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Abstract 
Childhood nutrition establishes consumption norms that affect an indi-
vidual’s health over the course of their lives. However, early nutrition in-
terventions to establish such norms are uncommon owing to the various 
inefficiencies associated with current methods of measuring childhood 
nutrition. Here, we present an IoT measuring device, called the SensiTray, 
which accurately tracks mealtime intake in a child-friendly and cost-ef-
fective fashion. Principal technologies underlying the SensiTray (includ-
ing mass-sensing technologies, microcontrollers) are identified and an-
alyzed, along with other design choices. Operation of the SensiTray is 
explained with special attention given to SensiTray software peripher-
als and algorithms. Preliminary testing consisted of static and dynamic 
simulations (i.e. food weights constant and changing), with the Sensi-
Tray demonstrating a high degree of accuracy in both formats. Future 
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development of the SensiTray may focus on design iteration, additional 
testing, and experimentation with various mealtime data visualizations 
to precipitate positive dietary changes. 

Index terms—childhood obesity, obesity, nutrition, smart plate, smart 
tray, IoT 

I. Introduction 

Though childhood nutrition is critical to normal development and es-
tablishing healthy consumption norms, in the U.S., the diet quality of 
children from 2 to 5 years of age often fails to meet age-specific rec-
ommendations. Many young children have lower than recommended 
intake of whole grains, “superfoods” like legumes and beans, and cru-
cial fruits and vegetables; instead, their diets are supplemented by 
high consumption of refined grains and other foods rich in sodium, 
sugar, and empty calories [1]. Early establishment of poor diet quality 
increases the risk of childhood obesity and associated chronic condi-
tions including diabetes and cardiovascular diseases [2]. Consequently, 
in both research and practice, there exists a necessity to measure nu-
tritional intake from mealtime food consumption. 

A. Existing Methods 

Given the lack of a commercially feasible and accurate method to eval-
uate children’s dietary intake, nutrition intervention evaluations are 
often either not performed or performed inaccurately; consequently, 
the establishment of poor nutrition norms is often undetected during 
this most critical time period. The current standard for measuring chil-
dren’s dietary intake is the manual food waste method; each individ-
ual food item served to a child during a meal is manually weighed be-
fore and after consumption. The difference in food item is then used 
to compute a projection of the child’s nutritional intake for that meal. 
However, the manual food waste method is infeasible to employ on 
a large scale in childcare settings due to an assemblage of factors [3] 
including, but not limited to, high demand for trained meal observ-
ers, time and labor necessary for observer training, and high level of 
intrusiveness interrupting natural consumption behavior. 
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Children’s food consumption may also be assessed through digi-
tal photos, but this method is cost and resource intensive, with lim-
ited feasibility in childcare settings [4]. Furthermore, childcare direc-
tors have raised concerns about the usage of cameras or cell phones 
in childcare settings, even if their sole purpose is to take multiple pic-
tures of a child’s food tray during a mealtime. Specifically, the digital 
photo method requires that a picture be taken of the child’s tray: be-
fore the child starts eating, every time the child takes additional serv-
ings of a food item served, and at the end of the meal [5]. 

II. Proposed Method 

We introduce an IoT measuring device, capable of measuring meal-
time food intake, referred to as the SensiTray. The SensiTray is espe-
cially designed for children, and it is presented as an alternative to 
the standard school lunch tray. The tray operates by measuring time-
series data of up to five food items and utilizing the USDA nutrition 
database to approximate accurate nutritional information [6]. Addi-
tionally, we developed scalable software peripherals to allow appro-
priate stakeholders (childcare administrators, parents, and research-
ers) to view, control, and visualize tray data. 

As shown in [Fig. 1], the tray has a bamboo enclosure, about the 
size of a standard school lunch tray. Within the enclosure, there is an 
acrylic housing which encases the electronics; this includes a set of 
load cells to measure the weight of food items, an SD card to store 
data collected (in the case of a wireless network limitation), and an 
ESP32 micro-controller. Above the electronics is a silicone mat to pro-
vide a softer, food-grade surface to consume food. Unlike a standard 
school lunch tray, the tray contains no grooves or indents for food – 
rather, magnetic dishware ”snaps” into the tray. Keeping costs of the 
tray to a minimum was a focus of ours, and assembling it costs ap-
proximately $30 (USD). 

A. Mass Measurement 

Measuring nutrition information accurately and precisely reduces to 
a problem of choosing a reliable and accurate mass sensor. To keep 
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the tray thin, it is necessary for the sensor to have a low profile. Force-
sensing capacitors (FSCs) were the initial choice of sensor for the tray, 
for their virtually imperceptible thickness (high-end FSCs were se-
lected for testing purposes) and supposed advantages in both re-
peatability and sensitivity over force-sensing resistors [7]. However, 
throughout extensive testing, FSCs were inaccurate for distinguishing 
between fine-grained levels of pressure. Error was on order of Θ(mlog 
t) upon testing, with m = mass, t = time. Price of the sensors was also 
prohibitively expensive. 

Load cells were identified as a viable alternative. The sensors are 
force transducers that convert external, applied forces into a mea-
surable electrical signal. They come in variety of sizes and operable 
ranges; typically, the sensors are beams made to deform to a certain 
degree within their operable range. 

A mass-detecting base [Fig. 2] was designed to ”sandwich” load 
cells. Plastic spacers were 3D printed to add separation between the 
faces of the load cells. To magnify smaller changes in mass, load cell 
amplifiers were connected. In initial experimentation, load cells had a 
high level of accuracy and failed at a lower rate. They were also more 
durable, and required far less ”repeated” calibration.  

Fig. 1. The three layers of the tray (electronics, protective silicone, dishware). 
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Sensor calibration was conducted in a two-step process. 100 raw 
readings were obtained and averaged from each sensor with zero 
load. This averaged value was each sensor’s ”offset.” Then, a reference 
mass was placed on each sensor, and 100 raw readings were obtained 
and averaged again. This value, minus the sensor’s initial offset, was 
then divided by the known mass to obtain each sensor’s scaling factor. 
As indicated in [Fig. 3], the relationship between raw signal count and 
reference mass was nearly perfectly linear. Additional tests to identify 

Fig. 2. Load cell ”sandwiched” by two spacers, a base, and a platform. Adapted 
from [8]  

Fig. 3. Measuring voltage across load cell (circled) and raw digital signal from am-
plifier (squared) as a response to varied reference masses. 
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drift were also completed; masses were left on load cell sensors for 
72 hours, and no real drift-based error was observed. For most food 
items, error detected in testing was Θ(1) (constant factor) within the 
reasonable bounds of food weight (< 1 kg). Further analysis of results 
is discussed in Section IV.  

B. Other Electronics 

The SensiTray utilized an integrated ESP32 microcontroller to connect 
to load cells. The ESP32 can communicate wirelessly via internet and 
Bluetooth. This board is commonly used in IoT projects due to low 
price and energy consumption (powered by a rechargeable battery, 
not shown in [Fig. 1]). 

The amplifier receives an analog voltage signal proportional to the 
mass applied to the load cell, which is forwarded to a programmable 
gain amplifier, via an input multiplexer. The signal is then converted to 
a digital value through the onboard 24-bit analog-to-digital converter. 
The ESP32 receives the serial data through I2C communication pro-
tocol. Upon reading force data from each of the load cells, the ESP32 
writes the data to JSON. The JSON packet is sent to an AWS server at 
a constant interval (30 seconds). If the on-board WiFi module is unable 

Fig. 4. Each Load cell requires four GPIO pins for power, ground, data transfer, and 
clock. The ESP32 contains 30 GPIO ports.  
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to connect to a network, the data is stored on an SD card and is au-
tomatically uploaded the next time it connects. The tray broadcasts 
messages via the MQTT protocol, and an AWS server is subscribed to 
these JSON messages. The server organizes the streams of JSON pack-
ets collected during a meal into an associated meal entry; this data 
can be accessed by external APIs for client applications or exported 
for use by other researchers. 

C. Creating a Surface 

As seen in [Fig. 1], a series of five disjoint load cell platforms are con-
tained in the SensiTray. The platforms must somehow be ”unified”, 
with intent to create a food-grade, dishwasher friendly surface. This 
design choice also prevents severe damage from occurring in the case 
of spillage. While it may seem like an opaque plastic platform may be 
adhered to the top of the tray, this gives rise to the issue of cross-sen-
sitivity. Since force is distributed throughout the entirety of a unified 
surface, food items on the edges of a platform potentially interfere 
with the readings of adjacent platforms. This effect is inescapable, al-
though it is negligible for a material with low rigidity. Silicone was an 
easily available choice, which met all of these criteria; upon reiterat-
ing all accuracy tests with and without the surface, a t-test indicated 
very little disparity between collected data. 

Due to the presence of a surface, it becomes difficult to ensure that 
a SensiTray user places a dish or a food item directly on one of the 
platforms. Thus, it was beneficial to add strong neodymium magnets 
to each of the platforms, thereby establishing ”hot regions” which at-
tract dishes with magnetic surfaces. Similar testing was conducted to 
ensure magnets would not interfere with tray accuracy. 

III. Using The Tray 

A. First Time Setup 

The first time a user sets up a SensiTray, they download the Sensi-
Tray mobile application built on Flutter – a Dart-based mobile appli-
cation framework. After connecting to the tray via Bluetooth, the user 
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is given the opportunity to configure WiFi credentials, give the tray 
a ”nickname”, and assign a parental figure who can access measure-
ments from the tray. Nowhere in the registration process is a child’s 
name captured, allowing the data to be completely anonymized by 
child. 

B. Populating Meal Data 

At this time, the SensiTray does not automatically detect food items 
using image recognition; hence, prior to using the tray, one first must 
acknowledge which food items are being served. To identify food 
items, childcare administrators can create menus of the food items 
they plan to serve on a specific day at a particular meal time (break-
fast, lunch, snack). These menus are stored in a secure database where 
they may later reviewed or reused as needed. 

In our experience, color coordinating food vessels was an effective 
means of ensuring that the correct load cells were measuring the cor-
rect food items; when uploading menu items, software automatically 
assigns a particular color to each food item, signifying which bowl cer-
tain food items should be served in. Nutritional information for these 
food items are automatically pulled from USDA’s FoodData Central, 
which provides nutrition facts per 100g.  

Fig. 5. An administrator specifies a breakfast menu with food items. 
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C. Consuming Food 

After placing each dish on its respective platform – without any food 
items – turning on the SensiTray automatically tares all dishware and 
establishes connection with an AWS server. When the tray chimes, 
food can be served or consumed. As food is consumed, intermit-
tent pressure applied to a platform (potentially by a spoon or a fork) 
may cause spikes and noise in data. Operating under the assumption 
that these instances regularly occur less than half the time, a modi-
fied median filter [9] is applied to filter such noise. Consider a stream 
of load cell data {f[n]}, which records k readings per second. Define a 
window of size W = 2te ∙ k, where te denotes the average time to con-
sume a morsel of food; then, the output of the median filter, {g[n]} is 
defined as 

g[i ] := med({ f [i – tek], …, f [i ], …,  f [i + tek]})             (1) 

By assumption, less than half the window contains spiked values, 
hence, the median of such a window should ignore the spike. Given a 
meal of length tm, ktm – W data points are collected, with total com-
putation involving O(W(ktm – W)) = O(k2te(tm – te)) in resources. 

If the meal consists of only one serving, total food consumed, or 
C, can be modeled as C := g[n – 1] – g[0], where n is the total num-
ber of discrete values collected from the stream. Measuring data as 
a stream also allows for consumption to be modeled in the event of 
multiple servings, with 

                                                   
n – 2

C := ∑ |g[i + 1] – g[i ]| – (g[i + 1] – g[i ])                    (2)
                               i = 0                     2 

Intuitively, this function sums up all of the incremental pairs (i, i+1)  
such that g[i+1] – g[i] < 0. Although intermediary points demon-
strated increased average error during noisy interactions with the tray, 
an estimate of the eating trajectory is vastly improved from the fil-
ter [Fig. 6].   
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IV. Results 

A. Static Analysis 

Initially, SensiTray’s ability to measure masses on all platforms in a 
static setting needed to be tested. The tray was tested with precision 
weights and food items. Masses of food items were estimated by an 
external scale. A precision (.1 mg resolution) digital analytical lab bal-
ance was chosen as the reference scale, assessed by the manufacturer 
to have linearity of ±3 mg and repeatability of ±2 mg, with a maxi-
mum permissible error well within the minimal important difference. 

For tests with the reference masses ranging from 0–100g, a plat-
form on the tray was randomly chosen, and in half of the trials, a 100g 
mass was placed in the adjacent platform to measure effects of cross-
sensitivity. A mass estimate was given as the mean of n = 10 inde-
pendent collected measures from the load cell. Errors relative to the 
reference masses [Fig. 7] were heteroskedastic, and the maximum ob-
served standard deviation was .7030 g. Hence, an upper bound on 

Fig. 6. A median filter drastically diminishes the effect of noise from repeatedly 
removing slices of bread and returning them to the tray.   
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standard error was estimated as ≈ 0.22 g. Relative uncertainties were 
collected, and fell beneath .13 for all mass measures. 

Foods were chosen with an intent to maximize the diversity  of 
shape, consistency, and weight distribution. The items tested included 
canned mangoes, apple sauce, carrots, milk, graham crackers, rice, 
and beans. 

All food items were individually placed in each of the vessels, to test 
for cross sensitivity. This was repeated ten times, and data collected is 
indicated in Table 1 (mass measurements were rounded to the near-
est gram). From our testing, we note that the maximum average er-
ror is limited to ±3 grams, and the average error across all food items 
was just ±1.29 grams. Unsurprisingly, the accuracy of a food item’s 
mass measurement does not seem to be linked to the food group 
said item belongs to. 

Fig. 7. Distribution of errors, relative to reference mass, with and without mass 
(100g) placed on adjacent platform. 
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B. Dynamic Analysis 

Rather than simply measuring the final value of the tray, Eq. (1) was 
utilized as a measure of consumption. Testing occurred with both 
one and multiple servings. Eating was simulated by removing mor-
sels of food by silverware (peaches, apple sauce, oats) and hand (gra-
ham crackers, doughnut); these morsels were moved to individual 
cups for future comparison [Fig. 9]. The error was nearly identical for 
all food items, aside from doughnuts, which were contained on plat-
form D [Fig. 8]. At t = 23, the sensor measured more than the ”true” 
consumption and after correcting at t = 24 it appeared as if servings 
had been added to the platter. When lifting the doughnut to ”take a 
bite”, the readings were lower than the true amount consumed. This 
amounted to a near 14% error. At this time, the median filter needs 
improvement for items which involve removing and returning said 
items for longer periods of time. 

Similarly, when multiple (three) servings were introduced, for food 
items besides doughnuts, no significant changes are observed — the 
error in doughnuts was only amplified (on average 19% across three 
tests). Therefore, these tests indicate that error for food items was 
related to te and tm; food items with higher spread in te experienced 
more error. Adjusting the filter’s window size, coupled with adjusting 
the rank of the filter from r = n/2 , may help remediate these issues. 

Analysis was conducted to measure the similarity and reliability 
between dynamic measures amongst ten time series, where an ini-
tial amount of food with mass Mi was distributed across the vessels, 

Table I  Static Mass Accuracy Testing 

Food Item (Food Group) 	 True Mass (g) 	 Avg. Measured (g) 	 Error (±g) 

Canned mangoes (Fruit) 	 113	  114 	 +1 
Apple Sauce (Fruit)	  250 	 249	 –1 
Baby carrots (Veg.) 	 157 	 154 	 –3 
Milk (Dairy) 	 201 	 202 	 +1 
Graham cracker (Grain) 	 120 	 122 	 +2 
Rice (Grain) 	 84 	 84 	 +0 
Beans (Protein) 	 56 	 55 	 –1 
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and similarly sized morsels of various food items were removed pe-
riodically across t discrete time intervals. Dynamic time warping was 
utilized to align time series and calculate pairwise unnormalized dis-
tance, Δ(x, y). A standardized similarity measure over [0, 1], S(x, y), was 
defined to compare strength of similarity, 

S(x, y) := 1 –  Δ(x, y)                                           (3) 
                                                  Mit

Fig. 8. Time series received during 30 second data capture, without increasing 
servings. 

Fig. 9. Oats are scooped from a vessel into an external container. 
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Similarity measures were extra-ordinarily high, with the smallest 
pairwise similarity exceeding .98 [Fig. 10]. 
 
C. Brief Comparison to Other Existing Methods 

Existing methods to model nutritional intake over a period of time are 
mainly interested in measuring the difference between initial and fi-
nal consumption [10]. Noninvasive recognition systems, such as soft-
ware-aided photography classification systems, perform at approxi-
mately 80-85% mass classification accuracy for food items ranging 
between 70–80g [11]. Our similar testing results found an approximate 
95% mass classification accuracy, with stronger, near constant uncer-
tainty bounds. Additionally, the measurement methods presented al-
low potentially robust inter-meal consumption trajectory estimations, 
which may serve beneficial in research associated with eating patterns 
and meal habits. 

V. Future Work 

We see a multitude of directions to extend our findings. We are cur-
rently creating a thinner tray, in which we wish to include image rec-
ognition to avoid pre-meal information population. Improving the fil-
ter’s consistency will also prove useful for diverse food items. Further 
testing (both short-term and long-term) with children as subjects is 
necessary to test the measurements in a highly unpredictable setting. 

Fig. 10. Pairwise similarity between food consumption time series, with an addi-
tional external scale utilized to measure mass for reference. 
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We foresee the importance of assessing novel visualizations’ ability to 
communicate data to precipitate positive dietary changes. 

VI. Conclusion 

As an IoT device which accurately collects time-series nutritional data 
in childcare settings, the SensiTray achieved major engineering aims, 
including: 

•  Design of a child-friendly, easily-operable, and cost-effective so-
lution for accurate nutrition tracking, 

•  Integration with lightweight IoT framework, for an autonomous 
system which may be more scalable than current manual food 
waste and digital photography methods, 

•  Development of software peripherals and algorithms, enabling 
stakeholders (children, parents, childcare providers) to plan, log, 
and visualize children’s nutritional intake. 

We are excited to further develop and test the SensiTray, with in-
tentions to promote the device as an accurate, reliable instrument in 
conducting future childhood obesity studies.   
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