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Abstract: Due to their substantial spatio-temporal behavior, long-term quantification and analyses of 

important hydrological variables are essential for practical applications in water resources planning, 

evaluating the water use of agricultural crop production and quantifying crop evapotranspiration 

patterns and irrigation management vs. hydrologic balance relationships. Observed data at over 800 sites 

across the Great Plains of USA, comprising of 9 states and 2,307,410 km2 of surface area, which is about 

30% of the terrestrial area of the USA, were used to quantify and map large-scale and long-term (1968-

2013) spatial trends of air temperatures, daily temperature range (DTR), precipitation, grass-reference 

evapotranspiration (ETo) and aridity index (AI) at monthly, growing season and annual time steps. Air 

temperatures had a strong north to south increasing trend, with annual average varying from -1 to 24°C, 

and growing season average temperature varying from 8 to 30°C. DTR gradually decreased from western 

to eastern parts of the region, with a regional annual and growing season averages of 14.25C and 

14.79C, respectively. Precipitation had a gradual shift towards higher magnitudes from west to east, 

with the average annual and growing season (May-September) precipitation ranging from 163 to 1,486 

mm and from 98 to 746 mm, respectively. ETo had a southwest- northeast increasing trend, with regional 

annual and growing season averages of 1,297 mm and 823 mm, respectively. AI increased from west to 

east, indicating higher humidity (less arid) towards the east, with regional annual and growing season 

averages of 0.49 and 0.44, respectively. The spatial datasets and maps for these important climate 

variables can serve as valuable background for climate change and hydrologic studies in the Great 

Plains region. Through identification of priority areas from the developed maps, efforts of the concerned 

personnel and agencies and resources can be diverted towards development of holistic strategies to 

address water supply and demand challenges under changing climate. These strategies can consist of, but 

not limited to, advancing water, crop and soil management, and genetic improvements and their 

relationships with the climatic variables on large scales. Keywords. Climate variables, air temperature, 

daily temperature range, evapotranspiration.  
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INTRODUCTION 

A wide array of biotic and abiotic processes are characterized by the interactions of climatic 

variables with the plant environment and hence, a variety of disciplines such as hydrology, agricultural 

sciences and engineering, agronomy, forest management, ecology, etc. have an important need for spatial 

information about climatological data to better evaluate and understand the processes that have an impact 

in their respective areas. Traditionally, this information is obtained from the meteorological stations. 

However, the available information is usually limited to discrete points in space and the spatial density 

and coverage of these sites is not sufficient, which limits the applicability of the information. The density 

of the weather stations is of high importance to the professionals who rely on point data as inputs to 

various models in a range of subjects. The success and accuracy of point-based simulations are affected 

by the availability of observational datasets in proximity of the location studied. Owing to the sparsely 

installed observational networks, the stations can be as far as tens or hundreds of kilometers from each 

other. This important weakness of the climate networks would consequently result in the likelihood that 

the nearest available data might not be representative of the conditions at the location of interest. Besides 

a variety of applications in point-based simulations, accurate and reliable estimates of climate variables 

on a spatial scale are a prerequisite for the effective and efficient modeling of a wide range of 

environmental processes. Variables such as air temperature and precipitation, when studied on a 

geographical scale, are instrumental in understanding the spatial variation that occurs in many processes 

in a particular region. For this reason, it is crucial to develop and compile detailed maps to accurately 

understand spatial as well as temporal variation in meteorological variables. Continuous surfaces of a 

variety of climate variables using point based information have been developed for areal extents, ranging 

from a few thousand kilometers (Holdaway, 1996) to the continental scale (Hulme et al., 1995, 1996; 

Wilmott and Matsuura, 1995) and even for the entire globe (Wilmott and Robeson, 1995).  

The climatic variables addressed in this study are maximum and minimum air temperatures, daily 

temperature range, precipitation, grass-reference evapotranspiration (ETo) and aridity index (AI). 
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Numerous attempts have been made to use various techniques in order to map these variables for different 

regions around the globe. Air temperature is one of the major factors in crop development, crop water 

stress, yield potential and crop water use, because of the strong interrelationship between crop production 

and temperature (Skaggs and Irmak, 2012). It is one of the main input data for numerous models such as 

agrometeorological models for water balance monitoring, hydrological models and crop models for yield 

prediction. For instance, plant growth is a function of air temperature and hence, crop models rely on 

accumulated air temperatures since sowing to determine the crop phonological stages. For these reasons, 

it is necessary to have reliable spatial estimates of the air temperature data (e.g., in the form of maps). 

Moreover, it is a very well established fact that quantifications of average temperatures (and other 

averaged variables) are not sufficient in full understanding of the implications of weather or climate on 

agriculture. Due to erratic sensitivity of agriculture to weather variables in various crops and crop 

development stages, it becomes necessary to map these variables on various temporal scales other than 

annual basis such as agricultural growing season and different months of the year. Various researchers 

have used various interpolation techniques to carry out this exercise in various parts of the globe. 

Courault and Monestiez (1999) proposed a methodology of spatial interpolation of air temperature, taking 

into account the effect of circulation patterns, for Southeast France. Dodson and Marks (1997) compared 

various interpolation methods to map daily air temperature at high spatial resolution over a large 

mountainous area in the Columbia River Basin. Similarly, Kurtzman and Kadmon (1999) mapped 

temperature variables using various interpolation methods in Israel. Ninyerola (2007) conducted objective 

air temperature mapping for the Iberian Peninsula, Europe, using spatial interpolation and GIS techniques.  

Precipitation, which is a major driver of many processes and an indispensable component of the 

water balance, can be extremely variable in both time and space. Quantification of its spatial variability in 

any region is important to understand its potential implications on water resources and crop production. 

The variability that occurs in precipitation amounts in various seasons drives the soil water availability to 

a great extent and strongly influences crop productivity and hydrologic balances. Conditions arising due 
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to excess or lower precipitation amounts, lead to issues such as drainage concerns and imposition of stress 

on water resources in agricultural areas. This justifies the need of mapping precipitation amounts for any 

agro-ecosystem at various temporal scales, especially for the agricultural growing season months, to 

understand its potential impact on the crop performance. Similar to air temperatures, there are various 

studies that focused on precipitation mapping using spatial interpolation. For example, Sharma and Irmak 

(2012) compared two interpolation methods and developed long-term averaged maps for annual and 

growing season precipitation and investigated spatial precipitation trends in Nebraska, USA.  

  Another important variable studied spatially and temporally in this research is reference 

evapotranspiration (ETo), which is one of the indicators of atmospheric water demand from a reference 

crop surface, is an important variable for quantification of crop water use. Evapotranspiration is an 

important parameter in every local or regional scale project which include hydrologic components, 

irrigation management, water resources planning and land use development vs. water resources 

relationships. Many ETo estimation equations use air temperature as one of the primary driver of ET 

(Penman, 1948; McCloud, 1955; Turc, 1961; Monteith, 1965; McGuinness and Bordne, 1972; Doorenbos 

and Pruitt, 1977; Mather, 1978). ETo  maps at various temporal scales (especially on a growing season 

basis) prove to be instrumental in providing valuable information for management of cropping systems on 

a regional area, delineation of agro-climate divisions and monitoring agricultural water use on a spatial 

scale. Numerous studies exist in the literature, which aimed at quantification and mapping of ETo for 

different regions. Similar to precipitation, Sharma and Irmak (2012) mapped alfalfa-reference ET (ETr) 

for Nebraska using Penman-Monteith reference ET equation.  

Spatial surfaces of AI, which relates both precipitation and ETo, can be instrumental in providing 

information about drought/wetness regimes present in a given region. Also, it is possible that arid and 

semi-arid regions may be more vulnerable to effects of changing climate than the humid regions. 

Consequently, a deep understanding of aridity is a prerequisite to explain landscape characteristics and to 

plan rational utilization of water resources. This emphasizes the need of delineation of aridity classes for 
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the region. Since the distribution of both precipitation and ETo is variable for different months of the year, 

development of monthly AI maps would be valuable to observe the month-specific dryness or wetness 

that might be prevalent in the area. Most importantly, consideration of growing season AI would be very 

important to evaluate its potential impacts on agricultural applications. Thus, the primary objectives of 

this study were to quantify spatial variability in air temperatures, precipitation, ETo and AI over the USA 

Great Plains and establish basic ground work and analyses to carry out temporal trend investigations on a 

county basis and analyze the spatial distribution of temporal trends. The specific objectives were to 

quantify (where applicable) and map regional scale air temperatures, daily temperature range, 

precipitation, ETo and AI for the USA Great Plains over a 46-year period (1968-2013) and quantify, map 

and analyze the spatial patterns and geographical distribution for each of the variables at monthly, 

growing season (May-September) and annual time steps. The Part II of this study (Kukal and Irmak, 

2016) uses the spatial datasets of the aforementioned climatic variables developed in this current study 

(Part I) to extract zonal (countywide) values to investigate temporal trends during the period from 1968 to 

2013. 

MATERIALS AND METHODS 

STUDY AREA DESCRIPTION 

This study covers the central USA region, which is generally designated as the Great Plains 

(Figure 1). The marginal areas of the region extend from the Canadian border in the north to Texas in the 

south, Wyoming and Colorado on the west and Iowa on the east. Specifically, the area consists of nine 

states (North Dakota, South Dakota, Nebraska, Iowa, Wyoming, Colorado, Kansas, Oklahoma and 

Texas), which together comprise of 834 counties. The total land area enclosed by these states is 2,307,410 

km2, which is about 30% of the terrestrial area of the USA. The area lies between dense forests on the east 

and mountains and deserts on the west (Rossum and Lavin, 2000). The topographical characteristic of the 

area are the vast, flat-to-rolling plains. The highest elevation throughout the region is in the Rocky 
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Mountains in Colorado and the lowest elevation is at the southern coastline in Texas. Temperature and 

precipitation have an evident north-south and east-west gradient, respectively. The long-term average 

(1968-2013) annual precipitation ranges from 215 mm in the west to 1,450 mm in the southeast. 

Similarly, long-term average (1968-2013) growing season (1 May to 30 September) precipitation varies 

from 120 mm in the west to 700 mm in the southeast. The long-term average (1968-2013) annual 

maximum and minimum air temperature varies from 9°C in the north to 30°C in the south and -6°C in the 

north to 18°C in the south, respectively. The cold air fronts from Canada in the north and Rocky 

Mountains in the northwest along with warm and humid air masses flowing into the region from Gulf of 

Mexico from the south govern the climatic conditions of the region (Irmak, 2010; Irmak et al., 2012). 

This highly variable climatic behavior is evident from the fact that the region is divided into 78 climatic 

divisions by NOAA. The major land use categories that fall in the region are primarily agricultural, 

including rangelands, prairies, irrigated and rainfed farming of agronomic row crops such as maize, 

soybean, sorghum, alfalfa, winter wheat, sugar beets and cotton (Mutiibwa and Irmak, 2013). In the 

eastern parts, mostly non-irrigated crop production is practiced, whereas in the western parts irrigated 

crop production is dominant. The major source of irrigation is the Ogallala aquifer (Rosenberg et al., 

1999). 

INPUT DATA SOURCES 

The primary dataset used in this study is the daily weather dataset consisting of maximum air 

temperature, minimum air temperature and precipitation. The source for the dataset is the Global 

Historical Climatology Network (GHCN) provided through the National Climatic Data Centre-National 

Oceanic and Atmospheric Administration (NCDC-NOAA). The GHCN dataset is subjected to rigorous 

quality assurance reviews. Historical daily weather datasets for the period 1968-2013 were obtained for 

over 800 weather stations distributed over the study area. The selection is performed so that all the 

weather stations selected possess regular data during the temporal span of 46 years. Out of these sites, 672 

sites are geographically situated in the 9 aforementioned states. The rest of the sites are selected from the 
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surrounding states along the boundaries of the study area, specifically in the states of Arkansas, Idaho, 

Illinois, Louisiana, Missouri, Montana, Minnesota, New Mexico, Utah and Wisconsin to perform more 

accurate interpolation of various variables along the edges of the study area. The boundary datasets for 

various governmental units such as states and counties that were used to aid in the analysis and 

representation in the GIS environment are obtained from the USDA- Geospatial Data Gateway. The US 

Climate Divisional Dataset used in the study was obtained from the National Climatic Data Center- 

National Oceanic and Atmospheric Administration (NCDC-NOAA). Figure 1 represents the visual 

integration of various datasets such as Digital Elevation Model of the study area, boundary datasets and 

point locations of the weather station sites. 

QUANTIFICATION OF GRASS-REFERENCE ET (ETO) 

The Hargreaves-Samani (HS) equation (Hargreaves and Samani, 1985) that requires only 

maximum and minimum air temperatures, with extraterrestrial radiation calculated as a function of 

latitude and day of the year, was used to quantify ETo. This equation is widely used in regions where 

meteorological stations providing detailed measurements including all the variables are not available to 

solve combination-based energy balance equations. The HS ETo was calculated using Eq. (1) at all 800 

sites at a daily time step using: 

                                   

 

(1) 

where, EToHS = grass reference evapotranspiration (mm d-1), T is daily mean air temperature (°C), Tmax is 

daily maximum air temperature (°C), Tmin is daily minimum air temperature (°C), Ra is water equivalent 

of the extraterrestrial radiation (mm d-1) computed using Eq. (2) and 0.0023 is the original empirical 

coefficient proposed by Hargreaves and Samani (1985). 

 
     

      

 
                                                

(2) 
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(5) 

where, Ra is extraterrestrial radiation (MJ m-2 d-1), Gsc is solar constant (0.0820 MJ m-2 min-1), dr is 

inverse relative distance from earth to sun (Eq.3), ωs is sunset hour angle (rad) (Eq.5), φ is latitude (rad), δ 

is solar declination (rad) (Eq. 4). 

In this study, a previously developed approach (Kukal et al., 2016), which integrates the 

Hargreaves-Samani equation with a spatial and temporal calibration strategy, was used to estimate ETo. 

Following the computation of daily ETo using HS equation for the period of 1968-2013, the daily ETo is 

summed for each month of each year in this time period, resulting in total monthly ETo for every month 

for the period of 46 years. These point estimates of monthly ETo were interpolated to generate spatial 

datasets. This procedure resulted in 552 raster surfaces (one raster for each month in a single year). 

The HS equation is a temperature-based equation and its use is often accompanied by issues 

related to overestimation and underestimation of ETo, depending on the climatic conditions, when 

compared to combination-based equations such as Penman-Monteith (PM) equation. To address this, 

previously we assessed the spatio-temporal performance of the original HS equation against the Penman-

Monteith (PM) equation at 124 sites geographically distributed over the USA Great Plains (Kukal et al., 

2016). The performance of the HS ETo estimates varied substantially over the region, depending on the 

climate characteristics under consideration and geographical location of the sites. The HS equation 

underestimated ETo at arid, semi-arid and dry sub humid sites and overestimated at humid sites, although 

there were few sites that showed underestimations. Also, temporal variation in the performance of HS 

equation was explored. The equation performed better in summer months than the rest of the year at sites 

in semi-arid and dry sub humid areas. However, at humid sites, the equation showed relatively high 
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deviations from the PM-estimated ETo values during the summer months than the remainder of the year. 

In fact, the humid sites, on an average, during the winter months showed underestimation, similar to 

semi-arid and dry sub humid areas. The variability in performance of HS equation, both spatially and 

temporally makes the equation unacceptable to be used for any practical applications without any local 

calibration. Thus, the HS equation was calibrated using an extensive spatio-temporal calibration 

coefficient approach. The calibration procedure, performance and validation results on spatial and 

temporal scales for the study region have been reported in Kukal et al. (2016) and will not be repeated 

here. However, some of the critical components of the calibration process will be presented. GIS 

techniques were used to generate spatial surfaces of these calibration coefficients to determine a spatial 

pattern of magnitude of underestimation and overestimation by the HS equation for each month. The 

resulting surfaces were used in conjunction with the original HS equation to determine the calibrated ETo 

through four different calibration approaches, which varied by the choice of using either annual or 

monthly rasters or application of zonal or point-based calibration coefficients. All these approaches along 

with the original HS equation were applied simultaneously on several validation sites and the results were 

compared against PM equation through a set of statistical indicators (Kukal et al., 2016). At all validation 

sites, each of the four approaches performed better than the original HS equation. When comparing the 

four approaches among each other, it was observed that for almost all sites, the point-based calibration 

resulted in better estimates than the zonal calibration coefficients and the monthly coefficients yielded 

better estimates than annual coefficients. Hence, it was established that the best strategy to be applied in 

such data-limited situations is the monthly point-based calibration approach. For this purpose, rasters of 

monthly calibration coefficients were developed and used with rasters of the original HS monthly ETo 

estimates to determine improved estimates of the monthly ETo for the period of 1968-2013. Finally, the 

calibrated rasters of monthly total ETo for the period from 1968 to 2013 were aggregated to develop the 

annual and growing season (May 1st -Sept 30th) ETo rasters.  
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ARIDITY INDEX 

There are many formulations to describe an AI (Mannocchi et al., 2004). In this study, the AI 

index was calculated according to the UNESCO (1979) procedure, which is the ratio of mean annual 

precipitation over the mean annual ETo (Eq. 6). UNEP (1997) has laid out classification of the AI, which 

is presented in Table 1. Using this classification scheme, any region or site can be identified as hyper arid, 

arid, semi-arid, dry-sub humid and humid categories based upon the magnitude of AI. The mean annual 

ETo is obtained for each year in the analyses period (1968-2013) by summing the monthly ETo rasters. 

Similarly, annual precipitation is obtained by summing the monthly rasters for each year. Subsequently, 

the spatial AI raster for each month/year/growing season was obtained by the ratio of spatial precipitation 

for that period to the spatial ETo for that period. This procedure resulted in 46 annual spatial datasets, 46 

growing season spatial datasets and 552 monthly spatial datasets of AI.  

 
                    

              

     
 

(6) 

SPATIAL DATASETS 

Any variable of interest needs to be represented as a continuous surface rather than point specific 

values in order to discern and analyze its geographical patterns over a region. In this study, air 

temperatures, daily temperature range (DTR), precipitation, ETo and AI also require to be interpolated 

using point-based measurements or estimates as inputs. The interpolation techniques are usually applied 

on to a target point-based dataset using various geographical information system tools. In this study, the 

interpolation process adopted was inverse distance weighing (IDW) and was carried out using the Spatial 

Analyst Toolset provided in ArcGIS 10.2. IDW is a deterministic interpolation technique, which implies 

that weights are assigned to point estimates using a mathematical function. The principle behind the IDW 

technique is that point estimates lying in closer vicinity of the prediction location will be more influential 
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than the ones farther away. The algorithm followed by the IDW interpolation technique to determine the 

value of the variable of interest at unknown location (Z (So)) is: 

 

                

 

   

  

(7) 

where, So is the location at which the value is to be predicted and Z (So) is the value for the prediction 

location So, Si  is the ith location and Z (Si) is the known value at the ith location, λi is an unknown weight 

for the known value at the ith location.  

 
    

  
  

   
   

    

 
(8) 

where, N is the total number of known points to be used for the interpolation technique, d is the distance 

of the unknown value location from the known value location, and p is a power parameter. The 

significance of the power parameter (p) is that its magnitude governs the assignments of weights to the 

points. A higher p value results in more weight being assigned to closer points, which means a less 

smooth gridded surface. On the other hand, a lower p value assigns relatively lower weights to closer 

points, which results into a much smoother surface. For the purpose of this study, the value of p was 

optimized using ArcGIS 10.2.  

The aforementioned interpolation methodology was used to form gridded surfaces (rasters) of all 

the variables (precipitation, air temperatures, DTR, ETo and AI). The point-based estimates of monthly 

summed precipitation amounts and monthly averages of maximum, minimum and mean air temperatures 

for each month of the 46 year study period were used as an input to the IDW interpolation tool in the 

Spatial Analyst Toolbox of ArcGIS 10.2. As a result, 552 rasters each of monthly summed precipitation, 

monthly averaged minimum, maximum and mean temperatures, DTR, monthly summed ETo and monthly 

averaged AI were obtained. All these variables were rasterized for growing season and annual time steps. 

For analysis and inter-comparisons between different geographical areas, it was essential to compute 
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zone-based values from the continuous spatial datasets. For example, state or county-averaged 

magnitudes would enable interstate and intercounty comparison respectively. To extract these zonal 

values, zonal statistics tool in ArcGIS 10.2 was used.  

RESULTS AND DISCUSSION 

SPATIAL DISTRIBUTION OF AIR TEMPERATURES AND DAILY TEMPERATURE RANGE 

The average maximum, minimum and mean air temperature (Tmax, Tmin, Tmean, respectively) and 

DTR from 1968 to 2013 were interpolated on a monthly, growing season and annual basis using the 800 

weather stations in the study region (Figure 2). Tables 2, 3, 4 and 5 provide the statistics for monthly, 

growing season and annual Tmax, Tmin, Tmean and DTR on a statewide and regional average basis. Figures 

indicated that the study area has a north to south increasing trend, ranging from 6 to 30°C, when averaged 

annually; and ranged from 15 to 36°C, when averaged for the growing season. The regional average for 

Tmax was 18.9°C on an annual basis and 28.6°C on a growing season basis. Also, the regional average 

Tmax varied from 31.9°C in July to 5.2°C in January. Long-term monthly average maps for Tmax are shown 

in Figure 3. Averaged annually, the lowest Tmax was observed in the Cavalier county, North Dakota, while 

the highest was observed in Starr County, Texas. Averaged over the growing season, the lowest Tmax was 

found in Lake County, Colorado, whereas the highest value was in Zapata County, Texas. Table 2 lists 

important statistics about statewide and regional Tmax. On a monthly basis, the highest Tmax values were 

observed in July and the lowest in January for all states as well as on a regional average basis. The 

seasonal behavior for Tmax in all states was similar, with the highest values in JJA (June-July-August), 

followed by SON (September-October-November), MAM (March-April-May) and DJF (December-

January-February). For the average annual Tmax, the maximum standard deviation (SD) was observed in 

North Dakota (1.19oC) and South Dakota (1.18oC), while minimum values were in Oklahoma (0.70oC) 

and Texas (0.67oC). Generally, the SD decreased as we move north to south. For the growing season, the 

variation between the magnitudes of SD is not very high, with no discernible trend in the north-south 

direction. Also, for most of the states, the SD in growing season Tmax is higher than those in annual Tmax.  



13 
 

Minimum temperatures had a northwest-southeast increasing trend, ranging from -9 to 19°C 

when averaged annually; and from 0 to 25°C when averaged for the growing season (Figure 4). The long-

term averaged monthly averaged maps for Tavg are shown in Figure 5. The regional average for the 

minimum temperature was 4.7°C on an annual basis and 13.8°C on a growing season basis. The regional 

average Tmin ranged from 17.1°C in July to -8°C in January. Unlike annual averaged Tmax where the 

lowest magnitudes were found in North Dakota, both the annual and growing season average lowest Tmin 

values were observed in Lake County, Colorado. The highest magnitudes of both annual and growing 

season average Tmin values were found in Cameron County, Texas. The SD in annual average Tmin follows 

a decreasing trend in the north-south direction similar to Tmax, but unlike growing season average Tmin.  

The regional scale magnitude of monthly averaged DTR varied from 13C during December to 

15.2C during September. The annual and growing season averages for the region are 14.3C and 14.8C. 

Sun et al. (2006a) studied differences in season variations of DTR observed from surface and satellite 

observations and found that DTR obtained from surface air temperatures showed that DTR in summer is 

greater than in winter over the entire USA.  Further, it can be observed from Figure 6 that the annual and 

growing season averaged DTR has a strong spatial variability, with the western part showing higher 

values of DTR, which gradually decreases as we move towards the east. Generally, the states of Colorado 

and Wyoming show the highest values of DTR in the region, while the lowest magnitudes were observed 

in Iowa. Also, high DTR magnitudes are found in the Rocky Mountains. It is also noteworthy that DTR 

values observed in the region is higher for the growing season than the annual values.  The spatial 

distribution of DTR over the study region closely matches that of Sun et al. (2006b), who used satellite-

based land surface temperature (LST) to evaluate DTR over the USA. Additional maps depicting the 

spatial distribution of monthly DTR over the study area are shown in Figure 7. 
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SPATIAL DISTRIBUTION OF PRECIPITATION 

Daily precipitation data were summed to obtain monthly, growing season and annual 

precipitation from 1968 to 2013. This was followed by interpolation of the point-based values over the 

study region and averaging throughout the study period, which resulted in long-term average annual and 

growing season spatial precipitation maps (Figure 8). The descriptive statistics of monthly, annual and 

growing season precipitation for all states are presented in Table 6. In general, precipitation has a strong 

west to east increasing trend. Regionally, the annual and growing season precipitation varies from 163 to 

1486 mm and from 98 to 746 mm, respectively. Averaged by state, the peak annual and growing season 

precipitation was observed in Oklahoma and Iowa, respectively, while the minimum values were 

observed in Wyoming. On a county basis, the maximum and minimum annual as well as growing season 

precipitation was observed in Orange County, Texas (1,459 mm) and Big Horn County, Wyoming (214 

mm), respectively. The average regional annual and growing season precipitation amounts are 618 and 

348 mm, respectively, which implies that the precipitation during the growing season months (May-

September) contributes 56 % towards the annual precipitation. This contribution of growing season 

precipitation is highest in the state of South Dakota and Nebraska (65% each) and least in Texas (49%). 

The minimum SD in both annual and growing season precipitation was observed in Colorado and 

Wyoming and the highest in Iowa.  

The timing of the peak precipitation amount varied with geographic location. The maximum 

precipitation in Nebraska, Kansas, Wyoming, Oklahoma and Texas occurred in May. In North Dakota, 

South Dakota and Iowa, the peak precipitation occurred in June, while in Colorado, it occurred in July. 

Both regionally and statewide, the minimum precipitation was observed in January. Sharma and Irmak 

(2012) showed the long-term (1986-2009) spatial distribution of precipitation for Nebraska and found 

similar results. Also, the annual precipitation spatial trends observed are concurrent with Kunkel et al. 

(2013), which relied on gridded COOP datasets to map annual average precipitation for the Great Plains. 

Wang et al. (2001) developed long- term (1989-1997) average annual precipitation map for Kansas, 
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which is coherent with our findings. To visualize the spatial patterns in monthly precipitation, spatial 

maps were generated for each month (Figure 9). These maps are instrumental in determining average 

monthly precipitation amounts in any geographical location in the region. 

 SPATIAL DISTRIBUTION OF REFERENCE EVAPOTRANSPIRATION 

Daily ETo estimates at point locations were used to compute monthly, growing season and annual 

estimates. These estimates were interpolated over the area and regional, state and county based values 

were extracted for comparison (Figure 10). The descriptive statistics for ETo when averaged for statewide 

and regional basis are listed in Table 7. There is a strong southwest- northeast increasing trend in ETo. 

The annual ETo ranges from 824 mm in the Cavalier County, North Dakota to 2,590 mm in El Paso 

County, Texas. Similarly, the growing season ETo ranges from 590 mm in the Allamakee County, Iowa to 

1,427 mm in El Paso County, Texas. Considering statewide averages, both annual and growing season 

ETo are highest in Texas and lowest in Iowa. The regional average annual and growing season ETo values 

were 1,297 and 823 mm, respectively. Sharma and Irmak (2012) quantified and mapped alfalfa-reference 

ET (ETr) in Nebraska, which are very similar to the maps of this study, when subset data for Nebraska are 

compared. Mutiibwa and Irmak (2013) mapped daily average ETo computed from HS equation for June, 

July and August for 1982, 1990, 2002 and 2008 over the USA High Plains. The spatial distribution of 

these maps was similar to our monthly averaged maps, although our maps represent monthly summed 

ETo, rather than daily average ETo. Also, ETo quantification in our study involved vigorous spatial and 

temporal calibration of HS equation using site-specific, month-specific calibration coefficients, while 

Mutiibwa and Irmak (2013) used the original form of HS equation. Borrelli et al. (1998) mapped long-

term (30-year) annual average ETo for Texas and found similar trends across the state as this study.  

The maximum monthly ETo was observed in July in all states while both January and December 

had minimum ETo. The contribution of growing season towards annual ETo was 63%, averaged 

regionally. This contribution was maximum for North Dakota (73%) and minimum for Texas (57%). 
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Generally, the magnitude of this contribution decreased when moving north to south. The seasonal 

behavior in ETo is very consistent for all states, with the highest ETo occurring in JJA, followed by MAM, 

SON and DJF. The SD for annual ETo is greater than that of growing season ETo for all states. For both 

annual and growing season ETo, the highest SD is observed in South Dakota and the least in Colorado. 

For more details, the maps showing the spatial distribution of ETo averaged for each month of the year are 

shown in Figure 11. 

SPATIAL DISTRIBUTION OF ARIDITY INDEX 

The he magnitude of AI (Figure 12) increases when moving from west to east, which indicates 

that the climate becomes more humid or less arid as moving east. Higher values of AI are observed where 

the precipitation amount is much higher than the ETo at a particular location, and lower values where the 

precipitation is less than the ETo. Table 8 lists the descriptive statistics for AI averaged on statewide and 

regional basis. Regional average annual and growing season ETo is 0.49 and 0.44, respectively, which 

falls into the semi-arid class. This does not necessarily mean that the region is dominantly semi-arid, since 

there is a high degree of spatial variation observed in the AI values in the region. Figure 13 represents the 

aridity classes that were delineated for the region based on the annual AI. For example, the average AI 

calculated in Iowa is the highest among all the states for all months, annually as well as for the growing 

season. The AI in Iowa ranged from 2.21 in December to 0.74 in July, implying that the state lies in the 

humid class. The lowest magnitudes of AI were observed in Wyoming and Colorado, with annual and 

growing season AI, respectively, of 0.27 and 0.22 for Wyoming; and 0.29 and 0.25 for Colorado 

respectively, meaning that the region lies in the semi-arid class. In terms of monthly AI magnitudes, the 

highest values were observed in December and January and lowest during June-July. This is explained by 

the monthly distribution of both precipitation and ETo. Although the seasonal trends in precipitation and 

ETo amounts are similar (highest in summers and lowest in winters), the rates of increase and decrease are 

differential, which results in the magnitudes of summer ETo being much higher than that of summer 

precipitation. However, this difference narrows towards the winter season, resulting in higher ratios of 
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monthly precipitation to ETo, or AI. The highest magnitude of SD in annual and growing season AI was 

observed in Iowa, and the least was observed in Colorado and Wyoming. Sankarasubramanian and Vogel 

(2003) developed spatial maps of hydroclimatological indices for the US, AI and observed spatial 

distribution closely related to the findings of our study, where the AI magnitudes increase when moving 

eastwards. Due to variation in monthly distribution of the two drivers of the AI, i.e., precipitation and 

ETo, it is expected that consequently, considerable variation would occur in monthly AI magnitudes over 

the region. To visualize this variation, detailed maps depicting monthly AI were developed (Figure 14).  

SUMMARY AND CONCLUSIONS 

The objective this study was to quantify, map and analyze large-scale and long-term air 

temperatures, DTR, precipitation, ETo and AI from 1968 to 2013 over the Great Plains of USA. Point-

based weather data from over 800 stations was used to estimate all of the aforementioned variables, and 

subsequently to interpolate the same using Inverse Distance Weighing technique. An AI [adopted from 

UNEP (1997)] was quantified using the spatial datasets of precipitation and ETo. Long-term average maps 

for all individual months and growing season and annual basis were developed to be used for spatial 

analyses. Long-term annual average air temperatures (Tmax, Tmin, Tavg) followed strong north-south 

increasing trends throughout the region, with exceptionally lower temperatures observed in the Rocky 

Mountain ranges. Similar spatial behavior was observed for long-term average growing season monthly 

average air temperatures. DTR at all three temporal scales (monthly, annual and growing season) showed 

decreasing trends as moving from west to east. On the contrary, precipitation exhibited increasing trends 

from west to east on all temporal scales. ETo displayed strong spatial patterns over the study region, 

decreasing in a southwest to northeast direction. AI, as a result of magnitudes of both precipitation and 

ETo, showed a gradual increase (more humid) towards east. According to the UNEP classification, the 

study area can be divided into arid, semi-arid, dry sub humid and humid regions based on AI magnitudes. 

For all of the aforementioned variables, regional, statewide and countywide values were extracted and 

analyzed.  
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Extensive maps and spatiotemporal datasets developed, presented and analyzed in this study have 

the potential to provide invaluable data and information to environmental/meteorological and water 

management personnel, water resources scientists and researchers as well as policy and decision making 

agencies for large scale assessments of climate and water resources interactions. Due to consideration of 

multiple spatial units, such as states and counties, the information is quite appropriate for a range of 

applications. Combined analyses of spatial distribution of precipitation and ETo, which are important 

drivers of various processes in hydrologic cycle, can provide insightful background for climate change 

studies in the region. The variables quantified on a growing season basis can aid in observing all the 

relevant factors, specifically for the agricultural and natural resources applications. For example, growing 

season ETo indicates the atmospheric evaporative demand for actual crop ET, due to which it can be used 

as an estimate for upper limit of water loss from an agricultural area. Identification of priority areas and 

their evaluation in terms of water supply and demand can be carried out using maps developed in this 

research. Successively, these maps can lead to take proactive actions to establish a balance between water 

supply and demand and forecasting these balances. These actions can include modification of the 

cropping patterns towards lower water demand cropping systems, adoption of reduced tillage practices to 

minimize soil evaporation, implementation of drought-tolerant crop hybrids and implementation of deficit 

irrigation strategies. Part II of this research [Kukal and Irmak (2016)] builds upon the monthly, growing 

season and annual datasets of all the variables discussed in the Part I from 1968 to 2013 and uses GIS 

tools to extract county-scale values of the variables in order to construct a time series for the research 

period, which were then subjected to temporal trend tests to investigate and analyze long-term trends in 

the region.  
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Table 1. Climate classification based on Aridity Index 

Climate Class Aridity Index 

Hyper-arid <0.03 

Arid 0.03 – 0.20 

Semi-arid 0.20 – 0.50 

Dry sub humid 0.50 – 0.65 

Humid >0.65 

 

 

 

 

 

Table 2. Regional and statewide statistics for monthly, growing season and annual 

maximum air temperature (°C). 

 

  
Regional ND SD NE KS CO WY IA OK TX 

Months 

Monthly means 

January 5.2 -7.2 -2.2 1.9 5.3 3.6 0.2 -2.3 9.4 14.7 

February 7.9 -3.8 0.8 4.8 8.2 6.0 2.6 0.8 12.2 17.0 

March 13.2 2.8 6.9 10.5 14.0 10.7 7.8 7.9 17.4 21.4 

April 19.1 12.5 14.8 16.9 19.8 15.5 13.0 16.1 22.7 25.8 

May 24.1 19.7 21.1 22.5 24.7 20.9 18.6 22.2 26.8 29.5 

June 29.1 24.6 26.4 28.2 30.4 26.9 24.6 27.3 31.6 33.1 

July 31.9 28.2 30.5 31.4 33.5 29.9 29.5 29.5 34.6 34.5 

August 31.2 27.7 29.7 30.4 32.5 28.5 28.5 28.3 34.3 34.4 

September 26.7 21.7 24.4 25.7 27.8 24.2 22.7 24.2 29.6 31.0 

October 20.2 13.4 16.1 18.4 21.0 17.5 15.0 17.2 23.5 26.1 

November 12.3 3.1 6.6 9.6 12.9 9.7 6.4 8.1 16.3 20.1 

December 6.4 -4.7 -0.5 3.2 6.6 4.1 0.7 0.0 10.6 15.6 

Annual 

Mean 18.9 11.5 14.6 17 19.7 16.5 14.1 14.9 22.4 25.3 

Max 21.0 14.0 17.2 19.7 22.2 18.4 16.3 17.6 24.4 27.0 

Min 17.4 9.0 11.9 14.5 17.5 15.0 12.0 12.9 21.2 24.2 

SD 0.7 1.2 1.2 1.0 0.9 0.7 0.8 1.0 0.7 0.7 

Growing Season 

Mean 28.6 24.4 26.4 27.6 29.8 26.1 24.8 26.3 31.4 32.5 

Max 30.4 27.3 28.9 30.3 32.1 28.1 27.1 29.4 33.9 35.5 

Min 27.1 21.6 23.3 25.3 27.6 24.5 22.4 24.1 29.1 31.0 

SD 0.7 1.1 1.2 1.0 1.0 0.8 1.0 1.0 1.1 0.9 
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Table 3. Regional and statewide statistics for monthly, growing season and annual minimum air 

temperature (°C). 

Months Regional  ND SD NE KS CO WY IA OK TX 

Monthly means 

January -8.0 -18.2 -14.1 -11.2 -7.9 -12.0 -12.9 -12.6 -3.7 0.7 

February -5.7 -15.0 -11.3 -8.7 -5.6 -9.9 -11.1 -9.8 -1.5 2.6 

March -0.9 -8.6 -5.8 -3.8 -0.6 -5.5 -6.4 -3.4 3.2 6.6 

April 4.3 -1.0 0.6 1.9 5.0 -1.1 -2.1 3.1 8.3 11.0 

May 9.7 5.6 6.8 8.0 10.8 3.9 2.8 9.4 13.6 15.8 

June 14.5 11.0 12.2 13.5 16.3 8.6 7.5 14.8 18.6 19.8 

July 17.1 13.7 15.5 16.6 19.2 11.9 10.9 17.3 21.0 21.3 

August 16.2 12.5 14.2 15.4 18.2 11.0 9.8 15.9 20.3 20.9 

September 11.5 6.8 8.5 9.7 12.9 6.3 4.5 10.8 15.8 17.5 

October 5.2 0.1 1.7 2.7 6.0 0.0 -1.1 4.2 9.2 11.8 

November -1.2 -7.7 -5.6 -4.2 -0.8 -6.1 -7.1 -2.5 2.9 5.9 

December -6.5 -15.2 -12.0 -9.7 -6.2 -11.0 -12.1 -9.6 -2.3 1.6 

Annual 

Mean 4.7 -1.3 0.9 2.5 5.6 -0.3 -1.4 3.1 8.8 11.3 

Max 6.0 1.2 2.6 3.9 6.9 0.9 0.0 5.2 10.1 12.5 

Min 3.5 -3.3 -0.7 1.2 4.4 -1.4 -2.9 1.7 7.6 9.9 

SD 0.6 1.0 0.9 0.7 0.6 0.6 0.7 0.8 0.5 0.6 

Growing Season 

Mean 13.8 9.9 11.5 12.7 15.5 8.4 7.1 13.6 17.9 19.0 

Max 15.0 11.5 13.0 14.0 16.7 9.5 8.8 15.0 19.5 20.6 

Min 12.8 8.4 9.9 11.3 14.2 7.1 5.8 12.0 16.3 17.5 

SD 0.5 0.8 0.7 0.6 0.6 0.6 0.7 0.7 0.7 0.7 
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Table 4. Regional and statewide statistics for monthly, growing season and annual mean air 

temperature (°C). 

Months Regional ND SD NE KS CO WY IA OK TX 

Monthly means 

January -1.4 -12.7 -8.1 -4.6 -1.3 -4.2 -6.4 -7.4 2.8 7.7 

February 1.1 -9.4 -5.2 -2.0 1.3 -1.9 -4.3 -4.5 5.3 9.8 

March 6.1 -2.9 0.6 3.4 6.7 2.6 0.7 2.3 10.3 14.0 

April 11.7 5.8 7.7 9.4 12.4 7.2 5.5 9.6 15.5 18.4 

May 16.9 12.7 13.9 15.2 17.7 12.4 10.7 15.8 20.2 22.6 

June 21.8 17.8 19.3 20.9 23.3 17.7 16.0 21.1 25.1 26.4 

July 24.5 21.0 23.0 24.0 26.3 20.9 20.2 23.4 27.8 27.9 

August 23.7 20.1 22.0 22.9 25.3 19.8 19.2 22.1 27.3 27.7 

September 19.1 14.3 16.5 17.6 20.3 15.3 13.6 17.5 22.7 24.2 

October 12.7 6.7 8.9 10.5 13.5 8.8 6.9 10.7 16.4 19.0 

November 5.5 -2.3 0.5 2.7 6.0 1.8 -0.4 2.8 9.6 13.0 

December -0.1 -10.0 -6.3 -3.2 0.2 -3.5 -5.7 -4.8 4.2 8.6 

Annual 

Mean 11.8 5.1 7.7 9.7 12.7 8.1 6.3 9.0 15.6 18.3 

Max 13.4 7.6 9.7 11.5 14.4 9.6 8.2 11.0 17.0 19.6 

Min 10.7 2.9 5.6 8.1 11.2 7.0 4.6 7.4 14.5 17.2 

SD 0.6 1.1 1.0 0.8 0.7 0.6 0.7 0.8 0.5 0.6 

Growing Season 

Mean 21.2 17.2 18.9 20.1 22.6 17.2 15.9 20.0 24.6 25.8 

Max 22.4 19.4 20.8 21.6 24.3 18.8 17.7 22.0 26.6 27.8 

Min 12.8 8.4 9.9 11.3 14.2 7.5 5.9 12.0 16.7 18.3 

SD 3.0 3.0 3.2 3.1 3.0 3.7 3.6 2.7 2.8 2.7 
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Table 5. Regional and statewide statistics for monthly, growing season and annual average daily 

temperature range (DTR) (°C) 

Months Regional ND SD NE KS CO WY IA OK TX 

Monthly mean 

January 13.2 11.0 11.9 13.1 13.1 15.6 13.1 10.3 13.1 13.9 

February 13.6 11.2 12.1 13.5 13.8 15.9 13.7 10.5 13.7 14.4 

March 14.1 11.4 12.7 14.3 14.6 16.1 14.2 11.3 14.1 14.8 

April 14.8 13.5 14.2 15.0 14.8 16.6 15.1 13.0 14.4 14.8 

May 14.4 14.2 14.3 14.4 13.9 16.9 15.8 12.8 13.2 13.7 

June 14.5 13.6 14.2 14.7 14.1 18.4 17.2 12.5 13.0 13.3 

July 14.8 14.5 15.0 14.8 14.4 18.0 18.5 12.2 13.6 13.2 

August 15.0 15.3 15.5 14.9 14.3 17.5 18.7 12.3 13.9 13.6 

September 15.2 14.9 15.8 16.0 14.8 18.0 18.2 13.4 13.8 13.5 

October 14.9 13.3 14.5 15.7 15.1 17.5 16.1 13.0 14.4 14.3 

November 13.5 10.8 12.1 13.8 13.8 15.7 13.5 10.6 13.4 14.2 

December 13.0 10.5 11.5 13.0 12.8 15.2 12.9 9.6 12.9 14.0 

Annual 

Mean 14.3 12.9 13.6 14.4 14.1 16.8 15.6 11.8 13.6 14.0 

Max 15.4 14.7 15.5 16.5 15.7 17.8 16.6 13.7 15.0 15.3 

Min 13.4 11.7 12.3 12.8 12.6 15.8 14.5 10.1 12.6 12.7 

SD 0.5 0.7 0.8 0.7 0.7 0.5 0.5 0.7 0.6 0.5 

CV 3.3 5.1 5.6 4.9 4.7 2.7 3.3 5.8 4.2 3.9 

Growing Season 

Mean 14.8 14.5 15.0 15.0 14.3 17.7 17.7 12.6 13.5 13.5 

Max 15.9 16.7 17.4 17.5 16.3 19.2 19.3 14.8 15.1 15.3 

Min 13.9 12.7 13.2 13.0 12.9 16.6 16.2 10.6 11.6 11.8 

SD 0.5 0.8 1.0 0.9 0.8 0.6 0.7 0.8 0.7 0.5 

CV 3.6 5.7 6.5 5.7 5.4 3.2 4.0 6.6 5.4 4.0 
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Table 6. Regional and statewide statistics for monthly, growing season and annual average 

precipitation (mm) 

Months Regional ND SD NE KS CO WY IA OK TX 

Monthly mean 

January 26 14 13 13 18 18 14 25 37 43 

February 28 12 16 16 25 18 15 27 44 43 

March 42 23 32 38 54 28 21 54 75 51 

April 55 38 57 63 67 35 34 89 82 53 

May 81 66 79 93 102 43 51 113 121 85 

June 79 84 85 89 99 36 40 120 106 83 

July 65 68 67 78 88 50 30 106 70 62 

August 61 53 54 68 83 49 25 104 73 64 

September 61 44 45 53 66 35 27 85 89 82 

October 55 37 44 46 58 30 27 67 84 75 

November 35 18 20 25 37 21 18 49 61 50 

December 29 15 14 16 26 19 16 34 47 45 

Annual 

Mean 618 472 523 598 724 380 317 874 888 737 

Max 752 617 662 836 1029 474 450 1220 1179 1027 

Min 466 299 338 346 504 245 194 557 644 386 

SD 70 76 87 103 111 52 52 140 130 125 

CV 11 16 17 17 15 14 17 16 15 17 

Growing Season 

Mean 348 322 343 392 444 218 175 534 463 364 

Max 445 458 466 600 708 290 258 914 700 570 

Min 238 192 208 167 249 133 83 300 273 138 

SD 47 62 61 76 97 36 37 111 99 76 

CV 14 19 18 19 22 16 21 21 21 21 
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Table 7. Regional and statewide statistics for monthly, growing season and annual ETo (mm). 

Months Regional ND SD NE KS CO WY IA OK TX 

Monthly mean 

January 39 8 19 31 39 41 26 17 49 67 

February 49 14 27 39 49 49 33 24 60 81 

March 83 42 60 75 84 84 68 54 96 117 

April 120 96 105 114 120 116 100 99 131 148 

May 153 140 147 148 148 151 139 133 154 173 

June 179 153 168 174 179 190 177 147 183 196 

July 190 173 192 186 193 198 193 148 202 199 

August 172 155 169 162 170 173 172 125 184 189 

September 129 109 125 127 132 134 120 98 136 144 

October 90 66 78 86 93 95 75 68 97 111 

November 54 29 39 48 54 56 40 36 61 78 

December 39 12 21 31 37 40 25 18 46 65 

Annual 

Mean 1297 996 1149 1223 1298 1327 1169 966 1399 1569 

Max 1411 1123 1287 1390 1443 1449 1290 1092 1507 1718 

Min 1212 907 1022 1091 1176 1247 1056 846 1319 1479 

SD 35 50 59 52 46 38 43 45 43 44 

CV 3 5 5 4 4 3 4 5 3 3 

Growing Season 

Mean 823 731 800 799 822 846 801 650 859 902 

Max 881 823 885 894 906 906 864 743 942 1010 

Min 773 648 704 723 753 794 727 577 787 825 

SD 24 33 39 35 35 24 29 30 35 30 

CV 3 5 5 4 4 3 4 5 4 3 
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Table 8. Regional and statewide statistics for monthly, growing season and annual Aridity Index. 

Months Regional ND SD NE KS CO WY IA OK TX 

Monthly mean 

January 0.85 0.87 1.49 0.50 0.55 0.54 0.81 2.00 0.83 0.76 

February 0.68 0.97 0.77 0.50 0.59 0.45 0.52 1.30 0.82 0.63 

March 0.56 0.65 0.58 0.55 0.69 0.36 0.33 1.06 0.82 0.49 

April 0.49 0.44 0.57 0.58 0.59 0.32 0.36 0.93 0.65 0.41 

May 0.56 0.49 0.56 0.65 0.73 0.30 0.38 0.88 0.82 0.54 

June 0.47 0.56 0.52 0.53 0.59 0.20 0.23 0.84 0.61 0.46 

July 0.37 0.41 0.37 0.43 0.48 0.26 0.16 0.74 0.37 0.34 

August 0.38 0.35 0.33 0.44 0.51 0.29 0.15 0.85 0.41 0.35 

September 0.50 0.43 0.39 0.44 0.55 0.27 0.24 0.90 0.70 0.60 

October 0.64 0.61 0.60 0.56 0.68 0.34 0.38 1.01 0.95 0.74 

November 0.73 0.75 0.60 0.58 0.76 0.42 0.50 1.50 1.12 0.73 

December 0.95 1.90 0.80 0.61 0.78 0.58 0.78 2.21 1.12 0.80 

Annual 

Mean 0.49 0.48 0.46 0.50 0.58 0.29 0.27 0.91 0.66 0.50 

Max 0.63 0.67 0.65 0.78 0.87 0.38 0.41 1.45 0.91 0.72 

Min 0.34 0.27 0.27 0.25 0.36 0.17 0.15 0.52 0.45 0.24 

SD 0.07 0.09 0.09 0.10 0.11 0.05 0.05 0.18 0.11 0.09 

CV 13.32 19.30 20.60 20.41 18.42 15.64 19.46 19.36 16.92 19.04 

Growing Season 

Mean 0.44 0.44 0.42 0.49 0.56 0.25 0.22 0.82 0.55 0.44 

Max 0.6 0.71 0.67 0.84 0.97 0.36 0.34 1.59 0.91 0.72 

Min 0.3 0.24 0.24 0.19 0.28 0.15 0.10 0.42 0.31 0.15 

SD 0.1 0.10 0.10 0.11 0.14 0.05 0.05 0.20 0.14 0.10 

CV 15.99 23.02 22.72 23.45 25.71 18.94 24.27 24.25 25.06 22.61 
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Figure 1. Map of study area and geographical locations of the weather station sites used in the 

interpolation process of the variables. 
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Figure 2. Spatial distribution of average a) annual Tmax, b) growing season Tmax, c) annual Tmin, d) 

growing season Tmin, e) annual Tavg, f) growing season Tavg. 
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Figure 3. Spatial distribution of long-term average monthly maximum air temperature for a) January, b) 

February, c) March, d) April, e) May, f) June, g) July, h) August, i) September, j) October, k) November 

and l) December. 
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Figure 3 (cont.). Spatial distribution of long-term average monthly maximum air temperature for a) 

January, b) February, c) March, d) April, e) May, f) June, g) July, h) August, i) September, j) October, k) 

November and l) December. 
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Figure 4. Spatial distribution of long-term average monthly minimum air temperature for a) January, b) 

February, c) March, d) April, e) May, f) June, g) July, h) August, i) September, j) October, k) November 

and l) December. 
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Figure 4 (cont.). Spatial distribution of long-term average monthly minimum air temperature for a) 

January, b) February, c) March, d) April, e) May, f) June, g) July, h) August, i) September, j) October, k) 

November and l) December. 
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Figure 5. Spatial distribution of long-term average monthly mean air temperature for a) January, b) 

February, c) March, d) April, e) May, f) June, g) July, h) August, i) September, j) October, k) November 

and l) December. 
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 Figure 5 (cont.). Spatial distribution of long-term average monthly mean air temperature  for a) 

January, b) February, c) March, d) April, e) May, f) June, g) July, h) August, i) September, j) October, k) 

November and  l) December.
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Figure 6. Spatial distribution of long-term average daily temperature range (DTR) on a) annual, b) growing season basis. 
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Figure 7. Spatial distribution of long-term average monthly daily temperature range (DTR) for a) January, 

b) February, c) March, d) April, e) May, f) June, g) July, h) August, i) September, j) October, k) 

November and l) December. 
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 Figure 7 (cont.). Spatial distribution of long-term average monthly daily temperature range (DTR)  

for a) January, b) February, c) March, d) April, e) May, f) June, g) July, h) August, i) September, j) 

October, k) November and  l) December.
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Figure 8. Spatial distribution of long-term average precipitation on a) annual, b) growing season basis. 
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Figure 9. Spatial distribution of long-term average monthly precipitation for a) January, b) February, c) 

March, d) April, e) May, f) June, g) July, h) August, i) September, j) October, k) November and l) 

December. 
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 Figure 9 (cont.). Spatial distribution of long-term average monthly precipitation  for a) January, 

b) February, c) March, d) April, e) May, f) June, g) July, h) August, i) September, j) October, k) 

November and  l) December.
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Figure 10. Spatial distribution of long-term average ETo on a) annual, b) growing season basis. 
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Figure 11. Spatial distribution of long-term average monthly ETo for a) January, b) February, c) March, d) 

April, e) May, f) June, g) July, h) August, i) September, j) October, k) November and l) December. 
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Figure 11 (cont.). Spatial distribution of long-term average monthly ETo  for a) January, b) February, c) 

March, d) April, e) May, f) June, g) July, h) August, i) September, j) October, k) November and  l) 

December.
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Figure 12. Spatial distribution of long-term average aridity index on a) annual, b) growing season basis. 
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Figure 13. Classification of study region into aridity classes (UNEP, 1997) 
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Figure 14. Spatial distribution of long-term average monthly aridity index (AI) for a) January, b) 

February, c) March, d) April, e) May, f) June, g) July, h) August, i) September, j) October, k) November 

and  l) December. 
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Figure 14 (cont.). Spatial distribution of long-term average monthly aridity index (AI) for a) January, b) 

February, c) March, d) April, e) May, f) June, g) July, h) August, i) September, j) October, k) November 

and l) December. 
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