesquerella that is safe,
cost-competitive, and widely accepted as an industrial feedstock. We have previously
attempted to generate a castor oil-producing lesquerella through over-expressing of a
castor RcLPAT2 involved in TAG assembly. In that study we demonstrated that seed oils of
transgenic lesquerella showed increases in 18:1OH from 1% to 4%, and castor oil-like TAGs
from 5% to 14% [15]. In this study, we aimed to further enhance the 18:1OH level by down-
regulating the expression of lesquerella PfFAD2, PfFAD3, and PfKCS18 genes using RNA
interference (RNAi) technology [54,55]. A RNAi silencing approach was used to suppress
an endogenous target gene expression through transgenic expression of a double-stranded
RNA (dsRNA) that shares sequence homology with the target and leads to cleavage
of the targeted transcripts, [54,55]. We hypothesize that suppressing FAD2 and FAD3
reduces polyunsaturated FAs (PUFAs) levels, including 18:2 and 18:3, and subsequently
increases 18:1, the substrate of PfFAH12 (Figure 1). Suppressing KCS18 reduces 20:1OH
and subsequently increases 18:1OH for TAG assembly. PfFAD2, PfFAD3, and PfKCS18
share high sequence homology with camelina CsFAD2, CsFAD3, and arabidopsis AtKCS18,
showing 93.6%, 95.6%, and 82.3%, respectively [18]. RNAi constructs, CsFAD2 RNAi,
CsFAD3 RNAi and AtFEA1 RNAi, are effective in silencing corresponding gene expression
in camelina [56–58]. We therefore generated transgenic lesquerella expressing CsFAD2
RNAi, CsFAD3 RNAi and AtFEA1 RNAi. We have demonstrated here that high levels of
18:1OH can be achieved by blocking the desaturation and elongation steps. Our results not
only provide tools for engineering castor oil-producing lesquerella, but also enhance our
understanding of the mechanisms of HFA synthesis.

2. Results
2.1. Changes of FA Composition in Transgenic Lesquerella Expressing Two dsRNAs, AtFAD3
RNAi + CsFAE1 RNAi

We produced 16 independent lines expressing AtFAD3 RNAi + CsFAE1 RNAi (2-
dsRNA) under the control of seed-specific glycinin promoters. Mendelian segregation
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analysis on Basta resistance of T1 seeds revealed that five lines had one transgenic locus, 10
lines had two loci, and one had more than two loci (Table S1). Variable FA compositions
were observed among these 16 lines. To aid examination, line 1 to line 16 were assigned to
these transgenics based on descending order in 18:1OH content in their seed oils (Table 1).
Moderate positive correlation (r = 0.45, p = 0.08) was observed between 18:1OH content
and transgenic copy number. In all seeds, five minor fatty acids, palmitic (16:0), palmitoleic
(16:1), stearic (18:0), arachidic (20:0), and eicosenoic (20:1) acids, had very low levels
and small changes from 1.6–2.3%, 0.3–0.8%, 0.9–1.8%, 0.1–0.3%, 0.4–0.8%, respectively,
(Table S2). When these minor FAs were combined, there were no significant differences
between each transgenic line and wild-type (WT) (Table 1). Consistent with our hypothesis,
we observed significant increases in 18:1OH content among 13 lines ranging from 1.2%
(line 13) to 26.6% (line 1) compared with 0.6% of WT (Table 1) and decreases in 20:1OH
among lines 1–10 ranging from 19% (line 1) to 46.9% (line10) compared with 51.2% of
WT (Table 1). Except for line 13, 18:3 was significantly reduced in all lines ranging from to
1.5% (line 14) to 9.6% (line 10) compared with 13.3% of WT. All transgenic lines increased
in 18:2, ranging from 9.5% (line 13) to 20% (line 14) compared with 7.6% of WT (Table 1).
Notably, 18:1 content was increased in line 1–7 and line 10, ranging from 19% (line 10) to
32.1% (line 2) compared with 17% of WT (Table 1). In all transgenic lines, 20:2OH content
was reduced significantly ranging from 0–2.2% compared with 4.3% of WT (Table 1). Total
HFA content dropped from 56% (WT) to 42.9–53.8% among lines 1–10 and increased slightly
to 57.7–57.8% in line 15 and line 16 (Table 1).

Table 1. Fatty acid composition (mole %) in T1 seeds expressing AtFAD3 RNAi + CsFAE1 RNAi.

Line Total Minor
Fatty Acid a 18:1 18:2 18:3 18:1OH 20:1OH 20:2OH

Total
Hydroxy

Fatty Acid

wild-type 4.7 ± 0.4 17.0 ± 0.4 7.6 ± 0.4 13.3 ± 0.6 0.6 ± 0.2 51.2 ± 1.0 4.3 ± 0.6 56.0 ± 0.5
line 1 4.3 ± 0.2 30.5 ± 2.8 *** 16.2 ± 1.7 *** 2.2 ± 0.7 *** 26.6 ± 0.2 *** 19.0 ± 2.0 *** 0.2 ± 0.2 *** 45.8 ± 1.9 ***
line 2 5.1 ± 0.2 32.1 ± 1.3 ** 17.0 ± 0.5 *** 1.7 ± 0.5 *** 16.8 ± 0.5 *** 26.1 ± 1.0 *** 0.0 ± 0.0 *** 42.9 ± 0.5 ***
line 3 5.0 ± 0.2 25.5 ± 1.9 ** 17.6 ± 1.2 *** 2.6 ± 1.4 *** 16.6 ± 1.0 *** 31.4 ± 2.1 *** 0.5 ± 0.4 *** 48.4 ± 1.5 ***
line 4 4.7 ± 0.4 22.7 ± 2.7 * 16.8 ± 0.6 *** 3.3 ± 0.8 *** 11.7 ± 2.7 ** 39.3 ± 5.0 ** 0.4 ± 0.2 *** 51.4 ± 2.6 *
line 5 4.7 ± 0.2 23.4 ± 2.0 ** 18.7 ± 0.2 *** 1.8 ± 0.6 *** 10.2 ± 0.4 *** 40.2 ± 1.4 *** 0.1 ± 0.1 *** 50.5 ± 1.5 ***
line 6 4.4 ± 0.1 20.5 ± 1.8 * 14.4 ±1.0 *** 6.2 ± 0.5 *** 8.5 ± 0.4 *** 43.7 ± 1.4 ** 1.2 ± 0.1 *** 53.4 ± 1.5 *
line 7 4.1 ± 0.1 20.5 ± 0.9 ** 16.7 ± 2.0 *** 4.9 ± 1.7 *** 8.0 ± 1.3 *** 45.5 ± 2.0 ** 0.3 ± 0.2 *** 53.8 ± 1.2 *
line 8 4.5 ± 0.0 17.6 ± 0.5 16.1 ± 0.5 *** 7.6 ± 0.4 *** 7.5 ± 0.5 *** 45.0 ± 0.5 *** 1.3 ± 0.2 *** 53.8 ± 0.2 **
line 9 4.4 ± 0.1 17.9 ± 0.5 17.2 ± 0.7 *** 4.3 ± 0.7 *** 4.9 ± 0.4 *** 49.3 ± 0.6 * 0.7 ± 0.2 *** 54.9 ± 0.5

line 10 4.8 ± 0.0 19.0 ± 1.0 * 13.0 ± 0.5 *** 9.6 ± 0.5 *** 4.7 ± 1.2 ** 46.9 ± 0.6 * 1.2 ± 0.1 *** 52.8 ± 1.4 *
line 11 4.3 ± 0.0 16.5 ± 0.4 16.3 ± 0.2 *** 5.4 ± 0.3 *** 3.6 ± 0.3 *** 51.9 ± 0.4 0.8 ± 0.2 *** 56.2 ± 0.0
line 12 4.1 ± 0.2 16.3 ± 0.5 14.1 ± 0.9 *** 7.7 ± 1.2 ** 1.8 ± 0.3 ** 53.2 ± 1.0 1.8 ± 0.2 ** 56.7 ± 1.1
line 13 3.9 ± 0.3 17.1 ± 2.1 9.5 ± 0.2 ** 13.3 ± 0.4 1.2 ± 0.1 ** 51.1 ± 2.7 2.2 ± 0.1 ** 54.5 ± 2.7
line 14 4.3 ± 0.3 16.2 ± 0.5 20.0 ± 0.7 *** 1.5 ± 0.1 *** 0.5 ± 0.1 56.2 ± 1.2 ** 0.1 ± 0.0 *** 56.8 ± 1.3
line 15 4.0 ± 0.4 16.1 ± 0.5 14.2 ± 1.2 *** 6.6 ± 0.9 *** 0.5 ± 0.1 55.5 ± 0.7 ** 1.8 ± 0.4 ** 57.7 ± 0.8 *
line 16 4.1 ± 0.1 15.4 ± 0.4 ** 13.4 ± 1.5 ** 8.3 ± 1.3 ** 0.5 ± 0.1 55.6 ± 0.2 ** 1.7 ± 0.3 ** 57.8 ± 0.5 *

average of
transgenics 4.4 ± 0.1 20.5 ± 0.9 15.7 ± 0.5 5.4 ± 0.4 7.7 ± 0.7 44.4 ± 1.2 0.9 ± 0.1 53.0 ± 0.8

Three or four replicates of 30-seed samples were measured for wild-type and each transgenic line. All data are averages of measurements
±SD. Fatty acid legend: 18:1 is oleic; 18:2 is linoleic; 18:3 is linolenic; 18:1OH is ricinoleic; 20:1OH is lesquerolic; and 20:2OH is auricolic
acid. a, total content of five common fatty acids: palmitic (16:0), palmitoleic (16:1), stearic (18:0), arachidic (20:0), and eicosenoic acids (20:1).
Two-tailed Student’s t-test. * p < 0.05; ** p < 0.01; *** p < 0.001.

In greenhouse-grown plants we produced selfed T2 seeds by hand-pollination of
individual Basta-resistant T1 plants. Multiple T2 seed population lines were obtained
from each line 1 to line 6 as they contained higher levels of 18:1OH than the remaining
lines (Table 1). Results of FA analysis for each T2 line is shown in Figure 2. As in the
T1 generation, the five minor FAs combined did not show significant changes between
WT and each T2 transgenic line (Figure 2, Table S2). However, we did not find any T2
off-springs containing 18:1OH at a level higher than their parents. T2 populations from
line 1 and line 2 had substantial reduction in 18:1OH content, from 26.6% to 19–9% (line
1-1–1-9) and 16.8% to 7.3–2.3% (line 2-1–2-4), respectively, (Figure 2). For line 3 to line 6,
similar levels of 18:1OH were maintain in their top T2 off-springs, showing 14.6% (line 3-1),
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10.6% (line 4-1), 9.8% (line 5-1), and 6.8% (line 6-1) compared with their T1 parents at 16.6%,
11.7%, 10.2% and 8.5%, respectively, (Figure 2); low levels of 18:1OH were observed in line
3-8, line 4-9, and line 5-8 and line 6-9 at 2.6%, 3.7%, 1.6% and 2.9%, respectively, (Figure 2).
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Figure 2. Fatty acid content in T2 seeds expressing AtFAD3 RNAi + CsFAE1 RNAi. Triplicates of 30-seed samples were
measured for wild-type (WT) and each transgenic line. Fatty acid legend: 18:1 is oleic; 18:2 is linoleic; 18:3 is linolenic;
18:1OH is ricinoleic; 20:1OH is lesquerolic; and 20:2OH is auricolic acid. Total content of five common minor fatty acids:
palmitic (16:0), palmitoleic (16:1), stearic (18:0), Arachidic acid (20:0), and eicosenoic acid (20:2OH).

2.2. Changes of FA Composition in Transgenic Lesquerella Expressing Three dsRNAs, CsFAD2
RNAi + AtFAD3 RNAi + CsFAE1 RNAi

Fifteen independent transgenic lines expressing the 3-dsRNAs, CsFAD2 RNAi + At-
FAD3 RNAi + CsFAE1 RNAi were generated and their T1 seeds were analyzed for FA
composition. Once again, the five minor fatty acids, palmitic (16:0), palmitoleic (16:1),
stearic (18:0), arachidic (20:0), and eicosenoic (20:1) acids, had slight variation among
transgenic lines (Table S3). There was no significant difference on the total minor FAs
content between each transgenic line and WT (Table 2). For the other FAs, we observed
similar average contents in 18:2, 18:3 and 20:1 between the group expressing 2-dsRNA
(AtFAD3 RNAi + CsFAE1 RNAi) (Table 1) and the group expressing 3-dsRNA (Table 2).
Noticeably, the 3-dsRNA group with the addition of CsFAD2 RNAi accumulated more
18:1 at the average of 27.8% (Table 2) compared with the average of 20.5% in the 2-dsRNA
group (Tables 1 and 2). In addition, the increase in average 18:1OH and decrease in av-
erage total HFA were less dynamic in the 3-dsRNA group, showing averages of 4.7%
and 48.9%, respectively, (Table 2), compared with that of 7.7% and 53% in lines express-
ing 2-dsRNA, respectively, (Tables 1 and 2). The fatty acid composition of WT presented
in Tables 1 and 2, and Figure 2 are similar to previously described [11]. We did not observe
any changes of growth phenotype for all transgenic lesquerella lines.
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Table 2. Fatty acid composition (mole %) in T1 seeds expressing CsFAD2 RNAi + AtFAD3 RNAi + CsFAE1 RNAi.

Line Total Minor
Fatty Acid a 18:1 18:2 18:3 18:1OH 20:1OH 20:2OH

Total
Hydroxy

Fatty Acid

wild-type 4.2 ± 0.2 16.7 ± 0.2 8.0 ± 0.2 13.7 ± 0.2 0.40 ± 0.0 53.0 ± 0.9 3.1 ± 0.5 56.5 ± 0.7

line 1 4.2 ± 0.1 27.7 ± 0.3 *** 13.8 ± 0.4 *** 4.8 ± 0.5 *** 15.4 ± 0.7 *** 33.3 ± 0.8 *** 0.9 ± 0.1 *** 49.6 ± 0.1 ***
line 2 4.3 ± 0.1 26.4 ± 2.4 ** 13.6 ± 0.3 *** 5.5 ± 0.8 *** 10.3 ± 0.9 *** 38.8 ± 2.5 *** 1.1 ± 0.1 ** 50.1 ± 1.9 **
line 3 5.2 ± 0.0 *** 35.7 ± 1.6 ** 15.1 ± 0.4 *** 3.1 ± 1.0 *** 8.2 ± 1.1 *** 32.4 ± 1.8 *** 0.5 ± 0.3 ** 40.9 ± 1.1 ***
line 4 4.1 ± 0.3 22.6 ± 0.6 *** 15.8 ± 1.5 *** 4.3 ± 2.5 ** 7.5 ± 1.0 *** 44.9 ± 0.7 *** 0.7 ± 0.6 ** 53.2 ± 1.3 **
line 5 5.4 ± 0.1 *** 30.2 ± 1.0 *** 13.2 ± 1.1 *** 3.8 ± 0.3 *** 6.5 ± 0.8 *** 37.3 ± 1.0 *** 0.7 ± 0.1 *** 44.5 ± 1.8 ***
line 6 4.5 ± 0.0 * 35.8 ± 4.1 *** 15.1 ± 0.2 *** 5.0 ± 0.7 *** 6.3 ± 0.4 *** 35.6 ± 3.7 *** 0.7 ± 0.3 *** 42.6 ± 4.1 **
line 7 4.1 ± 0.1 17.5 ± 0.8 17.3 ± 1.2 *** 3.9 ± 0.9 *** 6.3 ± 0.5 *** 50.2 ± 0.5 ** 0.7 ± 0.0 *** 57.2 ± 0.6
line 8 4.3 ± 0.2 * 38.8 ± 3.5 *** 14.4 ± 0.9 *** 1.7 ± 0.3 *** 4.6 ± 0.3 *** 36.1 ± 2.8 *** 0 ± 0.3 *** 40.7 ± 2.6 ***
line 9 3.9 ± 0.2 24.6 ± 2.1 ** 13.3 ± 0.5 *** 6.0 ± 0.5 *** 1.9 ± 0.2 *** 48.9 ± 1.4 ** 1.2 ± 0.2 ** 52.1 ± 1.4 **

line 10 4.5 ± 0.8 32.3 ± 2.8 *** 10.7 ± 1.3 *** 7.1 ± 1.1 *** 1.1 ± 0.2 *** 43.1 ± 2.2 ** 1.5 ± 0.3 ** 45.7 ± 1.8 ***
line 11 4.8 ± 0.3 * 22.9 ± 0.8 *** 13.9 ± 0.1 *** 7.0 ± 0.7 *** 0.7 ± 0.1 ** 49.7 ± 0.7 ** 0.9 ± 0.1 ** 51.3 ± 0.6 ***
line 12 4.3 ± 0.2 28.4 ± 1.4 *** 16.0 ± 0.7 *** 3.0 ± 0.2 *** 0.4 ± 0.0 47.9 ± 0.7 ** 0.0 ± 0.0 *** 48.3 ± 0.7 ***
line 13 4.4 ± 0.1 22.7 ± 2.8 * 17.4 ± 0.6 *** 1.9 ± 0.4 *** 0.4 ± 0.1 53.2 ± 2.0 0.0 ± 0.0 *** 53.6 ± 2.0
line 14 4.3 ± 0.3 24.3 ± 2.0 ** 14.6 ± 1.1 *** 4.5 ± 0.9 *** 0.4 ± 0.0 50.9 ± 1.1* 1.1 ± 0.5 ** 52.4 ± 1.6 **
line 15 4.0 ± 0.0 *** 26.3 ± 1.6 *** 14.5 ± 0.4 *** 4.0 ± 0.6 *** 0.4 ± 0.0 50.1 ± 0.9 * 0.7 ± 0.2 *** 51.2 ± 1.0 **

average of
transgenic

line
4.4 ± 0.4 27.8 ± 5.9 14.6 ± 1.7 4.4 ± 1.6 4.7 ± 4.5 43.5 ± 7.2 0.7 ± 0.4 48.9 ± 5.0

Three or four replicates of 30-seed samples were measured for wild-type and each transgenic line. All data are averages of three
measurements ±SD. Fatty acid legend: 18:1 is oleic; 18:2 is linoleic; 18:3 is linolenic; 18:1OH is ricinoleic; 20:1OH is lesquerolic; and 20:2OH
is auricolic acid. a, total content of five common fatty acids: palmitic (16:0), palmitoleic (16:1), stearic (18:0), arachidic (20:0), and eicosenoic
acids (20:1). Two-tailed Student’s t-test. * p < 0.05; ** p < 0.01; *** p < 0.001.

2.3. Correlations between FA Levels among Transgenic Lines

Correlation analysis was performed to show the relationships between FA accumu-
lation for 2-dsRNA group at T1 and T2 generations, and 3-dsRNA group (Table S4). As
expected for the impact of CsFAE1 RNAi, strong negative correlations were displayed
between 18:1OH and 20:1OH (−0.99 ≤ r ≥ −0.75) in all groups examined (Table S4). Simi-
larly, for the impact of AtFAD3 RNAi, strong negative correlations between 18:2 and 18:3
(−0.92 ≤ r ≥ −0.67) were also shown in all groups examined (Table S4). The impact of
CsFAD2 RNAi in 3-dsRNA lines exhibited weak negative correlation between 18:1 and 18:2
(r = −0.38) and very weak positive correlation between 18:1 and 18:1OH (r = 0.15) (Table
S4). For both 2-dsRNA and 3-dsRNA groups, we observed strong negative correlations
between total HFA and 18:1 (−0.82 ≤ r ≥ −0.92), and strong positive correlations between
total HFA and 20:1OH (0.75 ≤ r ≥ 0.96) (Table S4).

3. Discussion
3.1. High Levels of 18:1OH Accumulate in Lesquerella by Blocking Elongation and Desaturation of
Fatty Acids

In this study, the dsRNA fragments in AtFAD3 RNAi and CsFAE1 RNAi contain a
323 bp or 251 bp sequence sharing 91.7% and 82.8% identity with lesquerella PfFAD3-1
(BenBank ID: MF611845) [32] and PfKCS18 (GenBank ID: AF367052) [27], respectively.
When the 2-dsRNAs (AtFAD3 RNAi and CsFAE1 RNAi) were introduced to lesquerella, we
observed changes in FA composition (Table 1). Among the 16 T1 transgenic lesquerella lines,
15 lines shifted the accumulation of 18:3 to 18:2, showing a strong negative correlation
between 18:2 and 18:3 (r = 0.93) (Table S4); 13 lines shifted 20:1OH to 18:1OH, which
also displayed a strong negative correlation (r = −0.99) (Table S4). These results indicate
that AtFAD3 RNAi and CsFAE1 RNAi are effective in silencing PfFDA3-1 and PfKCS18,
respectively. To see the effect of AtFAD3 RNAi and CsFAE1 RNAi in the next generation,
we examined FA composition in T2 seeds from the top six T1 lines. The line 1 seeds
produced the highest 18:1OH content at 26.6% in the T1 generation, however, the 18:1OH
decreased from 19% (line 1-1) to 9% (line 1-9) in the T2 generation (Figure 2). Similar
significant reduction of 18:1OH also occurred in line 2 from 16.8% (T1) to 7.3% (T2 line
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2-1) to 2.3% (T2 line 2-4). The remaining top best T2 off-springs from line 3 to line 6 also
showed reductions in 18:1OH contents, but the reductions were not as large, varying
between line 3 from 11.7% (T1) to 10.57% (T2 line 3-1) and line 6 from 8.5% (T1) to 6.8%
(T2 line 6-1). The reduction of 18:1OH content occurring in all 6 top T2 lines implies
that the competence of CsFAE1 RNAi was not fully transmitted to the next generation.
A similar phenomenon was reported for an RNAi in arabidopsis where the influence of
the silencing faded through several selfed generations due to a generation-dependent
decrease in transcription of the RNAi [59]. In maize, analysis of an RNAi effect over
multiple generations also reveals that some lines display reduced transgene silencing, but
the effect of the RNAi can be maintained by outcrossing rather than self-pollination [60].
Such phenomenon is explained based on the assumption that hemizygosity would reduce
any potential trans-interactions between the transgenes on homologous chromosomes that
could lead to transgene silencing [57]. The molecular basis of CsFAE1 RNAi stability in
lesquerella remains to be investigated. Another possibility is that the 18:1OH contents in
these transgenic lesquerella lines resulted from equilibrium of FA and TAG metabolism,
and there could be a ceiling for 18:1OH accumulation in lesquerella. We generated 31
independent lines expressing CsFAE1 RNAi (Tables 1 and 2), only one line accumulated a
high level of 18:1OH at 26.6% and it dropped to 19% in the next generation (Table 1). The
second highest three lines contain 18:1OH ranging from 15–17% (Tables 1 and 2). Thus, a
highest stable equilibrium of 18:1OH level could fall between 15–20%. These lines are useful
for further assessment of 18:1OH accumulation limits and relationships between CsFAE1
RNAi effect and 18:1OH levels in lesquerella. Assuming the silencing effects of CsFAE1
RNAi and AtFAD3 RNAi led to increases in 18:1OH and decreases in 18:3, respectively,
there were 24 out of 31 (77%) of the transgenic lines with increased 18:1OH levels, whereas
30 out of 31 (97%) of the lines showed decreased 18:3 content (Tables 1 and 2). The results
indicate that the silencing effect of AtFAD3 RNAi is more stable than that of CsFAE1 RNAi,
which could be attributed to the higher nucleotide identity of 91.7% displayed between
AtFAD3 RNAi and PfFAD3-1 than the 82.8% identity demonstrated between CsFAE1 RNAi
and PfKCS18.

In a separate experiment, we introduced a construct carrying three dsRNAs, At-
FAD3 RNAi + CsFAE1 RNAi + CsFAD2 RNAi into lesquerella and generated 15 indepen-
dent transgenic lines. We observed strong negative correlation between 18:2 and 18:3
(r = −0.67), and between 18:1OH and 20:1OH (r = −0.75), indicating the strong impacts
of AtFAD3 RNAi and CsFAE1 RNAi shown again in transgenics expressing the 3-dsRNAs
construct (Table 2 and Table S4). Regarding the effect of CsFAD2 RNAi, we observed a
weak negative correlation between 18:1 and 18:2 (r =−0.38), but this is opposite to the weak
positive correlation between 18:1 and 18:2 (r = 0.38) observed in the 2-dsRNAs which did
not contain CsFAD2 RNAi (Table S4). The result suggests that CsFAD2 RNAi exerts certain
silencing effect which resulted in shifting the accumulation of 18:2 to 18:1 in lesquerella.
Unlike PfFAD3-1 and PfKCS18 which were specifically targeted by AtFAD3 RNAi and
CsFAE1 RNAi, respectively, the CsFAD2 RNAi may target two homologous lesquerella
genes, PfFAD2 (GenBank ID: DQ518313) and PfFAH12 (GenBank ID: KC972619) that share
78.3% nucleotide identity. In fact, the dsRNA fragment in CsFAD2 RNAi contains 299 bp
sequences which exhibit 55.7% and 88.9% identity with PfFAD2 and PfFAH12, respec-
tively. The effect of CsFAD2 RNAi on silencing PfFAH12 can be inferred by the reduction
of correlation strength between 18:1 and 18:1OH from very strong positive (r = 0.93) in
2-dsRNAs lines, which did not express CsFAD2 RNAi (Table 1 and Table S4), to very weak
positive (r = 0.15) in 3-dsRNA lines due to CsFAD2 RNAi (Table 2and Table S4). The shift
of 18:1OH accumulation to 18:1 was also evident by lower accumulation of 18:1OH at
an average of 4.4% in the 3-dsRNAs lines compared with that of 7.7% (average) in the
2-dsRNAs lines (Tables 1 and 2). The silencing effect of CsFAD2 RNAi on both PfFAD2 and
PfFAH12 gene expression can be deduced by the increased accumulation of 18:1 content at
an average of 27.8% in lines expressing 3-dsRNAs (Table 2) compared with that of 20.5% in
lines expressing 2-dsRNAs (Table 1). Our results support previous observations of using
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these RNAi sequences to generate high 18:1 content in camelina lines, including CsFAD2
RNAi [58], CsFAD2 RNAi + CsFAE1 RNAi [59], or CsFAD2 RNAi + AtFAD3 RNAi + CsFAE1
RNAi [60] (in preparation).

3.2. Constrains and Potential for Production of a High 18:1OH-Containing Oil in Lesquerella

Expression of CsFAE1 RNAi, CsFAD2 RNAi, and AtFAD3 RNAi in lesquerella resulted
in significant increases not only in 18:1OH, but also in 18:1 (Tables 1 and 2). The results
indicated that 18:1 was inefficiently used for synthesizing 18:1OH. This could be partially
due to the nature of PfFAH12 which is a bifunctional oleate hydroxylase:desaturase [25],
that may not efficiently convert 18:1 to 18:1OH. Seed oil from castor or Physaria lindheimeri
contains 90% 18:1OH [61] or 85% 20:1OH [62], respectively. These species have distinct
FAH12s, RcFAH12 in castor [24] and PlFAH12 in P. lindheimeri [62]. Replacement of PfFHA12
with RcFAH12 or PlFAH12 should allow more efficient 18:1OH synthesis in lesquerella.
Alternatively, the resulted substantial accumulation of 18:1 could also be due to some les-
querella endogenous genes having substrate preference to 18:1 and efficiently incorporating
18:1 into TAG. During seed development, a lesquerella LPAT acts like a typical plant LPAT
that has substrate preference for unsaturated FAs including18:1-CoA, resulting in efficient
incorporation of 18:1-CoA into TAG through the Kennedy pathway. Castor RcLPAT2 is
useful for increasing 18:1OH at the sn-2 of TAGs in lesquerella [15,37]. Additional isoforms,
RcLPAT3B and RcLPATB, have also been shown to increase 18:1OH in arabidopsis seed
TAGs [52]. Substituting the lesquerella endogenous PfLPAT with these specific castor
RcLPATs may increase 18:1OH flux to TAG by RcLPATs. Besides the Kennedy pathway, PC-
derived DAG pathway may also channel 18:1 into TAG by a lesquerella PfPDCT (Figure 1).
Once 18:1-PC is synthesized, e.g., by PfLPCAT, some of the 18:1-PC could be converted
by PDCT to 18:1-DAG for TAG assembly (Figure 1). Lesquerella seed TAGs contain about
21% PUFAs (18:2 and 18:3) (Tables 1 and 2). There is strong evidence that plants enriched
with PUFAs in seed TAG may use the PC-derived pathway [19]. Therefore, it is likely that
PC-derived DAGs are utilized in TAG assembly in lesquerella. Castor gene RcPDCT was
demonstrated to enhance flux from 18:1OH-PC to 18:1OH-DAG [41]. It would be favorable
to over-express RcPDCT in lesquerella to increase 18:1OH incorporation to TAG through
PC-derived DAG pathway.

It is anticipated that the increased 18:1OH is at the expense of 20:1OH in transgenic
lesquerella lines expressing CsFAE1 RNAi (Tables 1 and 2), however, total HFA decreased
and showed strong correlation with 20:1OH contents (0.96 < r > 0.75, Table S4). The
results indicated that 18:1OH was not incorporated into TAG at the same efficiency as
20:1OH. Lesquerella PfKCS18 is evolved to specifically elongate 18:1OH-CoA to 20:1OH-
CoA [27] (Figure 1). It is possible that other lesquerella enzymes, such as PfGPAT, PfDGAT
and/or PfPDAT also co-evolved to adapt and utilize 20:1OH efficiently. Most plant GPATs
have a broad acyl-CoA substrate specificity [19,63]. There is evidence that castor RcGPAT9
plays an important role in acylating HFAs at the sn-1 position of G3P, resulting in sn-1-HFA-
LPA, which facilitates the subsequent incorporation of sn-2 and sn-3 HFA into seed TAG by
LPAT and DGAT [53]. In plant seeds accumulating unusual FAs, members of DGAT2 family
are essential enzymes in acylating unusual FAs to the sn-3 position of DAG. For example,
castor RcDGAT2 prefers 18:1OH to common FAs [50,64]. Lesquerella seed transcriptome
analysis reveals one PfGPAT9 and three PfDGATs [17]. It would be interesting to explore
whether these genes have substrate selectivity for HFA-CoA or common FA-CoA. The
role of PfKCS18 has been explored in camelina [65]. Transgenic camelina expressing
RcFAH12 accumulates 15% HFA [66] but the resulted transgenic seeds reduce TAG content
and seed germination ability [65]. When RcFAH12 with PfKCS18 are co-expressed, the
transgenic camelina seeds increase HFA content to 21% and also restore TAG content and
seed germination ability [65]. Camelina is not a native species for HFA synthesis, 18:1OH-
PC generated by RcFAH12 in camelina may be subjected to β-oxidation [67], or represents
a bottleneck [40], limiting HFA accumulation. The elongation step by PfKCS18 may ease
the 18:1OH flux from PC to cytosol FA-CoA pool, thus relieve the bottleneck and facilitate
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the utilization of HFA-CoA by the Kennedy pathway [33] (Figure 1). PDAT transfer FA at
the sn-2 position of PC to the sn-3 position of DAG, yielding TAG [44,68] (Figure 1). Castor
has two PDAT1s, but only RcPDAT1-2 (or RcPDAT1A) selects 18:1OH-PC as substrate,
and it participates in HFA-TAG synthesis [45,46]. There are three PfPDATs expressed in
lesquerella seeds [17]. Whether these PfPDATs are involved in transferring HFA-PC to DAG
remains to be investigated. To further enhance 18:1OH accumulation in lesquerella TAGs,
coordinated expression of multiple genes, such as RcGPAT9, RcDGAT2 and RcPDAT1-2 (or
RcPDAT1A) should promote 18:1OH accumulation in seed TAG.

In summary, to develop a castor oil-producing lesquerella crop, we designed genetic
engineering schemes based on known pathways of fatty acid biosynthesis in lesquerella. As
predicted, high levels of 18:1OH were accumulated by reducing the elongation of 18:1OH
to 20:1OH through expression of CsFAE1 RNAi. Additionally, high levels of 18:1 and 18:2
were accumulated through suppression of desaturation steps by expressing CsFAD2 RNAi
and/or AtFAD3 RNAi. Intriguingly, the accumulated 18:1 was not efficiently utilized to
produce 18:1OH and instead, 18:1 was largely channeled to seed TAG. On the other hand
as discussed, multiple mechanisms could limit the acylation of 18:1OH into TAG. Our
results direct future research efforts in implementing genetic approach that targets not
only enhancement of 18:1OH synthesis, but also on increased 18:1OH acylation to TAG.
Nevertheless, we demonstrated for the first time that lesquerella can be engineered for
large increases in 18:1OH levels from 0.4–0.5% in WT to a stable high level of 15–20% in
transgenic seed oils.

4. Materials and Methods
4.1. Construction of pBinGlyBar1 + AtFAD3 RNAi + CsFAE1 RNAi and pBinGlyBar1 CsFAD2
RNAi + AtFAD3 RNAi + CsFAE1RNAi

Constructs used for transformation experiments were prepared as follows. The FAD3
RNAi hairpin cassette was prepared by PCR amplification of a 323-bp fragment of the
FAD3 gene from Arabidopsis thaliana Col-0 cDNA in both antisense using primers Arm1-
5′NheI-F3 5′- AATAAGCTAGCACCGGACACACCACCAGAAC-3′ and Arm1-3′EcoRI-
F3 5′- TATTGAATTCCGTAGACTTTAAGAACCGCGAG-3′ and sense orientations using
primers Arm2-5′PstI-F3 5′- TAATACTGCAGCACCGGACACACCACCAGAAC-3′ and
Arm2-3′XhoI-F3 5′- ATTACTCGAGCCGTAGACTTTAAGAACCGCGAG-3′ and cloned
into plasmid pGEMT-Easy-HTM3 [69], replacing the existing antisense and sense arms.
The resulting FAD3 hairpin sequence was excised at EcoRI/XhoI from that plasmid and
inserted into pBinGlyBar1 [59] as an EcoRI/XhoI fragment. Flanking the FAD3 hair-
pin sequence in pBinGlyBar1 was the seed-specific promoter and the 3′UTR for the
Glycine max glycinin-1 gene. The new construct was designated pBinGlyBar1 + AtFAD3
RNAi. The FAE1 RNAi suppression cassette was prepared by PCR amplification of a
251-bp portion of the camelina FAE1 gene from cDNA using the oligonucleotides: 5′-
TAATTCTAGACTCGAGGGGAATACTTCGTCTAGCTC-3′ and 5′-TATAAAGCTTACTAGT
CCGACCGTTTTTTGACATGAGTC-3′. The PCR product was assembled sequentially in
an inverted repeat orientation of either side of the Flaveria trinervia pyruvate orthophos-
phate dikinase (Pdk) intron [70]. The hairpin cassette was then cloned downstream of the
seed-specific promoter for the Glycine max glycinin-1 gene and upstream of the 3′UTR for
the glycinin-1 gene as a Not1 fragment. The resulting vector contained AscI restriction
sites that flanked the glycinin-1 promoter and 3′UTR. Using this restriction site the entire
cassette containing promoter, RNAi hairpin and 3′UTR were assembled into the AscI site
of the binary vector pBinGlyBar1 + AtFAD3 RNAi. The resulting construct was designated
pBinGlyBar1 + AtFAD3 RNAi + cFAE1 RNAi. The FAD2 RNAi hairpin cassette was pre-
pared by PCR amplification of a 299–bp portion of the camelina FAD2 gene from cDNA
using the oligonucleotides:5′-TAATTCTAGACTCGAGCGTCTTGATCACTTACTTGCAG-3′

and 5′-TATAAAGCTTACTAGTCTACATAGATACACTCCTTTGCC-3′. The product was
cloned sequentially in an inverted repeat orientation of either side of the Flaveria trinervia
pyruvate orthophosphate dikinase (Pdk) intron. The hairpin cassette was then cloned
downstream of the seed-specific promoter for the soybean oleosin gene and upstream



Plants 2021, 10, 1093 10 of 14

of the oleosin 3′UTR as a Not1 fragment. The resulting vector contained AscI restriction
sites that flanked the oleosin promoter and 3′UTR. Using this restriction site the entire
cassette containing promoter, RNAi hairpin and 3′UTR were assembled into the MluI site
of pBinGlyBar1 + AtFAD3 RNAi + cFAE1 RNAi to make pBinGlyBar1 + AtFAD3 RNAi +
cFAE1 RNAi + cFAD2 RNAi which also contains a bar marker gene for Basta selection of
transgenic plants.

4.2. Plant Transformation and Growth Condition

The lesquerella seeds, WCL-LY2 [71] were kindly provided by Dave Dierig (USDA-
ARS, Arid-Land Agricultural Research Center, Maricopa, AZ, USA). Plant transformation
was performed using the Agrobacterium tumefaciens strain AGL1 [72] carrying the bi-
nary vector pBinGlyBar1 + AtFAD3 RNAi + CsFAE1 RNAi and pBinGlyBar1 CsFAD2 RNAi
+ AtFAD3 RNAi + CsFAE1RNAi. Tissue culture and plant growth conditions were as
described before [14] with the exception of using Basta (1 mg/L) as a transgenic selec-
tive agent. In brief, leaves harvested from plants in sterile condition were wounded by
slightly scratching the underside of the leaf and then dipping the leaf in the half strength
MS medium containing the Agrobacterium for 5 min. Following the inoculation, leaves
were blotted on sterilized filter paper and transferred to Callus and Shoot Induction (CSI)
medium composed of basal medium (BM, half strength MS medium plus 30 g L−1 sucrose
and 6 g L−1 agar, pH 5.7) supplemented with 1 mg L−1 6-benzylaminopurine (BA) and
0.1 mg L−1 1-Naphthaleneacetic Acid (NAA). After incubating the infected leaves in the
growth chamber for 2 days, the leaves were cut into 5 mm segments and cultured on CSI
media plus 1 mg L−1 Basta for transgenic selection and 100 mg L−1 timentin for inhibiting
the Agrobaterium growth. In 6–8 weeks, yellow-greenish Basta resistant calli started to
appear on the leaf segments. To eliminate chimeras, each shoot was cut into small pieces
(about 2 × 2 mm2) and placed on the CSI medium for shoot regeneration. After 4 rounds
of successive regenerations, shoots were sub-cultured on BM plus 1 mg L−1 BA, 1 mg L−1

Indole-3-Butyric Acid (IBA) and 1 mg L−1 Basta for multiplication. Shoots 10–15 mm in
length were transferred to rooting medium (BM plus 1 mg L−1 IBA and 50 mg L−1 Basta).
When a shoot developed 2–3 roots (usually in 3–5 weeks), it was then transferred to a
Magenta box (Sigma, St. Louis, Mo) containing sterilized peat-vermiculite growth mixture
(Sunshine mix #4, Planet Natural, Bozeman, MT) presoaked with 1 mg L−1 IBA water
solution. After 8–10 weeks in the growth mixture, well-developed primary plants showing
8–12 normal leaves and 2–3 inch height were transferred to a 6-inch pot and placed under
a transparent plastic cover for the first 2 weeks for acclimation in the greenhouse. T1 selfed
seeds were obtained by hand-pollination between different flowers from the same trans-
genic plant (T0). To estimate the number of transgene locus for each line, T1 seeds were
germinated on germination medium containing Basta at 1 mg L−1 for 3 weeks. Healthy
seedlings showing normally developed cotyledons and 2–4 true leaves were counted as
resistance seedlings (R); sensitive seedlings (S) had arrested yellow cotyledons and no true
leaves. Transgene locus numbers were based on the Mendelian ratio of R:S, 3:1 for one
locus, 16:1 for two loci. T1 seedlings were transplanted into soil for T2 seed production.

4.3. Analysis of Fatty Acid Composition

Seeds homogenized in a gas chromatograph (GC) autosampler vial were subjected
to direct transesterification to produce fatty acid methyl esters (FAMEs) using trimethyl-
sulphonium hydroxide (TMSH) as described [59,73]. The resulting FAMES were analyzed
by GC-flame ionization detection using previously described instrument conditions [74].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10061093/s1, Table S1: Estimated number of transgene locus for each transgenic line
(T1 seeds), Table S2: Fatty acid composition (mole%) in T1 seeds expressing AtFAD3 RNAi + CsFAE1
RNAi, Table S3: Fatty acid composition (mole%) in T1 seeds expressing CsFAD2 RNAi + AtFAD3
RNAi + CsFAE1 RNAi; Table S4: Correlations between the fatty acids among transgenic lines.
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