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Abstract 39 
 40 

Extensive expansion in irrigated agriculture has taken place over the last half century. Due 41 

to increased irrigation and resultant land use land cover change, the central United States has seen 42 

a decrease in temperature and changes in precipitation during the second half of 20th century. To 43 

investigate the impacts of widespread commencement of irrigation at the beginning of the growing 44 

season and continued irrigation throughout the summer on local and regional weather, the Great 45 

Plains Irrigation Experiment (GRAINEX) was conducted in the spring and summer of 2018 in 46 

southeastern Nebraska. GRAINEX consisted of two, 15-day intensive observation periods. 47 

Observational platforms from multiple agencies and universities were deployed to investigate the 48 

role of irrigation in surface moisture content, heat fluxes, diurnal boundary layer evolution, and 49 

local precipitation.  50 

This article provides an overview of the data collected and an analysis of the role of 51 

irrigation in land-atmosphere interactions on time scales from the seasonal to the diurnal. The 52 

analysis shows that a clear irrigation signal was apparent during the peak growing season in mid-53 

July.  This paper shows the strong impact of irrigation on surface fluxes, near-surface temperature 54 

and humidity, as well as boundary layer growth and decay. 55 

 56 

 57 

 58 

 59 

 60 

 61 
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Land use land cover changes (LULCCs) play an important role in modulating weather and 62 

climate (NRC 2005; Pielke Sr. et al. 2011; Mahmood et al. 2010, 2014; Pielke Sr. et al. 2016). 63 

Evidence of its importance can be found in the Third National Climate Assessment (Melillo et al. 64 

2014), Climate Model Intercomparison Project 5 (CMIP5) in support of the 5th Assessment of 65 

Climate Change by the IPCC (e.g., Brovkin et al. 2013), LUCID experiments (Pitman et al. 2009), 66 

and from the inclusion of LULCC in preparation of CMIP6 (Meehl et al. 2014) in support of the 67 

6th Assessment.   68 

Observations and modeling studies suggest that LULCC impacts meso-, regional-, and 69 

potentially global-scale atmospheric circulations, temperature, precipitation, and fluxes (e.g., 70 

Segal et al. 1989; Gero et al. 2006; Costa et al. 2007; Campra et al. 2008; Puma and Cook 2010; 71 

Davin and de Noblet-Ducoudré 2010; NRC 2012; He et al. 2020; Thiery et al. 2020; Chen et al. 72 

2020). In line with these results, it has been found that agriculture and irrigation significantly 73 

impact weather and climate (e.g., Puma and Cook 2010; Sen Roy et al. 2011; Wei et al. 2013; 74 

Lawston et al. 2020). In an observational study, Sen Roy et al. (2011) reported up to 69 mm 75 

increase in dry season precipitation in the irrigated regions of northwestern India. Based on a 76 

modeling study with global focus, Wei et al. (2013) noted ~120 mm increase in annual 77 

precipitation in South Asia because of irrigation. Lawston et al. (2020) found 1.67 °C cooling of 78 

mean temperatures in the central part of Washington, USA, during summer due to irrigation. 79 

Excellent examples of irrigation impacts can be found in the Great Plains (GP) of North America 80 

(Barnston and Schickendanz 1984; Mahmood and Hubbard 2002; Adegoke et al. 2003; DeAngelis 81 

et al. 2010; Lawston et al. 2015; Szilagyi and Franz, 2020). Barnston and Schickendanz (1984) 82 

have shown from observational data that irrigation increases precipitation in the Southern Great 83 

Plains. In a follow-up and more detailed study DeAngelis et al. (2010) have also shown that 84 
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irrigation in the Great Plains impacts precipitation as far as in Indiana and in Kentucky (downwind 85 

impact). Mahmood and Hubbard (2002) have conducted a model-based climatological research 86 

and found 36% increase in growing season physical evaporation and transpiration (Miralles et al. 87 

2020) due to irrigation and resulted in >1 °C lowering of mean maximum growing season 88 

temperature during the second-half of the 20th century over the Northern Great Plains. In a 89 

subsequent study, Adegoke et al. (2003) have found similar changes in latent heat fluxes over 90 

irrigated areas of Nebraska and further verified previous results.   91 

The irrigated region of the GP extends from Texas to Nebraska and some of the most 92 

widespread applications of irrigation can be found in Nebraska (Mahmood and Hubbard 2002).  93 

Due to the extent of the GP region, commencement of irrigation each year depends on the start of 94 

the growing season which is influenced by local climate and weather in the preceding several 95 

months. For example, in the northern part of the GP (northern plains), irrigation typically begins 96 

in the latter part of May (e.g., Mahmood and Hubbard 2002). 97 

Commencement of irrigation and its impact on regional hydrometeorology is like a binary 98 

switch in the Great Plains. Irrigated landscape goes from no irrigation [lower soil moisture (SM)] 99 

to fully operational irrigation (higher SM).  This switch can occur rapidly over a few days to 100 

slightly over a week from a few km2 to a few thousands km2 area, respectively. We suggest that 101 

impacts on land surface condition, land-atmosphere (L-A) interactions (e.g., Santanello et al. 102 

2018), and the resultant evolution of the boundary layer in and around irrigated areas are 103 

significant. Application of irrigation reaches its maximum in July and early August during the 104 

plant vegetative growth stage when plant-water requirements are at their highest levels.  These 105 

intra-seasonal changes impact meso- and regional-scale thermodynamic fields (Mahmood et al. 106 

2004, 2008).    107 
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Recent work has further supported the need for field campaigns.  Gerken et al. (2019) 108 

reported that feedbacks between precipitation and land surface fluxes including physical 109 

evaporation and transpiration are difficult to observe, but critical for understanding the role of the 110 

land surface in the Earth System. As noted previously, in Asia, Sen Roy et al. (2011) reported an 111 

increase in dry season rainfall in northwestern India due to irrigation. Devanand et al. (2019) 112 

discussed an increase in extreme rainfall in central India in recent decades, and that irrigation 113 

increases the rainfall intensity during these events. Their study concluded that it is important to 114 

represent irrigation practices more accurately in climate models. Nikiel and Eltahir (2019) reported 115 

that a combination of agricultural development and decadal variability of global sea surface 116 

temperatures (SST) explains most of the observed variability of summer temperature and 117 

precipitation during the twentieth century over central North America.  118 

Despite prior research showing significant potential of irrigated land cover to impact 119 

weather, observational campaigns investigating such land-atmosphere interactions are lacking. 120 

This paper discusses initial results from such an observational study that investigated the impacts 121 

of irrigation on the diurnal evolution of the planetary boundary layer (PBL), cloud development, 122 

and precipitation during a field data collection campaign undertaken in southeastern Nebraska. 123 

The overall study is known as the Great Plains Irrigation Experiments (GRAINEX) 124 

(https://www.eol.ucar.edu/field_projects/grainex). The overarching research goal is to assess: 125 

  126 

how irrigation, compared to absence of irrigation, impacts boundary layer development, 127 

precipitation and its various characteristics. 128 

 129 
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The results discussed in this paper will improve our understanding of L-A interactions particularly 130 

in the context of LULCC and widespread applications of irrigation.  Multi-week continuous data 131 

collection, analyses of field measurements and modeling provided further insights into L-A 132 

interactions. All data analyzed in this study are quality controlled. 133 

Data were collected during the growing season of 2018 in collaboration with the Earth 134 

Observation Laboratory’s (EOL’s) Lower Atmospheric Observation Facilities (LAOF) of the 135 

National Center for Atmospheric Research (NCAR), the Center for Severe Weather Research 136 

(CSWR), and the Environmental Monitoring, Economical Sensor Hubs (EMESH) system of the 137 

University of Alabama in Huntsville. Field data collection efforts included radar wind profilers, 138 

radiosonde observations, eddy covariance flux stations, mobile radars known as Doppler on 139 

Wheels (DOWs), and a dense surface meteorological network (Fig. 1; details in the following 140 

section). In addition, the National Aeronautics and Space Administration (NASA) joined this 141 

effort. They have collected data using sensors mounted on a Twin Otter aircraft and further 142 

contributed to this study.  143 

Two recent field campaigns, The Soil Moisture–Atmosphere Coupling Experiment 144 

(SMACEX) (Kustas et al. 2005) and the International H2O Project (IHOP_2002) (Weckwerth et 145 

al. 2004) addressed L-A interactions. In addition, Koster et al. (2004) identified the GP as a 146 

‘hotspot’ of L-A interactions. However, despite the importance and global expansion of irrigation 147 

due to ever-increasing demand for food, these field campaigns and resulting studies did not directly 148 

address the role of irrigation in GP weather and L-A interactions. Further, current irrigation 149 

schemes in earth system models are rather primitive, and reliant on assumptions about irrigation 150 

practices that lack an observational basis (Lawston et al. 2017). We also suggest that GRAINEX 151 

is the first experiment of this type, a highly focused project specifically designed to collect data 152 
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over contrasting and adjacent irrigated and non-irrigated regions to study irrigation impacts.  Due 153 

to the uncertain role of irrigation impacts on precipitation, the results presented here make a 154 

fundamental contribution to that aspect of L-A interactions.  155 

 156 
Field Experiment Overview and Data Collection  157 
 158 

The GRAINEX field campaign took place in southeastern Nebraska over a ~100 x 100 km 159 

area comprised of adjacent irrigated and non-irrigated land from the end of May until the beginning 160 

of August (Fig. 1). Nebraska was selected as it is one of the most highly irrigated regions of the 161 

world, and the most irrigated state of the USA. The Big Blue River in southeastern Nebraska 162 

separates extensively irrigated croplands to the west and non-irrigated cropland to the east (Fig. 163 

1).               164 

 Two intensive-observation periods (IOPs) were selected with a much more extensive 165 

observational array (as discussed below) for: 1) 05/29/18 – 06/13/18 (IOP1), and 2) 07/16/18 – 166 

07/30/18 (IOP2). IOP1dates were chosen to capture the commencement of irrigation, or binary 167 

switch, during which there is a rapid change in moisture availability occur. IOP2 dates were 168 

selected to investigate land-atmosphere interactions at the height of the growing season when crop-169 

water demand and irrigation applications area also at a maximum. 170 

 Observational platforms include Integrated Surface Flux System (ISFS), Integrated 171 

Sounding System (ISS), Radiosondes, DOW, and Environmental Monitoring, Economical Sensor 172 

Hubs (EMESH) (Fig. 2a-h). Details of the observations can be found in 173 

https://www.eol.ucar.edu/field_projects/grainex. These details include, among others, description 174 

of instrumentation and data quality. Below we provide a brief description of these observation 175 

platforms and their deployment design. 176 

 177 
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Integrated Surface Flux System (ISFS) 178 

 To determine irrigation impacts, six ISFS were deployed over irrigated and six ISFS over 179 

non-irrigated areas (Figs. 1, 2a-d, and Table 1). All of the irrigated ISFS sites are located over the 180 

western part of the study area, while non-irrigated sites are over the eastern part.  As can be found 181 

from Table 1, all sites measured standard above surface meteorological variables, including, 182 

temperature, pressure, relative humidity, rainfall, wind speed and direction, and solar radiation. 183 

These sites also measured fluxes of momentum as well as sensible and latent heat at a rate of 50 184 

samples per second. To complete measurements, each site recorded soil moisture, soil temperature, 185 

soil heat capacity, and soil heat flux (Table 2).  While all sites were operational continuously from 186 

about mid-May to mid-August, the ISS and DOWs were only available during the IOPs. As a 187 

result, focus is given to these periods. ISFS data were communicated in near real-time via cell 188 

modem to EOL/LAOF. These data subsequently went through quality control checks and were 189 

delivered as five-minute average observations. 190 

 191 

Integrated Sounding System (ISS) 192 

 Two ISS sites were instrumented to help understand the response of PBL to land surface 193 

conditions (irrigated vs. non-irrigated) (Figs. 1 and 2e). One of these sites was located over an 194 

open area at York airport away from runaway and clutter. This small county airport is located just 195 

outside of York, NE and surrounded by extensively irrigated crop fields. A second site was located 196 

in Rogers Memorial Farm (Short: Rogers Farm), east of Lincoln, NE (Table 3a) representing the 197 

non-irrigated region of eastern NE. Both sites included radar wind profiler, ceilometer, and 198 

standard surface meteorological observations (Table 3b). Additionally, both sites simultaneously 199 

launched radiosondes every two hours from sunrise [~ 5:00 AM Local Standard Time (~1100 200 
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UTC); there is a six hour lag in Local standard Time compared to UTC (LST = UTC - 0600)] to 201 

sunset [~7:00 PM Local Standard Time (~0100 UTC)] resulting in 8 launches per site per day (Fig. 202 

2f). The data were collected for both IOP1 and IOP2. In short, a comprehensive set of data were 203 

collected to understand properties and evolution of the boundary layer during the IOPs over 204 

irrigated and non-irrigated regions of the study domain.  These observations were also 205 

complementary to ISFS observations. 206 

 207 

Doppler on Wheels (DOW) 208 

 Three X-band DOWs (Wurman 2001) were deployed in a configuration that allowed for 209 

data to be collected over irrigated, non-irrigated, and over irrigated to non-irrigated transition zones 210 

(Fig. 1 and 2g) to further capture fine-scale evolution of the PBL (Wurman et al. 2021; Wurman 211 

and Kosiba 2020). DOW reflectivity and Doppler velocity fields were used to identify atmospheric 212 

boundaries in the PBL. These observations were used in conjunction with the other observations 213 

in this paper. In addition, the radar data will be used in the future to further investigate the impact 214 

of irrigation on PBL development and convective processes.  From the three DOW locations, 215 

radiosondes (Graw DFM-09) were launched simultaneously in coordination with the ISS sites. 216 

Thus, there were about 40 launches per day from the five locations (~1200 total) to sample the 217 

atmosphere and the evolution of the PBL. 218 

 219 

Environmental Monitoring, Economical Sensor Hubs (EMESH) 220 

 To further complement these observations and to better capture small-scale surface and 221 

near-surface variations, a network of 75 meteorological stations known as EMESH were deployed 222 

from late May 2018 through mid-August 2018 covering both IOPs (Figs. 1, 2h and Table 4). 223 
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EMESH are rapidly deployable weather stations that were developed at the University of Alabama 224 

in Huntsville.  For this research project, 28 stations were deployed over irrigated and 47 over non-225 

irrigated areas. Of these 75 stations, 50 and 25 were deployed during the IOP1 and IOP2, 226 

respectively.  They were successfully field tested for their accuracy and reliability prior to the 227 

deployment for this project.  Each of these stations recorded standard meteorological parameters 228 

as well as soil moisture and temperature (Table 4).  This paper does not include analysis of EMESH 229 

data.  230 

 231 

NASA Goddard Radio Frequency Explorer (GREX) Instrument 232 

The GREX microwave (L-band) radiometer was mounted on the NASA Twin Otter plane 233 

and was utilized during the IOP2, conducting seven flights from 07/16/18 through 07/27/18 234 

measuring radiances at a spatial resolution < 1 km. The GREX mission was to measure spatial 235 

patterns and transects of soil moisture across and between the ground stations. GREX, coupled 236 

with a suitable antenna, measures brightness temperature similar to that of the Soil Moisture 237 

Active-Passive (SMAP) satellite. For GRAINEX, the L-Band front-end operated within a 1400-238 

1427 MHz frequency range as is utilized by the SMAP radiometer. GREX was setup to match 239 

SMAP’s single channel soil moisture algorithm inputs for the GRAINEX deployment.  The 240 

motivation for flying GREX was to observe spatial surface heterogeneity over the GRAINEX 241 

domain and to connect with point-based soil moisture measurements and their variability across 242 

the region. Results from GREX data are not included in this paper. 243 

 244 
 245 
 246 
 247 
 248 
 249 
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Results 250 
 251 

Overall Weather Conditions During IOP1 and IOP2 252 

During IOP1 eastern Nebraska was on the southern edge of the polar jet which was 253 

comparatively far south for the time of year (Archer and Caldeira 2008; Pielke Sr. 2018). The   254 

position of the jet resulted in several occurrences of rain from mesoscale convective systems forced 255 

by upper-level troughs. The overall result of this pattern were several rain events and occasional 256 

cooler and drier days after the cold fronts passed. The synoptic weather pattern during IOP2 was 257 

similar to IOP1. Thus, there were extended sunny and partly sunny periods punctuated by showers 258 

and thunderstorms.  259 

 260 

Surface Meteorological Conditions   261 

Key quantities including 2-m temperature, mixing ratio, and soil moisture at the ISFS sites, 262 

averaged over irrigated (blue) and non-irrigated (red) cropland sites are shown in Fig. 3a-c. All of 263 

these observations are recorded at 5-minute intervals and then averaged.  IOP1 and IOP2 were 264 

during the first and last two weeks, respectively and displayed in the panels. The differences in 265 

temperature, mixing ratio, and soil moisture between irrigated and non-irrigated land uses are 266 

shown on the right axis of Fig. 3a-c. In order to minimize the noise of the seasonal figures, the 267 

difference calculations are only done at a single time each day, the time of maximum temperature, 268 

as averaged over irrigated or non-irrigated cropland. While this does eliminate any response lag 269 

between the two croplands, it captures an overall seasonal characteristics. 270 

The 2-m temperature and mixing ratio (Fig. 3a-b) reveal that there were two distinct 271 

observed near-surface weather conditions. During IOP1 and prior to 1 July, on average, there was 272 

only a relatively smaller observed difference in temperature and mixing ratio between irrigated 273 
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and non-irrigated croplands. In contrast, during IOP2 and the month of July, as expected, there 274 

was a much larger observed difference between irrigated and non-irrigated croplands. During this 275 

period, on average, the mean daily temperature over irrigated areas was reduced by -0.69ºC 276 

because of increased physical evaporation from soils and transpiration from crops. This is reflected 277 

in an increased mixing ratio of +1.54 g kg-1.  278 

 GRAINEX was also designed to investigate the binary switch of the onset and subsequent 279 

sustained irrigation on near-surface meteorology and L-A interactions. Due to frequent weather 280 

events during IOP1 and much of June, the binary switch did not occur until the beginning of July. 281 

The large-scale forcing (Supplementary Fig. 1a-c) can be observed in the near-surface meteorology 282 

shown in Fig. 3a-c, which displays frequent large-amplitude fluctuations in the temperature (Fig. 283 

3a) and mixing ratio (Fig. 3b) suggestive of frontal passages on weekly timescales.  284 

Closer inspection of Fig. 3a reveals a small downward trend in the difference in mean 285 

maximum temperature (statistically significant at 99% confidence level) between the irrigated and 286 

non-irrigated sites from mid-June through late July. The downward trend would be expected under 287 

an irrigation signal during the growing season. It is because latent heat fluxes dominate energy 288 

partition over irrigated areas (please see ‘Surface Fluxes’ section below for further details). The 2-289 

m mixing ratio shows a relatively clear response to irrigation with larger values over irrigated 290 

cropland (Fig. 3b). In addition, volumetric soil moisture content displayed in Fig. 3c shows the 291 

impact of precipitation and irrigation, or lack thereof. While it is difficult to isolate the relative 292 

roles, there were clear irrigation signals on 8 July (blue spike in the absence of a red spike) and 24 293 

July – 27 July and light precipitation over irrigated cropland on 23 July.   294 
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Due to the observed delay in irrigation onset, IOP1 will be discussed in a rather limited 295 

fashion. Attention will be given to IOP2, in particular for the L-A interactions from 22 July to 24 296 

July. 297 

 298 

Surface Fluxes 299 

 Data from ISFS sites over irrigated and non-irrigated sites were analyzed for IOP1 and 300 

IOP2. Analyses and comparisons are completed for 5, 15, and 30 minute flux data and it is found 301 

that the results are quite similar (Supplementary Figure 2a-d). Thus, since this paper presents initial 302 

results and overview of the GRAINEX, 5 minute data are used. It is evident from Fig. 4a-f that, 303 

overall, the latent heat fluxes were higher compared to the sensible heat fluxes during both IOP1 304 

and IOP2. During the early growing season (IOP1) differences between latent and sensible heat 305 

fluxes were not as large as IOP2.  However, during peak-growing season (IOP2) water 306 

consumption is higher by plants and the resultant application of irrigation caused increased 307 

partitioning of the available energy into the latent heat fluxes. For example, Fig. 4a shows that 308 

during the early growing season (IOP1), latent heat fluxes were mainly lower (Fig. 4a-b) over 309 

irrigated sites. Frequent changes in weather accompanied by cloud cover suppressed overall heat 310 

fluxes.  On the other hand, during peak-growing season (IOP2), latent heat fluxes were mostly 311 

greater over the same locations. As noted in the previous section and above, synoptic weather-wise 312 

IOP1 was more active which depressed fluxes in both irrigated and non-irrigated locations. In 313 

addition, Fig. 4e-f also shows that on average for all sites, latent (sensible) heat fluxes were 314 

consistently higher (lower) during the second IOP2.  315 

There were noticeable decreases in temperature and increases in mixing ratio over irrigated 316 

areas, particularly during the last 10 days of IOP2 (Fig. 5a-f).  In addition, during the entire month 317 
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of July, near-surface temperatures were found to be approximately 1C cooler while near-surface 318 

humidity are 2 g kg-1 moister for irrigated land use (compare with black curves in Fig. 3). Since 319 

the moisture contribution was significantly large, equivalent potential temperature (θE) increased 320 

over irrigated cropland. This result is borne out in Fig. 5c where the near-surface θE shows an 321 

increase over irrigated land use relative to non-irrigated.  Note that, compared to irrigated areas, 322 

there were small time lags in reaching of mixing ratio, and θE over non-irrigated areas. In the 323 

morning boundary layer evolution was quite similar at all locations with the rapid growth of 324 

surface fluxes and boundary layer height through mid-morning (~1000 LST). After this time, 325 

temperatures rose at a lower rate over irrigated land use as opposed to non-irrigated due to higher 326 

soil moisture over irrigated areas. Moreover, we suggest that as latent heat fluxes increased rapidly 327 

over irrigated areas, highest values were reached slightly earlier over irrigated land use compared 328 

to non-irrigated land use. This particularly reflected in mixing ratio and θE values. 329 

 Examination of the 2.5 cm soil moisture evolution (Fig. 5d) for the last ten days of IOP2 330 

shows the diurnal variability and increases due to precipitation and irrigation. Note that the 331 

irrigated sites have larger soil moisture values reflective of irrigation prior to and during IOP2. 332 

Irrigation applications occur in response to crop-water requirements and soil moisture status and 333 

linked to its distribution between field capacity (higher limit) and wilting point (lower limit). As 334 

expected, farmers typically do not wait until soil moisture reaching the wilting point and hence 335 

soil moisture for irrigated croplands typically varies between field capacity and wilting point.  336 

During GRAINEX, the noted differences in near-surface temperature, mixing ratio, and 2.5 cm 337 

soil moisture are associated with the observed surface sensible and latent heat fluxes (Fig. 5e-f). 338 

In the absence of cloud cover, the sensible heat fluxes increase while the latent heat fluxes decrease 339 

by at the non-irrigated ISFS sites.  In short, compared to non-irrigated locations, higher latent heat 340 
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fluxes from the irrigated locations lowered temperature and increased θE and mixing ratio. On the 341 

other hand, sensible heat fluxes dominated over non-irrigated area resulting in higher temperature 342 

and lower mixing ratio.   343 

 During the first half of the 20-29 July period (IOP2), the near-surface daily maximum 344 

temperature remained unchanged  near 28 ºC over irrigated sites while non-irrigated sites were on 345 

average about 1ºC warmer (Fig. 5a). Due to predominantly clear conditions and higher soil 346 

moisture over irrigated areas, physical evaporation and transpiration depleted the soil moisture 347 

more rapidly over irrigated sites than over non-irrigated sites (Fig. 5d). The near-surface mixing 348 

ratio also decreased (Fig. 5b) due to dry air advection from the north. Sensible heating increased 349 

over the first five days as a result of fair weather except for 23 July which brought overcast 350 

conditions and light precipitation to the boundary between irrigated and non-irrigated croplands. 351 

Latent heat fluxes decreased across the study area as soil moisture was depleted. However, there 352 

was a rebound late on 23 and 24 July after the light rains. The second half of the IOP2 displayed 353 

periods of heavier precipitation over irrigated sites on  25 July (primarily at site 6 but also at sites 354 

1 through 4) and on 27 July (site 1) and non-irrigated sites on 28 July (most sites). Overcast 355 

conditions lowered surface fluxes on 25 July except for the physical evaporation that occurred 356 

after heavy rainfall over irrigated sites. The lack of precipitation led to large sensible heat fluxes 357 

over non-irrigated sites until precipitation arrived on 28 July.  At this point the sensible heating 358 

and temperature were lowered while the latent heating increased. 359 

 In contrast to the northerly flow that dominated late July, during the inter-IOP period of 360 

early July, deep tropospheric ridging occurred and L-A interactions are expected to dominate. Fig. 361 

6a-d displays the near-surface temperature, mixing ratio and surface energy fluxes during the week 362 

of 5 to 12 July. Warm southerly flow dominated the boundary layer during this time leading to 363 
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increases in temperature and evaporative demand resulting in the applications of irrigation.  An 364 

example of irrigation can be found in site 6 where on 8 July the volumetric soil moisture nearly 365 

doubled from 20% to 40% (not shown). Since there was no precipitation but positive changes in 366 

soil moisture, we suggest applications of irrigation. These applications of irrigation resulted in 2 367 

°C cooler temperatures over irrigated sites compared to non-irrigated sites. In this context, we 368 

suggest that the average latent heat flux over irrigated cropland was higher relative to that over 369 

non-irrigated cropland due to the irrigation applied on 8 July. With southerly flow and increasing 370 

temperature, evaporative demand also increased resulting in higher latent heat fluxes and near-371 

surface mixing ratios. Due to synoptic-scale high pressure settings and weak winds, on a number 372 

of nights there were dual maximum in mixing ratio which is not uncommon. One such peak in 373 

mixing ratio occurred just prior to the peak in latent heating. Note that after the sunrise the 374 

atmospheric boundary layer becomes unstable with further solar radiation leading to development 375 

of convection and mixing down of dry air above the inversion in the atmosphere and subsequent 376 

lowering of the mixing ratio. In the late afternoon, as sun angle lowers and longwave radiation 377 

becomes dominant over incoming shortwave radiation, the convective boundary layer decouples 378 

from the surface, and the nighttime inversion layer begins to form. The latter traps any residual 379 

physical evaporation and transpiration and leads to late afternoon-evening maximum.  380 

 381 

Diurnal observations of 22-24 July 2018 382 

Synoptic Evolution 383 

 To further understand irrigated and non-irrigated differences, we focus on a 3-day period 384 

of 22-24 July 2018 during which two L-A interactions case days occurred and were separated by 385 

a day of weak large-scale ascent and light precipitation. To investigate the L-A interactions in 386 
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adjacent irrigated and non-irrigated cropland during the three-day period, three data sets are 387 

utilized: 1) ISFS observations of near-surface temperature, dew point temperature, soil moisture, 388 

accumulated precipitation, and surface fluxes at each site; 2) ISS wind profiler data of wind speed, 389 

wind direction, and signal-to-noise ratio at both the York (irrigated) and Rogers Farm (non-390 

irrigated) sites, and 3) ISS radiosonde data of potential temperature, virtual potential temperature, 391 

and skew-T diagrams at both sites.  392 

 The synoptic setting with plots of the surface and 300 hPa analyses from the NOAA Storm 393 

Prediction Center are shown in Fig. 7a-f for 1800 LST, 22 July (0000 UTC, 23 July)  and 0600 394 

LST, 23 July (1200 UTC, 23 July) and 1800 LST, 23 July (0000 UTC, 24 July). At 300 hPa, the 395 

GRAINEX domain was between a large stationary high-pressure system centered in the southwest 396 

US and a negatively tilted trough in the eastern US that extended from Minnesota to the Florida 397 

panhandle. By the end of the period on 24 July, the flow was largely zonal as the northern flank of 398 

the southeastern high expanded with the eastward propagation of the Canadian low.  399 

During the morning and early afternoon of 23 July, a cold front moved through the 400 

GRAINEX study area with satellite and camera imagery showing persistent overcast conditions 401 

(not shown) and fog. While a T-shaped thunderstorm complex developed north of the GRAINEX 402 

area, the meridional portion of the complex extends southward east of the area while a new north-403 

south oriented rain band developed over the irrigated area starting at 0600 LST (Figure 8a-i). The 404 

rain line grew in strength as it slowly propagated across the irrigated cropland and dissipated as it 405 

moved over the non-irrigated area (discussed further in the next section). Finally, on 24 July, 406 

surface high pressure with clear skies and low wind speeds settled over the GRAINEX area 407 

providing ideal conditions for strong L-A interactions.  408 

 409 
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PBL Evolution of 22-24 July, 2018 as Observed by ISFS, ISS, and DOWs  410 

 On 22 July, near-surface atmospheric conditions (Fig. 9a-e) over the study area are 411 

saturated between 0300 and 0600 LST (Fig. 9a-b). With light winds, radiation fog is evident over 412 

the York site from camera images (not shown) that dissipates at sunrise and has completely 413 

disappeared due to boundary layer mixing by 0700 LST. The fog/cloud cover over irrigation is 414 

also evident from the temperature and dew point temperature in Fig. 9a-b where they remain steady 415 

between 0300 and 0600 LST but continue to fall over the non-irrigated locations. As observed in 416 

Fig. 5b, the mean mixing ratio over non-irrigated cropland falls to a lower value than over irrigated. 417 

The lower value was likely due to dew formation, as the temperature continued to fall, along with 418 

the dew point, at a faster rate over non-irrigated cropland (Fig 9a-b). The fog (dew) over irrigated 419 

(non-irrigated) cropland is further reflected in the negative sensible heat fluxes between 0300 and 420 

0600 LST (Fig. 9e) as the surface warmed by increasing net radiation. Sites 6 and 7 were located 421 

along the irrigation-non-irrigation boundary (Figure 1) and took on characteristics of both types of 422 

land uses. For example, site 7 (pink), a non-irrigated site, displayed the diurnal temperature 423 

characteristics of the irrigated sites.  424 

 There was no precipitation on 22 July and the largest soil moisture values were found at 425 

the irrigated locations (Fig. 9c). The sensible and latent heat fluxes for each site on 22 July are 426 

shown in Fig. 9d and e. Once the sky was cloud-free, between 0600 and 0700 LST, the air and 427 

dew point temperature quickly rose in association with the increases in sensible and latent heat 428 

fluxes, respectively. In addition, the fluxes began to reflect the land surface wetness between 1000 429 

to 1500 LST when sensible heat flux decreased and latent heat flux increased. It is during these 430 

times when the air and dew point temperature also started to diverge between the two different 431 

types of land uses (Fig. 9a-b).  432 
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 Figure 10a-d displays the wind speed and wind direction at both ISS sites on 22 July. Light 433 

winds dominated the boundary layer outside of a near-surface wind maxima around 250 m that 434 

formed around late evening and did not subside until sunrise. Above the boundary layer, stronger 435 

winds persisted over Rogers Farm as a cold front approached York from the west. Rogers Farm 436 

area was under the influence of stronger pressure gradient compared to York and northwest flow 437 

that existed above the boundary layer. Conversely, the flow aloft became westerly and diffluent 438 

over York. After sunrise the PBL height (PBLH) increased, as observed in the wind profilers 439 

signal-to-noise ratio at each site (Fig. 10e-f), until reaching a maximum height in the early 440 

afternoon (i.e., just after noon local time). Note the white and black curve in the figures showing 441 

the PBLH as determined by the Bulk Richardson number (Vogelezang and Holtslag 1996; Seidel 442 

et al. 2012) and the lifting condensation level (LCL; Bolton 1980), respectively.  Given the larger 443 

sensible heat fluxes over non-irrigated cropland, the maximum boundary layer height attained a 444 

higher altitude, just over 1 km AGL, compared to PBLH over irrigation, which grew to around 445 

850 m. 446 

 The soundings for 22 July reveal a stronger stable surface layer at the Rogers Farm ISS site 447 

compared to that of the York site (Supplementary Fig. 3a-d). In terms of PBLH, the peak height 448 

occurred at the 1300 LST sounding in York while the maximum in Rogers Farm occurred at the 449 

1500 LST sounding, again indicative of the larger sensible heating over the non-irrigated region. 450 

However, the weak surface inversion at York permitted its more rapid growth compared to the 451 

strong surface stratification prior to sunrise at Rogers Farm. It is also evident from the soundings 452 

that there was a capping inversion over York. Therefore, the lower PBLH at York can be 453 

contributed to both weaker sensible heat fluxes and a stronger capping inversion. Finally, the pre-454 

sunrise skew-T logp plots (Fig. 10g-h) show the moister boundary layer over irrigation with a 455 
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much shallower dry layer limited to the region of sharp direction wind shear in the entrainment 456 

layer. Over Rogers Farm, the entrainment layer was much thicker extending from 1 to 2 km AGL.  457 

Note that the entrainment was maximum after the morning transition, bringing drier air from above 458 

the inversion into the PBL and surface layer which increased evaporative demand and a response 459 

from the irrigated and non-irrigated vegetation. 460 

 Much different conditions presented themselves on 23 July as the surface front moved into 461 

the GRAINEX study area (Fig. 7a-b).  Similarity of air and dew point temperature at irrigated sites 462 

suggests that air was saturated at 2 m roughly from 0000 LST  to 0800 LST, 23 July while the non-463 

irrigated sites were close to saturation from 0400 LST to 0800 LST, 23 July (Supplementary Fig. 464 

4a-b). The overcast conditions also led to decreased surface fluxes on 23 July (Supplementary Fig. 465 

4c-d).  However, rain fell over irrigated sites (discussed below) in the morning hours so the sensible 466 

heat fluxes were constrained. The front passed through the entire GRAINEX region by around 467 

1400 LST 23 July, leaving behind mostly sunny skies prior to the afternoon-evening transition. As 468 

a result, a stable boundary layer developed across the entire region as evidenced by the negative 469 

sensible heat fluxes across all sites. 470 

An increase (decrease) in dew point was observed over irrigated (non-irrigated) sites 471 

between 0600 LST and 1400 LST (1200 to 1600 LST, although there was a slight increase as the 472 

sun rose and latent heating commenced), a result of PBL entrainment from above and the continued 473 

physical evaporation and transpiration. Advection is assumed to be small, given boundary layer 474 

winds that are generally calm and rarely exceed 5 m s-1. Weak large-scale advection may also 475 

suggest why the air and dew point temperature at 2 m largely followed the diurnal surface flux 476 

evolution. The winds increased from the north after 1500 LST on 23 July over irrigated  (not 477 
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shown) and after 1800 LST on 23 July over non-irrigated (not shown) areas which caused the dew 478 

points to decline rapidly over both land uses (Supplementary Fig. 4a-b).  479 

As discussed in the synoptic evolution, a convective line associated with a cold front 480 

extended from western Minnesota to just west of the GRAINEX area with a southwest-northeast 481 

orientation at around 0300 LST on 23 July.  While the precipitation was broken up west of the 482 

GRAINEX area, it maintained intensity on the north side of the domain. Subsequently, as the cold 483 

front propagated east-southeast across the northern portion of the GRAINEX region, a line 484 

developed east of Rogers Farm, NE. Around 0600 LST a meridional convective line developed 485 

directly over DOW8 (Fig. 8a-c), moved eastward and intensified as it approached DOW6 and 486 

DOW7 (Fig. 8d-f), and stalled and decayed over and eastward of DOW6 and DOW7 around 0730 487 

LST (Fig. 8g-i). Given the development of this system during IOP2, a more detailed integrated 488 

observational and modeling analysis will be provided in a future publication. 489 

The Most Unstable Convective Available Potential Energy (MUCAPE) is shown in Fig. 490 

11a-c and is calculated using a reversible moist adiabat with ice. The use of MUCAPE to 491 

characterize buoyancy mitigates inaccuracies that early morning inversions can have on surface-492 

based CAPE calculations. By the late morning, however, standard surface-based CAPE and 493 

MUCAPE are typically equivalent.  On 22 July (Fig. 11a), MUCAPE is relatively small and 494 

constant throughout the sounding period of the day. It is worth noting that MUCAPE over the 495 

irrigated York ISS site is consistently larger (blue curve) than that of the non-irrigated Rogers 496 

Farm ISS site (red curve).   On 23 July (Fig 11b), MUCAPE was suppressed during the 497 

precipitation event at 1300 UTC but quickly rebounded due to the near saturated conditions that 498 

exist throughout the day in the lower troposphere. The MUCAPE increased rapidly in the western, 499 

irrigated sites (DOW8, ISS-York) followed by the other two DOW sites that straddle the irrigation 500 
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gradient (DOW6 and DOW7) and at the non-irrigated ISS-Rogers Farm site. Unsurprisingly, 501 

MUCAPE declined to low values on 24 July (Fig. 11c). 502 

 One of the best examples of local L-A interactions during IOP2 was on 24 July (Fig. 12a-503 

f). High pressure had settled in over the GRAINEX study area (Fig. 7e-f) with clearing during 504 

overnight hours leading to rapid temperature decline (Fig. 12a). In addition, a faster temperature 505 

decline occurred over irrigated sites as the dew point temperature (Fig. 12b) had already begun to 506 

lower after the frontal passage late on 23 July from 1800 to 2400 LST (first half of the local 507 

evening). During the second half of the local evening/early morning, 0000 LST to 0600 LST, 23 508 

July the irrigated sites cooled to the dew point and dew formed. Several non-irrigated cropland 509 

does not quite reach saturation during the overnight cooling period. During the first six hours after 510 

sunrise, from 0600 to 1200 LST, there was a rapid increase in 2-m temperature (Fig. 12a), and a 511 

decrease in both PBL and lower tropospheric wind speeds mostly in the north-northeasterly 512 

direction (Fig. 13a-d) with PBL growth at both sites was observed (Fig. 13e-f). The dew point 513 

temperature also increases with daybreak likely due to the physical evaporation of dew. In 514 

addition, diverging of the 2-m temperature, humidity, and surface fluxes (Fig. 12) between 515 

irrigated and non-irrigated locations on 24 July provides a clear example of the role of irrigation 516 

on near-surface meteorology.  517 

 At the end of 24 July, the winds became southeasterly.  The PBL grew rapidly and was 518 

well mixed over both ISS sites by 1100 LST  as can be found in both the signal-to-noise ratio (Fig. 519 

13e-f) and radiosondes (Fig. 14a-f). The LCL at both sites (black curves in Fig. 13e-f) increased 520 

rapidly after sunrise, well before the PBL mixed layer developed, to 3 km over irrigated and above 521 

4 km on non-irrigated croplands after which little variation was observed until the after-evening 522 

transition. The morning sounding over irrigated York shows a classic nocturnal boundary layer 523 
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structure with a strong inversion (nearly 10ºC in the lowest 250 m) underlying a weakly stable 524 

layer that extends up to 1.25 km. In contrast, over non-irrigated Rogers Farm the layer overlying 525 

the strong inversion was neutral. Further inspection of data suggests that vertical shear existed 526 

between 500 and 1000 m at both locations from 0100 LST to 0700 LST (Figure 13 a-b). The shear 527 

was stronger over non-irrigated Rogers Farm so that shear production and breaking waves may 528 

force this layer toward neutral stratification compared to the weakly stable conditions over York. 529 

The absence of vertical turbulence profiles prohibited further investigation and verifying this 530 

hypothesis.    There was a slightly stronger capping inversion over irrigation as observed in the 531 

potential temperature and virtual temperature soundings (Fig. 14a-d) while PBL top entrainment 532 

was stronger over the non-irrigated ISS site in Rogers Farm as indicated  by the higher PBLH. In 533 

the afternoon, observed PBLH has stabilized over irrigation at just above 1 km. On the other hand, 534 

the PBLH decreased over Rogers Farm by late afternoon to a value similar to that over York by 535 

1700 LST. Although it is more pronounced over the Rogers Farm, the PBLH decreased over both 536 

location by sunset. 537 

  538 

Mixing Diagrams 539 

 The ISS-York (in close proximity to ISFS site 2) and the ISS-Rogers Farm (in close 540 

proximity to ISFS site 9) (Fig. 1) is used to approximate land surface states, near-surface 541 

meteorology, and atmospheric profile data in order to produce mixing diagrams (Fig. 15a-f). 542 

Mixing diagrams were introduced by Betts (1982, 1992). They were further highlighted by 543 

Santanello et al. (2009, 2011, 2018) as a tool for diagnosing local land-atmosphere interactions. 544 

Mixing diagrams are a vector approach to describing the diurnal growth and decay of the 545 

convective boundary layer from a heat and moisture budget perspective.  The methodology 546 
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employs a boundary layer moist static energy (MSE) column budget approach for the 547 

understanding of L-A interactions by considering fluxes through the bottom boundary (surface 548 

fluxes), lateral boundaries (advection), and top boundary (entrainment). For the analysis carried 549 

out here, only surface fluxes were utilized with entrainment calculated as a residual as described 550 

in the documentation for L-A interactions metrics produced for GEWEX/GLASS 551 

(http://cola.gmu.edu/dirmeyer/Coupling_metrics.html). Small magnitude processes, such as 552 

advection and non-adiabatic terms are contained as part of the entrainment term.  553 

 Four quantities that are difficult to observe but can be obtained from mixing diagrams 554 

(Santanello et al. 2009, 2011) are: 1) the surface Bowen ratio (s=SHs / LHs), 2) the entrainment 555 

Bowen ratio (e=SHe / LHe), 3) the latent heat entrainment ratio (Al=LHe / LHs), and 4) the sensible 556 

heat entrainment ratio (Ah=SHe / SHs). In these 4 quantities, subscripts l, h, e, and s represent latent 557 

heating, sensible heating, evaluation in the entrainment layer, and evaluation at the surface, 558 

respectively. Note that in Fig. 15 a, c, and e,  the dashed lines are vectors representing the surface 559 

and entrainment fluxes and yield the Bowen Ratio of the surface and entrainment (Santanello et 560 

al. 2019).  The values of the quantities for each of the days considered is shown in Table 5, where 561 

the daily mean values are given. Two hourly values were also calculated, corresponding to the 562 

sounding time interval, which resulted in similar values to that of the daily mean when aggregated, 563 

as was observed in Santanello et al. (2009).  564 

 On 22 July, the morning hours were dominated by warming and moistening at both 565 

locations (Fig. 15a), resulting in decreasing relative humidity but increasing equivalent potential 566 

temperature (Fig. 15b). Close to noon  (1100 LST), the PBLH had attained its largest value capping 567 

a well-mixed boundary layer. The larger PBLH over Rogers Farm suggests a greater entrainment 568 

of warm, dry air from the free troposphere resulting in warming, and slight drying of the 2-m air 569 
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as can be observed in the mixing diagram (Fig. 15a), leading to a near constant e and declining 570 

relative humidity (Fig. 15b). There was minimal drying at 2 m over York and while the humidity 571 

went down (rapidly in the morning, then slowly in the afternoon), e increased throughout the day. 572 

In other words, at mid-day solar heating dominated the surface Bowen Ratio evolution with 573 

entrainment drying dominating the Rogers Farm signature while surface moistening from physical 574 

evaporation at York resulted in the maintenance of a positive slope to the surface Bowen Ratio. 575 

Prior to sunset (the darkest dots in Figs 15a-b) there was a period of moistening leading to a rise 576 

in relative humidity at both sites. This period of moistening and slow cooling is associated with 577 

increased moisture flux convergence during the afternoon-evening transition. One point worth 578 

considering is that southeastern Nebraska experiences a humid continental climate, not semi-arid 579 

where L-A interactions is significantly more pronounced. Furthermore, spring and summer of 2018 580 

were wet and there were clear differences between soil moisture over irrigated and non-irrigated 581 

croplands as reflected in the ISFS soil moisture plots (Figs. 8c and 12c).   582 

 The daily mean surface (entrainment) Bowen ratio has a value nearly 3 (1.5) times larger 583 

over non-irrigated cropland compared to irrigated cropland. It is suggestive of the larger magnitude 584 

of sensible heating and smaller magnitude of latent heat fluxes over non-irrigated areas (Fig. 15a-585 

b).  The surface Bowen ratio was maximized in the morning and decreased throughout the day (not 586 

shown) as both latent and sensible heat fluxes were increased with relative magnitudes being larger 587 

at both locations. This is, again, indicative of the most rapid boundary layer growth occurring 588 

between sunrise and noon local time. At noon local time, the surface Bowen ratio difference 589 

between irrigated and non-irrigated cropland was maximized where it was three times larger over 590 

non-irrigated areas compared to the irrigated. The entrainment layer Bowen ratio was similar to 591 

that of the surface, although it was typically negative given that warm (positive heat flux) and dry 592 
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air (negative moisture flux) entrained into the boundary layer from the free atmosphere. Again, the 593 

most negative values were found in the morning with increasing values throughout the day, turning 594 

positive just before and during the evening transition (not shown). The entrainment ratios are much 595 

more similar in magnitude (Table 5) in terms of the daily aggregate, with the moisture entrainment 596 

flux being significantly larger over irrigated land uses due to the overall weaker entrainment 597 

coupled with a larger surface moisture flux. The same can be said for the non-irrigated areas, where 598 

the heat fluxes at both the surface and the entrainment layer are maximized in late morning and 599 

decreased proportionally through the afternoon.  600 

 On 23 July, the frontal passage, as discussed in the synoptic evolution, led to a much 601 

different mixing diagram than the previous day (Fig. 15c-d). Due to cloud cover inhibiting long 602 

wave radiative cooling, surface air temperatures remained high overnight. Also, the moisture term 603 

in moist static energy at sunrise was the same as at sunset of the previous night at Rogers Farm but 604 

has decreased slightly at York. The 2-m temperature increased at both sites during the morning 605 

hours, but the 2-m humidity remains near constant at Rogers Farm, resulting in a decreasing 606 

relative humidity and a near constant e (Fig. 15c-d). At ISS-York, the near-surface moisture 607 

increased rapidly in the morning as the squall line developed between the York site and the Big 608 

Blue River. The mixing ratio began to fall rapidly well before the temperature started to decrease, 609 

providing further support of a frontal passage prior to sunset. In contrast, the ISS-Lincoln site 610 

underwent moistening until a few hours before sunset at which point the temperature began to fall, 611 

moistening weakened, and drying commenced with frontal passage at the final observation time 612 

(1900 LST 24 July 2018). As a result, both relative humidity and e decreased with time in the 613 

afternoon at York. On the other hand, relative humidity decreased and e increased with time at 614 

Rogers Farm until just prior to sunset. In terms of daily aggregates, the surface Bowen ratio at 615 
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Rogers Farm was 5 times larger than that at York while the entrainment layer Bowen ratio 616 

magnitude at York was 3 times that at Rogers Farm. The surface Bowen ratio can be explained 617 

with the aid of Supplementary Fig. 4c-d where the latent heat flux was about 25% larger over 618 

irrigated cropland compared to non-irrigated. The smaller magnitude of latent heat flux over 619 

Rogers Farm was therefore responsible for the consistently larger surface Bowen ratio. Unlike 22 620 

July, the entrainment ratios were quite different at the two sites. The entrainment layer Bowen 621 

ratio and entrainment heat and moisture fluxes must be carefully considered as the overcast moist 622 

day did not provide ideal conditions for L-A observations as observed in the soundings (not 623 

shown). As noted above, advective tendencies in the moist static energy budget are difficult to 624 

assess in an observational study and will be addressed in a forthcoming modeling study. 625 

 On 24 July, conditions were similar to 22 July with high surface pressure and cloud free 626 

skies. The strong cooling and drying after the frontal passage led to the lowest values observed in 627 

moist static energy at sunrise. The latent and sensible heat components of moist static energy 628 

increased in a similar manner during the morning hours (Fig. 15e-f) until the mixed layer had 629 

grown to near the PBLH and entrainment is effective at modifying the surface temperature and 630 

humidity. With the temperature and moisture increasing, e increased slightly as the relative 631 

humidity plummeted. During the afternoon, dry air originating out of the north entrained into the 632 

PBL from the free atmosphere. As discussed previously, the ISS-Rogers Farm site observed drier 633 

air capping the inversion as the winds at York became westerly on 24 July in advance of another 634 

precipitation system that arrived on 25 July (not shown). As a result, and in contrast to the two 635 

previous days, the entrainment layer Bowen ratio has a larger magnitude over York than over 636 

Rogers Farm and the moisture term of moist static energy over York was lower than that of Rogers 637 

Farm. 638 
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Conclusions 639 

 640 
The Great Plains Irrigation Experiment (GRAINEX) was conducted in the spring and 641 

summer of 2018 to investigate the role of the sudden onset and continued widespread application 642 

of irrigation on PBL evolution and near-surface meteorology in southeastern Nebraska which 643 

includes adjacent irrigated and non-irrigated areas.  GRAINEX is the first of this type of field 644 

campaign that has solely focused on the impacts of irrigated versus non-irrigated land uses on the 645 

atmosphere. This study is particularly important and timely in the context of rapid expansion of 646 

irrigated agriculture globally and its potential impacts on weather and climate. This paper 647 

presented initial results of analysis of data from GRAINEX.    648 

The study finds that early in the growing season (IOP1), differences in temperatures 649 

between irrigated and non-irrigated regions were relatively small compared to the middle of the 650 

growing season (IOP2) with cooler temperatures over irrigated areas during both time periods. The 651 

observed mixing ratio also showed similar patterns with higher mixing ratios over irrigated land. 652 

Generally, the daily differences between latent and sensible heat fluxes were also smaller during 653 

the early growing season over both irrigated and non-irrigated land while they were larger during 654 

the peak growing season over irrigated areas. Consistent with these findings, higher soil moisture 655 

and lower turbulent kinetic energy was reported during the peak growing season and planetary 656 

boundary height was lower over irrigated land (Fig. 16).   657 

Observations also demonstrate the influence of irrigation on the daily evolution of these 658 

variables as well as MUCAPE, Bowen ratio, equivalent potential temperature, planetary boundary 659 

layer height and several other land-atmosphere interaction measures. In addition, initial assessment 660 

suggests that irrigated land use may have influenced precipitation events over the study area. 661 

Future studies will include additional assessment of the observed data from the GRAINEX and 662 
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numerical modeling to further understand the process and mechanisms via which irrigated and 663 

non-irrigated land use impacts lower troposphere and weather.  664 
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Table 1. GRAINEX ISFS sites and their locations. 958 
 959 

Site Nearest Town Latitude (deg N) 
Longitude (deg 

W) 

Land use land 

cover 

Flux Sensor  

Mounting 

Height (m) 

1 Benedict 41.009669 -97.541247 Irrigated 6 

2 York 40.879614 -97.541887 Irrigated 6 

3 Exeter 40.66228 -97.4846 Irrigated 6 

4 Beaver Crossing 40.77854 -97.33173 Irrigated 6 

5 Friend 40.662223 -97.333542 Irrigated 6 

6 Wilber 40.458504 -97.028949 Irrigated 6 

7 Loma 41.135725 -96.974423 Non-irrigated  4.5 

8 Panama 40.57374 -96.461773 Non-irrigated 6.5 

9 Elmwood 40.8238 -96.33517 Non-irrigated 6.5 

10 Unadilla 40.645905 -96.271274 Non-irrigated 6.5 

11 Unadilla 40.6932 -96.223161 Non-irrigated 4.5 

12 Cook 40.483095 -96.202562 Non-irrigated 5.5 

 960 
 961 
 962 
 963 
 964 
 965 
 966 
 967 
 968 
 969 
 970 
 971 
 972 
 973 
 974 
 975 
 976 
 977 
 978 
 979 
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Table 2. Parameters measured at each GRAINEX ISFS sites. 980 
 981 

Parameter Sensor 
Mounting Height/depth 

(m) 

Air temperature, relative 

humidity 
NCAR TRH 

2 

Air pressure 

Vaisala PTB220, PTB2010 

barometers; Paroscientific 

nanobarometer 

2 

Fluxes of momentum, sensible 

and latent heat, and carbon 

dioxide 

Campbell CSAT3A/EC150 

4.5-6 

Horizontal wind speed/direction 
Gill WindObserver 2D sonic 

anemometer 

10 

Precipitation (rain) MRI tipping bucket 2  

Radiation (4-components) 
Hukseflux NR01 integrated 

radiometer 

2 

Soil heat capacity Hukseflux TP01 0.025 

Soil heat flux REBS HFT 0.05 

Soil moisture Decagon EC-5 0.025 

Soil temperature profile NCAR Tsoil 0-0.05 

 982 
 983 
 984 
 985 
 986 
 987 
 988 
 989 
 990 
 991 
 992 
 993 
 994 
 995 
 996 
 997 
 998 
 999 
 1000 
 1001 
 1002 
 1003 
 1004 
 1005 
 1006 
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Table 3a. Location of ISS sites. 1007 
Site Description Latitude (deg N) Longitude (deg W) 

ISS2 Rogers Memorial Farm 40.8444 -96.4683 

ISS3 York Municipal Airport 40.8916 -97.6261 

 1008 
 1009 
Table 3b. Measurements at the ISS locations (Rogers Memorial Farm & York Municipal 1010 
Airport). 1011 

System Measurement Sensor 

Upper Air 

Cloud Height Vaisala CL31 and CL51 Ceilometer 

Sounding Variables Vaisala MW41/RS 41 Radiosondes 

Wind Profile 
LAP3000 915 MHz DBS radar wind 

profiler with RASS 

Surface 

Pressure Vaisala PTB210 

Radiation (4-components) Hukseflux NR01 

Precipitation (rain) HAS Tipping Bucket 

Meteorological Summary 

- Temperature 

- Relative humidity 

- Precipitation type 

- Precipitation intensity 

- Precipitation quantity 

- Air pressure 

- Wind direction 

- Wind speed 

- Radiation  

Lufft WS700/800 Weather Sensors 

 1012 
 1013 
 1014 
 1015 
 1016 
 1017 
 1018 
 1019 
 1020 
 1021 
 1022 
 1023 
 1024 
 1025 
 1026 
 1027 
 1028 
 1029 
 1030 
 1031 
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 1032 
 1033 
Table 4. Measured parameters at each EMESH station during the GRAINEX. 1034 

Parameter 

 

Sensor Mounting Height/depth 

(m) 

Air Temperature BOSCH BMP 180, 

Sensirion SHT 75 

2 

Barometric Pressure BOSCH BMP 180 2 

Relative Humidity Sensirion SHT 75 2 

Wind speed Davis Vantage Pro 2 3 

Wind direction Davis Vantage Pro 2 3 

Rainfall Sparkfun Tipping Rain 

gauge 

2 

Soil temperature  Maxim DS18B20 -0.05, -0.3 

Volumetric soil moisture METER Group EC-5 -0.05, -0.3 

 1035 
 1036 
 1037 
 1038 

 1039 
 1040 
 1041 
 1042 
 1043 
 1044 
 1045 
 1046 
 1047 
 1048 
 1049 
 1050 
 1051 
 1052 
 1053 

 1054 
 1055 
 1056 
 1057 
 1058 
 1059 
 1060 
 1061 
 1062 
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Table 5. Mixing Diagram Bowen and Entrainment Ratios (York/Lincoln) 1064 
 1065 

 βs (York/Lincoln) βe 

(York/Lincoln) 

Al 

(York/Lincoln) 

Ah 

(York/Lincoln) 

22 July 222018 0.11/0.27 -0.35/-0.57 -0.68/-0.65 2.2/1.4 

   23 July 2018 0.05/0.24 -0.22/-0.75 -0.48/-0.92 3.93/1.54 

 24 July 2018 0.09/0.29 -0.70/-0.55 -0.61/-0.84 4.75/1.58 

 1066 
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 1 
 2 

Fig. 1. Location of various observation platforms over eastern Nebraska. The region transitions 3 
from non-irrigated (in the east) to irrigated (in the west) areas.  4 
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h) 133 
 134 

 135 
 136 
Fig. 2a-h. a) An irrigated ISFS tower (site #1 in Fig. 1) at the beginning of the IPO2 with a center 137 
pivot irrigation system in the background; b) a tripod with net radiometer during IOP1, c)  same 138 
ISFS tower during IOP2 (middle of the growing season; d) net radiometer during IOP2 (middle of 139 
the growing season); e) ISS radar wind profiler; f) a launched radiosonde balloon; g) one of the 140 
three Doppler on Wheels (DOW) and h) an EMESH station next to an irrigated field. 141 
 142 
 143 
 144 
 145 
 146 
 147 
 148 
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a)                                                                      b) 

 
 

                                           c)                                                                          

 
Fig. 3a-d. Average 2-m a) temperature; b) mixing ratio; and c) soil moisture for irrigated and non-

irrigated ISFS sites with their differences at the time of their respective daily maximum 

temperature. These panels included IOP1, IOP2, and the period in-between IOP1 and IOP2 (time 

between two dashed vertical lines). Horizontal line represents zero difference between irrigated 

and non-irrigated sites. 
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   d)       

 
e)        

       
f)        

 

Fig. 4a-f. ISFS irrigated site 1 diurnal variation of surface fluxes for a select date during: a) IOP1 

(06 June) and b) IOP2 (24 July); c, (07 June) d) (24 July) same as a, b but for non-irrigated ISFS 

site 8. Daily-averaged latent and sensible heat fluxes are for all irrigated and non-irrigated sites: e) 

IOP1 and f) IOP2. To capture fluxes during sunrise to sunset and to synchronize with radiosonde 

launches, daily averages were calculated for a period from 0500 LST to 1900 LST.  
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a)                                                                         b) 

 
             c)                                                                          d) 

 
              e)                                                                           f) 

 

Fig. 5a-f. Average (except for d): a) temperature, b) mixing ratio, c) equivalent potential 

temperature, d) soil moisture for each ISFS site, e) sensible heat flux, and f) latent heat flux over 

irrigated and non-irrigated ISFS sites during IOP2. In the panel 5d, irrigated sites 1-6 are shown 

as s1-s6 with blue-ish colors which show higher soil moisture while non-irrigated sites 7-12 are 

shown as s7-s12 with red-ish colors with lower soil moisture.  
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a)                   b) 

 
      c)                             d) 

 
 

Fig. 6a-d. Average: a) 2-m temperature; b) 2-m mixing ratio; c) sensible heat flux, and d) latent 

heat flux for irrigated and non-irrigated ISFS sites during the inter-IOP period. 
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a)                                                                       b) 1 

 2 
c)                                                                        d) 3 

4 
e)                                                                        f) 5 

 6 
 7 
Fig. 7a-f. Synoptic-scale conditions over the conterminous USA provided by NOAA’s Weather 8 
Prediction Center and Storm Prediction Center. Surface analysis (left column) and 300 hPa 9 
analysis (right column) at:  a, b) 1800 LST 22 July (0000 UTC 23 July) 2018; c, d) 0600 LST 10 
(1200 UTC) 23 July 2018, and e, f) 1800 LST 23 July (0000 UTC 24 July) 2018. Blue shaded 11 
areas and yellow lines are showing jet streaks and divergence, respectively.  12 
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1 
Fig. 8a-i: Radar reflectivity (Z) at 1.2° elevation from DOW8 (left column), DOW6 (center 2 
column), and DOW7 (right column) radar for a,b,c) 0600 LST; d,e,f) 0645 LST; and g,h,i) 0730 3 
LST on 23 July 2018. The locations of the radars are shown with a blue dot (DOW8), red dot 4 
(DOW6), and purple dot (DOW7).  North is located towards the top.  For clarity, radar 5 
reflectivity below 2 dBZ is not plotted.  6 
 7 
 8 
                                    9 
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a)                                                                      b) 

 
                                              c)                                                                        

 
        d)                                                                        e) 

 
 

Fig. 9a-e. ISFS site data on 22 July 2018 for: a) 2-m temperature, b) 2-m mixing ratio, c) soil 

moisture, d) latent heat flux, and e) sensible heat flux over irrigated [sites 1-6 (shown as s1-s6 with 

blue-ish colors)] and non-irrigated [sites 7-12 (shown as s7-s12 with red-ish colors)] ISFS sites.  
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a)                                                                         b) 

 
c)                                                                          d) 

 
      e)                                                                         f)                                                                    
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g)                                                                        h) 

 
Fig. 10a-h. 915 MHz wind profiler plots for York (left column) and Rogers Farm (right column) 

ISS sites for 22 July 2018: a, b) wind speed; c, d) wind direction; e, f) signal-to-noise ratio (SNR) 

with boundary layer height calculated from sounding using critical Richardson number (white line) 

and lifting condensation level (LCL) (black line) and g, h) skew-T and logp from radiosondes from 

the first sounding of the morning (~1100 UTC, ~0500 LST).  
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                                   a) 

 
   b) 

 
   c) 

 
 

Fig. 11a-c. MUCAPE calculated from daily soundings at the two ISS and three DOW sites for: a) 

22 July 2018, b) 23 July 2018, and c) 24 July 2018. 
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a)                                                                        b) 

 
                                               

c)                 

 
 

   d)                                                                             e) 

 
 

Fig. 12a-e. Same as Fig 9a-e but for 24 July 2018. 
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a)                        b) 

 
    c)                d) 

 
     e)                 f) 

 
Fig. 13a-f. Same as Fig. 9a-f but for 24 July 2018. 
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a)                                                                        b) 

 
    c)                                  d) 

 
     e)       f) 

 
Fig. 14a-f. Radiosonde profiles on 24 July 2018 from the York (left column) and Rogers Farm 

(right column) ISS sites 8 times daily from ~0500 LST  to ~1900 LST : a, b) Boundary layer and 

lower free atmosphere ; c, d) boundary layer and lower free atmosphere v; and e, f) air 

temperature and dew point temperature through the troposphere. 
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a)                 b) 

 
   c)                             d) 

 
   e)                f) 

 
Fig. 15a-f. Mixing diagrams, or the temporal evolution of the moisture and heat terms of the 

surface moist static energy (left column) and relative humidity-e space (right column) for: a, b) 

22 July 2018; c, d) 23 July 2018, and e, f) 24 July 2018. The temporal evolution is from sunrise to 

sunset with each segment lasting 20 minutes and the dots getting darker as the day gets longer. 
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Dotted lines in a, c, and e show the Bowen Ratio slope of the surface (lower) and entrainment 

(upper) for irrigated (blue) and non-irrigated (red) cropland. 
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a)                                                                   b) 1 
 2 

 3 
 4 
Figure 16a-b. A conceptual diagram of changes in Lifting Condensation Level (LCL), Planetary 5 
Boundary Layer (PBL), Latent Heat Flux (LH), and Sensible Heat Flux (SH) over: a) irrigated 6 
and b) non-irrigated land use land cover. In the Figure 16a, due to irrigation, latent heat flux is 7 
higher and sensible heat flux is lower. On the other hand, over non-irrigated land use (Figure 8 
16b) LH is higher compared to SH but the difference between the two (LH vs. SH) is much 9 
smaller. Overall, SH is greater over non-irrigated land use compared to irrigated land use.  This 10 
condition also impacts depth of the PBL and resulted in higher PBL height over non-irrigated 11 
land use. Relatively higher LH and moistness over irrigated land use resulted in lower LCL 12 
compared to non-irrigated land use.  13 
       14 
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