
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Biochemistry -- Faculty Publications Biochemistry, Department of

9-16-2020

A practical guide to mechanistic systems modeling in biology A practical guide to mechanistic systems modeling in biology

using a logic-based approach using a logic-based approach

Anna Niarakis

Tomáš Helikar

Follow this and additional works at: https://digitalcommons.unl.edu/biochemfacpub

 Part of the Biochemistry Commons, Biotechnology Commons, and the Other Biochemistry, Biophysics,

and Structural Biology Commons

This Article is brought to you for free and open access by the Biochemistry, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biochemistry -- Faculty
Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/biochemfacpub
https://digitalcommons.unl.edu/biochemistry
https://digitalcommons.unl.edu/biochemfacpub?utm_source=digitalcommons.unl.edu%2Fbiochemfacpub%2F506&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/2?utm_source=digitalcommons.unl.edu%2Fbiochemfacpub%2F506&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/111?utm_source=digitalcommons.unl.edu%2Fbiochemfacpub%2F506&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/7?utm_source=digitalcommons.unl.edu%2Fbiochemfacpub%2F506&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/7?utm_source=digitalcommons.unl.edu%2Fbiochemfacpub%2F506&utm_medium=PDF&utm_campaign=PDFCoverPages

Problem Solving Protocol

A practical guide to mechanistic systems
modeling in biology using a

logic-based approach

Anna Niarakis1 and Tomáš Helikar2

1 University of Paris-Saclay
2 University of Nebraska–Lincoln

Corresponding authors — Anna Niarakis, GenHotel, Univ Evry, University of Paris-Saclay,
Genopole, 91025 Evry, France and Lifeware Group, Inria Saclay-île de France, Palaiseau 91120,
France. E-mail: anna.niaraki@univ-evry.fr ; Tomáš Helikar, Department of Biochemistry,
University of Nebraska–Lincoln, Lincoln, NE, 68588, USA. E-mail: thelikar2@unl.edu

Abstract
Mechanistic computational models enable the study of regulatory mechanisms
implicated in various biological processes. These models provide a means to ana-
lyze the dynamics of the systems they describe, and to study and interrogate their
properties, and provide insights about the emerging behavior of the system in the
presence of single or combined perturbations. Aimed at those who are new to
computational modeling, we present here a practical hands-on protocol breaking
down the process of mechanistic modeling of biological systems in a succession of
precise steps. The protocol provides a framework that includes defining the model
scope, choosing validation criteria, selecting the appropriate modeling approach,
constructing a model and simulating the model. To ensure broad accessibility of the

1

digitalcommons.unl.edu

Published in Briefings in Bioinformatics, 2020, 19p.
doi: 10.1093/bib/bbaa236
Copyright © 2020 Anna Niarakis and Tomáš Helikar. Published by Oxford University Press.
Used by permission.
Submitted 25 May 2020; revised 10 August 2020; published 16 October 2020.
Citation: Anna Niarakis, Tomáš Helikar, A practical guide to mechanistic systems modeling

in biology using a logic-based approach, Briefings in Bioinformatics, 2020, bbaa236,
https://doi.org/10.1093/bib/bbaa236

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 2

protocol, we use a logical modeling framework, which presents a lower mathemati-
cal barrier of entry, and two easy-to-use and popular modeling software tools: Cell
Collective and GINsim. The complete modeling workflow is applied to a well-studied
and familiar biological process—the lac operon regulatory system. The protocol can
be completed by users with little to no prior computational modeling experience
approximately within 3 h.

Keywords: mechanistic logic-based models, in silico simulations, lac operon,
computational systems biology, Cell Collective, GINsim

Introduction

Published manuscripts, textbooks and presentations often use illus-
trations and static diagrams of biological networks to represent and
communicate complex biological processes and mechanisms. Creat-
ing such illustrations of biological pathways facilitates the systematic
synthesis of prior knowledge to represent comprehensively and accu-
rately a given biological process. Nevertheless, no matter how precise
and detailed, a static graph can only provide a limited amount of in-
formation about a system. However, living organisms and their build-
ing blocks (e.g. cells, tissues and organs) are dynamic systems that
respond and adapt continuously to different situations and various
stimuli [1, 2]. Mechanistic computational models can add this ‘third
dimension’ of dynamics to our methods for understanding complex
biological systems. Modeling the dynamics of biological networks has
been a significant challenge in life sciences, and systems biology has
seen a flourish of development and application of methods over the
past decades.

Applications of the protocol

Dynamical analyses and simulations of computational models enable
researchers to predict, characterize and explain complex behaviors of a
biological system under various scenarios such as gene knock-outs or
other types (even combinations) of perturbations. Such modeling ef-
forts have the potential to contribute to experimental design through
better prioritization of hypotheses (targets) and lead to considerable
time and resource savings. Computational modeling also offers the

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 3

potential to bring together researchers with different expertise, includ-
ing wet lab experimentalists, translational researchers, clinicians, com-
puter scientists, mathematicians and bioinformaticians. However, in
order to reach this potential, computational modeling must be made
available in an environment accessible to people without prior compu-
tational experience while offering powerful and comprehensive tools
to expert modelers. Modern biology is awash with data; laboratory
scientists must be able to use cutting-edge computational approaches
to manipulate, visualize, model and simulate such data without the
need for external expertise [3–8]. In bioinformatics, easy-to-use plat-
forms such as Galaxy [9] brought powerful analysis methods within
reach of wet-lab researchers, allowing non-bioinformaticians to ana-
lyze large genomics and functional genomics datasets, thus signifi-
cantly increasing the impact of bioinformatics research.

Construction and analysis of computational models can be a daunt-
ing task, involving the use of software tools that require advanced bio-
informatic and/or mathematical skills. Several education institutions
and grant-funding agencies in the USA and Europe have recognized
that systems modeling, numerical simulations and understanding
dynamics are skills currently lacking across the life sciences educa-
tion system. This is despite the need by the next generation of the
life sciences workforce to be prepared and succeed in today’s and
tomorrow’s health and life sciences jobs [10–12]. Indeed, mechanistic
modeling (in particular logical modeling as used in this protocol) is
already used as an active, inquiry-based learning approach, whereby
university life sciences students can learn about the various biologi-
cal and biochemical processes by building, simulating and analyzing
relevant computational models [13–16].

Overview

We designed this protocol to address computational and mathemati-
cal barriers that hinder non-computational scientists from efficiently
incorporating computational modeling into their experimental prac-
tices. This protocol provides the audience with a conceptual f low of
the modeling process (Figure 1): designing the scope of a model,
defining the model’s validation criteria, selecting an appropriate mod-
eling approach, building and annotating the model and analyzing its
dynamics. It is important to note that the process of modeling, like

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 4

any scientific research, does not follow a linear path. It is important
to expect that each step of the process outlined in this protocol (and
Figure 1) can (and likely will) result in the need to revise previous
steps to account for unexpected pieces of knowledge obtained while
constructing or simulating the model. For example (Figure 1), a re-
searcher might decide to fine-tune the regulatory mechanism (step
5) after model validation did not produce satisfactory results. In an-
other scenario, a researcher may realize the model that is not passing
a validation criterion because the model did not consider a critical
pathway; in this case, they need to identify additional components
and interactions (step 4) or re-define the validation criterion to better
align with model scope (step 2).

Review of the lac operon regulation system

This protocol is designed to be broadly accessible to biology scientists,
established or in-training. As such, no prior training or experience in
computational modeling, programming or bioinformatics is needed.
Throughout the protocol, we use the widely studied and well-known
lac operon system.

As detailed in Figure 2, the lac operon includes a set of three genes:
a promoter, a regulator and an operator. The three structural genes
are lacZ, encoding β-galactosidase, an enzyme able to metabolize

Figure 1. An overview flowchart depicting the process of modeling. Solid arrows
indicate the main workflow. Dotted arrows indicate possible needs for the revision
of previous steps, as discussed in the main text.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 5

Figure 2. Overview of lac operon regulation. See main text for details about the
regulation of the lac operon. The lac operon is under the control of two regulatory
molecules, the lac repressor and the CAP. These molecules are responsible for switch-
ing the lac operon ON or OFF, depending on sugar availability. In the absence of
extracellular glucose (depicted with degradation circles), the hunger molecule cAMP
(blue node) binds to CAP (green node) and stabilizes a conformation with a high
affinity for the regulator CAP site of DNA (depicted with a green box with a cross).
The cAMP-CAP binding favors the binding of the RNA polymerase (orange node)
to the promoter (thick black arrow) site. This also happens because, as extracellular
lactose (depicted with pale orange nodes) is imported into the cell, a fraction of it
is converted to allolactose (green nodes). Allolactose binds to the lac repressor (big
purple node), stabilizing a conformation unable to bind the operator (orange box
with a black minus). RNA polymerase is thus free to start transcribing the operon.
When the operon is active, the three structural genes will be produced, namely
lacZ, lacY and lacA. LacI, the gene encoding for the lac repressor, is not part of the
operon and is under the control of its own promoter. lacI is continuously transcribed
and the repressor protein is always present. The lac repressor binds to the operator,
which is partially overlapping with the promoter region. This binding prevents the
RNA polymerase from binding and starting the transcription process. Illustration
was created with TinkerCell (http://www.tinkercell.com).

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 6

lactose into glucose and galactose, lacY, encoding β-galactoside per-
mease, a transmembrane protein that imports β-galactosides into the
cell, and lacA, which encodes the β- galactoside transacetylase, an
enzyme responsible for the transfer of an acetyl group from acetyl-
CoA to β-galactosides. LacA does not actively participate in lactose
metabolism [17, 18].

The lac operon is controlled by two regulatory molecules: the lac
repressor and the catabolite activator protein (CAP). These molecules
are responsible for switching the lac operon ON or OFF, depending
on sugar availability.

The lac repressor binds to the operator, which is partially over-
lapping with the promoter region. This binding prevents the RNA
polymerase from binding and starting the transcription process. LacI,
the gene that encodes the lac repressor, is not part of the operon
and is controlled by its own promoter. LacI is continually transcribed,
and the repressor protein is always present. As lactose enters a cell,
a fraction of it is converted into the inducer allolactose, an isomer of
lactose. Allolactose binds to the lac repressor, stabilizing a conforma-
tion that is unable to bind the operator. RNA polymerase is thus free
to start transcribing the operon. When glucose levels are low, CAP
can bind to a site just upstream to the lac operon, the regulator, and
facilitates the RNA polymerase attachment to the promoter. The gene
that encodes CAP is not part of the lac operon and is constitutively
expressed. The binding of CAP to the DNA is regulated by the ‘hunger
signal’ molecule, cyclic adenosine monophosphate (cAMP), which is
produced in Escherichia coli when glucose levels are low. cAMP binds
to CAP and stabilizes a conformation with a high affinity for the regu-
lator [19]. In the absence of binding of the cAMP-CAP complex to the
DNA, transcription of the operon is significantly reduced [18, 20, 21].
Thus, the operon is transcribed at a high level only when glucose, the
preferred sugar, is absent. E. coli cells presented with a mix of glucose
and lactose will induce the lac operon only after the glucose has been
depleted [22].

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 7

Requirements

Equipment

A computer with a Windows, Mac or Linux operating system, Internet
connection and a web browser with WebGL enabled. The hardware
specifications of the computer may limit the size of models that can
be analyzed within GINsim. We recommend a computer with 4+ GB
of RAM and a dual-core processor, in which case use Cell Collective.

Equipment setup

Cell Collective is a web-based application, which does not require
installation on one’s computer. Users need to create a (free) account
directly in Cell Collective at https://cellcollective.org (under the ‘Re-
search’ panel). Further user support is available via email at support@
cellcollective.org.

GINsim can be downloaded from http://ginsim.org. The reader
should make sure to download version 2.9 or higher, as older versions
do not support the import of SBML-encoded models. They should
also ensure that they have Java 1.6 or above installed. Open the down-
loaded file and follow the installation instructions.

Step 1: Define the scope of the modeled system

The first step of a modeling project is often to decide the scope of
the model. Biological networks can be vast, complex and span sev-
eral scales of biological organization (from molecules to cells, tis-
sues, organisms and even populations). It is critical to understand that
computational models are simplifications or abstractions of the real
biological system. As such, it is essential to define a model scope that
encompasses the minimum number of elements (e.g. pathways) able
to address our research question with the data at hand. One can also
think of the scope of the modeled system as boundaries defined by
the system’s input (e.g., stimuli) and output (e.g., modeled phenom-
enon and its ‘biomarkers’).

http://ginsim.org

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 8

In this protocol, we focus on the lac operon system, one of the first
gene regulatory mechanisms to be fully elucidated and characterized
[17]. The lac operon is responsible for regulating lactose metabolism
in E. coli and other enteric bacteria. Lactose provides the bacterium
with an alternative source of carbon when glucose is not present.
As such, the scope of the modeled system can be defined by the
availability of extracellular glucose and lactose as inputs/stimuli, and
lactose metabolism as the model output. As mentioned above, it is
important to realize that building a mechanistic computational model
is an iterative process, which means that the scope can be adjusted
as needed during the entire modeling process.

Step 2: Define validation criteria

One way to assess whether a computational model might be able to
answer a given research question, validation criteria should be de-
fined. These criteria will ensure that the constructed model behaves
as expected within the model scope defined in Step 1.

Quantitative or qualitative relationships between input(s) and
output(s) can constitute validation criteria for computational models.
In the case of the lac operon, they can be the relationships between
lactose and glucose (inputs) and the lac operon expression (output),
because these relationships are well-documented, understood and
within the scope of the model. Table 1 presents the four validation
criteria, i.e. all possible combinations of the presence and absence of
lactose and glucose and the output that the model should produce
to be considered useful and correct within this scope.

Table 1. Validation criteria for the modeled lac operon system

 Glucose Lactose lac operon transcription

Validation criterion 1 present absent OFF
Validation criterion 2 present present OFF
Validation criterion 3 absent present ON
Validation criterion 4 absent absent OFF

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 9

Step 3: Select modeling approach

Once the modeler has decided on the scope and validation criteria,
the second step is to select an appropriate modeling technique. Many
mathematical and computational frameworks are available to model
biological mechanisms and processes. Interested readers should re-
view [23, 24] for detailed summaries of various modeling techniques.
Examples include logical models [25], kinetic models (e.g. via ordinary
differential equations; ODEs [26]), constraint-based models [27], etc.
It is essential to understand that every modeling approach makes
different assumptions, and comes with different requisites and con-
straints and therefore presents different benefits and limitations. Un-
derstanding the type of questions that a given computational model
can answer is critical, as is the type and amount of data needed to
construct and interpret the model. For example, ODE models are very
useful to generate quantitative predictions. However, their reliance
on kinetic parameters and the required computational complexity
and cost limit their usefulness to well-characterized, relatively small,
networks/pathways. ODE-based modeling also generally requires a
steep learning curve as it relies on complex mathematical equations
that describe the system’s kinetics. [24] Constraint-based models are
based on the stoichiometry of reactions and are used to calculate
optimal flux distributions in metabolic networks [27].

The protocol presented here uses a logical modeling framework.
Researchers use this approach to study the dynamics of many biologi-
cal processes and diseases (e.g. T cell differentiation [2], renovascular
disease [28], patient-specific signaling pathways in cancer [29], hu-
man immune system [30]), primarily because of its accessible nature.
Logical modeling approaches are well suited for qualitative biological
problems such as cell fates arising under certain initial conditions or
the pathways affected by the perturbation of a particular gene or pro-
tein [25, 31, 32]. Like any other approach, logical modeling presents
its own limitations. For example, attractors (see Box 1) are computa-
tionally expensive to compute due to the exponential growth of the
models’ state space. Logical model output is generally discrete, which
may be insufficient if one needs to quantify specific concentrations.
For a recent and comprehensive review of logical modeling and its
broad areas of application, readers should consider [25]. However,

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 10

the increasing popularity of logical models is also due to, among
other reasons, their independence from the scarce availability of ki-
netic parameters, their scalability and the opportunity they offer for
in-depth dynamical analysis while retaining the ability to describe
biological processes at the mechanistic level. Moreover, logical models
are generally more accessible to a non-modeling audience because
their ‘logic-based’ ‘nature closely resembles the language used to de-
scribe regulatory mechanisms in wet-lab research publications and the
qualitative nature of phenotypic matrices obtained in many genetic
screens. The logical rules describing various biological mechanisms
are relatively easily applied to construct and ‘read’ the underlying
mechanistic computational models [33], lending itself as an intuitive
interface between biology and computational modeling. Recent ef-
forts building on these advantages are speeding up the building of
large, accurate, and simulatable logical models from comprehensive
disease maps [34] and high-throughput data [35].

Box 1: Introduction to logical modeling

Logical models are composed of components (nodes) connected
with directed edges (Figure 3). The individual components of the
system can correspond to proteins, complexes, transcription fac-
tors, genes or more abstract phenomena such as cellular fates.
The directed edges represent causal (direct or indirect) interac-
tions between these components denoting negative influences
(e.g. inhibitions, repressions and degradations) or positive ones
(e.g. stimulations, activations and synthesis). Logical models can
be Boolean or multi-valued. In Boolean models, each component
can be either active/expressed/ON (1) or inactive/silent/ OFF (0).
Multi-valued logical models can assume additional activity val-
ues, such as ‘OFF’, ‘medium’ and ‘ON’. The underlying regulatory
mechanisms are described by logical expressions that determine
the activity level of a component, given the activity states of its
direct regulators.

As an example, consider the hypothetical 4-component logi-
cal model in Figure 3. Open arrowheads represent positive in-
fluences, and bars represent negative ones. In this network, ‘In
(input)’ is an external component, able to stimulate the model. In

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 11

general, components that are not regulated by other components
are considered inputs, and their activity is not decided by logical
functions. Instead, their activity level(s) can be set before or dur-
ing a simulation by the user. Conversely, the activity level of each
remaining component is determined by their immediate regula-
tors with logical functions reflecting the regulatory mechanisms.
For example, the logical function representing the mechanisms
regulating Y captures a scenario where Y will be activated at any
time point (t+1) when either X or Z was active at the previous
time point (t). Furthermore, components, such as Y, that do not
affect the activity level of any other components can be consid-
ered outputs (note that model outputs can also be the combina-
tion of several components’ activities).

The model’s dynamics depend on the iterative updating of
each component’s activity levels. Simulations of logical models
can be synchronous (all components are updated at each time
point) or asynchronous (components are updated according to
a probability or a user-defined priority schema). One can study
the dynamics of logical models as they evolve in time, or when
the model reaches a steady-state or a set of states (‘attractors’).
The purpose of this protocol is to introduce the general workflow
of mechanistic modeling and not the intricacies of the logical
modeling framework. Readers interested in learning more on the
subject (such as the implications of synchronous versus asynchro-
nous updating or state-space analyses) can do so in numerous
dedicated publications [36–38].

Figure 3. Hypothetical logical model.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 12

Introduction to Cell Collective and GINsim

Because of the increasing popularity of logical modeling in biology,
many software tools are available to the community. Some commonly
used tools include Cell Collective, CellNOpt, GINsim, BoolNet and
BooleanNet [25]. In this protocol, we use Cell Collective and GIN-
sim. Cell Collective is a web-based platform that allows users to build
and use models without specifying mathematical equations or com-
puter code—addressing one of the major hurdles with computational
modeling [39, 40]. As of today, Cell Collective supports logical- and
constraint-based [27] modeling approaches. Users can collaboratively
construct models, share them directly with others, and simulate and
analyze the models in real-time on the web without the need for lo-
cal software installation and configuration. In addition, Cell Collective
provides a database of ~80 curated logical models and nearly 200
genome-scale metabolic models across many biological processes
and species. We will introduce Cell Collective in an interactive and
just-in-time fashion throughout the protocol. At the moment, the
reader should create a free account in Cell Collective at https://www.
cellcollective.org.

We will also use GINsim[41], a logical-modeling software that pro-
vides a variety of methods for in-depth dynamical analysis of model
properties. In addition to Boolean models, GINsim supports models
with multi-valued variables. The reader can download and install the
latest version from http://ginsim.org. While in this protocol, we will
focus on the complementary capabilities of GINsim, a complete tuto-
rial for the tool can be found in [41].
Let’s begin by capturing the scope of the system (defined in the In-
troduction section) through a model in Cell Collective (Procedure 1).

Procedure 1: Model scope implementation in Cell Collective.

1) Sign into Cell Collective (https://cellcollective.org).
2) Click on ‘New Model’.
3) Name the model ‘Lac Operon Tutorial’.
4) Given the scope of the model defined previously, the first com-

ponents that can be added to the model are the inputs (‘glu-
cose’ and ‘lactose’) and the model output, ‘lactose metabolism.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 13

In the ‘Graph’ panel, add these three components by double-
clicking anywhere in the panel (Figure 4). Components can be
also added by clicking on the ‘plus’ icon in the ‘Internal’ and
‘External Components’ panels.

5) To designate a component as an ‘External Component’ (input),
drag the component from the Internal Components panel to
the External Components panel (its heading). In our example,
‘glucose’ and ‘lactose’ are inputs to the system and are set as
External Components in Cell Collective. ‘lactose metabolism’ is
an internal component of the model, regulated by other system
components (as we will see later in this protocol).

Figure 4. Adding input and output components in Cell Collective. Yellow dots in
the ‘Graph’ panel denote external components or inputs, which are components
without upstream regulators, and whose activity is controlled by the user. Gray dots
correspond to internal components of the model, whose activity is regulated by
another model component.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 14

Step 4: Identify components and their interactions, and build a
draft model

Once the modeler has defined the initial scope of the model and
identified the preferred modeling approach (and the corresponding
tool), the next step is to identify the individual components that will
constitute the system and their interactions, and begin construct-
ing a draft of the model. This requires listing the biological entities
they want to include in the model and also make a decision on the
granularity of representation for each of them. During the first itera-
tion of the modeling process, the knowledge of the researcher can be
complemented with static diagrams from published literature, or by
accessing public databases. Review articles generally provide lists (and
descriptions) of the most important and well-studied components of
the reviewed biological processes, which can be used to identify the
components that are most relevant to the modeled process. In addi-
tion, these reviews often synthesize the discussed components and
interactions in diagrams that can be easily depicted and converted
into a network diagram, which can further provide the basis of the
first draft of the mechanistic model.

Public databases such as KEGG Pathway [42], REACTOME [43], Path-
way Commons [44], PANTHER [45], WikiPathways [46], Omnipath [47],
BioCyc [48] and Signor [49] constitute an important source of bio-
logical knowledge presented in the form of pathways or networks.
PathGuide [50] contains information about 670 such resources related
to biological pathways and molecular interactions. These are further
complemented by commercial tools such as Ingenuity Pathway Analy-
sis or METACORE [51] that also provide curated canonical pathways.
Other databases such as Genemania [52], STRING [53], IntAct [54] and
BioGRID [55] offer information about individual reported protein–
protein interactions (inferred or experimentally validated) that can
complement or validate a biological pathway. Many of the aforemen-
tioned resources can be easily used to develop the draft mechanistic
representation of the system of interest and even provide their data in
a standard format that can be directly re-used by modeling software
tools. To make this protocol self-contained and allow the reader to
follow easily, we have synthesized the required biological knowledge
about the lac operon in the Introduction section and in Figure 2.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 15

Now that we have defined the scope (Step 1) and the validation
criteria (Step 2; Table 1) of the model and have defined the system
components and their interactions, we can build a draft model. In Step
3, we already created a model in Cell Collective with three compo-
nents (‘lactose’, ‘glucose’ and ‘lactose metabolism’) representing the
inputs and output of the model. We will now represent the biological
knowledge about the lac system (summarized as a network diagram
composed of nodes and directed edges Procedure 2). Because Cell
Collective automatically translates the diagram into logical rules, the
initial network diagram will also become the first draft of a simulatable
model that we will further fine-tune in the next section.

Procedure 2: Building a draft model.

Return to the Lac Operon Tutorial model you started in Cell Col-
lective under Procedure 1.

Under the ‘Model’ tab, by double-clicking in the Graph panel,
add four components of the Lac operon system identified in Step
4: cAMP, CAP, allolactose and lac repressor. We assume that the
amount of lac repressor is constant and omit LacI and the lac
repressor mRNA from the model. Instead, we will focus on cap-
turing the regulatory mechanism of a functional lac repressor.
Because of the scope of this model, we also omit the individual
lac operon genes; instead, components representing all lac genes
and their products are included: lac operon (representing the
activity of all three genes lacZ, lacY and lacA), lac mRNA (repre-
senting the polycistronic mRNA encoding the three proteins) and
lac enzymes (representing β-galactoside permease, β-galactoside
and β-galactoside transacetylase).

Add ‘lac operon’, ‘lac mRNA’ and ‘lac enzymes’ components
to the model. You should now have 10 components (Figure 5).

From the lac operon overview in the Introduction section, we
can also easily derive the directed edges between the compo-
nents. For example, we know that lactose is converted into al-
lolactose. Add this relationship in Cell Collective by clicking on
and dragging an edge from ‘lactose’ to ‘allolactose’ (Figure 5).
The hydrolysis of ‘lactose’ into ‘allolactose’ is abstracted in the

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 16

model as ‘lactose’ activating ‘allolactose’, depicted with a green
directed edge.

Next, we know that when allolactose is produced, it binds to
the lac repressor, preventing its binding to the lac operator, lift-
ing the repression. This relationship is abstracted in the model
as ‘allolactose’ inhibiting lac repressor, depicted with a directed
red edge (Figure 6). To draw an inhibitory edge in Cell Collective,
create a (positive) edge from ‘allolactose’ to lac repressor and,
holding the ‘Shift’ key on your keyboard, click on the edge. The

Figure 5. Adding components and their relationships (edges) in a draft model.
Orange components correspond to external components, whereas gray compo-
nents— are non-external/internal components—not visualized in this figure. Se-
lected component is denoted in blue. Note that the reader can move components
around the canvas by pressing the Shift key and move the component around, or
by switching to the View mode (by clicking on the Pencil icon) and dragging the
components where needed.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 17

resulting inhibitory edge should be red, as indicated in Figure 6.
(For a list of all keyboard shortcuts, hover over the Information
‘i’ icon at the top right of the Graph panel.)

Follow this method to connect all remaining components of
the model, resulting in the draft model illustrated in Figure 6.

Step 5: Define and annotate regulatory mechanisms

Cell Collective facilitates biological knowledge- and context-driven
creation of logical models and the underlying logic expressions. By de-
sign, users can create models without the direct entry of mathematical
equations or source code. To define the regulatory mechanism of a
component in Cell Collective, they select a component’s activator(s)
and/or inhibitor(s) (direct upstream regulators) and create their more
complex conditional relationships via the software drag-and-drop user
interface.

Figure 6. Fully connected network diagram of the lac operon model.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 18

Simple regulatory mechanisms are automatically generated as
part of the ‘model drawing’ feature. For example, when we drew a
positive influence between cAMP and CAP in the previous section,
we also created the underlying logical expression (‘CAP = cAMP’,
which indicates mathematically CAP (t+1) = cAMP (t)). Similarly, the
regulatory mechanism of lac operon has also been automatically
depicted as a logical expression (‘lac operon = CAP AND NOT lac
repressor’), reflecting the activatory and inhibitory roles of the up-
stream regulators, CAP and lac repressor, respectively (Figure 7).
Note that in logical models, the simultaneous influences of an ac-
tivator and an inhibitor on a component (such as lac operon in the
presented model) are expressed by an AND operator to indicate the
‘opposing influences’ of each component. In a more complex case,
for example, where multiple activators and inhibitors are present,
the negative regulators can be defined selectively to work ‘against’
specific positive regulators. In Cell Collective, these selections can be
made under the ‘Dominance’ option in the Regulatory Mechanism
panel (Figure 7).

Figure 7. Generation of Boolean expressions. The panel boxed in red shows the
Boolean function associated with each component, created when developing the
model in the ‘Graph’ panel (not shown here) or the ‘Regulatory Mechanism’ panel.
Note that the ‘Expression’ panel is not part of the model workspace by default, but
users can add it by clicking on Insert ->Panel ->Model ->Regulation Expression at
the top of the page (under the model name).

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 19

Additional, more complex regulatory mechanisms involving, for in-
stance, conditional relationships among multiple upstream regulators,
can be easily defined in the ‘Regulatory Mechanism’ panel (Figure 8).
An example would be the requirement of a cofactor for a transcription
factor to initiate the transcription of a gene. Cell Collective represents
such relationships as ‘conditions’. As illustrated in Figure 8, the ‘tran-
scription factor’ would be defined as an activator of the gene, and
only activate gene if co-factor is active. Note that even more complex
conditional relationships can be defined, with multiple conditions, as
well as conditions of conditions (sub-conditions), depending on the
complexity of the underlying regulatory mechanism [33].

A critical, and often overlooked, part of developing computational
models is annotation. Well annotated models facilitate transpar-
ency and reusability [56, 57]. Cell Collective allows the annotation of
components at multiple levels, including the model, the regulatory
mechanism of a component, and individual interactions. Model-level
annotations contain general model information, such as its scope and
the validation criteria, to help the community understand if and how
it may be used as a starting point for their research questions. Users
can add model annotations in the ‘Description’ tab. They can add

Figure 8. Drag-and-drop components to build the regulatory mechanism of a given
component. To define the regulatory mechanism of a given component, drag com-
ponents from the ‘Internal/External Components’ panels to the corresponding areas
in the ‘Regulatory Mechanism’ panel.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 20

more detailed annotations at the level of each component’s regula-
tory mechanism and interactions during the model-building process
in the ‘Knowledge Base’ (KB) panel (Figure 9). In the KB panel, users
can describe the meaning of each component of the model while
providing unique identifiers when available. For instance, they can
describe individual interactions (e.g. the activation of CAP by cAMP)
at the level of biochemical and mechanistic regulation, while providing
published evidence to support the mechanism.

Step 6: In silico model validation and predictions

Once all the regulatory mechanisms and corresponding logical expres-
sions for each component of the model are defined, we can simulate

Figure 9. Annotations of components and interactions in Cell Collective. The KB
panel (boxed in red) enables users to provide detailed information about each
model component and its immediate regulating interactions. Each piece of text, or
evidence, is citable with a PMID or DOI, allowing to connect each piece of support
to its underlying sources. Furthermore, by right-clicking on the citation or reference,
the user can specify if the source is primary or non-primary (e.g. a review article)
source, and whether the support (data) in the source comes from human or animal
experiments.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 21

the model to test whether it can reproduce the dynamics and behav-
iors defined in the validation criteria. As the rules are assigned locally,
there is no guarantee that the global behavior will comply with those
criteria or the descriptions in the published literature. Users should
expect several revisions of regulatory mechanisms, rules, re-wiring
and, possibly, additions or deletions of components and edges while
fine-tuning the model.

Cell Collective offers several simulation tools to interrogate and
visualize the dynamics of a model interactively and in real time. Al-
though models in Cell Collective are Boolean as discussed in the Step
3, inputs and outputs are semi-quantitative during the simulations,
to describe the relative activity of a particular model component in
response to environmental signals or perturbations in the model [1,
2, 58]. Users can define the activity levels of external components
(inputs) on a scale from 0 to 100, representing the percent chance
of the external component to be active or inactive at any time dur-
ing the simulation. The overall activity of any internal component or
output of the model spans the same scale, representing the average
activity (fraction of ones) over a defined number of previous time
steps. For example, if a component has an activity level of 50%, it
means that the component assumed the same number of active and
inactive states over the last n number of iterations, likened to the
concept of ‘moving average’. The number of iterations is defined
with the ‘Sliding Window’ parameter in the real-time simulation fea-
ture (Procedure 3) [39].While the values of inputs (e.g. glucose set to
90%) do not directly correspond to a specific, measurable biologi-
cal property (such as concentration), users can interpret the activity
levels semi-quantitatively [39, 59]. For example, they can represent
‘high amounts of glucose in the environment’ by setting glucose
activity to 80–100% and ‘low amounts of environmental glucose’
by setting it to 0–10%. Cell Collective can simulate dose–response
experiments and show how components’ dynamics evolve when the
activity of inputs increases.

In the Procedure 3 box, we illustrate how to simulate the four vali-
dation criteria (Table 1) to assess the usefulness of the model using
Cell Collective’s real-time and dose–response simulation tools.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 22

Procedure 3: Model validation.

Criterion 1: Lactose metabolism should be inactive when glucose
is present and lactose is absent from the environment.

Access the real-time simulation workspace under the ‘Simula-
tion’ tab in your model in Cell Collective.

Ensure Simulation Control Settings (Figure 10A) are config-
ured to.

Simulation Speed = 1.
Sliding Window= 10.
Define the Environment of the model in the External Compo-

nents panel (Figure 10B) by adding glucose:

Figure 10. Real-time simulation of the lac operon model under a high-glucose,
no lactose environment. The activity levels of all components of the model are il-
lustrated in the ‘Activity Network’ panel (C) with colors of the component ranging
from red (0) to green (100) and in the ‘Simulation Graph’ panel (D) as a time-series
graph, which shows the activity levels of selected components over time. Note
that the time scale is arbitrary, measured in time steps. Components to be viewed
in the ‘Simulation Graph’ panel can be added by clicking on the components in
the network or by checking the first column in the ‘Internal/External Components’
tables.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 23

Adjust the ‘glucose’ slider to 100, which will simulate the avail-
ability of glucose during each step of the simulation.

Ensure that the ‘lactose’ slider is set to 0, which will simulate
complete absence of lactose from the environment.

To view ‘lactose metabolism’ as the measured variable (out-
put) of the model click on the component in the Activity Net-
work panel (Figure 10C). This will add ‘lactose metabolism’ to
the Simulation Graph panel (Figure 10D). We can also observe
the dynamics of other components of the model, by clicking, for
example, on lac operon, CAP and lac repressor.

Start the simulation by clicking on the play (◮) button under
the Simulation Control panel.

Click the pause (||) button after ~75 steps (shown on the x-axis).
The activity of each component can be observed in the Simula-

tion Graph panel as it evolves in time. To see specific components
in the graph, hover the cursor over the component name in the
legend. Furthermore, the Activity Network panel shows the ac-
tivity levels of all components in the network as colored nodes,
where bright green corresponds to complete (100%) activation
and red corresponds to a complete absence of activation (0%).
Shades of these colors correspond to activity levels between 0
and 100.

Simulation result—Under this environmental condition (where
glucose is present and lactose is absent), you should observe that
‘lactose metabolism’ is inactive, as expected (Figure 10D).

Validation Criteria 2–4.
Continue to simulate the model (press (◮) button) under the

remaining three environmental conditions, by moving the glucose
and lactose sliders between 0 and 100. You can also set the slid-
ers to intermediate values to observe partial activation responses
within the system.
The response of a model output or various components can be
simulated in Cell Collective using the Dose Response tool un-
der the ‘Analysis’ tab as illustrated in Figure 11.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 24

Predicting the effect of mutations and modulators

When we are satisfied with the model structure and its ability to re-
produce the defined validation criteria, we can use it for performing
additional in silico experiments to develop new hypotheses or refine
existing ones. For example, one can simulate perturbations of the
system by constitutively inactivating components, thus generating in
silico knock-outs, simulate inhibitions or overexpressions and make
specific predictions before testing them at the bench. One of the ad-
vantages of computational models is the possibility to easily simulate
the systematic effects of individual or combinatorial perturbations
of many components of the model. Examples are reviewed in [2, 58,
60–63].

Figure 11. Dose–response curve analysis of lactose metabolism under lactose
varying conditions. Glucose is absent from the environment. Instead of selecting
a single activity level of the input, users can select a range of activities by adding
new Environments under the ‘External Components’ panel (B). Here, Glucose is set
to 0, and Lactose varies from 0 to 100. Make sure that the appropriate environment
is selected in the ‘Experiment Settings’ panel (A). The components represented
on the y- and x-axes can be selected by checking appropriate boxes in the ‘Graph
Components’ panel (C).

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 25

We can test different scenarios on the lac operon model, such
as the effects of mutations on the system’s dynamics. For instance,
Procedure 4 shows simulations of the effects of CAP loss-of-func-
tion on lactose metabolism under environmental conditions condu-
cive to lac operon expression.

Procedure 4: Simulating the effects of CAP loss of function
on lactose metabolism.

In Cell Collective, mutations (knock-out and overexpression) can
be introduced by checking the box next to a component of in-
terest in the ‘Internal Components’ panel within the ‘Simulation’
workspace (Figure 12).

Check the box next to CAP such that the check-mark is red,
indicating a knock-out mutation. Clicking on the box twice will
add a green check-mark, indicating an overexpression and click-
ing on the box for the third time will uncheck the box, returning

Figure 12. Real-time simulation of effects of CAP knock-out mutation.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 26

the corresponding component to its wild-type status.
Set the environmental condition that is conducive to lac op-

eron expression by setting extracellular glucose and lactose to
appropriate levels of 0 and 100, respectively.

Select the components whose activity you would like to ob-
serve in the ‘Simulation Graph’ panel by clicking on them in the
network diagram. Because we are interested in observing the ef-
fects of ‘CAP’ loss-of-function on lactose metabolism, select the
‘CAP’ and ‘lactose metabolism’ components.

Start the simulation. After ~50–60 steps, we can observe that,
while ‘allolactose’ and ‘cAMP’ reach 100%, ‘CAP’, lac enzymes,
lac mRNA, lac operon, lac repressor and ‘lactose metabolism are
entirely inactive. The simulation recapitulates the dynamic behav-
ior of the system in a scenario where the hunger signal, cAMP,
is active due to the absence of ‘glucose’, and ‘allolactose’ is ac-
tive because of the presence of extracellular ‘lactose’. ‘Allolactose’
subsequently binds and activates the lac repressor. However, the
‘CAP’ loss-of-function mutation precludes the binding of ‘CAP’ to
the DNA and the subsequent recruitment of the RNA polymerase.
The lac operon thus remains inactive, no lac enzymes are trans-
lated and no lactose metabolism takes place.

While the previous example illustrated the simulation of complete
knock-out/loss-of-function mutations, partial mutations, such as
knock-down/down-regulation or overexpression, can also be simu-
lated. We do so by adding an external component that will inhibit or
activate the component whose expression we want to perturb. Users
can subsequently set the activity of the newly introduced external
component to the desired value. Procedure 5 illustrates this concept.

Procedure 5: Partial in silico mutations.

Add a new external component, CAP Inhibitor, to the Lac operon
model.

Add an inhibitory edge from ‘CAP Inhibitor’ to ‘CAP’.
To simulate the effect of partial inhibition of ‘CAP’ using the

real-time simulation tool, change the activity levels of ‘CAP Inhibi-
tor’ and select ‘CAP’, ‘CAP Inhibitor’ and ‘lactose metabolism’ as

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 27

variables to observe during the simulation. Start the simulation
(not pictured).

Dose response (Figure 13): To simulate a dose–response of
lactose metabolism to ‘CAP Inhibitor’, go to the dose response
analysis tool, under the ‘Analysis’ tab.

In the ‘Experiment Settings’ add a new experiment.
In the ‘External Components’ panel (B), set ‘glucose’ to range

from 0 to 5%, ‘CAP Inhibitor’ to range from 0 to 100% and lactose to
range from 90 to 100%. Notice that a new environment, called ‘New
Env 1’, is created, accessible in the header of the ‘External Compo-
nents’ panel. Rename it to ‘Inhibitor’ by clicking on the name.

Under the ‘Experiments Settings’ panel (A), change the Envi-
ronment from ‘Default’ to the one created in the previous step,
‘Inhibitor’.

In the ‘Graph Components’ panel (D), select ‘CAP Inhibitor’ for
the x-axis and ‘lactose metabolism’ for the y-axis.

Start the experiment in the ‘Experiment Settings’ panel (A).
The dose–response will be plotted in the ‘Activity Relationships

Graph’ panel (C).

Figure 13. Dose–response curve of CAPInhibitor and its effect on lactose metabo-
lism under high-lactose and low-glucose environments. (A) Experiment Settings
panel. (B) External Components panel. (C) Activity Relationships panel. (D) Graph
Components panel.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 28

Reachability and control of biological systems

So far, we have presented procedures where users set initial con-
ditions and observe the—a priori unknown—results of simulations.
However, computational models also lend themselves to study where
one wants to know which conditions must be met for the model to
reach a known result, such as ‘under what extracellular conditions is
the activity of component X maximal?’ To illustrate this type of analysis
with our model, we will try to answer the following question ‘Under
what levels of lactose and glucose can we get the highest levels of
lactose metabolism?’

To address such questions pertaining to the sensitivity of a system
towards the environment in Cell Collective, we use the ‘Environment
Sensitivity’ workspace in the ‘Analysis’ tab. Follow the instructions illus-
trated in Procedure 6 to conduct the environment sensitivity analysis.

Procedure 6: Reachability and environment sensitivity
analysis.

In the lac operon model in Cell Collective, access the Environment
Sensitivity workspace via the Analysis tab (Figure 14).

In the ‘Experiments’ panel (Figure 14A), add a new experiment,
named ‘Sensitivity Analysis’.

To consider all possible environmental input combinations,
create a new environment in the ‘External Components’ panel
(Figure 14B),where ‘glucose’ and ‘lactose’ vary from 0 to 100,
while setting ‘CAP Inhibitor’ to 0. Name the environment ‘Sen-
sitivity’. To limit the possible environments, choose alternative
ranges to suit your needs.

In the ‘Internal Components’ panel (Figure 14E), select ‘lactose
metabolism’ and change the ‘Optimize’ column (two vertical op-
posite arrows) to a green, upward arrow, to tell the software we
want to maximize the activity level of ‘lactose metabolism’ under
the selected range of environmental inputs.

In the ‘Experiments Settings’ panel (Figure 14D), change the
Environment to ‘Sensitivity’. Change the number of Simulations
to 1000.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 29

Start the experiment in the ‘Experiment Settings’ panel.
The ‘Environment Sensitivity’ panel (Figure 14F) will generate

an environmental condition in the context of activity levels of
‘lactose’ and ‘glucose’ that will result in high levels of ‘lactose me-
tabolism’. The ‘Component Sensitivity’ panel (Figure 14C) shows
the effect size that each input has on ‘lactose metabolism’. In
particular, the results show that ‘glucose’ has an overall negative
effect on ‘lactose metabolism’, while ‘lactose’ has a positive effect
on ‘lactose metabolism’. Results from this analysis are consistent
with the simulations and analyses conducted in the previous sec-
tions: ‘lactose metabolism’ will be the most active under high
lactose and low/no glucose conditions.

Figure 14. Environment sensitivity analysis.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 30

State-space and attractors

Another layer of analyses of computational models includes the ex-
ploration of the entire space of states that a model can find itself in as
a result of its environmental stimuli or various perturbations. Because
each component of a Boolean network can take the values 0 or 1,
the entire model can exist in at most 2n different states. Using either
synchronous or asynchronous updates (see Box 1) and fixed inputs
(e.g. ‘lactose’ and ‘glucose’ set to 0 or 1 for the entirety of the simula-
tion), the dynamics of a logical model will eventually lead to a set of
states from which it cannot leave, called an ‘attractor’. Attractors can
be either stable states (states from where our system cannot escape
without external intervention), representing, for example, cell fates
(apoptosis, cell differentiation, or in our case active or inactive ‘lactose
metabolism’) or more complex attractors, for instance, representing
oscillatory behaviors [36]. An attractor can be considered as represent-
ing a stable and long-term behavior of the modeled system. In this
section, we will use the GINsim software tool to illustrate the analysis
of state-space and attractors for the lac operon [41]. Follow Procedure
7 to import the Cell Collective lac operon model and perform steady-
state analysis in GINsim.

Procedure 7: Importing the model in GINsim and perform-
ing steady-state analysis.

Export the Lac operon model from Cell Collective in the SBML-
qual format [53, 54]. Under your Lac operon model in Cell Col-
lective, click on File ->Download ->SBML.

Open GINsim and from the Start menu select New Model.
Then, click on File ->Import. Select SBML-qual from the Import
options.

Select ‘Show it’ in the subsequent preprocessing panel.
Rename the model to ‘beta_gal_ginsim’ in the Name textbox.
You can adjust the network model layout by moving the in-

dividual components or by selecting built-in layouts from the
menu (View).

Select Tools ->Compute Stable States (Figure 15).

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 31

A second panel will open where the user can choose optional
model reduction or specify perturbations. Press Run to compute
all possible steady states of the model.

Figure 15. Computing stable states of the model using GINsim.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 32

A table with a summary of the steady states of the model will
be displayed once the computation finishes (Figure 16). Results
show that the lac operon is ON when lac repressor is absent, lac-
tose is present and glucose is absent. These results align with the
validation criteria (Table 1) and with the Cell Collective simulation
results discussed earlier.

Adding nodes or reactions to a model can change the reachable
states. Figure 17 shows the stable states computed when we add
‘CAP inhibitor’.

Figure 16. Calculating all possible stable states for the lac operon model, com-
puted with the software GINsim. Value 1 represents the ON state (also correspond-
ing to 100% activity level in Cell Collective).

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 33

Procedure 8: Adding nodes to the model in GINsim.

In GINsim, select to add a new component to the model.
Then, add the name of the component to the Id box in the bot-
tom left panel:

Select to add the inhibition from CAP inhibitor to CAP.
Proceed as explained in Procedure 7 to compute stable states.

Figure 17. Adding nodes to the model will result in different dynamics and different
set of stable states. The addition of the CAP inhibitor resulted in four more stable
states of the model. The lac operon will be ON only in the absence of CAPs inhibitor,
and when glucose is absent.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 34

The addition of the ‘CAP inhibitor’ resulted in four more stable
states of the model. We see that the lac operon is ON only in the
absence of ‘CAP inhibitor’, and when ‘glucose’ is absent, which cor-
responds to our biological knowledge about the CAP mechanism of
action.

Step 7: Wet-lab validation

The observations resulting from the procedures illustrated above
might generate new hypotheses regarding the modeled system, which
can be validated experimentally. A validated prediction means that us-
ing the model generated a reliable hypothesis, potentially saving time
and valuable resources. An invalidated prediction can still stimulate
further investigations of the modeled system by, for example, revisit-
ing the model to identify gaps in its structure, its parametrization or
the simulation and analysis procedures.

The scope of the model, for example the level of abstraction (e.g.
cellular or molecular), modeling approach and the type of data gen-
erated from the model will provide a starting point on how the
model predictions can be further validated using wet-lab experi-
mentation. In the case of logical models, Cell Collective has been
used to investigate the qualitative impact of perturbations on the
activity of various parts of the network. For example a logical model
of signal transduction in T cells was used to predict the role and
impact of the knock-out and overexpression of Caveolin-1 (an im-
portant scaffold protein) on T cell signaling [60]. The output of Cell
Collective—differential activity levels of all model components under
normal and perturbed conditions—was subsequently validated in an
in vivo mouse model using differential gene expression analysis and
qualitative immunochemistry—output of which can be intuitively
connected with the logical model predictions. Another recent study
highlights the potential of mechanistic modeling in precision medi-
cine [29]. In particular, ex vivo high-throughput screening of pan-
creatic cancer samples was used to generate patient-specific logical
models. In this study, the model output (similar to Cell Collective
output) was continuous, enabling the measure of perturbation effect
on the activity level of other network components. These models

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 35

were, in turn, used to predict the effect of 174 combinatorial per-
turbations on cancer-specific pathways, measured as activity level of
the pathway components. The authors subsequently validated three
most highly ranked predicted combinatorial perturbations on cancer
cell lines and mouse models. As introduced in the previous section,
logical models can be analyzed to identify attractors— stable sets
of states—that can, for example, represent and correspond to cell
phenotype. An intuitive example of such utility is the study of cell
differentiation. In particular, the binary activity of transcription fac-
tors in a given attractor can be associated with the realization of a
specific cell fate. For example, authors analyzed with GINsim, the
state space of a logical model of signal transduction network gov-
erning the differentiation of CD4+ T cells into effector T cells, and
identified attractors with new patterns of transcription factor activity,
effectively predicting novel T cell phenotypes [64]. Such phenotypes
can be further validated with well-established T cell differentiation
assays and molecular techniques used to identify T cell (sub-)popula-
tions involving, for example, the detection of expression of specific
transcription factors [65].

Timing and anticipated results

Following the entire protocol, as described above, takes ~3 h. Apply-
ing the protocol to model other biological processes will of course
change this timing, depending on the size and complexity of the
system to model, the availability (and comprehensiveness) of re-
sources with synthetic knowledge about the system’s components
(review articles, pathway databases, etc.). This protocol will result in
a mechanistic (logical) model of the lac operon regulatory system
that can serve as a starting point for the reader to expand the model
further and, using the newly acquired knowledge, to build models
of other biological systems. A version of the model described in the
protocol, encoded in the SBML-qual format [66, 67], is provided as
Supplementary File 1. The reader can use it as the ‘answer key’ in
case their modeling outputs do not match the outputs presented
in the protocol.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 36

Conclusions

Herein, we describe a generalized step-by-step approach to abstract-
ing, representing and simulating a biological system in the form of
a mechanistic computational model. We contextualized the proto-
col within a well-characterized gene regulatory system—the lac op-
eron. The protocol can be applied to other biological systems and
processes. The protocol also introduces Cell Collective, a web-based
modeling platform with a user-friendly interface (without the need to
write complex mathematical equations or computer code) for con-
structing, annotating and simulating/analyzing the model. One of the
important advantages is that the user can perform real-time analy-
ses and simulations testing different hypotheses. We also illustrated
how the constructed model can be used to recapitulate the known
dynamics of the system and study the effect of mutations on the lac
operon system. In the last part of the protocol, we used the software
GINsim to complete the analysis by calculating the stable states of the
model. We hope that this protocol will make computational systems
modeling more approachable while allowing readers to identify and
utilize fundamental modeling aspects that they can immediately begin
utilizing in his/her system of interest.

More complex model representation of the lac operon system

At the beginning of this practical guide, we discussed the importance
of selecting and understanding the model’s scope. For this guide’s
purpose, we decided that the model would include glucose and lac-
tose regulating lactose metabolism through relatively simple path-
ways. A computational model of a broader scope would be needed to
explore more complex aspects of the lac operon system. For example,
one could model inducer exclusion— a phenomenon whereby glucose
can inhibit the transport of extracellular lactose by the lac permease
(in addition to catabolite repression) [20, 21].

In addition, the lac operon can exhibit bi-stability, in the sense that
it can exist in two states: induced and uninduced [68– 73]. A system is
called bi-stable if it can rest in two distinct stable states, e.g. operon
induced and operon not induced. Some bi-stable systems can also
present switch-like behavior, enabling them to alternate between the

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 37

two stable states. For example, when external lactose is transported
into the cell, it is converted into allolactose. Allolactose subsequently
induces the operon, causing the synthesis of more permease mol-
ecules that can transport more external lactose, which is then con-
verted into more allolactose. Several studies have been published
concerning the bi-stability of the lac operon, and several models have
been developed addressing this issue. Examples of models of the
lac operon system with a larger scope focus on diauxic growth [20],
feedback regulation [72], bi-stability as well as the effects of catabolite
repression and inducer exclusion in the lac operon [68], or a more
detailed Boolean model by Veliz-Cuba and Stigler [71], also avail-
able in Cell Collective (ModeID 5128; https://research.cellcollective.
org/?dashboard=true#5128:1/lacoperon/1).

Key Points

• The described guide will help researchers begin incorporat-
ing mechanistic computational modeling into their research
inquiries.

• Readers will be able to define the scope and validation criteria
of the desired model.

• Non-experts will be able to quickly begin building, simulating
and (computationally) validating their models.

• We hope this guide will make mechanistic computational
modeling more accessible to a broad range of scientists and
teachers.

Disclosure statement Dr. Helikar is a majority stakeholder and has served as a
scientific advisor and/or consultant to Discovery Collective, Inc.

Funding National Institutes of Health (grant no. 1R35GM119770–04) to T.H.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 38

References

1. Helikar T, Konvalina J, Heidel J, et al. Emergent decision-making in biological
signal transduction networks. Proc Natl Acad Sci U S A 2008;105:1913–8.

2. Puniya BL, Todd RG, Mohammed A, et al. A mechanistic computational model
reveals that plasticity of CD4+ T cell differentiation is a function of cytokine
composition and dosage. Front Physiol 2018;9:878.

3. Kahlem P, Birney E. Dry work in a wet world: computation in systems biology.
Mol Syst Biol 2006;2:40.

4. Fisher J, Henzinger TA. Executable cell biology. Nat Biotechnol 2007;25:1239–49.
5. Chylek LA, Harris LA, Faeder JR, et al. Modeling for (physical) biologists: an

introduction to the rule-based approach. Phys Biol 2015;12:045007.
6. Meier-Schellersheim M, Fraser IDC, Klauschen F. Multiscale modeling for

biologists. Wiley Interdiscip Rev Syst Biol Med 2009;1:4–14.
7. Schultze JL. Teaching ‘big data’ analysis to young immunologists. Nat Immunol

2015;16:902–5.
8. Faeder JR. Toward a comprehensive language for biological systems. BMC Biol

2011;9(68).
9. Afgan E, Baker D, Batut B, et al.The galaxy platform for accessible, reproducible

and collaborative biomedical analyses: 2018 update. Nucleic Acids Res
2018;46:W537–44.

10. Cvijovic M, Höfer T, Aćimović J, et al. Strategies for structuring interdisciplinary
education in systems biology: an European perspective. NPJ Syst. Biol. Appl
Ther 2016;2:16011.

11. Woodin T, Carter VC, Fletcher L. Vision and change in biology undergraduate
education, a call for action—initial responses. CBE—Life Sci Educ 2010;9:71–3.

12. National Research Council. Next Generation Science Standards: For States, By
States. Washington, DC: The National Academies Press. 2013. https://doi.
org/10.17226/18290

13. Crowther A, Bergan-Roller HE, Galt NJ, et al. Discovering prokaryotic gene
regulation with simulations of the trp operon. CourseSource 2018;5.

14. Crowther A, Bergan-Roller HE, Galt NJ, et al. Discovering prokaryotic gene
regulation by building and investigating a computational model of the lac
operon. CourseSource 2019;6.

15. Bergan-Roller HE, Galt NJ, Dauer JT, et al. Discovering cellular respiration with
computational modeling and simulations. CourseSource 2017;4.

16. Helikar T, Cutucache CE, Dahlquist LM, et al. Integrating interactive
computational modeling in biology curricula. PLoS Comput Biol
2015;11:e1004131.

17. Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins.
J Mol Biol 1961;3:318–56.

18. Griffiths AJF, (ed). Modern Genetic Analysis. New York: W. H. Freeman, 1999.
19. Saier MH, Chauvaux S, Cook GM, et al. Catabolite repression and inducer

control in gram-positive bacteria. Microbiology 1996;142:217–30.

https://doi.org/10.17226/18290
https://doi.org/10.17226/18290

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 39

20. Wong P, Gladney S, Keasling JD. Mathematical model of the lac operon:
inducer exclusion, catabolite repression, and diauxic growth on glucose and
lactose. Biotechnol Prog 1997;13:132–43.

21. Griffiths AJ, Miller JH, Suzuki DT, Lewontin RC, Gelbart, (eds). An Introduction
to Genetic Analysis, 7th edn. New York: W.H. Freeman, 2000.

22. Siegal ML. Shifting sugars and shifting paradigms. PLoS Biol
2015;13:e1002068.

23. Keurentjes JJB, Molenaar J, Zwaan BJ. Predictive modelling of complex
agronomic and biological systems. Plant Cell Environ 2013;36:1700–10.

24. Le Novère N. Quantitative and logic modelling of molecular and gene
networks. Nat Rev Genet 2015;16:146–58.

25. Abou-Jaoudé W, Traynard P, Monteiro PT, et al. Logical modeling and
dynamical analysis of cellular networks. Front Genet 2016;7:94.

26. Bergmann FT, Hoops S, Klahn B, et al. COPASI and its applications in
biotechnology. J Biotechnol 2017;261:215–20.

27. Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat Biotechnol
2010;28:245–8.

28. Williams E, Chade AR. A Boolean model of microvascular rarefaction to predict
treatment outcomes in renal disease. Sci Rep 2020;10:440.

29. Eduati F, Jaaks P, Wappler J, et al. Patient-specific logic models of signaling
pathways from screenings on cancer biopsies to prioritize personalized
combination therapies. Mol Syst Biol 2020;16:e8664.

30. Puniya BL, Mohammed A, Amin R, et al. A comprehensive mechanistic model
of the human immune system to study immuno-dynamics. Forthcoming.
bioRxiv. doi:10.1101/2020.03.11.988238.

31. Wynn ML, Consul N, Merajver SD, et al. Logic-based models in systems
biology: a predictive and parameter-free network analysis method. Integr Biol
2012;4:1323.

32. Helikar T, Kochi N, john k, et al. Boolean modeling of biochemical networks.
Open Bioinforma J 2011;5:16–25.

33. Helikar T, Kowal B, Madrahimov A, et al. Bio-logic builder: a non-technical tool
for building dynamical, qualitative models. PLoS One 2012;7:e46417.

34. Aghamiri SS, Singh V, Naldi A, et al. Automated inference of Boolean models
from molecular interaction maps using CaSQ. Bioinformatics 2020;btaa484.

35. Gjerga E, Trairatphisan P, Gabor A, et al. Converting networks to predictive
logic models from perturbation signalling data with CellNOpt. bioRxiv 2020;
2020.03.04.976852.

36. Schwab JD, Kühlwein SD, Ikonomi N, et al. Concepts in Boolean network
modeling: what do they all mean? Comput Struct Biotechnol J 2020;18:571–82.

37. Albert R, Thakar J. Boolean modeling: a logic-based dynamic approach for
understanding signaling and regulatory networks and for making useful
predictions. Wiley Interdiscip Rev Syst Biol Med 2014;6:353–69.

38. Wang R-S, Saadatpour A, Albert R. Boolean modeling in systems biology: an
overview of methodology and applications. Phys Biol 2012;9:055001.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 40

39. Helikar T, Kowal B, McClenathan S, et al. The cell collective: toward an open
and collaborative approach to systems biology. BMC Syst Biol 2012;6:96.

40. Helikar T, Kowal B, Rogers JA. A cell simulator platform: the cell collective. Clin
Pharmacol Ther 2013;93:393–5.

41. Naldi A, Hernandez C, Abou-Jaoudé W, et al. Logical modeling and analysis of
cellular regulatory networks with GINsim 3.0. Front Physiol 2018;9:646.

42. Kanehisa M, Goto SKEGG. Kyoto encyclopedia of genes and genomes. Nucleic
Acids Res 2000;28:27–30.

43. Fabregat A, Jupe S, Matthews L, et al. The reactome pathway knowledgebase.
Nucleic Acids Res 2018;46:D649–55.

44. Cerami EG, Gross BE, Demir E, et al. Pathway commons, a web resource for
biological pathway data. Nucleic Acids Res 2011;39:D685–90.

45. Thomas PD, Campbell MJ, Kejariwal A, et al. PANTHER: a library of protein
families and subfamilies indexed by function. Genome Res 2003;13:2129–41.

46. Kutmon M, Riutta A, Nunes N, et al. WikiPathways: capturing the full diversity
of pathway knowledge. Nucleic Acids Res 2016;44:D488–94.

47. Ceccarelli F, Turei D, Gabor A, et al. Bringing data from curated pathway
resources to Cytoscape with OmniPath. Bioinformatics 2020;36:2632–33.

48. Caspi R, Altman T, Billington R, et al. The MetaCyc database of metabolic
pathways and enzymes and the BioCyc collection of pathway/genome
databases. Nucleic Acids Res 2014;42:D459–71.

49. Perfetto L, Briganti L, Calderone A, et al. SIGNOR: a database of causal
relationships between biological entities. Nucleic Acids Res 2016;44:D548–54.

50. Bader GD, Cary MP, Sander C. Pathguide: a pathway resource list. Nucleic Acids
Res 2006;34:D504–6.

51. Dubovenko A, Nikolsky Y, Rakhmatulin E, et al. Functional analysis of OMICs
data and small molecule compounds in an integrated ‘knowledge-based’
platform. Methods Mol Biol 2017;1613:101–24.

52. Montojo J, Zuberi K, Rodriguez H, et al. GeneMANIA: fast gene network
construction and function prediction for Cytoscape. F1000Research
2014;3:153.

53. Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: quality-
controlled protein–protein association networks, made broadly accessible.
Nucleic Acids Res 2017;45:D362–8.

54. Kerrien S, Alam-Faruque Y, Aranda B, et al. IntAct–open source resource for
molecular interaction data. Nucleic Acids Res 2007;35:D561–5.

55. Chatr-Aryamontri A, Oughtred R, Boucher L, et al. The BioGRID interaction
database: 2017 update. Nucleic Acids Res 2017;45:D369–79.

56. Le Novère N, Finney A, Hucka M, et al. Minimum information requested
in the annotation of biochemical models (MIRIAM). Nat Biotechnol
2005;23:1509–15.

57. Niarakis A, Kuiper M, Ostaszewski M, et al. Setting the basis of best
practices and standards for curation and annotation of logical models in
biology—highlights of the [BC]2 2019 CoLoMoTo/SysMod workshop. Brief
Bioinform2020, bbaa046.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 41

58. Puniya BL, Allen L, Hochfelder C, et al. Systems perturbation analysis of
a large-scale signal transduction model reveals potentially influential
candidates for cancer therapeutics. Front Bioeng Biotechnol 2016;4:10.

59. Helikar T, Rogers JA. ChemChains: a platform for simulation and analysis of
biochemical networks aimed to laboratory scientists. BMC Syst Biol 2009;3:58.

60. Conroy BD, Herek TA, Shew TD, et al. Design, assessment, and in vivo
evaluation of a computational model illustrating the role of CAV1 in CD4(+)
T-lymphocytes. Front Immunol 2014;5:599.

61. Gómez Tejeda Zañudo J, Scaltriti M, Albert R. A network modeling approach
to elucidate drug resistance mechanisms and predict combinatorial drug
treatments in breast cancer. Cancer Converg 2017;1:5.

62. Gan X, Albert R. Analysis of a dynamic model of guard cell signaling reveals
the stability of signal propagation. BMC Syst Biol 2016;10:78.

63. Madrahimov A, Helikar T, Kowal B, et al. Dynamics of influenza virus and
human host interactions during infection and replication cycle. Bull Math Biol
2013;75:988–1011.

64. Naldi A, Carneiro J, Chaouiya C, et al. Diversity and plasticity of Th cell
types predicted from regulatory network modelling. PLoS Comput Biol
2010;6:e1000912.

65. Eizenberg-Magar I, Rimer J, Zaretsky I, et al. Diverse continuum of CD4+ T-cell
states is determined by hierarchical additive integration of cytokine signals.
Proc Natl Acad Sci 2017;114:E6447–56.

66. Chaouiya C, Keating SM, Berenguier D, et al. SBML level 3 package: qualitative
models, version 1, release 1. J Integr Bioinform 2015;12:691–730.

67. Chaouiya C, Bérenguier D, Keating SM, et al. SBML qualitative models: a model
representation format and infrastructure to foster interactions between
qualitative modelling formalisms and tools. BMC Syst Biol 2013;7:135.

68. Santillán M, Mackey MC, Zeron ES. Origin of Bistability in the lac operon.
Biophys J 2007;92:3830–42.

69. Robeva R, Kirkwood B, Davies R. Mechanisms of gene regulation: Boolean
network models of the lactose operon in Escherichia coli. In: Robeva R and
Hodge T (eds.) Mathematical concepts and methods in modern biology.
2013;1–35.

70. Robeva R, Yildirim N. Bistability in the lactose operon of Escherichia coli: a
comparison of differential equation and Boolean network models. In: Robeva
R and Hodge T (eds.) Mathematical concepts and methods in modern biology.
2013;37–74.

71. Veliz-Cuba A, Stigler B. Boolean models can explain bistability in the lac
operon. J Comput Biol J Comput Mol Cell Biol 2011;18:783–94.

72. Yildirim N, Mackey MC. Feedback regulation in the lactose operon: a
mathematical modeling study and comparison with experimental data.
Biophys J 2003;84:2841–51.

73. Díaz-Hernández. Bistable behavior of the lac operon in E. coli when induced
with a mixture of lactose and TMG. Front Psych 2010.

Niarakis & Hel ikar in Brief ings in B ioinformatics 2020 42

The authors

Anna Niarakis is an Associate Professor at UEVE, Saclay. Her research fo-
cuses on the application of computational systems biology approaches in
human diseases, including the construction of disease maps, tool develop-
ment for model inference, network integration and dynamical modeling.

Tomáš Helikar is an Associate Professor in the Department of Biochemis-
try at the University of Nebraska-Lincoln. His research focuses on the use
of integrative multi-approach modeling pipelines for dynamical analysis of
biological networks. More precisely, his studies focus on understanding how
aberrant changes in biological networks result in disease so that we could
strategically develop more effective therapies.

	A practical guide to mechanistic systems modeling in biology using a logic-based approach
	tmp.1625723041.pdf.Z5qhv

