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Fig. S1 Illustration of manual leaf-rolling rating and sample patches for each degree. The 

LRS_m averaged by 3 raters includes 13 discrete values ranged from 1 to 5. 

 

 

 
 

Fig. S2. Performance evaluation of DCNN-LRS. (a) Learning curve of mean squared error 

(MSE) loss. (b) Learning curve of mean absolute error (MAE). (c) Confusion matrix of 

discretized LRS_uav and LRS_m. (d) Frequency distribution histogram of MAE. The MSE and 

MAE decreased in the early training epochs, and then gradually stabilized in the later training 

epochs. And the training set performed slightly better than the validation set. Compared to the 

discrete LRS_m trait, the LRS_uav trait with continuous measurement was more objective and to 

quantify the leaf-rolling severity and more suitable for GWAS analysis. The LRS_uav was 

discretized to the severity scale corresponding to the manual score to verify whether the model 



 

can replace the manual measurement. The confusion matrix of the discretized LRS_uav and 

LRS_m indicates an obvious linear relationship between the predicted leaf-rolling degree and 

manual leaf-rolling degree. Most samples were distributed in a buffer of the main diagonal 

because of the fuzzy boundary between the successive leaf-rolling degrees. 

 

 

 

 

Fig. S3 Histogram of brightness distribution of the image patches in the 2019 test dataset. 

Averaged values in the HSV color space were calculated to indicate the brightness of image 

patches in the 2019 test dataset. The brightness varied a lot from 0.1 to 0.45 among the image 

patches collected in multiple flights, but the accuracy of the test dataset was not influenced, 

indicating the robustness of DCNN-LRS in different illumination conditions. 

 



 

 
 

Fig. S4 Genetic variations of OsbZIP12 and OsRCI-25 were significantly associated with 

LWI_D20_PM of rice at the reproductive stage under field conditions. OsbZIP12(a), OsRCI-

25(c) Manhattan plot and pairwise LD analysis. The most significant variation in the gene is 

shown with a red diamond, and other variations are colored to display their LD with the most 

significant variation. Red dashed line indicates suggestive threshold. Haplotype groups of 

OsbZIP12(b), OsRCI-25(d) in the association population based on the significant variation. 

LWI_D20_PM of rice distribution of each haplotype group is showed by box-plot. In the 

boxplots (b, d), the black line within the box is the median, the top and bottom of the box 

represent the 0.75 and 0.25 quartiles, respectively. The whiskers extend to data no more than 1.5 

times the interquartile range, and data are indicated by dots. “n” denotes the number of 

accessions in each haplotype group. Statistical significance was determined by Welch’s t-test 

with “****” representing P < 0.0001. 

 

 

 

 

 

 



 

Supplemental Notes 

 

Notes S1 Visual leaf-rolling rating and plant water content measurements 

 The manual leaf-rolling score (LRS_m) was visually rated for 240 plots (120 accessions) 

using a “1” to “5” scale with “1” being the first evidence of rolling (less than 20% leaves are 

rolling) and “5” being a closed cylinder of leaves (near 100% leaves are rolling) (O’Toole & 

Cruz, 1980), and the intermediate scores “2”, “3”, “4” being more than 40%, 60%, 80% leaves 

are rolling, respectively. The rating scores were taken from the average values of three raters at 

two time windows, early morning (6:00 -- 7:30 AM) and late afternoon (5:40 -- 7:10 PM), and 

UAV images were simultaneously collected at the two time windows. The averaged LRS_m 

value of the three raters ranged from 1 to 5 (Fig. S1). Based on the dynamic LRS_m traits, the 

leaf-rolling days (LRD) was manually recorded by counting the days required for the leaves to 

become irreversibly rolling as observed in the morning. More specifically, the manually recorded 

LRD trait referred to the number of days from the drainage day to the day when the LRS_m 

value stability reached 3.67 in the morning. The LRD could reflect the variation of rice drought 

resistance very well based on pretesting of 30 drought-resistant accessions, 30 drought-sensitive 

accessions, and 30 moderate drought-resistant accessions, which were selected for the evaluation 

of UAV-based traits. 

The fresh weight (FW) of each plot (50 plots were used) was weighed immediately after 

harvest of above-ground plants at the mild drought stress stage in 2019. Then the dry weight 

(DW) was weighed after drying, and the plant water content (PWC) was calculated according to 

the difference between FW and DW. The manually measured FW_m, DW_m, and PWC_m traits 

(Table S3) were used as ground truth to build non-destructive models with UAV-based traits.  

 

 

Notes S2 Configuration information of the imaging platform. 

 The consumer-grade RGB camera mounted on the UAV has a 35.8 mm × 23.9 mm 

CMOS sensor with a resolution of 42 million pixels (7952 × 5304). The camera aperture was set 

to f/5.6, and the shutter was set to 1/1000 to avoid movement blur. The ISO was adjusted 

manually before every flight to ensure proper exposure. The images were stored in a high-speed 

SD card as compact JPEG files. The flight parameters were set in the DJI GS Pro software. The 

flying speed was set to 1.5 m/s and the camera trigger interval was set to 2s to provide 80% front 

overlap and 70% side overlap between images. The same route configuration was repeated in 

every flight to capture images with the same resolution. 

 

 

Notes S3 GCP management and georeferencing process in Agisoft PhotoScan. 

 The GCP coordinates were imported to the Agisoft PhotoScan software for the GCP 

management. The general steps of GCP management in the software are shown as follows. 

(1) Import the GCP coordinates measured by a GNSS RTK receiver. 



 

 
(2) Find out the images in which the GCPs were captured and mark the precise position of 

the GCPs manually. Make sure each GCP were found in at least 2 images (we actually 

found each GCP in at least 4 images for optimization). 

 
(3) Optimize the photo alignment and minimize the GCP error in the image tie points. Build 

the georeferenced digital surface model (DSM), and digital ortho photo (DOM) based on 

the georeferenced image tie points and dense cloud. 



 

 
 

 

Notes S4 Image data augmentation. 

Firstly, random cropping was implemented to the patches by placing a cropping window 

to down-sample the original patches to a fixed resolution of 160×160 pixels. The sample 

distribution was balanced by setting the number of patches as 1000 for the 13 discrete LRS_m 

degrees during this random cropping procedure. Secondly, real-time data augmentation 

techniques such as random rotation (within 45 degrees) and random flipping (horizontal and 

vertical) were applied to the 13000 patches during the training and validation process to increase 

the training data diversity. Real-time data augmentation was implemented with the data 

generator in Keras, and technically every batch and epoch for the training and validation process 

consisted of newly augmented patches. 

 

 

Notes S5 Websites for the training and validation datasets and the DCNN-LRS model.  

The training and validation datasets collected in 2018 are available online with request: 

https://www.researchgate.net/publication/350835627_UAV_image_patches_for_deep_convoluti

onal_neural_network_leaf-rolling_scorer_DCNN-LRS_training_and_validation. The DCNN-

LRS can be downloaded as a python library through https://pypi.org/project/DCNN-LRS/.  

 

 

Notes S6 Examples of reported genes with associated by LWI_D20_PM. 

OsbZIP12 encodes a basic zipper transcription factor which confers drought tolerance 

(Joo et al., 2014). One SNP in the 5’-UTR and five variations in the 1 Kb promoter region were 

associated with LWI_D20_PM (Plmm= 2.7×10-6, 1.01×10-6, 1.01×10-6, 1.99×10-6, 1.01×10-6, 

1.37×10-6, respectively) (Fig. S2a). Two haplotype groups were found in the accession 

population based on these variations, and the Hap2 group (117 accessions) had a significantly 

https://www.researchgate.net/publication/350835627_UAV_image_patches_for_deep_convolutional_neural_network_leaf-rolling_scorer_DCNN-LRS_training_and_validation
https://www.researchgate.net/publication/350835627_UAV_image_patches_for_deep_convolutional_neural_network_leaf-rolling_scorer_DCNN-LRS_training_and_validation
https://pypi.org/project/DCNN-LRS/


 

higher LWI_D20_PM than the Hap1 group (98 accessions) (Fig. S2b). OsEREBP2, which 

belongs to the AP2/ERF transcription factor family, may play a central role in regulating various 

abiotic stress responses (Serra et al., 2013). One SNP in the OsEREBP2 promoter was associated 

with LWI_D20_PM (Plmm= 2.1×10-6). OsRCI2-5, which encodes a protein containing a signal-

peptide and two conservative hydrophobic domains, positively regulates drought resistance (Li et 

al., 2014). Three promoter region variations were significantly associated with LWI_D20_PM 

(Plmm= 5.32×10-7, 9.16×10-8, 5.32×10-7, respectively) (Fig. S2c), and two haplotype groups were 

also identified. The Hap2 group had a significantly higher LWI_D20_PM than the Hap1 group 

(Fig. S2d).  
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