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Novel Scalable and Simplified System
to Generate Microglia-Containing
Cerebral Organoids From Human
Induced Pluripotent Stem Cells
Brittany Bodnar1,2†, Yongang Zhang1,2,3†, Jinbiao Liu1, Yuan Lin 1,2, Peng Wang1,
Zhengyu Wei1,2, Sami Saribas1,2, Yuanjun Zhu1,2, Fang Li1,2, Xu Wang1, Wenli Yang4,
Qingsheng Li5, Wen-Zhe Ho1* and Wenhui Hu1,2*

1Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA,
United States, 2Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA,
United States, 3Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical
Sciences and Peking Union Medical College (CAMS and PUMC), Chengdu, China, 4Institute for Regenerative Medicine and
Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States, 5Nebraska Center for Virology, School of
Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States

Human cerebral organoid (CO) is a three-dimensional (3D) cell culture system that
recapitulates the developing human brain. While CO has proved an invaluable tool for
studying neurological disorders in a more clinically relevant matter, there have still been
several shortcomings including CO variability and reproducibility as well as lack of or
underrepresentation of certain cell types typically found in the brain. As the technology to
generate COs has continued to improve, more efficient and streamlined protocols have
addressed some of these issues. Here we present a novel scalable and simplified system
to generate microglia-containing CO (MCO). We characterize the cell types and dynamic
development of MCOs and validate that these MCOs harbor microglia, astrocytes,
neurons, and neural stem/progenitor cells, maturing in a manner that reflects human
brain development. We introduce a novel technique for the generation of embryoid
bodies (EBs) directly from induced pluripotent stem cells (iPSCs) that involves simplified
steps of transitioning directly from 3D cultures as well as orbital shaking culture in a
standard 6-well culture plate. This allows for the generation of MCOs with an easy-to-
use system that is affordable and accessible by any general lab.

Keywords: cerebral organoids, microglia-containing cerebral organoids, induced pluripotent stem cells, neural
induction, human brain development

Abbreviations: 3D, three-dimensional; CO, cerebral organoid; EB, embryoid body; hESC, human embryonic stem cell;
iPSC, induced pluripotent stem cell; MCO, microglia-containing cerebral organoid; MEF, mouse embryonic fibroblast;
NPC, neural progenitor cell; NSC, neural stem cell.
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INTRODUCTION

The brain is a complex organ consisting of intricate neural
networks with extensive functions. Understanding the cellular
and molecular mechanisms underlying neurodevelopmental
disorders and neurological/neuropsychiatric diseases has been
complicated by the limited availability of clinical tissues and
animal models to fully reflect the human brain. In the
last decade, advances in stem cell technology have led to
the use of human-induced pluripotent stem cells (iPSCs)
to generate three-dimensional (3D) models termed cerebral
organoids (COs; Lancaster et al., 2013). Within COs, cells
self-organize into 3D tissues and differentiate into multiple cell
types, recapitulating many features of human neurodevelopment
(Amiri et al., 2018; Velasco et al., 2019). Because human
iPSCs can be readily generated from any cell type using
advanced reprogramming techniques, COs have been extensively
utilized to help uncover pathogenic mechanisms and guide drug
discovery in a number of neurological diseases and disorders.
These applications include neurodevelopmental disorders such
as autism spectrum disorders and related disorders (Mariani
et al., 2015; Chailangkarn et al., 2016; Birey et al., 2017; Wang
et al., 2017; Mellios et al., 2018; Gouder et al., 2019; Sun
et al., 2019), neuropsychiatric disorders such as schizophrenia
(Srikanth et al., 2015; Stachowiak et al., 2017; Ye et al., 2017; De
Vrij et al., 2019; Kathuria et al., 2020), structural and migration
disorders such as microencephaly and lissencephaly (Lancaster
et al., 2013; Bershteyn et al., 2017; Iefremova et al., 2017; Li et al.,
2017a,b; Fiddes et al., 2018; Karzbrun et al., 2018; Zhang et al.,
2019), and even neurotropic viral infections such as Zika Virus
(Cugola et al., 2016; Dang et al., 2016; Qian et al., 2016; Gabriel
et al., 2017; Li et al., 2017b; Watanabe et al., 2017) and SARS-
CoV-2 (Jacob et al., 2020; Pellegrini et al., 2020a; Ramani et al.,
2020; Yang et al., 2020; Zhang et al., 2020).

Since the inception of COs, there have been rapid and
significant advancements in organoid culture technology,
increasing their accessibility and reproducibility. Original
protocols for COs require the use of expensive and bulky
equipment and a large volume of reagents, as spinning
culture is necessary for enhanced nutrient availability (Lancaster
et al., 2013; Lancaster and Knoblich, 2014); newer protocols
have utilized innovative methods such as 3D-printed spinning
bioreactors (Qian et al., 2016, 2018), allowing for increased
efficiency and larger-scale production of COs. Many studies
have incorporated the directed differentiation to generate various
brain region-specific COs, including the midbrain (Jo et al., 2016;
Qian et al., 2016, 2018; Monzel et al., 2017; Jacob et al., 2020),
hippocampus (Sakaguchi et al., 2015; Jacob et al., 2020), choroid
plexus (Sakaguchi et al., 2015; Jacob et al., 2020; Pellegrini
et al., 2020a,b), thalamus (Xiang et al., 2019, 2020), ganglionic
eminence (Bagley et al., 2017; Birey et al., 2017; Watanabe
et al., 2017; Xiang et al., 2017, 2018), hypothalamus/pituitary
(Suga et al., 2011; Ogawa et al., 2018; Qian et al., 2018; Kasai
et al., 2020; Matsumoto et al., 2020), and cerebellum (Muguruma
et al., 2015; Holmes and Heine, 2017; Watson et al., 2018).
Further innovations include the fusion of region-specific COs
to generate ‘‘brain assembloids,’’ which are particularly useful

for studying interneuron migration and neuronal projections
between organoid structures (Bagley et al., 2017; Birey et al., 2017;
Xiang et al., 2017, 2018, 2019; Sloan et al., 2018;Wörsdörfer et al.,
2019).

In order to most accurately reflect neurodevelopment, it is
important that all cell types within the developing human brain
are proportionally represented as closely as possible. However,
one of the current limitations for the original CO protocols is
not all these cell types are readily generated, particularly for cell
types of non-ectodermal origin. Since microglia derives from
mesoderm while neural stem cells (NSCs)/neural progenitor
cells (NPCs) derive from neuroepiderm, early studies had
to culture iPSC-derived microglia and NSCs/NPCs separately
first and then co-culture them (Schwartz et al., 2015; Muffat
et al., 2016, 2018; Abud et al., 2017; Douvaras et al.,
2017; Haenseler et al., 2017; Garcia-Reitboeck et al., 2018;
Song et al., 2019; Wörsdörfer et al., 2019). Most recent
studies documented that non-inhibition of bone morphogenetic
protein signaling during CO culture allowed the generation
of mesoderm-derived progenitor cells within COs (Quadrato
et al., 2017; Ormel et al., 2018). Of interest, one study modified
neural induction condition by reducing heparin concentration,
rendering the innate generation of mesodermal cells, which
readily differentiated into microglial cells within the CO, named
MCO (Ormel et al., 2018).

Following this approach for inclusion of innate microglia
that plays an essential role in brain development, neural innate
immunity, neuroinflammation, and neurotropic viral infection,
we developed a novel scalable and simplified protocol for the
generation of MCO from human iPSCs. Most CO protocols
require complicated systems involving manual selection of iPSC
colonies and growing in aggregates in droplet suspension (Amiri
et al., 2018; Ormel et al., 2018; Velasco et al., 2019). Our
protocol utilizes a novel method for direct transition from iPSC
aggregate 3D culture to embryoid bodies (EBs), which has not
been previously reported. Furthermore, our system uses six-well
plates on an orbital shaker for constant shaking culture, which are
easily accessible materials for most labs. This also significantly
reduces the amount of culture media needed for COs, further
reducing cost. Here we validated the MCO model with an easy-
to-use scalable protocol.

MATERIALS AND METHODS

Generation and Expansion of Human
Induced Pluripotent Stem Cells
Human primary fibroblasts from apparently healthy individuals
were purchased from the Coriell Institute for Medical Research
[GM00942 and GM00969]. These fibroblasts were used to
generate human-induced pluripotent stem cells (hiPSCs) at the
University of Pennsylvania’s iPSC Core using CytoTune
1.0 Sendai Virus reprogramming factors (Thermofisher
Scientific) according to the manufacturer’s directions. After
iPSC lines were established, they were transferred to and
maintained in feeder-free conditions using mTeSR-Plus
serum-free media (Stem Cell Technologies) on 6-well plates
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coated with 1:100 Matrigel hESC-qualified matrix (Corning),
according to the manufacturer protocols. Cells were passaged
when 70–90% confluent (around 3–5 days) using ReLeSR
enzyme-free passaging reagent (Stem Cell Technologies). Cells
were checked for karyotypic abnormalities every five passages
using the iPSC Genetic Analysis Kit (Stem Cell Technologies),
following manufacturer protocols. All iPSCs used for organoid
generation were between passages 12 and 25. All cells and
organoids were maintained in an incubator at 37◦C and 5% CO2.

Suspension 3D Culture of iPSCs
To generate 3D spheres, iPSCs were dissociated as clusters from
Matrigel-coated plates using ReLeSR (Stem Cell Technologies)
and resuspended in mTeSR-3D seed medium (Stem Cell
Technologies) containing 10 µM Y-27632 ROCK inhibitor
(Stem Cell Technologies). The dissociated iPSC clusters were
then seeded on low-attachment 6-well plates and maintained
on an orbital shaker (Benchmark Scientific, BT4001), shaking
constantly at 65–70 rpm. The iPSCs aggregated to form 3D
spheres in suspension culture and mTeSR 3D feed medium was
added every day.

Generation of Embryoid Bodies Directly
From 3D Culture via Neural Induction for
Microglia-Containing Cerebral Organoids
(MCOs)
When 3D spheres were around 300–400 µm in diameter
(around 4–5 days), they were collected in a 15-ml conical
tube. The old medium was aspirated off and replaced
with EB medium (Lancaster and Knoblich, 2014; Bagley
et al., 2017), which consists of DMEM/F-12 (Corning), 20%
KnockOut SerumReplacement (KOSR; Gibco), 3% hESC-quality
FBS (Gibco), 1 mM GlutaMAX (Gibco), 0.1 mM minimal
essential medium non-essential amino acids (MEM-NEAA;
Gibco), 1% penicillin/streptomycin (Corning), and 0.1 mM
2-mercaptoethanol (Pierce). The iPSC 3D spheres in EB medium
were cultured in low-attachment 6-well plates, at a density of
50–100 spheres per well to generate EB (considered day 0 of
organoid culture) directly from 3D spheres. After 2 days (day

2), 3
4 of the EB medium was refreshed. After 4 days of EB

culture (Day 4), 3
4 of the medium was changed every other day

using neural induction medium (NIM; Ormel et al., 2018), which
consists of DMEM/F-12, 1% N2 supplement (Gibco), 1 mM
GlutaMAX, 0.1 mM MEM-NEAA, 1% penicillin/streptomycin,
and 0.1 µg/ml heparin (Stem Cell Technologies), 10- to
100-fold lower than original CO culture protocols (Lancaster
and Knoblich, 2014; Krefft et al., 2018; Yakoub and Sadek, 2018;
Zhang et al., 2019), which is the critical step for the induction of
innate microglia generation (Ormel et al., 2018).

Matrigel Embedding and Organoid
Maturation
On day 12, organoids were embedded in growth-factor reduced
Matrigel (Corning), as described previously with modification
(Qian et al., 2018). Briefly, organoids were collected to 15 ml
conical tube and resuspended in 1 ml of cerebral organoid
differentiation medium (CODM; Lancaster and Knoblich,
2014), which consists of a 1:1 ratio of DMEM/F-12 and
Neurobasal medium (Gibco), 1% penicillin/streptomycin,
1% B27 supplement without vitamin A (Gibco), 0.5%
N2 supplement, 2.5 µg/ml insulin, 0.05 mM MEM-NEAA, and
0.05 mM 2-mercaptoethanol. Using cut pipette tips, organoids in
microcentrifuge tubes (∼20–30 per tube) were resuspended with
Matrigel (2:3) and spread onto low-attachment 6-well plates.
Once solidified at 37◦C for 30 min, 2 ml CODM was added to
each well, and plates were kept in the incubator in non-spinning
culture. On day 16, organoids were mechanically dissociated
from the Matrigel and resuspended in CODM with vitamin A
(CODMA), which is prepared the same way as CODM, but uses
1% B27 supplement with vitamin A (Gibco). Organoids were
maintained in spinning culture, and media was changed every
3–4 days until experimental endpoints.

Multilabeled Fluorescent
Immunocytochemistry and Confocal
Image Analysis
Organoids were fixed overnight using 4% paraformaldehyde
(PFA). After fixation, organoids were incubated in 30% sucrose

TABLE 1 | Primary antibodies used for immunohistochemistry.

Primary antibody Species and clonality Manufacturer Dilution

Iba1 Rabbit polyclonal Proteintech, cat. no. 10904–1-AP 1:200
Doublecortin Goat polyclonal Santa cruz biotechnology, cat. no. sc-8066 1:500
Tuj1 Chicken polyclonal Aves, cat. no. TUJ 1:2,000
Nestin Chicken polyclonal Aves, cat. no. NES 1:200
GFAP Chicken polyclonal Aves, cat. no. GFAP 1:500
TMEM119 (extracellular) Mouse monoclonal BioLegend, cat. no. 853302 1:200
SOX2 Goat polyclonal Santa cruz biotechnology, cat. no. sc-17320 1:200
mGluR5 Chicken polyclonal Aves, cat. no. ER5 1:200
NeuN Mouse monoclonal Millipore-sigma, cat. no. MAB377 1:500
Ki67 Rabbit monoclonal Abcam, cat. no. ab16667 1:400
PAX6 Mouse monoclonal DSHB, RRID AB_528427 1:200
GAD67 Chicken polyclonal Aves, cat. no. GAD 1:1,000
PSD95 Rabbit polyclonal Proteintech, cat. no. 20665–1-AP 1:400
MAP2 Chicken polyclonal Aves, cat. no. MAP 1:1,000
Synaptophysin Mouse monoclonal Dako, cat. no. M0776 1:1,000

Note: The PAX6 mouse monoclonal antibody was deposited to the Developmental Studies Hybridoma Bank (DSHB) by Kawakami.
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then embedded and frozen in optimal cutting tissue (OCT)
medium. Frozen tissues were sectioned using cryostat at
10 µm thickness. Sections were permeabilized with 0.5%
TritonX-100/1× phosphate-buffered saline (PBS) for 30 min,
blocked with 10% donkey serum for 1 h, and incubated with
primary antibodies (Table 1) in 0.1% TritonX-100/1× PBS
overnight at 4◦C. The next day, slides were washed with
1× PBS and incubated with the corresponding Alexa Fluor
AffiniPure secondary antibodies (Jackson Immuno Research
Labs; donkey anti-goat, anti-rabbit, anti-mouse, or anti-chicken
IgG (H + L) 488, 594, or 680) at a 1:400 dilution for
1 h at room temperature, using Hoechst 33258 (1:5,000) as
a nuclear counterstain. Slides were then coverslipped using
Fluoroshield histology mounting medium (Sigma-Aldrich).
Fluorescent confocal images were acquired and analyzed using
the Leica SP8 confocal system.

Flow Cytometry
Each MCO was dissociated to a single-cell suspension using
Accutase (Corning), passed through a 70 µm nylon cell strainer
(Corning) to remove large clumps, and washed with 1× PBS.
Cells were centrifuged (500× g for 5 min) and resuspended in
500 µl cell staining buffer (BioLegend cat. no. 420201). Cells
were incubated with the primary antibodies anti-CD11b-FITC

(Biolegend cat. no. 301329) and anti-P2RY12-PE (Biolegend
cat. no. 392103) in the dark for 30 min at room temperature.
FITC mouse IgG1-κ (BD Biosciences cat. no. 551954) and
PE mouse IgG2a-κ (BD Biosciences cat. no. 555574) were
used as isotype controls. Following staining, cells were washed
with cell staining buffer, centrifuged, and fixed with 4%
paraformaldehyde in PBS. Analysis was performed using Cytek
Aurora Flow cytometer.

Statistical Analysis
Statistical analysis was performed using Prism GraphPad 9.1.
Significance at P < 0.05 was determined between two groups of
different time or markers using a two-tailed student’s t-test.

RESULTS

Characterization of iPSCs Derived From
Human Fibroblasts by Footprint-Free
Sendai Virus Technology
To generate iPSCs, human fibroblasts from apparently healthy
individuals were sent to the University of Pennsylvania iPSC
Core for reprogramming using Sendai virus technology
(Figure 1A) in MEF-feeder culture (Figure 1B). We
then transitioned the iPSCs to feeder-free conditions

FIGURE 1 | Generation and characterization of human-induced pluripotent stem cells (iPSCs). (A) Timeline of Sendai Virus reprogramming from human fibroblasts.
(B,C) Phase-contrast imaging of iPSC colonies in feeder-dependent culture (B) and feeder-free culture (C). (D) Confirmation of iPSC identity using pluripotency
markers, OCT4, SOX2, and TRA-1–81, using DAPI to stain nuclei. (E) Karyotypic analysis of iPSCs confirming no genomic abnormalities.
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by passaging 3–5 times using mTeSR-Plus medium and
maintaining it as a monolayer culture (Figure 1C). The
iPSC identity was confirmed using immunocytochemical
staining for pluripotency markers, including OCT4, SOX2,
and TRA-1–81 (Figure 1D). The iPSC lines were regularly
screened for karyotypic abnormalities (Figure 1E) as quality
control and maintained in feeder-free conditions for iPSC
line expansion.

Efficient Generation of MCOs Using Simple
3D Transition Protocol
Two critical steps were combined to generate MCO. For EB
formation, we expanded 2D iPSCs into 3D spheres in suspension
culture using mTeSR-3D medium in a 6-well plate under
65–70 rpm in an orbital shaker (Lancaster and Knoblich,
2014; Qian et al., 2018). When the 3D sphere size reached
300–400 µm, we initiated neural induction directly from 3D
spheres while shaking by simply switching to neural induction
media. To generate MCOs, we modified a recently published
protocol (Figure 2A; Ormel et al., 2018) by reducing the heparin
concentration to 0.1 µg/ml in the neural induction media from
1 to 10 µg/ml that is widely used for conventional CO culture
(Lancaster and Knoblich, 2014; Qian et al., 2018). The dynamic
morphological changes we observed during neural induction and
MCO maturation (Figure 2B) follow similar patterns to that
of typical CO development as widely described across various
reports (Lancaster et al., 2013; Lancaster and Knoblich, 2014;
Quadrato et al., 2017; Qian et al., 2018; Velasco et al., 2019).
Briefly, during EB formation, MCOs begin as small, rounded
spheres of generally uniform size. During neural induction, the
EBs begin to form neuroepithelial tissue, characterized by a
slightly translucent surface occasionally with some budding. The

neuroepithelial tissue begins to elongate as radially organized
structures. Embedding inMatrigel helps facilitate the growth and
organization of neuroepithelial tissue as theMCOs form lobe-like
structures. As MCOs continue to mature, they increase in size
and maintain a spherical shape.

The feature of the developing brain organoids was validated
by determining the presence of neural cells within MCO
using multilabeled immunostaining and confocal image analysis.
Typical neuroepithelial tissues with self-organized rosette-like
clusters of neural cells around ventricles were apparent in
different CO/MCO regions (Figure 3). Within these clusters,
populations of NSCs (co-expressing Nestin or SOX2 and GFAP)
and NPCs (expressing Nestin or SOX2 but not GFAP) were
evident (Figure 4). Various degrees of neural differentiation
were identified by the presence of neuroblasts/immature neurons
(DCX+ and TUJ1+; Figure 3), mature neuron (NeuN, Figure 5),
astrocytes (GFAP, Figure 4), and others. A cluster (or aggregate)
of dividing/proliferating NSCs/NPCs were identified by the
presence of Ki67+ and PAX6+ immunoreactivity (Figure 5).
These data suggest that our simplified protocol works well for
the generation of CO or MCO with characteristic features of
developing brain structures.

Dynamic Development and Maturation
of Microglia-Like Cells in MCOs
Only one report demonstrated the feasibility of innately
developing microglia in MCO, using a spinning bioreactor
culture system (Ormel et al., 2018). To validate this report, we
included part of this protocol into our simplified CO culture
protocol as described above. The presence of microglia-like
cells was validated by immunofluorescent staining with
microglia/macrophage marker IBA1 (Figure 3) as well

FIGURE 2 | Experimental timeline for generation of microglia-containing cerebral organoids (MCOs) and representative images for each stage of MCO formation
and maturation. (A) Schematic diagram for MCO generation from iPSC 3D culture. The red arrows indicate two key steps (EB initiation and innate microglia
induction). (B) Representative phase-contrast images of MCOs at various stages of growth and maturation.
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FIGURE 3 | Identification of neural stem/progenitor cells (Sox2), neuroblast (Dcx), immature neurons (Tuj1), and microglia-like cells (Iba1) in developing CO and
MCOs detected by multilabeled immunofluorescent confocal imaging with indicated cellular markers. (A) CO at day 40. (B) MCOs at day 40 and (C) at day 60.
Hoechst was used as a nuclear marker. Panels (A1–A2), (B1–B3), and (C1–C2) are the split channels for (A), (B), and (C), respectively. Panel (C2-1) is digital
zoom-in of the inset in (C2).

FIGURE 4 | Characterization of cell types in mature MCOs. At day 100 post-EB formation, multiple cell types can be detected by multi-labeled immunofluorescent
confocal image analysis with three colors (A) and four colors (B), including NSCs (Nestin +/GFAP+ or Sox2+/GFAP +, arrows), NPCs (Nestin+ or Sox2+ but GFAP-),
astrocytes (GFAP+), and microglia-like cells (TMEM119+). Hoechst was used as a nuclear marker. NC, necrotic center. Panels (A1) and (B1) are the insets from
corresponding (A) and (B). Panels (A2/A3) and (B2/B3) represent split single or double channels, respectively to (A1) and (B1).

as microglia-specific marker TMEM119 (Figure 4). These
microglia-like cells began to be detectable around day 13–16,
expanded dramatically at day 30–60, and matured to the
characteristic ramified morphology at day 60–180 (Figures 3,
4, 6). They scattered throughout the MCO, mainly located
around epithelial layers at an early stage (Figure 3) but
migrated/scattered to other regions at late stages (Figures 4B,
6). Flow cytometry analysis with CD11b and P2RY12 surface
markers further confirmed the existence of microglia in average
of 7 ± 2% (Figure 7), consistent with the reported number of

microglia (0.5–16.6%) in the human brain, which varies with
the brain region and developmental stage (Lawson et al., 1992;
Nikodemova et al., 2015; Bachiller et al., 2018).

Neuronal Maturation and Synaptic
Network Formation in Mature MCOs
Neuronal differentiation and maturation occur instantly during
the expansion and maturation of MCOs. Mature neurons with
extensive synaptic networks were detectable with neuronal
markers NeuN (Figure 5) and MAP2 (Figure 8) as well as
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FIGURE 5 | Expression of mature neurons and clusters of NPCs in MCOs. Neuronal markers are present in MCOs at days 60 and 80, as detected by multi-labeled
immunofluorescent confocal analysis. (A) At day 60, populations of proliferating cells (Ki67+) and mature neurons (NeuN+) can be detected. Small clusters of
postsynaptic excitatory receptors are detectable as well (mGluR5+). (B) At day 80, proliferating cells and mature neurons are still detectable, with mGluR5 expression
appearing more pronounced and Ki67 expression appearing decreased, suggesting a trend towards neuronal differentiation vs. neural cell proliferation. (C) NPCs
(PAX6+) are expressed in day 80 MCOs, as well as inhibitory GABAergic neurons (GAD67+) and postsynaptic proteins (PSD95+). Hoechst was used as a nuclear
marker. NC, necrotic center. Panels (A1), (B1), and (C1) represent the digital zoom-in images from the corresponding insets.

the postsynaptic protein PSD95 (Figure 5C) and presynaptic
axonal marker synaptophysin (Figure 8), suggesting some
regions actively undergo neuronal differentiation and functional
connection. Extensive expression of the glutamatergic/excitatory
neuronal marker mGluR5 was detected in most regions of MCOs
at day 60–80 (Figures 5A,B), while the GABAergic/inhibitory
neuronal marker GAD67 was weakly expressed at this stage
(Figure 5C). More detailed analysis shows evidence of
synaptogenesis/neuritogenesis in mature MCOs. Neurons
display robust expression of dendritic markers (MAP2) with
dendritic arborization evident in some regions (Figure 8). The
presynaptic axonal terminal marker (synaptophysin) was highly
expressed (Figure 8), with some visible axonal-dendritic synaptic
connections (white arrows). These data suggest that mature
neurons present in MCOs actively form extensive neurites,
enriched dendrite arborization, and functional synaptic network.

DISCUSSION

Organoids have been extensively utilized to study organ
developmental events and model various human diseases.

However, some challenges remain, including reproducibility,
predictability, scalability, cost, technical complexity, anatomical
accuracy, etc. Here we design a system that simplifies the process
of MCO generation from human iPSCs in an easy-to-follow and
affordable protocol that can be adapted by most standard labs.
Additionally, our protocol incorporates microglia to more fully
recapitulate the cell types present in the brain.

There have been a great number of advances in CO
technology since they were first introduced. Originally, CO
generation required expensive equipment, which made it
inaccessible for many labs, as well as large volumes of reagents
and culture media, since spinning culture is necessary for CO
to receive nutrients. Since then, protocols have simplified this
process by using novel ideas to generate organoids on a smaller
scale, such as the miniature spin omega bioreactor (Qian et al.,
2016; Romero-Morales et al., 2019). Our protocol simply uses
an orbital shaker and six-well plates in standard incubators;
something that is affordable and accessible for most labs.
Initial organoid protocols were also fairly complicated, involving
precise technical skills such as picking iPSC colonies, generating
Matrigel droplets and EB formation (Lancaster and Knoblich,
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FIGURE 6 | Presence of microglia in Day 160 MCOs determined by
microglia-specific marker TMEM119 (A) and IBa1 (B). Neural stem/progenitor
cells were labelled with anti-Sox2 (A) and anti-Nestin (B) antibodies. Hoechst
was used as a nuclear marker. NC, necrotic center. Panels (A1) and (B1) are
the split channels for corresponding (A) and (B).

2014; Qian et al., 2016, 2018; Sloan et al., 2017; Pasca, 2018;
Sutcliffe and Lancaster, 2019). Simplifying these steps may help
decrease variability and increase efficiency while reducing cost

and labor. Our novel protocol allows us to go directly from 2D to
3D culture, and then from 3D directly to EB culture in a six-well
plate. This novel proof of concept for 3D spheres derives from
previously described swirler culture for hematopoietic organoids
using a bulk-cell aggregation method (Schulz et al., 2012). Our
protocol also takes advantage of the newly developed mTeSR-
3D suspension culture medium that allows for the expansion
and scaling-up of undifferentiated human iPSCs or ESCs. The
combination of these components saves time and reagents by
employing a daily feeding system to replenish nutrients rather
than full media changes and generates evenly distributed 3D
spheres that allows direct differentiation into EBs in the same
six-well plate under orbital shaking. Additionally, we adapt
Qian’s method (Qian et al., 2016, 2018) of embedding multiple
organoids in Matrigel in 6-well plates, which are then dissociated
4 days later for shaking culture. After this point, organoids need
minimal maintenance by changing media every 3–4 days and can
be continuously cultured for at least 150 days tested currently in
our lab, although over 590 days for CO maintenance have been
reported (Sloan et al., 2017).

Another major shortcoming of original CO modeling is the
lack of diverse cell types that fully recapitulate the brain. Many
studies report evidence for the presence of neurons, NSC/NPCs,
and glial cells to varying degrees. However, microglial cells and
endothelial cells are largely absent in original CO systems. Several
protocols have been developed to co-culture iPSC-derived
microglia with CO or iPSC-derived neural cells (Dos Reis et al.,
2020; Fritsche et al., 2020; Hasselmann and Blurton-Jones, 2020;
Tanaka and Park, 2021). While these methods are effective at
generating MCOs, they require separate culturing systems with
multiple additional steps as well as optimization of cell number

FIGURE 7 | Flow cytometry analysis identified the presence of microglia in iPSC-derived MCOs. The MCOs cultured for 35 and 45 days were subjected to flow
cytometry analysis with CD11b and P2RY12. Isotype controls of the corresponding antibodies were used to determine the baseline expression of microglia marker.
(A) Representative side scatter (SSC) images of one MCO. (B) Diagram graph showing the average percentage of positive cells per MCO. Data represent
mean ± SE of three MCOs per group. The **P < 0.01 indicates the significant difference from corresponding marker CD11b at day 35. The ns indicates no
significance statistically as compared with corresponding day 35 in each marker.
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FIGURE 8 | Detection of synaptogenesis in MCOs. Multi-labeled
immunofluorescent and confocal analysis shows evidence of neuritogenesis/
synaptogenesis and apoptosis in MCOs. (A,B) Enriched dendritic arborization
with long process (MAP2+) and presynaptic axonal terminals
(Synaptophysin+), axon-dendritic synapse connections (arrows) were clearly
visualized in all tested sections of MCOs. (C) represents the overlay image
from (A) and (B). Panel (C1) is digital zoom-in image of the inset in (C).

ratio. A recent report found that simply reducing the level of
heparin in the culture media during neural induction from EB
could derive mesodermal microglia into the original ectodermal
CO using a cost-ineffective spinning bioreactor system (Ormel
et al., 2018). We combined this novel method with our direct
3D-to-EB transition technique and successfully recapitulated the
generation of MCO. While microglia have traditionally been
studied in the context of immune response to pathogens in
the brain, they are emerging as important players in a number
of neurological pathways. Importantly, microglial progenitors
enter the brain very early during embryonic development and
colonize among developing NSCs/NPCs (Hammond et al.,
2018; Thion et al., 2018). Therefore, these microglia and
neural cells differentiate and mature in close proximity to
each other during development, resulting in unique cross-talk
and overlapping pathways. For example, microglia have been
shown to regulate the number of NSCs/NPCs as well as
play roles in postnatal presynaptic pruning and synaptogenesis
(Cunningham et al., 2013; Miyamoto et al., 2016; Weinhard
et al., 2018). However, some of these mechanisms have not
fully been explored during early neurodevelopment, but MCOs
may present a unique model to study these critical interactions,
particularly in the context of elucidating mechanisms underlying
neurodevelopmental disorders and neurodegenerative diseases.
Furthermore, as microglia are known to play critical roles in
inflammation and infection, MCOs provide an excellent model
for neurotropic viral infections such as HIV and ZIKV (Muffat
et al., 2018; Dos Reis et al., 2020; Qiao et al., 2020; Bodnar et al.,

2021). While organoids have been used to study viral infections
before (Cugola et al., 2016; Dang et al., 2016; Qian et al., 2016;
Gabriel et al., 2017; Li et al., 2017b; Watanabe et al., 2017),
these models did not include microglia, which are critical to the
immune response.

One limit of this study is the small number ofmicroglia cells in
MCO (around 7%), although it may represent the physiological
development process (Lawson et al., 1992; Nikodemova et al.,
2015; Bachiller et al., 2018). Optimization of the heparin
concentration or other regulators may improve the generation
of microglia in MCO. Another strategy might be the co-culture
of iPSC-derived microglia with the CO (Dos Reis et al.,
2020; Rai et al., 2020), which may increase the number of
microglia cells in CO, although the process does not mimic
normal brain development. Another limit of our MCO model
is that there are still several cell types missing, including
endothelial cells/vasculature. While vasculature is an integral
part of the brain, it was initially difficult to incorporate into
the organoid culture, with earlier protocols requiring the use
of compartmentalized microfluidic chips for the introduction of
endothelial cell co-culture (Nashimoto et al., 2017; Grebenyuk
and Ranga, 2019) or even grafting cerebral organoids in vivo
in mouse brains, which vascularize over time and form
functional circuits (Daviaud et al., 2018; Mansour et al.,
2018). However recent publications have used novel ways to
incorporate endothelial cells by co-culture with mesodermal
cells (Wörsdörfer et al., 2019, 2020; Shi et al., 2020) or innate
induction via inducible expression of ETV2 (Cakir et al., 2019).
We anticipate that some of these methods can be incorporated
into our MCO protocol for future experiments and the
development of a more complete model of neurodevelopment.
However, the vasculature in these organoid models is not fully
mature as there is no blood flow, so doing so would require
either in vivo grafting into a host (Mansour et al., 2018) or
incorporation of a microfluidic system (Wörsdörfer et al., 2020).
Finally, it is important to note that the MCOs produced are not
region-specific and therefore representative of general cerebral
cortex tissue, with morphology similar to that of traditional
organoid protocols (Lancaster and Knoblich, 2014). It may be
possible to incorporate the microglia-promoting components
of our protocol with that of region-specific protocols for more
advanced organoid models/brain assembloids (Qian et al., 2018;
Sloan et al., 2018; Xiang et al., 2020), but would require
further optimization due to differences in neural induction and
patterning techniques.

In summary, we present a novel protocol that allows for
the simplified generation of cerebral organoids that contain
microglia (MCO). This protocol can be readily adapted
by most standard labs and scaled as needed. Additionally,
immunohistochemistry and confocal image analysis shows
the expression of NSCs/NPCs/neurons as well as astrocytes
and microglia at various time points, showing expected
characteristics of organoids/developing brain making this
a viable model to use for the investigation of human
brain development and pathogenesis in various diseases. By
simplifying the process of generating organoids, it makes this
novel and exciting tool more accessible for labs, which will
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ultimately help further innovations in this field in a collaborative
way to generate reproducible organoids.
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