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Maize Tassel Detection From UAV
Imagery Using Deep Learning
Aziza Alzadjali 1, Mohammed H. Alali 1,2, Arun Narenthiran Veeranampalayam Sivakumar3,
Jitender S. Deogun1, Stephen Scott1, James C. Schnable4 and Yeyin Shi3*

1Department of Computer Science, University of Nebraska-Lincoln, Lincoln, NE, United States, 2Department of Computing,
Community College, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia, 3Department of Biological Systems
Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States, 4Department of Agronomy & Horticulture, University of
Nebraska-Lincoln, Lincoln, NE, United States

The timing of flowering plays a critical role in determining the productivity of agricultural
crops. If the crops flower too early, the crop would mature before the end of the growing
season, losing the opportunity to capture and use large amounts of light energy. If the
crops flower too late, the crop may be killed by the change of seasons before it is ready to
harvest. Maize flowering is one of the most important periods where even small amounts of
stress can significantly alter yield. In this work, we developed and compared two methods
for automatic tassel detection based on the imagery collected from an unmanned aerial
vehicle, using deep learning models. The first approach was a customized framework for
tassel detection based on convolutional neural network (TD-CNN). The other method was
a state-of-the-art object detection technique of the faster region-based CNN (Faster
R-CNN), serving as baseline detection accuracy. The evaluation criteria for tassel detection
were customized to correctly reflect the needs of tassel detection in an agricultural setting.
Although detecting thin tassels in the aerial imagery is challenging, our results showed
promising accuracy: the TD-CNN had an F1 score of 95.9% and the Faster R-CNN had
97.9% F1 score. More CNN-based model structures can be investigated in the future for
improved accuracy, speed, and generalizability on aerial-based tassel detection.

Keywords: phenotyping, object detection, flowering, faster R-CNN, CNN

1 INTRODUCTION

It is estimated that the world population will exceed 9 billion by 2050 and that current agricultural
yields will need to grow as much as 50% per unit of land in order to insure food security by that year.
Achieving this goal requires the development of high yielding, more stress tolerant, and more
resource use efficient crop varieties. In modern breeding programs, data on genetic markers are
combined withmeasurements of traits under field conditions to selected improved lines. Advances in
sequencing data have substantially lowered the cost and increased the throughput of obtaining
genetic marker information for candidate crop lines. However, phenotyping remains slower and
more costly, and hence is often the rate-limiting step with hundreds to thousands of new lines waiting
to be phenotyped and selected through multiple stages of breeding programs.

Flowering is a critical landmark in plant development, where the plant’s energy turns, in whole or
in part, from growing more leaves in order to capture more energy to producing seeds and/or fruits.
Maize is a monecious plant species with separate and specialized male and female
inflorescences—flower-bearing structures—the tassel and ear, respectively. Tassels are produced
at the top or above the canopy and pollen from the male flowers. These tassels must land on the silks
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produced by the female flowers of the ear for the grain to develop.
Even moderate stress from heat or lack of water during the short
flowering window can substantially reduce pollen production and
yield potential in maize. The timing of male and female flowering
is also under the control of at least partially distinct genetic
architectures. In the wild, asynchronous male and female
flowering can increase the likelihood of outcrossing. However,
in agricultural production where an entire field is likely to be
planted with a single variety in a single day, asynchronous
flowering dramatically reduces yield potential by reducing the
number of female flowers which receive pollen frommale flowers.

Flowering time is a selection target in developing new maize
varieties for two reasons. The first reason is to ensure that
flowering timing is a match for the target environment. Early
flowering would cause a large amount of photosynthetically active
light energy waste, while too late flowering might kill the crop, if
the season is changed before it can mature. The second reason is
to ensure that a new candidate variety has good synchronization
of male and female flowering in order to produce the maximum
amount of grain. Currently, maize breeders manually score the
flowering timing for hundreds or thousands of candidate lines by
walking the field each day during the flowering season, which is
extremely time and labor consuming (Smith et al., 2005). If we
can rapidly identify the plots with tassels on the top part of the
canopy, checking for silking down in the canopy can only be
made over those targeted plots with a dramatic reduction of labor
and time. This rapid identification of tassels on the top part of
canopies would save breeders time and effort by allowing them to
only check those targeted plots.

Maize tassels are thin-branched structures with individual
branches several millimeters wide. While in some varieties the
tassels produce anthocyanin and become purple as a result, in
most commercial maize the tassel will be yellow to green in
color, creating poor contrast with the leaf canopy below it. Most
previous works on maize tasseling detection were using ground
platforms (Zou et al. 2020); Shete et al. 2018). They capture images in
ultra-high resolution but take a long time to cover the whole field,
and have the difficulties of handling plants at different heights (Lu
et al., 2017). The advent of low-cost and low-altitude unmanned
aerial vehicles (UAVs) enable automated applications in agriculture
to facilitate smart farming techniques. It is now possible to obtain
aerial imagery with sub-centimeter spatial resolution for detecting
small objects such as maize tassels (Sankaran et al., 2015; Shi et al.,
2016). Advances in computer vision, particularly deep learning
models for object detection, are promising for obtaining accurate
image classification and localization of UAV images (Penatti et al.,
2015) in agricultural biotechnology.

In this study, an automated approach to detect maize tasseling
from UAV imagery was developed using deep learning
techniques for 500 genotypes (750 plots) in a 2-ha breeding
field. We compared a customized framework for tassel detection
based on convolutional neural network with an off-the-shelf
Faster R-CNN object detection model. Although our dataset
were collected from fields in Nebraska, the methods developed
in this study with low cost and high accuracy have great potentials
to be easily adapted and integrated for field-based high-
throughput maize tasseling detection.

2 RELATED WORK

In this section, we reviewed various state-of-the-art machine/
deep learning and object detection methods for plant-sensing
applications.

2.1 Classical Machine Learning
Applications in Plant Sensing
Maize tassels detection has been recently studied with other
machine learning algorithms. For example, Kurtulmuş and
Kavdir, (2014) employed ground-based imagery to detect the
locations of the tassels using the support vector machine (SVM)
classifier. They manually captured a small dataset of 46 high-
resolution RGB images of maize canopy and classified pixels into
tassel or non-tassel by extracting color information using SVM
with a maximum accuracy of 81.6%. Lu et al. (2015) developed
segmentation and an SVM-based approach to detect maize tassels
by converting the RGB images (taken by a camera fixed on a pole)
to saliency color space, and the potential regions with tassels were
identified with an accuracy of 90.38%. Another study by Mokhtar
et al. (2015) used SVM with a linear kernel to identify the
powdery mildew disease of tomato leaves using images of
thermal and stereo visible light.

Tang et al. (2011) applied image processing to identify maize
tassel using image color space, and segmentation was to extract
the part of maize tassel. After image preprocessing, they used
segmentation algorithm based on HSI color space and region
growing to extract and recognize the maize tassel. Reyes et al.
(2017) developed a method based on image-processing
techniques to estimate the leaf nitrogen concentration. They
assigned SPAD unit values with its representative color value
to every leaf. They then used k-means algorithm to segment the
leaf images, generating a variable number of classes, for leaves or
background, depending on the particular leaves’ color features.
Another study (Xie et al., 2017) used k-nearest neighbor (KNN)
and C5.0 to classify different types of samples to identify healthy
and gray mold–diseased tomato leaves. Huang (2007) used back
propagation neural network as their machine learning algorithm
on RGB images to identify the bacterial soft rot, Phythopthora
black rot, and bacterial brown spot diseases of Orchid
(Phalaenopsis).

2.2 Deep Learning Applications in Plant
Sensing
In classical machine learning methods, manual feature
engineering process is required, while this process is done
automatically in deep learning models. Deep learning has the
advantage of using pretrained image classification models for
speeding the feature extraction process for object detection, and
still manages to achieve higher performance efficiently. Deep
learning models outperform the classical machine learning
methods for large datasets, which is the case of this study
where high-resolution images were used. Kamilaris et al.
provided a comprehensive survey of deep learning in
agriculture (Kamilaris and Prenafeta-Boldu, 2018), which
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showed that there are many literature works done in applying
deep learning in the agriculture domain for plants types
classifications, disease detection, fruits counting, and others.
They showed a strong promise of deep learning approaches on
prediction applications in agriculture. Mohanty et al. (2016)
trained a convolutional neural network on ground-based
publically available images of diseased and healthy plant leaves
to predict their species and disease type, if unhealthy.

Another related literature is TasselNet (Lu et al., 2017), where
they used the same dataset as Sa et al. (2018) to classify the tassels
using a CNN architecture, and then count the tassels using a
regression algorithm. The images were taken from the side view
from a ground-based platform. Similarly, Rahnemoonfar and
Sheppard. (2017) counted the number of tomatoes using the
CNN architecture and the regression algorithm. Their training
was performed on images of the synthetic tomato plants, and then
the testing was done on images of real tomato plants. In the Sa
et al. (2018) study, micro aerial vehicle was used for semantic
weed classification and detection. For this, they used a pixel-wise
dense CNN to segment the image and trained the classifier. Deep
learning approaches have also started to be deployed on aerial
imagery for different applications (Zhu et al., 2017) though plant
classification and geographical localization using these tools is
still an emerging area. Penatti et al. (2015) applied CNN on aerial
images to classify coffee in the Brazilian Coffee Scenes dataset.
Similar studies on agricultural aerial images classification that
employ deep learning techniques, CNN specifically, are Hung
et al. (2014); Kussul et al. (2017); Milioto et al. (2017) and Sa et al.
(2018).

While all the previous studies used ground-based platforms to
collect their images, this study focused on aerial data and deep
learning models to automate the agricultural procedures for the
farmers. Our work builds on some of the ideas for classifying the
maize tassels presented there and enhancing those approaches by
identifying the tassels location, hence tassels detection. The object
detection plays an important role in plant sensing to detect
disease, pests, weeds, and help identify flowering stage for
different crop types. And with the growing availability of
numerous amount of agricultural data, the optimal approach
to detect any object using deep learning models as they converge
perfectly with big data.

2.3 Object Detection Models and Their
Applications in Plant Sensing
Sliding window to generate region proposals and then
classifying the objects was one of the leading classic
methods for object detection in computer vision. One of the
first efficient object detection methods was developed in 2001
by Viola and Jones (2001), where they use AdaBoost (Freund
and Schapire, 1999) to select features of face images with the
Haar basic function, and finally combine the classifiers into a
cascade. Dalal and Triggs. (2005) invented histograms of
oriented gradients (HOG) for pedestrian detection. They
use HOG to describe the features. Those hand-crafted
feature extraction methods fail to generalize for images with
more distracted backgrounds.

2.3.1 Object Detection Using Deep Learning
Object detection using deep learning consists of two stages,
classification and localization. The classification was done using
the convolutional neural networks (CNNs) to predict the objects
in an image. CNNs are the basic building blocks for most of the
computer vision tasks in the deep learning era. This CNN algorithm
learns the patterns like vertical edges, horizontal edges, and round
shapes, to recognize the object in the image. The convolution refers to
the mathematical combination of two matrices to produce a third
functionmerging two sets of information. In a CNN, the convolution
is performed on the input data with the use of a filter to then produce
a feature map (LeCun et al., 2010). The input images and their
subsequent outputs are passed from a number of such filters, thus
called deep learning. The second stage for the object detection is
localization, where we not only want to know whether the object
exists in the image but also where exactly the object is. Object
localization algorithms label the class of an object and draw a
bounding box around the position of the object in the image.

Deep learning for object detection has been advancing quite
fast, one of the earlier advances was called OverFeat (Sermanet
et al., 2014). They trained the CNN with a multiscale sliding
window algorithm and then predict the box coordinates for the
localization task for each object. R-CNN (Girshick et al., 2016)
was then proposed by Girshicket al. after OverFeat. Their
approach extracts possible objects using selective search as a
region proposal method, then extracts features from each region
using a CNN, and finally classify each region with SVMs. Then
the same group introduced the Fast R-CNN, which uses the same
region proposal of R-CNN and then apply the CNN on the
complete image and use region of interest (RoI) pooling on the
feature map with a final fully connected network for classification
and regression. Another object detection method called “You
Only Look Once” was proposed after Fast R-CNN by Redmon
et al. (2016); it uses the fully connected layers after the feature
extractor to predict the coordinates of bounding boxes directly.
Subsequently, the third iteration of R-CNN, the Faster R-CNN
was used as published by Ren et al. (2015). It replaced the selective
search region proposal method with the region proposal network
(RPN) which itself consists of a classifier and a regressor. The
classifier uses anchors to slide a window over the feature maps
and classify the objects based on the ground truth, so it
determines the probability of a proposal having the target
object for the regression to regress the coordinates of the
proposals. After Faster R-CNN, two main object detection
models were introduced. Single shot detector (SSD) (Liu et al.,
2016) and the region-based fully convolutional networks
(R-FCNs) (Dai et al., 2016).

We selected Faster R-CNN as one of the two models for tassel
detection in this study due to its well-recognized high
performance on high-resolution images and its ease of
implementation. We considered its performance as baseline
accuracy for our study.

2.3.2 Object Detection Application in Plant Sensing
Object detection models (classification and localization) have
been used by Bargoti and Underwood. (2017) and Sa et al.
(2016), where Faster R-CNN network was employed to detect
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fruits from ground images. Another study by Fuentes et al. (2017)
applied three different deep learning object detection algorithms
including Faster R-CNN to ground images of tomato plants to
recognize different disease and pets on those plants. They
concluded that Faster R-CNN performed better in general.
Pound et al. (2017) studied the application of CNN on plant
phenotyping using images collected by a ground level camera,
and they show promising results on classification and
localization. They reported 97% accuracy on their model and
thus emphasize on the feasibility of deep learning to solve
challenging agricultural problems.

Object detection with deep learning methods in remote
sensing images is the area directly related to our work. Some
of others relevant work in this area include the following studies
by Radovic et al. (2017), Božić-Štulić et al. (2018), and Milioto
et al. (2017). Remote sensing data and deep learning methods
have been put to other usage, for example, estimating the
geolocation of ground images by extracting features from
UAV images (Zhai et al., 2017) or detecting vehicles from
aerial imagery (Sommer et al., 2017). Other applications are
aerial images and CNN for cotton bloom detection by first
training the CNN to learn to predict the blooms in images,
then a motion method was used to obtain their locations from
the aerial images, which were used to count the blooms and to
monitor the flowering growth (Xu et al., 2018).

More object detection applications on plant sensing examples,
specifically sorghum head detection, are the work of Ghosal et al.
(2019); Guo et al. (2018). Ghosal et al. (2019)proposed a weakly
supervised deep learning framework for sorghum head detection
and counting from UAV imagery. They trained a CNN model to
perform synthetic annotation. While Guo et al. (2018) proposed
an image processing method to detect and count the number of
sorghum heads from UAV imagery, and they verified their
performance using a segmentation method. While similar to
tassel detection, sorghum head is essentially a maize tassel
covered in seeds, but the sorghum head is still an easier
problem because they are thicker and have a lot more color
contrast with the leaf canopy.

On rice panicle detection, Hayat et al. (2020) applied the
Bayesian learning method to perform rice panicle segmentation
with UAV optical images. They used an unsupervised learning
approach to detect the required features to replace the training
phase, using the Markov chain Monte Carlo (MCMC) method
with Gibbs sampling. Moreover, Chandra et al. (2020) proposed a
semiautomated annotation method for cereal crops panicle
detection. Their method is useful to reduce labeling costs and
showed positive results on two publicly available cereal crop
datasets—Sorghum and Wheat, saving around 50% of
labeling time.

As for deep learning–based models for maize tassel
detection, very few studies were conducted so far using
high-resolution aerial imagery for tassel detection. Some
studies were done using other types of imagery data that
were either available online (Penatti et al., 2015) or
collected indoor or from ground-based platforms. We
found only one study so far which applied Faster R-CNN
to detect maize tassels from UAV imagery conducted by

Liu et al. (2020). A keras-based Faster R-CNN model was
applied to detect maize tassels from UAV images using images
with 600 × 600 pixels to train the model, and results of
different networks were compared for feature extraction
and for different sizes of the anchor for object detection.
Very promising prediction accuracy ranging from
87.94–94.99% was obtained when experimenting with
different network parameters. Our work adopted a similar
approach, in which we aimed to use high-throughput aerial
imagery to help breeders to locate the tassels in field. Yet, we
used images taken at a relatively higher altitude by a lower
resolution and lower quality RGB camera that came with the
UAV. Additionally, the tassels of the particular maize varieties
in our trials were not as distinct as the background canopy,
especially the leaf veins, which largely increased the
challenging level.

2.4 Paper Contribution
This study applied object detection deep learning models for
maize tassel detection from UAV images. We developed and
compared two methods for automatic tassel detection based on
imagery collected from a UAV using deep learning models. The
first approach is a customized framework for tassel detection
based on convolutional neural network. The other method is a
state-of-the-art object detection technique of the faster
region–based CNN (Faster R-CNN) model to detect tassels
using bounding boxes along with coordinates to identify the
location of the tassel on the map for the breeders.

This study filled the gap of few studies so far using deep
learning–based models for maize tassel detection using aerial
imagery taken from UAV-based low-cost low-quality RGB
cameras. The main aim of this work was to provide a practical
way to facilitate large-scale maize breeding by detecting the maize
tassels automatically instead of the manual scoring process.
Another contribution of this work was the customized
evaluation metrics for the models that serves more
appropriately for object detection in the agricultural setting in
which the ground truth is difficult and impossible to be labeled
exhaustively and accurately. This work can eventually contribute
to increase the breeding efficiency to help solving the world
hunger.

3 DATASET

3.1 UAV Image Collection
Image data employed in this study was collected from a maize
variety field trial conducted at the University of Nebraska’s
Eastern Research and Extension Center, near Mead, Nebraska.
Images were collected using a DJI Phantom 3 Professional UAV
with a 12.4 megapixel camera and 1/2.3″ CMOS sensor. The
UAV was flown at an altitude of 20 m above ground level with
around 90% forward overlap and 85% side overlap. Images were
collected in July of 2017, fifty-four days after planting when a
significant proportion of the research varieties had begun to
flower. Figure 1 illustrates examples of the aerial image
dataset including maize tassels, employed in this study.
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3.2 Image Preprocessing
Raw images were of high resolution (3000 × 4000 pixels), which
presented challenges both for accurate labeling and the
computational resources needed to process and identify tassels.
Each raw image was divided into subimages of 1000 × 1000 pixels
without overlap resulting in a 3 × 4 grid of smaller images from
each raw image, which were then fed to labeling process and the
deep learning models.

The locations of tassels were manually annotated in a set of
2000 of these smaller 1000 × 1000 subimages by using Labellmg
(Lin, 2015), a labeling tool, to draw bounding boxes around each
tassel and storing this information in an xml file associated with

each image. For the Faster R-CNN model, 80% of the annotated
subimages were used as training data and the remaining 20%were
used for testing. For the positive class of TD-CNNmodel, smaller
patches of 128 × 128 pixels were further extracted from the
subimages that were previously annotated as “tassel” to form the
new tassel class (Figure 2A). This was done automatically using a
Python script. This size of the patches were chosen so that it is
large enough to include a tassel with minimal background.
Patches of “no_tassel” for the TD-CNN model were directly
cropped from the UAV raw images (3000 × 4000 pixels),
which had no tassels at all and had a variety of background
such as grass, soil, and leaves but no tassels (Figure 2B). This was

FIGURE 1 | [Best viewed in color] Examples of the aerial images of the maize fields dataset employed in this study.

FIGURE 2 | [Best viewed in color] Examples of the dataset used for the TD-CNN model: (a) “tassel” class images (b) “no_tassel” class images.
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also done automatically using a Python script. Following the same
approach employed for the Faster R-CNN model, 80% of the
annotated patches were used as training data and the remaining
20% were used as testing data for the TD-CNN model.

4 OBJECT DETECTION MODELS

In this study, we developed two object detection models to
detect tassels from UAV imagery. One was a customized CNN-
based tassels detection model, and the other was an off-the-shelf
Faster R-CNN model. Any object detection model is basically
composed of classification and localization. For the
classification process, both TD-CNN and Faster R-CNN
models used transfer learning. Transfer learning is a deep
learning methodology that helps in transferring knowledge
learned from classifying previous dataset to a new one (Pan
and Yang, 2010). For most deep learning models, the availability
of large dataset is essential in producing an efficient
classification model that learns all the different features of
the dataset. Since this big amount of data are not always
available, transfer learning enables the use of a model which
was already trained on a big dataset and thus have a strong
general feature extraction base. Therefore, just the last layer of
the deep model will be trained to adapt the new dataset features.
Some examples of those pretrained deep learning architectures
that can be used for transfer learning are Inception v3

(Szegedy et al., 2016) and ResNet50 (He et al., 2016) models. More
details of each detection model is given in the following sections.

4.1 Tassel Detection CNN
We developed tassel detection CNN, a novel tassel detection
model to detect tassels objects with complex shape in high-
resolution remote sensing images as shown in Figure 3. The
images were first divided into smaller patches of 128 × 128 pixels
and labeled as two classes: tassel and not_tassel. Then a CNN
model was used to classify the images. Finally, the classified
output was mapped to the larger original images. The trained
CNN model used for tassel classification was based on Inception
v3 (Szegedy et al., 2016), a pretrained deep learning model.
Inception v3 is able to learn the most important features in
different kinds of images since it is pretrained on a large-scale
hierarchical dataset called ImageNet. The default input size for
Inception v3 was adapted from 299 × 299 pixels to 128 × 128 to
match the size of our input patches. We believe that a patch of size
128 × 128 is better in capturing single or few tassels, rather than a
larger patch size of 299 × 299. The last layer of the Inception v3
was retrained using tfClassifier (Pai, 2018) to fine-tune its
classification on our tassels dataset. For the localization
process, as shown in Figure 3, the TD-CNN model keeps the
patches, which were classified as tassel, in their original input
color. Alternatively, the model converts the patches that were
classified as not_tassel to grayscale. We then mapped this output
back to the larger image to detect and locate the regions

FIGURE 3 | [Best viewed in color] Tassel detection with TD-CNN trained with the Inception v3 model.
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containing the tassels. Since the breeders have the GPS
information of the breeding plots, they can physically locate
the tassels from the UAV images metadata and decide if
flowering has started in a breeding plot.

4.2 Faster R-CNN for Tassel Detection
Faster R-CNN (Ren et al., 2015) was developed to detect objects
in images using region proposal network (RPN). RPN is mainly
a convolutional neural network that classifies and localizes
objects of interest. Faster R-CNN is adaptable for accepting
large-size images, making it a good candidate for large UAV
images. In this study, the Faster R-CNN object detection model
was used as a method to detect the maize tassels from UAV
images. The Faster R-CNN is an efficient R-CNN (Girshick
et al., 2016) since it internally processes the region proposal
network algorithm, which uses anchors to scale the proposed
region of interest that has a high probability to contain an
object.

As shown in Figure 4, the input image goes through a
pretrained CNN for feature extraction to output a set of
convolutional feature maps. Then a sliding window is run
spatially on these feature maps to create anchors/boxes. Then,
the RPN predicts the possibility of an anchor being an object, and
refines the anchor. The RPN compares the anchors with the
ground truth boxes and assigns a value to each anchor based on
its overlap with the ground truth bounding boxes. The output of
the RPN is then examined by a classifier and a regressor. The
classifier will label the anchors having the higher overlaps with
ground truth boxes and assigns a probability score for the

predicted box containing an object, while the output of the
regressor determines the coordinates of the predicted
bounding box.

To train the Faster R-CNN on our dataset, we used the
pretrained ResNet50 (He et al., 2016) architecture to achieve
the right speed/memory/accuracy tradeoff for our tassel detection
application (Huang et al., 2017). The main feature of ResNet
architecture is that the use of residual path between the
convolutional layers allows faster training specifically for high
resolution images.

All the experimental implementations were performed using
the TensorFlow Object Detection API (Huang et al., 2017), which
is an open source, powerful framework used to deploy computer
vision systems.

5 EVALUATION CRITERIA OF THE
DETECTION MODELS

5.1 Evaluation Criteria of TD-CNN
To evaluate the TD-CNN model training performance, we
monitored the training cross entropy loss and validation
accuracy to avoid overfitting. The trained TD-CNN model
performance was evaluated based on the testing dataset
(unseen data) accuracy, precision Eq. 1 and recall Eq. 2
measurements.

Precision � truepositive
truepositive + falsepositive

(1)

FIGURE 4 | [Best viewed in color] Faster R-CNN tassel detection model trained with ResNet50 with input and output image examples.
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Recall � truepositive
truepositive + falsenegative

(2)

The precision measures the specificity, that is, how many
classified tassels are actual tassels. The recall shows the sensitivity,
how many actual tassels have been correctly identified.

Since the recall reflects the correctly identified tassels, we
decided to pick the recall (which reflects the correctly
identified tassels) as the most important metric for this study.
Accordingly, some hyperparameter search was performed to
obtain an optimal model. The localization performance in TD-
CNN depends on the classification performance since those
subimages classified as not tassel are converted to grayscale to
output an image with just colored tassels. Therefore, the F1 score
will directly evaluate both classification and localization in our
models. The F1 score is the weighted average of precision and
recall, it is calculated using Eq. 3

F1 � 2 × precision × recall
precision + recall

(3)

5.2 Evaluation Criteria of Faster R-CNN
To evaluate the performance of any object detection, we need to
measure the classification and localization tasks. The selected
TensorFlow object detection API supports three evaluation
protocols, Pascal VOC (Everingham et al., 2010), COCO (Lin
et al., 2014), and Open Images (Kuznetsova et al., 2018).
However, they all follow the same evaluation concept in terms
of calculating the average precision (AP) value to assess the
classification task. This AP was designed to evaluate the
classification of several classes within the same image, which is
not the case for our tassel detection task. Therefore, we created a
different evaluation algorithm to measure the tassel performance
based on the tassel detection specific application and based on our
own observations on the output of the experiments.

For Faster R-CNN object detection case, the precision defined
in Eq. 1 measures the fraction of the correct detected tassels
among all the detected tassels. Whereas the recall defined in Eq. 2
reflects the fraction of relevant tassels that have been detected
over the total number of the tassels present in the image. The
Faster R-CNNs RPN algorithm has anchors/boxes to locate the
tassels based on the ground truth according to the values of the
Intersection over Union (IoU). The IoU is calculated for the
bounding boxes of the ground truth and the model detection as
shown in Eq. 4. Therefore, setting a threshold value of the IoU
affects the true-positive, false-positive, and false-negative scores.
Based on those values, the F1 score was calculated as given in
Eq. 3.

IoU � Area of Overlap
Area of Union

(4)

It is important to consider fitting the application while
deciding how to score true positives, false positives, and false
negatives since this reflects the accuracy of the model.
Accordingly, some of the default thresholds of the Faster
R-CNN model were altered to fit our requirement. The score

threshold is the classification confidence value presented with
each detected bounding box to assess the model at various level of
classification confidence. Because we had one class (tassels), the
trained model performed very well in classifying the tassels, and
thus there was no false positive (wrong tassel detection) in the
output of our model (as can be seen in the results and discussion
section). Therefore, the model score threshold was set to 0.1 in
our experimental setup; this low threshold allowed us to detect
more tassels in the image given its accuracy score calculated by
the model is greater than 0.1. Furthermore, since annotating the
ground truth was done manually, some of the tassels were missed
due to human error during the labeling process. As a result, the
trained model detected some tassels which did not have a ground
truth and therefore, counted as false positive. However, based on
extensive experiments and visual evaluation analysis on all the
test dataset images as can be seen in Figure 5 and Table 1, all the
detection of absent ground truth bounding box were correct
tassels.

Another threshold defined in Pascal evaluation metric is the
matching_iou_threshold, which is the ratio of the IoU for
matching the ground truth bounding boxes to the detection
boxes. This is the threshold of whether detection is to be
assigned as a true positive or not. For tassel detection
application, even a small partial detection of the tassels in the
maize plant rows is a valuable information for the breeders. Thus,
the detection box does not have to accurately match the ground
truth box. This is our justification for selecting the
matching_iou_threshold value of 0.3 as an optimal threshold
value in our model (experimental details on evaluating different
values is given in the results and discussion section). As a result, if
the intersection of the model detection bounding box with the
ground truth bounding box is at least 30%, this detection is
considered true positive. Whereas in the Pascal evaluation metric
as an example, if the performance measurement algorithm finds
duplicate detection of a ground truth bounding box, they are all
considered false positive.

In our tassel detection application, if the tassels in an image
were next to each other, they were grouped in one box during
annotation. On the other hand, individual tassels were annotated
separately. This annotation methodology caused multiple size
detection bounding boxes of the model on the test images. Based
on this finding, we modified the algorithm to ignore the duplicate
detection of the same ground truth bounding box. So, if the same
ground truth has been detected more than once, the first
detection will be tagged as true positive and the remaining
detection are dropped.

6 RESULTS AND DISCUSSION

6.1 Performance Evaluation of TD-CNN
After training the model for 500 steps, we achieved 100% training
accuracy with a very small cross entropy error of 0.049. Moreover,
10% of the dataset was assigned for validation purpose where an
accuracy of 97% at 250 steps was achieved and then started to
decrease, as shown by the blue line in Figure 6A. This is because
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FIGURE 5 | [Best viewed in color] (a) Faster R-CNN output with a low precision value (2%), although all ground truth were detected except one (green box: the
model detection and red box: ground truth). (b) Faster R-CNN output all of correct tassels.

TABLE 1 | Results comparison for the detection output in Figure 5 between the default and the modified Faster R-CNN evaluation criteria.

Bounding box Detection score (%) Default evaluation: true
positive (true), false

positive (false)

Customized evaluation: true
positive (true), false

positive (false)

NO.1 96.36 False True
NO.2 92.46 False True
NO.3 87.67 False True
NO.4 81.16 False False
NO.5 80.74 False True
NO.6 79.55 False True
NO.7 78.33 False True
NO.8 74.28 True True

FIGURE 6 | [Best viewed in color] TD-CNN (a) Training accuracy and (b) cross entropy loss vs. number of training steps.
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the model is starting to overfit. However, to avoid overfitting, the
best trained model used for testing was the one trained up to 250
steps since it had the highest validation accuracy. The test
accuracy on the 10% test data is 96.4%, which means that the
model generalizes well and is able to classify most of the “tassels”
and “no_tassels” images correctly. Figure 6 show the plots of
training accuracy and cross entropy error in every step. Different
values for learning rates were tested, and it was observed that
learning rate value of 0.01 produced the highest recall percentage
of 94.6%. The use of this high learning rate might be justified by
the fact that we only trained the last layer of inception v3 model,
and training one layer does not require a very low learning rate. In
addition to varying the learning rate, different batch size
parameters were tested by fixing the best learning rate of 0.01
value obtained from the previous experiments. We varied batch
sizes of 50, 100, and 200, and observed that batch size 100
produced the highest recall. Based on these tuned

hyperparameters, we selected the model trained on learning
rate of 0.01 and batch size of 100 to be the one used as the
classification model. This chosen model achieved 97.2% precision
and 94.6% recall. Based on those values, the weighted F1 from Eq.
3 was calculated to be 95.9%. Figure 7 illustrates few examples of
the TD-CNN model detection on the 128 × 128 pixel patches.
Some examples of false positive and false negative are shown in
Figure 8.

6.2 Performance Evaluation of Faster
R-CNN
In Figure 9, we show some output images of the model
performance metric on the 1000 × 1000 pixel maize field
images that we used for testing (unseen during training). The
red bounding box shows ground truth tassels, where the tassel
class was assigned either on group of tassels or individual ones.

FIGURE 7 | [Best viewed in color] Examples of TD-CNN model detection on the image patches. TD-CNN tassel class detection is shown in (c) and (d). The
no_tassel class examples are shown in (a) and (b).

FIGURE 8 | [Best viewed in color] Examples of false positives and false negatives of the TD-CNN model.
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The green bounding box shows the model predictions, where
each box is allotted with a percentage score corresponding to the
classification prediction confidence computed by the model.
From the some statistical inspection, it can be seen that the
model was able to classify and detect almost all tassels in the
maize field area. The model could also detect tassels which were
missed during the annotation in some cases as seen in Figures
9B–D. Moreover, the confidence level scores (associated with

each classification) in our experiment are high and thus show
excellent performance. We performed the Faster R-CNN training
on two sizes of datasets, one with 800 images and the second with
2000 images. The training steps were varied for each set of data,
and the performance of the model was evaluated on the test
images. Figure 10 summarizes the average precision on the
unseen testing set for the trained model with each dataset size.
The average precision values in Figure 10A are based on the

FIGURE 9 | [Best viewed in color] Visualization of the trained model output on some test UAV images. The red bounding boxes refer to the ground truth, whereas
the green bounding boxes refer to the model detection. Notice in (b), (c), and (d) that there are unlabeled tassels which were detected by the model.

FIGURE 10 | (a) Faster R-CNNmodel average precision values on the test data for dataset size 800 and 2000 subimages at different training steps. (b) Total losses
for the Faster R-CNN best model for dataset size 2000 subimages up to 20 K training steps.
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default performance measurement metrics before adjusting the
threshold as discussed later in this section. The optimal model
with the highest average precision of 0.68 was selected as the
inference model for the detection system. Figure 10B
demonstrates the total losses graph generated for Faster
R-CNN ResNet50 by TensorBoard while training the best
model in this task.

However, we noticed that the calculated average precision is
not reflecting the true performance of the model output.
Examining the images which had the worst precision score of
just 2.5% (Figure 5), most tassels were successfully detected
except of one false positive and one true negative. Table 1
shows the cumulative assigned average precision for each
bounding box detected by the default Pascal evaluation metric
script. Each bounding box was associated with a detection score
representing the likelihood of the box containing an object. This
image has eight detected bounding boxes of them correctly
detecting the tassels, but only one detected bounding box was
counted as true positive by the default evaluation criteria, which
resulted on the average of one eighth precision for the entire
output. The reported recall value for the image is 0.2, due to the
missed one of the total five ground truth–bounding boxes. Since
the nature of tassel distribution in the maize field is variant, this
caused an inconsistent labeling procedure where some tassels
were grouped together in one annotated box and some were
individually annotated. This observation proved the fact that the
default setting of counting the duplicated detection as false
positive falsely affected the correct tassel detection system
performance measurement.

From the above discussion, it follows that the default Pascal
evaluation metric scripts do not show correct performance for
our tassel detection application. Therefore, we modified the
default performance measurement metric scripts to suit our
tassel detection application. The default Pascal evaluation
metric scripts were modified to ignore any duplicate detection
of the same ground truth–bounding box instead of being a false-
positive one. In addition, the iou_matching and the classification
min_score thresholds were varied to help concretely measure the
performance of the application for detecting the tassels. The
iou_matching threshold decides the minimum accepted area of
a detection compared to the ground truth area. All values below
0.3 did not affect the average precision, which means that all the
detection are covering at least 30% of the ground truth–bounding
box area. Another default threshold which affect the evaluation
performance is called the classificationminimum score threshold.
It reflects the probability of the classified object, tassel in our case.

As shown in Figure 5, all the classified objects were correctly
classified as tassels since we only had one class. So, we lowered
this threshold to 0.1 to allow the model to detect as much
classified tassels as possible. Finally, setting the iou_matching
threshold to 0.3 and the minimum classification score to 0.1
improved the Pascal object detection average precision to 83.82%.
To assess this decision, the standard classification precision and
recall metrics were computed as given in Eqs 1, 2. The inference
model has an average classification precision of 97.64%, and an
average recall of 98.32%. The F1 score was calculated using Eq. 3
with the value of 97.98%.

6.3 Discussion
In this study, we were able to detect tassels from high-resolution
images with high detection accuracy using two different deep
learning models. We implemented our own framework for object
detection using the existing “regular patch–based classification”
method. And we modified the evaluation criteria of the off-the-
shelf Faster R-CNN model to fairly measure the performance of
tassel detection. We demonstrated how deep learning models can
be used to automate many breeding processes in agriculture, and
tassel detection is just one example. We consider one of the major
challenges and contribution of our work is related with the
relatively low quality of the original images. Most of the other
similar work on the CNN-based maize tassel detection was with
the original images in much higher quality, that is, higher spatial
and radiometric resolutions so that the tassels are more clearly
seen and more easily distinct with the maize canopy and soil
background. However, in real applications, data collected may
not always be in high and desired quality. Hence, we think it is
worth to investigate and benchmark the potential of how the
relatively lower quality images can do on the tassel detection.
Another major contribution of this work is beyond the pure
model performance in terms of accuracy and implicates on future
work on other datasets or applications. Table 2 shows the relative
differences in accuracies and computational resources
requirements or time consumptions between the two models.
With a little bit of sacrificing the detection accuracy, the
customized patch-based TD-CNN gains a lot more on the
training time.

Table 2 shows the comparison of our proposed TD-CNN
approach with the off-the-shelf Faster R-CNN for tassel detection
in UAV images. The TD-CNN framework is relatively easier to
implement and faster to train, but it had lower recall rate which
caused few false localization of the no_tassel regions. In term of
the model architecture complexity, the Faster R-CNN requires

TABLE 2 | Comparison of the TD-CNN model with patches of size 128 × 128, and the off-the-shelf Faster R-CNN object detection method with subimage size of
1000 × 1000 on the tassels dataset.

Method Complexity Model
training

speed (GPU)

F1
score (%)

Output
visualization

TD-CNN Composed of one classification Inception v3 neural network 1hour 95.9 Grayscaling
Faster
R-CNN

Composed of three neural networks: Feature ResNet50 network, region proposal network
(RPN), and detection network

≈ 16hours 97.9 Bounding box
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advanced knowledge in deep learning for the user to understand
its architecture, but it produces an accurate inference model that
can correctly identify tassels from UAV images. The TD-CNN
uses the grayscaling technique to locate tassels within the image,
while the Faster R-CNN draws a bounding box around the
detected tassels. Moreover, the F1 score of Faster R-CNN is
higher than that of the TD-CNN model, which makes the
Faster R-CNN a better option that generalizes well on new

data and detects almost all the tassels correctly. Figure 11
shows one example of the tassel detection on one of the UAV
images with both TD-CNN and Faster R-CNN. Figure 11A
shows some false positives (the red boxes) in the TD-CNN
output, where the Faster R-CNN has proven to have no false
positives at all.

As future work, we consider improving the performance of the
TD-CNN model by training with more data, and trying different

FIGURE 11 | Visualizing an example of tassel detection outputs of the same full UAV image of size 3000 × 4000 pixels for both (a) TD-CNN, the grayed areas are
no_tassels, the colored areas are “tassels.” (b) Faster R-CNN, the green boxes are tassels.
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CNN architecture models for the transfer learning stage. Another
future work is to deploy the detection models on a drone for real-
time tassel detection.

7 CONCLUSION

The use of deep learning algorithm for tassel detection from low-
altitude UAV imagery is investigated in this study.We introduced
a novel tassel detection framework based on deep learning, called
the tassel detection CNN. Moreover, we demonstrated the
feasibility of using Faster R-CNN for tassel detection in UAV
images. Bothmodels were able to detect tassels with high accuracy
despite the challenges of relatively lower spatial resolution and
clarity due to motion blur compared with imagery collected from
proximal sensing from ground-based platforms. Several
evaluation criteria have been modified to get the best
performance for tassel detection. We modified the default
Pascal evaluation algorithm which assigns a false positive tag
to the duplicate detection. The duplicate detection was rather
ignored to reduce the negative unnecessary impact on the
performance of our tassel detection model. The F1 score for
both methods is high, but the recall is much higher for the Faster
R-CNN model since it had not produced any false positives
at all.
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