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 21 

Abstract: Water stress is one of the major abiotic stresses and directly affects crop growth 22 

and influences crop yields. To better quantify the responses of crop yield to hydrological 23 

variability in the rainfed Corn Belt of the United States (U.S.), we analyzed the relationships 24 

between corn/soybean yield and hydrological cycle metrics, as well as their spatio-temporal 25 

dynamic at the agricultural district and interannual scale between 2003 and 2014. We used 26 

Partial Least Square Regression (PLSR) to optimally integrate different hydrological metrics 27 

and drought indices to define a crop-specific new drought index that uses crop yield as the 28 
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target, and investigated the contributions of those hydrological cycle components to the new 29 

drought index. We used both observed and modeled hydrological cycle metrics, as well as 30 

several drought indices in this study, including evapotranspiration (ET) and potential ET 31 

(PET), terrestrial water storage change (ΔS), surface soil moisture (SSM), river discharge (Q), 32 

Standardized Precipitation-Evapotranspiration Index (SPEI), Palmer Drought Severity Index 33 

(PDSI), fET (the ratio of ET to PET), and vapor pressure deficit (VPD). Our results revealed 34 

that: (1) VPD, SSM, and fET showed the strongest correlations with crop yield, among the 35 

observation-based hydrological cycle metrics and drought indices considered here. Most of 36 

the hydrological cycle metrics and drought indices showed similar seasonal correlation 37 

patterns with crop yield, and this pattern revealed that the sensitivity of crop growth to water 38 

stress peaked in July for corn and in August for soybean in the rainfed U.S. Corn Belt. (2) The 39 

drought in 2012 started with higher water demand (reflected in abnormally high ET, PET, and 40 

VPD) and lower water supply (reflected in abnormally low P), followed by soil water 41 

depletion (as revealed in SSM and ΔS), leading to massive crop yield losses due to increased 42 

constraints on both water supply and demand. (3) The R2 of the PLSR-based crop yield model 43 

reached 0.76 and 0.70 for corn and soybean, respectively. For corn, the first PLSR component 44 

was mainly composed of information from VPD, fET and SSM, indicating atmospheric water 45 

deficit and near surface soil water storage both play critical roles in quantifying corn yield 46 

loss due to water stress. For soybean, the first PLSR component was mainly composed of 47 

information from fET, ET and VPD, indicating more controls from atmospheric demand than 48 

soil moisture supply for soybean yield loss due to water stress. 49 

Key words: drought, crop yield, soil moisture, VPD, evapotranspiration, groundwater, U.S. 50 

Corn Belt 51 

Highlights:  52 

(1) Water supply and demand is vital in quantifying drought in the U.S. Corn Belt. 53 

(2) The 2012 drought was initiated by high water demand and aggravated by low supply. 54 

(3) New drought indices were developed by integrating water supply and demand. 55 

(4) VPD and fET significantly contribute to the new drought indices. 56 
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1. Introduction 57 

The hydrological cycle is expected to accelerate under a warming climate (Huntington, 2006; 58 

Oki and Kanae, 2006), with more frequent drought and flooding (Huntington, 2006; Cook et 59 

al., 2020) posing significant challenges for agricultural production and food security 60 

(Anyamba et al., 2014; Brown and Funk, 2008; Iizumi et al., 2014; Rosenzweig et al., 2001). 61 

Rainfed agriculture accounts for ~80% of global croplands (Biradar et al., 2009), which are 62 

prone to more frequent stresses from drought and flooding (Nocco et al., 2019). For example, 63 

the Midwestern United States (U.S.) alone produces one third of the global corn and soybean 64 

production, and >90% of the farmland is rainfed. Understanding the impacts of climatic 65 

stresses on agricultural production, especially the influence of hydrological stress on crop 66 

yield loss in rainfed regions, is becoming urgently needed (Lobell et al., 2014; Mishra and 67 

Cherkauer, 2010; Peng et al., 2020a). 68 

 69 

A first gap in the existing studies on agricultural drought is the overemphasis on soil moisture 70 

conditions compared to other hydrological stressors. In reality, droughts are multifaceted and 71 

have been conventionally classified into four categories: meteorological droughts, 72 

hydrological droughts, agricultural droughts, and socio-economic droughts (Mishra and 73 

Singh, 2010). In particular, “agricultural droughts” are usually defined primarily based on soil 74 

moisture conditions (i.e. plant soil water availability is insufficient for crop growth, affecting 75 

end-of-season crop yield) (Bolten et al., 2006, 2010; Crow, 2014; Han et al., 2014). This may 76 

lead to an oversimplification that neglects other important environmental factors (Lobell et 77 

al., 2014;  Ort and Long, 2014). Soil moisture only accounts for the available water in a 78 

rainfed system for the crop growth, but it does not include the effects of water demands from 79 

the atmosphere. An increasing number of studies emphasize that atmospheric water demand 80 

plays a critical role in inducing plant water stress and suppressing crop yield (Lobell et al., 81 

2014; Novick et al., 2016; Sulman et al., 2016). Indicators for atmospheric water demand 82 

include Vapor Pressure Deficit (VPD), and/or potential evapotranspiration (PET) (Seager et 83 

al., 2015; Milly and Dunne, 2016), which integrates the influences from several 84 
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meteorological factors like air temperature, humidity, radiation, and wind (Luo et al., 2017). 85 

To holistically characterize “agricultural drought”, both water supply (from soil) and water 86 

demand (from the atmosphere) should be considered, as plant plays a central role in 87 

regulating the flow of moisture across the soil-plant-atmosphere continuum (SPAC) in order 88 

to maintain an adequate internal water status (Bonan et al., 2014; Ouyang, 2002). SPAC 89 

processes include plant hydraulics and plant physiology (Williams et al., 1996), which have 90 

been actively discussed in the literature (Martínez-Vilalta et al., 2014; Sperry et al., 2002; 91 

Tyree and Ewers, 1991). Plants hydraulics are starting to be implemented in land surface 92 

models (Bonan et al., 2014; Kennedy et al., 2019; Xu et al., 2016).  93 

From an empirical perspective, water supply can be approximated using different indices: (1) 94 

precipitation, and/or precipitation-related indices, such as Standardized Precipitation Index 95 

(SPI) (Hunt et al., 2014; McKee et al., 1993); (2) plant available water content (i.e., the 96 

difference between soil water content and wilting point), and/or soil-moisture-related indices, 97 

such as Soil Moisture Percentiles (SMP) (Andreadis et al., 2005; Mishra and Cherkauer, 98 

2010); (3) groundwater dynamics, for regions with deep-rooted plants or non-negligible 99 

surface-groundwater interactions (Orellana et al., 2012). Atmospheric water demand during 100 

crop growth is commonly characterized by VPD and/or PET (Novick et al., 2016). High 101 

atmospheric water demand, indicated by a high VPD, can reduce plant stomatal opening and 102 

thus reduce the rate of plant photosynthesis (Muller et al., 2011). To take both water supply 103 

and water demand into account, some drought indices have been developed, such as fET 104 

(=ET/PET) (Anderson et al., 2016b, 2007a, 2007b; Yang et al., 2018), Standardized 105 

Precipitation-Evapotranspiration Index (SPEI) (Masud et al., 2015; Vicente-Serrano et al., 106 

2010), and Palmer Drought Severity Index (PDSI) (Palmer, 1965; Dai et al., 2004; Ge et al., 107 

2016; Tian et al., 2018). These drought indices follow similar ideas, but with different 108 

mathematical formulations. 109 

 110 

Given the various existing drought metrics, another gap lies in terms of lack of benchmarks 111 

for these drought metrics. Many studies on agricultural drought use the Drought Severity 112 
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Measure from the U.S. Drought Monitor (USDM) (Anderson et al., 2013; Otkin et al., 2014, 113 

2013). However, the USDM metrics for drought are complicated because they represent both 114 

short- and long-term drought conditions associated with agricultural and hydrologic droughts 115 

respectively, and are based on a broad array of observations (e.g., precipitation, temperature, 116 

soil moisture, stream, ET and groundwater) and guidance from drought experts throughout 117 

the United States (Svoboda et al., 2002). Thus for “agricultural drought”, the USDM metrics 118 

may not be the most accurate measure available because of the broad range of drought types 119 

and conditions represented that may or may not pertain to crop stress. Crop yield, the ultimate 120 

measure for agricultural productivity, is an obvious metric for evaluating drought impacts on 121 

agriculture. However, few studies use crop yield to benchmark different drought measures for 122 

agricultural drought monitoring.  123 

 124 

Another gap in current agricultural drought assessments is the lack of consideration of the 125 

variable sensitivity to water stress at different growth stages of the crops. Droughts with the 126 

same severity (e.g. measured by different drought indices or hydrological components) but 127 

occurring at different growth stages can lead to significantly different impacts (Guan et al., 128 

2015, 2014; Mladenova et al., 2017; Peng et al., 2018a). Water stress that occurs during the 129 

critical growth stages usually has a much larger negative impact on the end-of-season yield 130 

(Mishra and Cherkauer, 2010; Peng et al., 2018a). The silking and grain-filling stages are the 131 

most critical stages for corn grain formation (Hunt et al., 2014; Meyer et al., 1993), which 132 

occur 70 to 90 days after planting for corn in the U.S. (i.e. late July and August in the U.S. 133 

Corn Belt, where corn is usually planted in early-mid May). As for soybean, the most critical 134 

stages for production are the blooming and podding stages (Mishra and Cherkauer, 2010), 135 

which occur 65 to 105 days after planting (i.e. August and early September in the U.S. Corn 136 

Belt, where soybean is usually planted in middle May to early June). Water stress during 137 

these periods may result in irreversible damage on the end-of-season crop yield. So, it is also 138 

necessary to diagnose the influence of water stress on the crop yield at different growth 139 

stages. 140 
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 141 

In this study, we investigate the connections between the hydrological cycle metrics and crop 142 

yield variability (for both corn and soybean) across the rainfed area of the U.S. Corn Belt, one 143 

of the world’s largest crop production areas (Grassini et al., 2015). The majority of the U.S. 144 

Corn Belt is rainfed, and it has experienced various levels of drought in the past, including 145 

particularly severe droughts in 1988 and 2012 (Rippey, 2015). Understanding how the 146 

hydrological cycle affects food production and increasing our ability to predict drought 147 

related impacts on crop yield would greatly benefit scientific and practical needs. 148 

Specifically, we analyze the relationship between anomalies of hydrological variables and 149 

end-of-season crop yields at the agricultural district scale between 2003 and 2014. Both 150 

observation-based and model-based hydrological variables (including both hydrological cycle 151 

components and some drought indices) are used in this study. We then use advanced 152 

statistical modeling to explore optimal ways to define an integral drought index for 153 

agricultural drought monitoring, in which stresses from both water supply and demand are 154 

considered. Through the analysis, we aim to answer the following questions: (1) What are the 155 

best indicators to assess the influence of crop water stress among the hydrological cycle 156 

components and commonly used drought indices in the rainfed U.S. Corn Belt, when 157 

benchmarked with crop yield? (2) What is the performance of those hydrological cycle 158 

components and drought indices as indicators for crop yield losses during the extreme drought 159 

year of 2012? (3) How can we optimally integrate those hydrological cycle components and 160 

drought indices to assess agricultural drought and what are the contributions of those 161 

hydrological cycle components to the new drought index? 162 

 163 

2. Materials and method 164 

2.1 Study area 165 

This study focuses on the rainfed part of the U.S. Corn Belt (Figure 1), where the influence of 166 

irrigation on crop yield is minimized. Our study domain is located in the central and eastern 167 

parts of the U.S. Midwest. We conducted our analysis at the U.S. Department of Agriculture 168 
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(USDA)-designated agricultural district level (blue boundaries shown in Figure 1), and used 169 

monthly hydrological cycle metrics, drought indices and USDA reported end-of-season crop 170 

yield data between 2003 and 2014. Our study area is a typical landscape planting corn and 171 

soybean (Figure 1), representing approximately 60% and 56% of the U.S. total corn and 172 

soybean production, respectively.  173 

 174 

Figure 1. Study area outlined by the blue boundary, with the background showing the 175 

average proportion of corn and soybean planting area in the total area based on United States 176 

Department of Agriculture (USDA) survey data in 1997, 2002, 2007 and 2012. 177 

2.2 Crop yield dataset 178 

The agricultural district level crop yield for corn and soybean in the study area during 2003 to 179 

2014 was collected from the USDA National Agricultural Statistics Service (NASS). In this 180 

study, NASS reported crop yields not designated as irrigated or non-irrigated conditions were 181 

treated as non-irrigated. The annual anomalies of crop yield were calculated for each 182 

agricultural district by subtracting a linear yield trend fitted for each district from the actual 183 

yield (Li et al., 2019; Lu et al., 2017; Zipper et al., 2016). 184 

2.3 Observation-based hydrological cycle components 185 

We used a set of observations of the individual hydrological cycle components to assess their 186 
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relationship with crop yield:  187 

P = ET + ΔS + Q                                         (1) 188 

The observation-based hydrological cycle components used in this study were obtained from 189 

the following sources. 190 

Precipitation (P): Since the station-based precipitation (i.e., Precipitation Regression on 191 

Independent Slopes Model (PRISM)) is highly consistent with the precipitation of the North 192 

American Land Data Assimilation System (NLDAS) at the agricultural district scale in the 193 

study area, the NLDAS precipitation was used as the observation-based precipitation to 194 

simplify the analysis process. 195 

Evapotranspiration (ET): Breathing Earth System Simulator (BESS ET). 196 

Subsurface water storage change (ΔS): Total terrestrial water storage (TWS) retrieved by 197 

the Gravity Recovery and Climate Experiment (GRACE). 198 

Soil moisture: European Space Agency (ESA) climate change initiative (CCI) surface soil 199 

moisture (CCI SSM). 200 

Streamflow (Q): Discharge data from the United States Geological Survey (USGS Q). 201 

Detailed information about these data are given in the following sections. 202 

2.3.1 Evapotranspiration from the Breathing Earth System Simulator (BESS) 203 

BESS is a satellite-driven water-carbon-energy coupled biophysical model (Jiang and Ryu, 204 

2016; Ryu et al., 2011). By using MODIS aerosol, cloud and atmospheric profile products, 205 

BESS calculates solar radiation (Ryu et al., 2018), air temperature and humidity to drive the 206 

land surface process modules. Using MODIS LAI, albedo and clumping products, BESS 207 

quantifies the solar radiation absorption by the sunlit/shaded canopy through the explicit 208 

computation of direct/diffuse radiation in the atmosphere and canopy (Ryu et al., 2011). With 209 

these environmental and vegetation inputs, BESS computes ET from the sunlit/shade canopy 210 

by solving a quadratic Penman-Monteith equation through an iterative procedure, in which 211 

ET estimates are constrained by both energy absorption and carbon uptake (Jiang and Ryu, 212 

2016; Ryu et al., 2011). PET is further calculated using the Priestley-Taylor equation. The 213 
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global BESS ET product was evaluated against a global network of eddy-covariance tower 214 

observations and against global coarse-resolution maps upscaled using machine learning 215 

(Jiang and Ryu, 2016; Jiang et al., 2020). BESS monthly ET and PET between 2003 and 2014 216 

were used in this study.  217 

2.3.2 Total terrestrial water storage (TWS) from GRACE 218 

The GRACE-derived TWS anomaly captures bulk land water storage changes, including 219 

contributions from surface water, soil moisture, and deeper groundwater storages. TWS is 220 

retrieved from the gravimetric sensor derived water mass variations (Landerer and Swenson, 221 

2012). The GRACE TWS product used here is the Monthly Mass Grids – Land product with 222 

1° spatial resolution, where each grid value represents the surface mass deviation from the 223 

baseline averaged from January 2004 to December 2009. There are three available GRACE 224 

TWS products, which are developed by the Center for Space Research at the University of 225 

Texas, Austin (CSR), NASA Jet Propulsion Laboratory (JPL) and GeoforschungsZentrum 226 

Potsdam (GFZ), respectively. To reduce the noise from different gravity field solutions 227 

(Sakumura et al., 2014), the average value of these three products was used in our analysis. 228 

2.3.3 Surface soil moisture (SSM) from ESA CCI 229 

The ESA CCI soil moisture project is part of the ESA Programme on Global Monitoring of 230 

Essential Climate Variables (ECV), which produces surface soil moisture products by 231 

combining observations from multiple active and passive microwave satellite sensors 232 

launched after 1979 (Gruber et al., 2019, 2017; Dorigo et al., 2017). Microwave remote 233 

sensing has been proven effective to estimate surface soil moisture content, as there is a 234 

significant difference in the dielectric properties between soil and liquid water (Njoku and 235 

Entekhabi, 1996). However, depending on the sensor configurations (i.e. wavelength, incident 236 

angle etc.) and surface condition (i.e. vegetation cover, soil moisture content, roughness etc.), 237 

the effective penetration depth of the microwave signal usually ranges from 0 to 5 cm (Peng 238 

et al, 2017). Therefore, the microwave-based soil moisture observations predominantly reflect 239 

surface soil conditions rather than deeper root zone soil moisture which is more directly 240 
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accessible to plants (Njoku et al., 2003; Wigneron et al., 2017). We use the CCI surface soil 241 

moisture (CCI SSM) product between 2003 and 2014, which is daily and has a 25 km spatial 242 

resolution. For this period, the Advanced Microwave Scanning Radiometer on the Earth 243 

Observing System Aqua satellite (AMSR-E) (Njoku et al., 2003) and the Advanced 244 

Scatterometer (ASCAT) on the Meteorological Operational satellite A (MetOp-A) (Hollmann 245 

et al., 2013) are the major passive and active sensors used for soil moisture retrievals. The 246 

monthly CCI-SSM was obtained by aggregating the daily product.  247 

2.3.4 Discharge data from USGS 248 

The observed (2003-2014) monthly runoff data for all the hydrologic unit code level 8 (HUC-249 

8) catchments within the study domain were obtained from the USGS WaterWatch system 250 

(Jian et al., 2008). This dataset provides computed runoff for individual HUCs, which were 251 

generated by combining historical flow data collected at streamgages, the drainage basins of 252 

the streamgages, and the boundaries of the HUCs. The HUC-8 level runoff was rasterized and 253 

aggregated to the agricultural district scale for our analysis. 254 

2.4 Model-simulated hydrological cycle components 255 

We used the simulated monthly hydrological cycle components from the NLDAS-Noah 256 

model outputs as the model-simulated hydrological cycle components. NLDAS Phase 1 257 

(NLDAS-1) (Mitchell, 2004) was initiated in 1999, sponsored by the Global Energy and 258 

Water Cycle Experiment (GEWEX) Continental-Scale International Project (GCIP) covering 259 

the continental United States, southern Canada, and northern Mexico. Four land-surface 260 

models (LSMs) including Noah, Variable Infiltration Capacity (VIC), Sacramento Soil 261 

Moisture Accounting (SAC-SMA), and Mosaic are executed in parallel and uncoupled in 262 

NLDAS in both real time and retrospective modes. By assimilating the meteorological 263 

forcing, and soil and vegetation parameters, NLDAS produces quality-controlled long-term 264 

and near real-time products to support national operational drought monitoring and 265 

prediction, and to provide water resource information needed by various government 266 

agencies, academia, and other enterprises. As an update of NLDAS-1, the NLDAS Phase 2 267 
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(NLDAS-2, Xia et al., 2012a, 2012b) extended the study time window from 3 years (1997–268 

1999) to 30 years (1979–2008), using more accurate and consistent surface forcing data 269 

(including both station gauged meteorological data and North American Regional Reanalysis 270 

(NARR) atmospheric forcing data), and upgrading the land-surface model code and 271 

parameters. The spatial resolution of NLDAS output is 0.125° with hourly intervals. In this 272 

study, NLDAS2-Noah monthly outputs (aggregated from hourly outputs) between 2003 and 273 

2014 were used. The following NLDAS2-Noah model-simulated hydrological cycle 274 

components were used in our analysis: 275 

P (NLDAS P): Summing the liquid precipitation (ARAIN) and frozen precipitation 276 

(ASNOW) components; 277 

ET (NLDAS ET): Total evapotranspiration; 278 

ΔS (NLDAS ΔS): Change of model subsurface (0-200 cm depth) soil moisture content; 279 

SMC_10cm (NLDAS SMC_10cm): model subsurface (0-10 cm depth) soil moisture content; 280 

SMC_200cm (NLDAS SMC_200cm): model subsurface (0-200 cm depth) soil moisture 281 

content; 282 

Q (NLDAS Q): Sum of the subsurface runoff (BGRUN) and surface runoff (SSRUN) 283 

components. 284 

2.5 Drought indices 285 

Besides the hydrological cycle components, several commonly used drought indices were 286 

also adopted to analyze the relationship between drought indices and crop yield. Here we 287 

chose four widely used drought indices, including VPD, fET, SPEI, and PDSI. A summary of 288 

the drought indices and their sources is provided below. 289 

2.5.1 PRISM vapor pressure deficit product 290 

The VPD is the difference between the water vapor pressure in the air and the saturated water 291 

vapor pressure at the same air temperature. VPD indicates the atmospheric dryness and has 292 

been found to affect crop yield of corn and soybean by limiting stomatal opening and also 293 

depleting soil moisture (Lobell et al., 2014). Here, we use VPD as a measure of atmospheric 294 
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drought or dryness (Anderson, 1936). The VPD product used here is the gridded monthly 295 

maximum VPD from the PRISM with time period between 2003 and 2014. PRISM provides a 296 

suite of gridded high accuracy climate variables across the continental U.S. (Daly et al., 297 

2008). It is based on the quality-controlled measurements from the U.S. weather station 298 

network, and generates gridded product by conducting a climate–elevation regression for each 299 

digital elevation model (DEM) grid cell considering the location, elevation, coastal proximity, 300 

aspect, vertical atmospheric layer, topographic position, and orographic effectiveness of the 301 

terrain (Daly et al., 2008).  302 

2.5.2 fET 303 

fET is the ratio of actual ET to PET, which describes the difference between the crop water 304 

demand and water supply. The anomaly of fET has been widely used for drought monitoring 305 

(Anderson et al., 2016b; Otkin et al., 2013) and crop yield estimation (Anderson et al., 2016a; 306 

Yang et al., 2018). The fET used here was calculated based on the BESS monthly ET and 307 

PET products between 2003 and 2014.  308 

2.5.3 SPEI 309 

The SPEI is a variate of the SPI, taking both precipitation and evapotranspiration into account 310 

(Beguería et al., 2014; Vicente-Serrano et al., 2010). The SPEI used here was acquired from 311 

the National Center for Atmospheric Research (NCAR) (Vicente-Serrano, 2015), which uses 312 

the FAO-56 Penman-Monteith method to estimate potential evapotranspiration. This dataset 313 

covers the period between 1901 and 2015 with 0.5° spatial resolution and monthly fidelity. 314 

The SPEI record used here spans the period between 2003 and 2014. 315 

2.5.4 PDSI 316 

The PDSI quantifies the relative dryness by incorporating antecedent and current moisture 317 

supply (P) and demand (PET) into a hydrological accounting system, and using a 2-layer 318 

bucket-type model to calculate the soil moisture (Dai et al., 2004; Wayne, 1965; Wells et al., 319 

2004). The PDSI is the most commonly used drought index (Vicente-Serrano et al., 2010), 320 

although there have been several criticisms on its limitations (Alley, 1984; Dai, 2011; 321 
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Sheffield et al., 2012). The monthly self-calibrating PDSI during 2003 and 2014  was also 322 

downloaded from NCAR (Dai, 2019) with a spatial resolution of 2.5°. 323 

2.6 Methods 324 

We conducted three major analyses. The first analysis was to understand the relationship and  325 

its spatio-temporal dynamics between crop yield and the hydrological cycle components and 326 

drought indices. Specifically, anomaly correlation (Pearson’s correlation) coefficients 327 

between crop yield and hydrological cycle components and drought indices were calculated 328 

for each month during the growing season (April to October), to assess the impact of different 329 

hydrological variables on crop yield and how the relationships vary in time and space. The 330 

second analysis was a case study to understand how the different hydrological variables 331 

evolved during the intense 2012 drought. Specifically, we analyzed the temporal evolutions of 332 

both monthly normalized (using maximum-minimum normalization method based on the data 333 

from 2003 to 2014) hydrological cycle components and drought indices in 2012, and used the 334 

corresponding percentile values of 2012 for the analysis based on all data from 2003 to 2014. 335 

By doing so, we were able to study the potential mechanisms leading to crop stress and yield 336 

loss. The third analysis was to integrate the hydrological variables together to assess the 337 

capability for predicting crop yield purely based on hydrological variables. Specifically, we 338 

used an advanced regression method, Partial Least Square Regression (PLSR), to explore the 339 

seasonal crop yield predictability by combining the different hydrological cycle components 340 

and associated drought indices, and to further interpret the shared and unique values of the 341 

different hydrological variables in terms of their contributions to predict crop yield and 342 

quantify the impact of agricultural drought.  343 

2.6.1 Relationship between hydrological cycle components and crop yield 344 

All observation-based and model-simulated hydrological cycle components, and drought 345 

indices were aggregated to the agricultural district scale using the mean value of the pixels 346 

contained in each agricultural district. The anomalies of hydrological cycle components and 347 

drought indices were calculated by subtracting the monthly multi-year mean value of each 348 
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agricultural district. The anomaly correlation coefficients (r) between the crop yield and 349 

different hydrological variables were calculated to qualify the relationship between crop yield 350 

and hydrological cycle components or drought indices. The overall correlation coefficients 351 

were calculated for each month using all available data for all agricultural districts. The 352 

correlation coefficients for each month and each agriculture district were also calculated to 353 

understand the spatial and temporal evolution of the relationship between crop yield and 354 

hydrological cycle components or drought indices.  355 

2.6.2 Evaluation of the extreme drought year 2012 356 

We used the 2012 drought as a case study to further understand how different hydrological 357 

variables evolved in an extreme drought year. The monthly normalized hydrological cycle 358 

components and drought indices in 2012 were analyzed in terms of their percentile value 359 

based on the whole study period (i.e. 2003-2014), instead of their absolute values. Analyzing 360 

the monthly data can reveal time lags of the different hydrological variables, and potentially 361 

provide insights on the underlying mechanisms of the 2012 drought affecting crop growth.  362 

2.6.3 PLSR and seasonal prediction of crop yield 363 

We used PLSR to integrate the different hydrological cycle components and drought indices 364 

for crop yield prediction, and to inform the potential development of a new drought index. 365 

PLSR is a regression method similar to principal components regression (PCR), which 366 

projects both independent and dependent variables into the variable space (i.e. latent 367 

variables) through the linear combination of the original variables (Guan et al., 2017). The 368 

latent variables are obtained to maximize the covariance between the latent variables that are 369 

derived from the dependent variables and the latent variables that are derived from the 370 

independent variables. Compared to PCR and multiple linear regression, the performance of 371 

PLSR is more robust (Geladi and Kowalski, 1986). 372 

 373 

The observation-based hydrological cycle components (NLDAS P, USGS Q, CCI SSM, 374 

GRACE ΔS, BESS ET), fET and VPD were used as independent variables in the PLSR. We 375 
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used the observation-based hydrological cycle components, instead of the model-simulated 376 

ones, as they show similar performance in capturing the yield variabilities (i..e Figure 2) and 377 

the observation-based ones may have less uncertainties. fET and VPD were chosen to be 378 

independent variables in the PLSR as they show better performance relative to the other 379 

drought indices in depicting yield variabilities (i.e. Figure 2). PLSR models were developed 380 

separately for corn and soybean because these crop types show different yield responses to 381 

variations in the hydrological variables (i.e. Figure 2). The hydrological cycle components 382 

and drought indices for each month and all months prior since May of each calendar year of 383 

the study period were used to test the seasonal predictability of the first component and 384 

optimal (model with the minimum cross-validation root-mean-square error (RMSE) during 385 

model training) PLSR models. We conducted a 100-fold bootstrap process for the crop yield 386 

predictions using the combination of the hydrological cycle components and drought indices; 387 

and for each bootstrap, 80% of the data were selected randomly for model training, and the 388 

remaining 20% for model validation. The mean value and standard deviation of RMSE and R2 389 

(coefficient of determination) of each combination were calculated based on the bootstrap 390 

results.  391 

Table 1. Description of the datasets used in this study 392 

Categories Dataset 
Original dataset 

time period 

Spatial 

Resolution 
Reference 

Observation-

based 

hydrological 

cycle 

components 

BESS ET 

BESS PET 
2002-2017 5 km 

(Jiang and Ryu, 

2016) 

GRACE ΔS 2002-2017 1° 
(Landerer and 

Swenson, 2012) 

CCI SSM 1978-2016 25 km (Dorigo et al., 2017) 

USGS Q 1900-2016 HUC level 8 (Jian et al., 2008) 

Model-

simulated 

NLDAS-

Noah’s P, ET, 
1979-2019 0.125° 

(Mitchell, 2004; Xia 

et al., 2012b, 2012a) 
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hydrological 

cycle 

components 

PET, 

SMC_10cm, 

SMC_200cm, 

and Q 

Commonly 

used drought 

indices 

PRISM VPD 1895-2019 5 km (Daly et al., 2008) 

BESS fET 2002-2017 5 km 
(Jiang and Ryu, 

2016) 

SPEI 1901-2015 0.5° 
(Vicente-Serrano, 

2015) 

PDSI 1850-2014 2.5° (Dai, 2019) 

     

3. Results 393 

3.1 Correlations between hydrological cycle components and crop yield  394 

Our results show that crop growth and yield are sensitive to the variability of the hydrological 395 

cycle, and that water stress during different growth stages can lead to distinctive impacts on 396 

the end-of-season crop yield (Çakir, 2004; Mladenova et al., 2017). The anomaly correlation 397 

between crop yield and different hydrological variables (i.e. observation-based and model-398 

simulated hydrological cycle components, and drought indices) for the different months are 399 

shown in Figure 2. Specifically, we find that almost all anomaly correlation coefficients have 400 

similar seasonal patterns, i.e. the maximum absolute value of r (|r|) between the hydrological 401 

variables and crop yield appears in July or August for corn, and in August or September for 402 

soybean. This seasonal pattern is consistent with the key growth stages of corn and soybean in 403 

the rainfed part of the U.S. Corn Belt, where July and August coincide with the flowering and 404 

major grain-filling stages for corn; soybean, in contrast, is usually planted after corn and has 405 

later critical flowering and pod filling stages (i.e. in August and September) (Guan et al., 406 

2017).  407 

 408 
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Corn yield, in general, has a higher correlation with different hydrological variables and 409 

drought indices than soybean yield, and both observation-based and model-simulated 410 

hydrological cycle components show such a pattern (Figure 2). This result indicates higher 411 

sensitivity of corn yield to water stress than soybean, consistent with prior work (Lobell et al., 412 

2014). The apparent lower soybean yield sensitivity to water stress may be because soybean 413 

has a better ability to regulate growth rates during unfavorable environmental conditions 414 

compared to corn (Boyer, 1970; Huck et al., 1983; Turner and Begg, 1981).Among all the 415 

observation-based hydrological variables (Figure 2 a, d), CCI SSM shows the highest 416 

correlation magnitude (i.e. |r|) with crop yield for both corn and soybean, though the peak 417 

correlations happen at different times (July for corn and August for soybean). Besides CCI 418 

SSM, GRACE ΔS also shows a high correlation with corn yield, although much less so for 419 

soybean. This is reasonable as SSM and ΔS are correlated with each other in the rainfed 420 

region of the U.S. Corn Belt due to limited groundwater pumping in this region. For corn, 421 

BESS ET also has a comparable yield sensitivity in August and September, as well as BESS 422 

PET in June and July. As for soybean, BESS ET in June, and NLDAS P and CCI SSM in 423 

August had higher correspondence to crop yield compared with other observation-based 424 

hydrological cycle components. 425 

 426 

Regarding the correlation |r| between anomalies of different drought indices and crop yield, 427 

VPD and fET show the highest |r| for both corn and soybean, although the peak times are 428 

different for each crop type. For corn, the correlation of VPD with yield peaks in July, which 429 

is one month earlier than fET (peak in August), although the peak |r| of VPD with yield is 430 

slightly lower than that of fET. A reversed pattern is found for soybean, i.e. |r| of fET peaks in 431 

June, which is two months earlier than |r| of VPD, though the peak |r| of fET is slightly lower 432 

than that of VPD. In addition, for corn, VPD has a larger |r| than other drought indices for the 433 

months following May, and the peak |r| of VPD is one month earlier than other drought 434 

indices except for the SPEI. While for soybean, |r| of fET is significantly larger than the other 435 
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indices in June and July, while the peak |r| for fET occurs two months ahead of the other 436 

drought indices. The above results suggest that VPD and fET may provide effective early 437 

warning indicators for corn and soybean yield loss, respectively. 438 

 439 

 440 

Figure 2. The anomaly correlation between hydrological cycle components or drought 441 

indices and corn or soybean yield. 442 

3.2 Spatio-temporal evolution of the relationship between hydrological variables and 443 

crop yield 444 

Anomaly correlation between the hydrological variables and crop yields vary in both space 445 

and time over the rainfed part of the U.S. Corn Belt (Figure 3). For Figure 3, we selected five 446 

hydrological variables (NLDAS P, CCI SSM, BESS ET, fET, and VPD) based on their |r| 447 
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rankings in Figure 2; the patterns of the other hydrological variables are shown in Figures S1-448 

S3. Specifically, most hydrological variables showed a similar spatio-temporal evolution, i.e. 449 

their r reaches a (spatially homogeneous) maximum (i.e. for CCI SSM, BESS ET, and fET) or 450 

minimum (i.e. for VPD) during June to August. For corn, during June to August, the r of 451 

VPD is negative homogeneously in space, while the r values for fET and CCI SSM are 452 

positive homogeneously in space. The r pattern for soybean shows a similar spatio-temporal 453 

evolution as corn, but with larger spatial heterogeneity. For soybean, r values for BESS ET 454 

and fET in June, and CCI SSM in August are positive homogeneously in space, while r 455 

values for VPD in August are negative homogeneously in space. Before June, r values for all 456 

of the hydrological variables show large spatial heterogeneity for both corn and soybean. 457 

  458 

Considering the absolute value (|r|) and spatial distribution (e.g. degree of spatial 459 

homogeneity) of r, some hydrological variables show potential value as early warning 460 

indicators of crop yield loss. For corn, VPD and CCI SSM in May start to show spatially 461 

homogeneous correlation patterns with annual yield, while the pattern strengthens over 462 

subsequent months and reaches a peak in August, especially over the southern rainfed portion 463 

of the Corn Belt (Figure 3). The corn yield predictability of VPD and CCI SSM in May is 464 

explained by the temporal evolution of their correlation with crop yield (Figure 3), which both 465 

show relatively stronger but similar correlation patterns with crop yield in the following 466 

critical summer months (i.e. June, July, and August). While for soybean, BESS ET and fET in 467 

June start to show a more homogeneous correlation pattern in space, but with increasing 468 

heterogeneity in the correlation pattern beginning in July. These earlier warning indicators are 469 

consistent with the overall correlation pattern between anomalies in crop yield and 470 

hydrological variables (Figure 2). 471 
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 472 

Figure 3. Correlation patterns between monthly hydrological components and crop yield for 473 

rainfed corn and soybean crop types. 474 

3.3 Evaluation of the extreme drought year 2012 475 

The 2012 drought was one of the most severe droughts occurred in the U.S. Midwest and 476 

Central Great Plains over the past century, causing large crop yield losses for both corn and 477 

soybean (Mallya et al., 2013). Our results confirm that the 2012 drought led to severe yield 478 

loss in the rainfed Corn Belt, and the associated drought signal was clearly evident in the 479 
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growing season averaged selected hydrological variables from 2003 to 2014 (Figure 4). 480 

Figure 4 shows that the detrended corn yield in 2012 was at its lowest value for the study 481 

period.  The detrended soybean yield was also anomalously low in 2012 and second only to 482 

2003, which had the lowest recorded soybean yield for the study period due to crop disease 483 

(Wrather and Koenning, 2006). In 2012, some hydrological cycle components and all of the 484 

drought indices showed extremely low values compared to the other years between 2003 and 485 

2014. Specifically, both observation-based and model-simulated P, Q, SM, ΔS in 2012 486 

reached their historical minimums during the study period, but not for ET and PET. PET had 487 

its maximum value in 2012, consistent with an exacerbated moisture deficit during the 488 

drought year. The observation-based ET reached its lowest value in 2012, consistent with 489 

minimal moisture levels available for evaporation. In contrast, the NLDAS model simulated 490 

ET was actually normal in 2012, which may be due to model uncertainties in simulating ET in 491 

such an extreme year.  492 

 493 

Figure 4. Detrended crop yields for corn and soybean, normalized hydrological cycle 494 

components, and normalized drought indices from 2003 to 2014. The normalized 495 

hydrological cycle components and drought indices were calculated using the min-max 496 

normalization method based on the growing season (from April to September) averaged data 497 

from 2003 to 2014.  498 
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 499 

The seasonal patterns of the different hydrological variables in 2012 are shown in Figure 5, 500 

and benchmarked with percentile values calculated from all of the years between 2003 and 501 

2014. P in 2012 was near normal in the beginning of this year, but became abnormally low in 502 

June and July as drier conditions emerged. ET and PET were both very high from January to 503 

May in 2012, primarily due to the high VPD (i.e. high atmospheric water demands) and 504 

sufficient soil moisture (i.e. sufficient water supply); but then ET started to significantly 505 

decline after May and reached its lowest value in August and September, while PET only had 506 

a slight decrease in the following months. This ET decrease was primarily due to the dramatic 507 

depletion of soil moisture by the high ET rates that occurred from January to May, and the 508 

lack of precipitation during summer. This drawdown of soil moisture in early 2012 is 509 

confirmed by both CCI SSM (showing a sharp decrease from March to April and remaining 510 

historically low until September) and GRACE ΔS (showing a more gradual decrease, but 511 

continuing at low levels from June to December). Notably, Q also reached its lowest level in 512 

April, which continued afterwards until December in 2012. After the crop growth season, ET 513 

and CCI SSM increased after September due to the recovery of precipitation, while GRACE 514 

ΔS and USGS Q remained near minimum levels, indicating the time latency to recover severe 515 

groundwater depletion. A similar result is also found from the evolution of the model-516 

simulated water components (Figure 6). 517 
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 518 

Figure 5. Comparison of the normalized water components in 2012 with observation-based 519 

percentiles calculated using all of the data from 2003 to 2014. The monthly normalized 520 

observation-based hydrological cycle components were calculated using the max-min 521 

normalization method based on monthly data from 2003 to 2014. The black line indicates the 522 

seasonal cycle of the normalized observation-based hydrological cycle components in 2012. 523 

The dark green curve indicates the 50% percentiles, the blue shade indicates the upper and 524 

lower 10% ranges, and the light green shade indicates the upper and lower 25% ranges of 525 

monthly normalized observation-based hydrological cycle components, respectively. 526 

 527 

 528 
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 529 

Figure 6. Comparison of the normalized water components in 2012 with the normalized 530 

model-simulated percentiles calculated using all of the data from 2003 to 2014.  The monthly 531 

normalized model-simulated hydrological cycle components were calculated using the max-532 

min normalization method based on monthly NLDAS-Noah data from 2003 to 2014. The 533 

black line indicates the seasonal cycle of normalized model-simulated hydrological cycle 534 

components in 2012. The dark green curve indicates the 50% percentiles, the blue shade 535 

indicates the upper and lower 10% ranges, and light green shade indicates the upper and 536 

lower 25% ranges of monthly normalized model-simulated hydrological cycle components, 537 

respectively. 538 

 539 

We further investigate how well the drought indices captured the seasonal evolution of the 540 

2012 drought (Figure 7). Generally, the drought indices detect different duration and peak 541 

time for the 2012 drought. However, all of the drought indices indicate the historically severe 542 

drought event in June and July. In 2012, VPD was historically the highest before September 543 
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(except for April) during the study period. The SPEI shows a similar seasonal cycle as 544 

NLDAS P in 2012, and reaches its lowest value in June and July, within the critical growing 545 

stages of corn and soybean. The PDSI reaches its lowest value in May and remains low until 546 

December in 2012, while fET reaches its lowest value from March to September (except for 547 

April) in 2012.  548 

 549 

Figure 7. Comparison of the normalized drought indices in 2012 with the percentiles 550 

calculated using all of the data from 2003 to 2014. The monthly normalized drought indices 551 

were calculated using the max-min normalization method based on monthly data from 2003 552 

to 2014. The black line indicates the seasonal cycle of normalized drought indices in 2012. 553 

The dark green curve indicates the 50% percentiles, the blue shade indicates the upper and 554 

lower 10% ranges, and the light green shade indicates the upper and lower 25% ranges of 555 

monthly normalized drought indices, respectively. 556 

 557 

 558 

 559 

 560 

 561 

 562 
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 563 

 564 

3.4 Predicting crop yield based on monthly hydrological cycle components and drought 565 

indices 566 

 567 

 568 

Figure 8. The performance of crop yield predictability using the PLSR optimal model and the 569 

PLSR first-component model. The performance in each month represents the model 570 

prediction skill when ingesting data from May until the end of each given month. The filled 571 

and error bars represent the respective means and standard deviations based on 100-time 572 

bootstrapping. In each bootstrap, 80% of the data (hydrological information of current month 573 

and before) was used for model training, and the remaining 20% of the data for model 574 

validation. The percentages listed above the bars of the RMSE subplots are the normalized 575 

RMSE values (RMSE divided by multi-year averaged crop yield). 576 

 577 

Accurate seasonal forecasts of end-of-season crop yield are important for early warning of 578 
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food insecurity, supply chain planning for the agriculture industry, and market prediction 579 

(Peng et al., 2018b; Peng et al., 2020b). The effective use of combined information from 580 

multiple hydrological variables has the potential to improve crop yield prediction. Here we 581 

use PLSR to explore the value of integrating different hydrological variables and their 582 

seasonal information for corn and soybean yield prediction. Overall, corn yield can be 583 

predicted better than soybean yield based on the combination of hydrological variables for 584 

both the PLSR optimal model and PLSR first-component model (Figure 8). For corn, the R2 585 

of the two models are 0.76 and 0.47 when benchmarked with the NASS yield statistics, and 586 

the normalized RMSEs of the two models are 6.0% and 9.0% at the end of growing season, 587 

respectively. For soybean, the R2 of the two models are 0.70 and 0.31, and the normalized 588 

RMSEs are 6.0% and 8.9% at the end of the growing season, respectively. The PLSR 589 

performance is improved when more seasonal hydrological information is ingested into the 590 

model, and this improvement in model performance can be largely explained by the observed 591 

relationships between crop yield and the seasonal hydrological variables (i.e. Figure 2). For 592 

corn, adding hydrological information of June and July most significantly improves the crop 593 

yield prediction accuracy (R2 improved from 0.16 to 0.47 for June, and from 0.47 to 0.65 for 594 

July). For soybean, adding hydrological information of June  and August can most 595 

significantly improve soybean yield prediction accuracy (R2 improved from 0.05 to 0.33 for 596 

June, and R2 from 0.40 to 0.67 for August) . 597 

 598 

 599 
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 600 

Figure 9. The loading of the first three components of the optimal PLSR crop yield model in 601 

September (i.e. using all of the monthly data from May to September). 602 

 603 

 604 



29 
 

 605 

Figure 10. PLSR loadings of different predictor variables for the 1st component (x-axis) and 606 

the 2nd component (y-axis) of the PLSR models for (a) corn and (b) soybean. 607 

 608 

In the PLSR model, the first two components could explain 70% and 56% of the annual yield 609 

variabilities for corn and soybean, respectively. For corn, the first and second components 610 

explain 51% and 19% of yield variability, respectively. For soybean, the first and second 611 

components explain 33% and 23% of yield variability, respectively. The loading of the first 612 

component of the PLSR model (i.e. Figure 9) for both corn and soybean yields can be largely 613 

explained by the seasonal correlation between the anomalies in crop yield and hydrological 614 

variables (Figure 2). For corn, the first PLSR component mainly contains the hydrological 615 

information in July and August; and for soybean, the first PLSR component mainly contains 616 

the hydrological information in June and August. The seasonally integrated loading of the 617 

different hydrological variables in the first and second PLSR components is presented in 618 

Figure 10. For corn, the first component of the PLSR model mainly consisted of VPD, fET 619 

and CCI SSM, which predominantly represents water deficit information pertaining to 620 

atmospheric demand and near surface soil water storage; while the second component mainly 621 

consists of USGS Q, GRACE ΔS and NLDAS P, as an indicator of  long term groundwater 622 

availability. For soybean, the first PLSR component mainly consists of fET, BESS ET and 623 
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VPD, indicating the importance of water demand for soybean growth; while the second 624 

component mainly consists of USGS Q, GRACE ΔS, CCI SSM and VPD, as water supply 625 

indicators for crop growth. 626 

 627 

4. Discussion 628 

In this study, we (1) used multi-source (i.e. observation-based and model-simulated) 629 

hydrological cycle components and commonly-used drought indices to assess the best 630 

performing plant water stress indicators with the crop yield as a benchmark in the rainfed part 631 

of the U.S. Corn Belt; (2) revealed the hydrological causes of huge crop yield losses during 632 

the historic 2012 drought by analyzing the progression of water supply and water demand 633 

during the drought cycle; (3) and integrated the different hydrological cycle components to 634 

establish a new crop-yield-based drought index using the PLSR method. In the following 635 

discussion, we synthesize our results to answer the questions raised in the introduction section 636 

of the paper.   637 

(1) What is the best indicator to assess the influence of crop water stress among the 638 

hydrological cycle components and commonly used drought indices in the rainfed U.S. Corn 639 

Belt with crop yield as a benchmark? 640 

Previously, “agricultural drought” has generally been defined based on soil moisture 641 

conditions. Our results show that besides soil moisture, VPD and fET also show high 642 

correlation with crop yield for both corn and soybean. This finding reveals that both water 643 

supply and water demand play vital roles in quantifying plant water stress. Average 644 

precipitation is relatively high in the rainfed portions of the U.S. Corn Belt (i.e. 500-1300 645 

mm/year) which usually ensures adequate soil water to support crop growth during normal 646 

years; however, atmospheric water demand still plays a dominant role in determining crop 647 

photosynthesis through the leaf stomatal regulation of CO2 exchange (Ort and Long, 2014). 648 

Therefore, VPD or fET may be a better indicator to quantify the severity of agricultural 649 
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drought in the rainfed U.S. Corn Belt, which is consistent with previous studies (Lobell et al., 650 

2014).  651 

 652 

Although different hydrological cycle components show different abilities in quantifying the 653 

influence of water stress, most components show a generally similar seasonal pattern in terms 654 

of their correlations with crop yield losses, and associated moisture deficits occurring during 655 

critical corn and soybean growth stages in the U.S. Corn Belt. The highest correlations 656 

between the selected drought metrics and annual crop yield anomalies occurred during the 657 

peak growing season (i.e. July for corn and August for soybean). These results indicate that a 658 

more accurate definition of “agricultural drought” should emphasize hydrological cycle 659 

restrictions occurring during critical crop growth stages.  660 

 661 

Although both soil moisture and VPD were able to capture agricultural drought and its 662 

evolution in the U.S. Corn Belt, the soil moisture products (both satellite and model-based) 663 

had larger uncertainties compared with the VPD data. However, when benchmarked with 664 

crop yield, we found that VPD, soil moisture, and fET had generally consistent performance 665 

in quantifying drought stress (Figure 11). For example, the crop yield correspondence (|r|) 666 

with CCI SSM and VPD increased from April to July for corn and from May to August for 667 

soybean, but was lower from July to October for corn and from August to October for 668 

soybean as shown in Figure 11b. These findings indicate that VPD may be a better indicator 669 

of agricultural drought when considering data availability and uncertainty, and overall 670 

performance in quantifying drought stress.   671 

 672 
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Figure 11. The coevolution of the correlation coefficients between crop yield and VPD, 673 

between crop yield and fET, and between crop yield and CCI SSM for both corn and soybean.  674 

(2) What is the performance of the hydrological cycle components and drought indices in 675 

indicating crop yield loss in the extreme drought year of 2012? 676 

As one of the most severe drought events in U.S. history, the 2012 drought caused large crop 677 

yield losses in the U.S. Corn Belt. As shown in Figure 12, the |r| between crop yield and the 678 

hydrological cycle components and drought indices in 2012 showed similar seasonal patterns 679 

as in other years (i.e. Figure 2), but with higher correlation coefficients. Among the 680 

observation-based hydrological cycle components, P showed a higher correlation with crop 681 

yield in May and June for corn and in July for soybean. Among the drought indices, VPD 682 

showed a higher correlation with crop yield, and provided earlier warning of drought-induced 683 

declines in annual corn and soybean production. 684 

By investigating the seasonal cycle and propagation of the hydrological variables in 2012, we 685 

find that this drought began with abnormally higher atmospheric water demand (i.e. VPD and 686 

PET) and water depletion (due to the high ET) in the spring of 2012, and aggravated by lower 687 

water supply (i.e. P) in the early summer. These combined effects significantly lowered soil 688 

moisture, leading to abnormally low levels of both surface soil moisture (i.e. CCI SSM) and 689 

deeper groundwater (i.e. GRACE ΔS), which exacerbated the drought and contributed to 690 

extensive annual crop yield losses. Among the drought indices examined, VPD provided 691 

therefore an earlier warning and continued to be an anomaly throughout the growing season 692 

compared to other more traditional drought indices (i.e. SPEI and PDSI). Our findings 693 

indicate that in the U.S. Corn Belt, the 2012 drought was characterized by excessive 694 

atmospheric water demand (i.e. VPD and PET) exacerbated by anomalously low water supply 695 

levels (i.e. P and soil moisture). 696 
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 697 

Figure 12. The correlation between hydrological cycle components or drought indices 698 

anomalies and yield anomalies for corn and soybean in the 2012 drought year. 699 

(3) How can we optimally integrate the hydrological cycle components and drought indices to 700 

assess agricultural drought? What are the contributions of the hydrological cycle components 701 

to the new drought index and crop yield predictions? 702 

We further used multiple hydrological cycle components to build a new drought index, 703 

defined as the Z-score of seasonal optimal PLSR-based yield prediction, in which the mean 704 

and standard deviation were calculated using monthly predicted crop yield from 2003 to 705 

2014. The Z-score is a commonly used metric in drought monitoring (Du et al., 2019; Mu et 706 

al., 2013; Zhao et al., 2017). As shown in Figure 8, the performance of the new drought index 707 
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in crop yield prediction increases with more hydrological information ingested in later 708 

months, and the R2 reached 0.76 and 0.70 in September for corn and soybean, respectively. 709 

The proposed drought index can provide more information about the impact of drought on 710 

crop yield compared with other existing indices (i.e. Figure 2). In the new proposed index, 711 

crop water supply, water demand, crop growth stages, and their influence on crop yield loss 712 

all were considered compared to traditional drought indices (i.e. SPEI, PDSI). For most 713 

months, VPD and fET showed larger contributions to the new drought index indicating the 714 

vital role of water demand in quantifying agricultural drought in the rainfed U.S. Corn Belt 715 

(i.e. Figure 9). 716 

 717 

We used annual crop yields for corn and soybean as benchmarks to assess the agricultural 718 

drought indices in this study. However, the drought indices may have different impacts on 719 

other crop species due to their different physiological characteristics and growth stages. As 720 

shown in Figure 13, the newly defined drought index showed different severity of 2012 721 

drought in both magnitude and seasonal evolvement for corn and soybean. For corn, the 722 

drought signal was present since the planting month (i.e. May), and became exacerbated 723 

during the critical growth stages in June and July. For soybean, the new drought index 724 

showed relatively normal conditions in the spring but evolved to be anomalously severe in the 725 

following months. The PLSR-based drought index developed in this study contained 726 

cumulative hydrological cycle information during the growth season, and provided better 727 

forecasts of drought-induced annual crop yield losses than any single hydrological cycle 728 

component (i.e. Figure 5). In addition, this new drought index uses crop yield as a benchmark, 729 

and may provide more crop-specific agricultural drought assessments and yield forecasts than 730 

traditional drought indices. As shown in Figure 14, the PLSR-based crop-specific drought 731 

index (Figure 14  (b) and (e)) is more similar to the anomaly of the crop yield for both corn 732 

(Figure 14 (a)) and soybean (Figure 14 (d)) compared to VPD in July (Figure 14 (c)) and 733 

August (Figure 14 (f)), which shows the highest correlation with the crop yield in July and 734 

August for corn and soybean, respectively. These results indicate that the proposed PLSR-735 
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based drought index has strong potential for agricultural drought monitoring applications. 736 

 737 

Figure 13. Seasonal evolution of PLSR-based drought index in 2012 with percentiles 738 

calculated using all of the data from 2003 to 2014. The black line indicates the seasonal cycle 739 

of the normalized drought index in 2012. The dark green curve indicates the 50% percentiles, 740 

the blue shade indicates the upper and lower 10% ranges, and the light green shade indicates 741 

the upper and lower quartiles of monthly normalized drought index, respectively. 742 

      743 

 744 



36 
 

 745 

Figure 14. Comparison among the normalized detrended corn and soybean yield (a and d); PLSR-746 

based agricultural drought index in September for corn and soybean (b and e); and  the normalized 747 

VPD in July and August (c and f). 748 

 749 

5. Conclusion 750 

In summary, we quantified the response of corn and soybean crop yields to hydrological 751 

variability over the rainfed part of the U.S. Corn Belt at the agricultural district scale from 752 

2003 to 2014. Our analysis investigated the anomaly relationships between corn/soybean 753 

yield and monthly hydrological cycle components, and selected commonly used drought 754 

indices, as well as the spatio-temporal dynamics of such relationships. We analyzed the 755 

impacts on crop yield and the underlying hydrological cycle drivers of the 2012 drought in 756 
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relation to the recent period (2003 to 2014). We also integrated the hydrological cycle 757 

components and drought index metrics within an empirical modeling framework (i.e. PLSR) 758 

as a means for improving annual crop yield forecasts and drought related impacts assessment.  759 

 760 

We concluded our study as following: (1) Overall, the relationship between crop yield and the 761 

hydrological cycle components and drought indices, and its spatio-temporal dynamics is 762 

consistent with the evolution of crop growth stages in the Corn Belt. The CCI SSM and 763 

VPD/fET showed the strongest anomaly correlation with crop yield among all other 764 

observation-based hydrological cycle components and drought indices examined in this study. 765 

In the rainfed Corn Belt, although soil moisture plays a vital role in quantifying agricultural 766 

drought effects, VPD may be the dominant water stress indicator of crop growth and end-of-767 

season yield. (2) By analyzing the evolution of the hydrological cycle components and 768 

drought indices in 2012, we found that this severe drought in the rainfed U.S. Corn Belt 769 

started with higher water demand (i.e. PET, VPD), water consumption (i.e. ET), and lower 770 

water supply (i.e. P), followed by excessive soil water depletion (i.e. CCI CCM, GRACE ΔS), 771 

which ultimately led to large crop yield losses in 2012. Among all of the hydrological cycle 772 

components and drought indices examined, VPD gives the earliest warning of potential crop 773 

yield losses and its anomaly continued throughout the growing season. (3) The validated R2 of 774 

the PLSR-based crop yield model reached favorable levels of 0.76 and 0.70 for corn and 775 

soybean, respectively. The relatively strong PLSR performance benefitted from 776 

complementary value-added information provided from multiple hydrological cycle input 777 

variables. The first PLSR component explained 51% and 33% of crop yield variability for 778 

corn and soybean, respectively. For corn, the first model component primarily included 779 

information about the atmospheric water deficit (i.e. VPD, fET) and near surface soil water 780 

storage (i.e. CCI SSM); For soybean, the first component mainly contains information about 781 

the atmospheric water deficit (i.e. VPD, fET) and water demand (i.e. BESS ET). These results 782 

provide enhanced information on water supply and demand constraints affecting agricultural 783 

drought, and effective early warning of drought related impacts on annual yields for the two 784 
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dominant crop types in the U.S. Corn belt.  785 
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