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Abstract 
This paper evaluated the effect of the COVID-19 preventive orders on arterial road-
way travel time reliability (TTR). A comparative analysis was conducted to examine 
average travel time distributions (TTD), and their associated TTR metrics, before 
and during the COVID-19 pandemic. Travel time data for four urban arterial corri-
dors in Nebraska, disaggregated by peak period and direction, were analyzed. It was 
found that in 2020, the average TTD mean and standard deviation values for all 16 
scenarios were reduced by an average of 14.0% and 43.4%, respectively. The travel 
time index, the planning time index, the level of travel time reliability (LOTTR), and 
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the buffer index metrics associated with these TTDs were reduced, on average, by 
14.0%, 19.7%, 3.5%, and 35.0%, respectively. In other words, whether the test cor-
ridors were more reliable during the pandemic was a function of which TTR met-
ric was used. The paper concludes by arguing for a fundamental change in how ar-
terial TTR is measured and reported to different user groups. 

Keywords: Travel time reliability, COVID-19 pandemic, Arterial roadway, INRIX, 
NPMRDS

Background 

In response to the COVID-19 pandemic, caused by the highly infectious 
and novel SARS-CoV-2 virus, many countries introduced severe inter-
vention measures including stay-at-home orders, self-quarantining, 
social distancing, and face-coverings. Although these interventions 
were meant to reduce the transmission of the virus, they also had a 
direct effect in restricting travel. 

The COVID-19 pandemic, and the response to it, provides a natural 
experiment for studying the performance of transportation systems 
and how transportation agencies monitor and communicate this in-
formation. For example, preliminary data from the Federal Highway 
Administration (FHWA) show an estimated 3.3% decline in overall 
fatalities and more than a 16% decrease in total traffic volume on US 
highways during the first half of 2020 compared with the same period 
in 2019 (NHTSA 2020). Because the number of fatalities decreased 
at a slower rate than the decrease in volume, the 2020 traffic fatal-
ity rate [e.g., fatalities per 100 million vehicle-miles traveled (VMT)] 
will be higher than in previous years. In this example, the answer to 
whether traffic safety improved during the pandemic will be depen-
dent on which metrics are used to analyze the system. 

In the last 10 years, the concept of using travel time reliability 
(TTR) to define how a given roadway is performing has been adopted 
widely. However, there is no universally accepted definition of TTR 
and, as a consequence, a number of TTR metrics have been developed 
for measuring reliability. The COVID-19 pandemic provides a natural 
experiment to study these TTR metrics. This paper focused on arte-
rial roadways because, although they constitute less than 10% of all 
roadway mileage, they account for nearly half of all vehicle miles trav-
eled in the US (Reid 2004). Specifically, this paper addressed the fol-
lowing research questions: 
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1. Did the pandemic result in more reliable arterial roadway 
travel times? 

2. Which of the commonly used TTR metrics best captures the 
change in TTR caused by the pandemic? 

3. Are there better ways of measuring TTR? 

This paper compared arterial travel time distributions (TTDs) from 
Nebraska during the initial enactment of COVID-19 stay-at-home or-
ders (e.g., March–May 2020) with TTDs during the same period in 
2018 and 2019. The paper also assessed the sensitivity of both stan-
dard descriptive statistics and the commonly used TTR metrics to 
travel changes brought about by the pandemic. To the authors’ knowl-
edge, this is the first paper to (1) examine arterial travel time distri-
butions and their changes in response to the COVID-19 pandemic, and 
(2) identify which of the commonly used TTR metrics best captures 
changes in system reliability. 

The paper is divided into five sections. The first section introduces 
the concept of travel time reliability, with a special emphasis on arte-
rial roadways. The second section reviews related research on the ef-
fects of the COVID-19 pandemic on travel behavior. The next section 
describes the 2018, 2019, and 2020 travel time data that were used in 
the analysis. This is followed by a statistical analysis of the changes 
in arterial travel times brought about by the pandemic and an analy-
sis of commonly used TTR metrics. The paper concludes with a sum-
mary of the research results, and recommendations related to mea-
suring TTR in future studies.   

Travel Time Distribution and Travel Time Reliability 

Travel time arguably is the most commonly used metric for analyz-
ing how a given system is performing (Yang and Cooke 2018). This is 
because travel time is understood easily by both roadway users (e.g., 
the general public and shippers) and managers of the traffic systems 
(Lomax and Schrank 2002). Because travel time varies across space 
and time, it is important that the underlying characteristics of the 
travel time are defined explicitly. Typically, travel times can be cate-
gorized in four ways 
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1. Spatial: Travel time is defined over a given link, corridor, or 
system. This paper focused on arterial roadway corridors, al-
though the analysis can be generalized to any spatial compo-
nent of the system. 

2. Time of day: Travel time is defined over a given period in the 
day because travel time can vary because of changes to volume 
and/or traffic operation conditions. Therefore, users often an-
alyze travel time over specific periods [e.g., morning (AM) 
peak, evening (PM) peak, off-peak, and so forth]. This paper 
focused on the AM and PM peak periods because these are the 
most congested periods of the day. 

3. Aggregation: Travel time can be analyzed at an individual ve-
hicle level or aggregated into average values. Often, these pe-
riods are disaggregated into smaller periods (e.g., 15 min) to 
capture changes over a given period. This paper examined 
travel time at an aggregate or average travel time level for 
each 15-min period to capture any changes in travel time dur-
ing a given peak period. 

4. Analysis period. Travel time often is analyzed over a set period 
and for a set number of days. In this paper, the analysis period 
consisted of weekdays in March, April, and May in 2018, 2019, 
and 2020. 

After the preceding characteristics are defined, travel time may be 
modeled using a continuous distribution. In this paper, the arterial 
TTDs were based on empirical travel time measurements. Because 
travel time is modeled as having a distribution, standard statistical 
metrics can be used to describe its characteristics, including measures 
of central tendency (e.g., mean and median), measures of dispersion 
(e.g., standard deviation and interquartile range), and measures of 
symmetry (e.g., skewness). Traditionally, transportation officials have 
tended to use point measures of the travel time distribution to de-
scribe how their systems are performing. These were either measures 
of central tendency, such as the mean, or measures of extreme values, 
such as the 90th percentile travel time. However, using a single met-
ric to represent system performance has fallen out of favor recently 
(FHWA 2017). One reason for this is that transportation agencies now 
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have access to much broader and robust travel time information, as 
is discussed subsequently. 

In the last 10 years, transportation officials have begun to utilize 
the concept of travel time reliability (TTR) to categorize how their sys-
tems are performing. For example, the US Federal Highway Admin-
istration identified TTR as a key roadway mobility performance indi-
cator (FHWA 2012, 2015). In addition, the most recent version of the 
Highway Capacity Manual includes an arterial TTR estimation meth-
odology for the first time (Transportation Research Board 2016). 

Unfortunately, there is no universally accepted definition of travel 
time reliability. The FHWA noted that travel time reliability mea-
sures the extent of unexpected delay to drivers. Specifically, they de-
fined reliability as “the consistency or dependability in travel times, 
as measured from day-to-day and/or across different times of the 
day” (FHWA 2017). The Future Strategic Highway Research Program 
(F-SHRP) defined TTR as the variation in travel times over a period 
based on hour-to-hour or day-to-day variations (Cambridge System-
atics, Texas Transportation Institute, University of Washington, and 
Dowling Associates 2003). The current sixth edition of the Highway 
Capacity Manual (HCM-6) states that “travel time reliability reflects 
the distribution of trip travel time over an extended period.” This dis-
tribution is a function of a number of factors that influence travel 
time, including weather events, incidents, and work zones (Transpor-
tation Research Board 2016). The Strategic Highway Research Pro-
gram (SHRP) program provided a broad definition: 

TTR aims to quantify the variation of travel time. It is defined 
using the entire range of travel times for a given trip, for a 
selected time period (e.g., the P.M. peak hour during week-
days) over a selected horizon (e.g., a year). For the purpose 
of measuring reliability, a trip can be defined as occurring on 
a specific segment, facility (combination of multiple consecu-
tive segments), or any subset of the transportation network, 
or the definition can be broadened to include a traveler’s ini-
tial origin and final destination. Measuring travel time reli-
ability requires that a sufficient history is described by the 
travel time distribution for a given trip (Zegeer et al. 2014). 
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All the previous definitions use qualitative and nonstatistical terms 
(e.g., consistency, dependability, reflects the distribution, and varia-
tion of travel time) to define reliability. Therefore, many metrics can 
fit a given definition. Equally important, there are some common-
alities among the definitions because they all recognize that travel 
time has a distribution that can vary as a function of a number of fac-
tors, and that reliability is related to the variability of this underly-
ing distribution. 

There are a number of TTD statistical measures, such as mean, 
median, standard deviation, and coefficient of variation (COV), that 
can be used to quantify how a system is performing. However, it has 
been argued that these are not easy for a nontechnical audience to un-
derstand, and that they may treat early and late arrivals with equal 
weight (FHWA 2017). As a result, TTR metrics, including the travel 
time index (TTI), the planning time index (PTI), the level of travel time 
reliability (LOTTR), and the buffer index (BI), have been developed. 
Although they have been recommended for use (FHWA 2012, 2017) 
these metrics tend to be ad hoc in nature and not based on statistical 
theory. A general argument for avoiding standard statistical measures 
is that the public does not understand them easily (Pu 2011). These 
concepts will be explored further in the Proposal for Future TTR Anal-
yses section of the paper. 

Review of Other COVID-19–Related Studies 

It has been found that the COVID-19 pandemic has resulted in re-
ductions in worldwide travel volumes across all modes of travel. For 
example, household trips were reduced by 50% across all modes in 
Australia (Beck and Hensher 2020), and a survey in the Netherlands 
found a 55% reduction in trips (de Haas et al. 2020). The Nebraska 
DOT (2020) reported that average volumes on all state highways de-
creased 29% compared with the previous 3-year average. According 
to Glanz et al. (2020), the COVID-19 stay-at-home orders resulted in 
the reduction of the average distance of daily travel from 8.0 to 1.6 
km in the US. However, freight movement of essential supplies and 
food continued to be transported on the US National Highway Sys-
tem (NHS) (Hendrickson and Rilett 2020). Ironically, these shipments 
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were completed more quickly because of the reduction in traffic con-
gestion (Shaver 2020).  

The reduction in traffic volume and distance traveled resulted in 
the improvement of roadway environmental performance measures 
such as air quality and noise. The COVID-19 pandemic caused cities 
to be quieter than before, decreased pollution in urban areas, and de-
creased fatalities, but not necessarily fatality rates. However, prelim-
inary information indicates that the COVID-19 pandemic increased 
both psychological symptoms such as stress and anxiety (Tull et al. 
2020) and alcohol and substance abuse (Vingilis et al. 2020) which 
may affect road safety. Not surprisingly, the National Highway Traf-
fic and Safety Administration (NHTSA 2020) reported that the fa-
tality rate per 100 million VMT is projected to have increased from 
1.06 in the first half of 2019 to 1.25 in the same period during the 
COVID-19 pandemic. This was because the percentage decline in the 
number of fatal crashes was lower than the percentage decline in 
traffic volume. 

It is evident that the COVID-19 pandemic directly affected the de-
mand component of the transportation system and not the supply or 
physical infrastructure (Hendrickson and Rilett 2020). Therefore, the 
disruptions in travel provide an opportunity to examine TTR perfor-
mance measures and identify which ones best capture the disruptions 
due to the COVID-19 pandemic. One of the objectives of this paper 
was to test the sensitivity of the different TTR metrics to the changes 
brought about by the COVID-19 pandemic. To the authors’ knowledge, 
this type of study has not been conducted previously. 

Data and Methodology 

Recent advancements in data collection technology have made new 
and more-detailed sources of travel time information available to 
transportation agencies. Although some data sources are public agen-
cies, the majority of the new, high-level travel time data sets are from 
private-sector sources. Examples of these latter data sources include 
StreetLight Data (2020), Iteris (2020), and INRIX (2020). The travel 
data are obtained from a variety of data collection devices, including 
GPS installed in cell phones, Bluetooth devices, Wi-Fi devices, and 
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probe vehicles. The data may be provided at the individual vehicle or 
traveler level, but typically the data are provided at various levels of 
spatial and temporal aggregation. 

This paper used INRIX travel time data to analyze the travel time on 
three arterial corridors in Lincoln, Nebraska, and one arterial corridor 
in Omaha, Nebraska. INRIX is responsible for developing the US Na-
tional Performance Management Research Data Set (NPMRDS) for the 
US Federal Highway Administration. The NPMRDS currently is used 
by state DOTs and metropolitan planning organizations for research, 
operational, and performance analyses (Siddiqui and Dennis 2019). In 
Nebraska, the NPMRDS road network covers major highways and ur-
ban arterial roadways. Arterial roadway corridors are disaggregated 
into different segments of varying lengths. Major cross streets usu-
ally delimit the segments endpoints, and each segment has a unique 
NPMRDS Traffic Message Channel (TMC) location code. 

INRIX data from March 1, 2020 through May 31, 2020 were used 
in this paper. This period was selected because it corresponds to the 
time when the impact of the COVID-19–related restrictions (e.g., 
closing of business, stay at home protocols, and so forth) first im-
pacted travel in Nebraska. For comparison purposes, INRIX data 
were obtained for the same March–May period for 2018 and 2019. 
The analysis focused on the AM peak (7–10 a.m.) and PM peak (4–7 
p.m.) periods because these periods experience the highest traffic 
volumes and congestion. Each period was analyzed over 15-min sub-
periods so that any dynamic changes in travel time could be identi-
fied and analyzed. 

Fig. 1 shows aerial views of the four arterial corridors that were 
studied. The corridors ranged in length from 3.2 to 4.9 km (2.0 to 3.1 
mi), experienced AADT values of 24,500–79,800 vehicles, and had lev-
els of service as defined by the HCM6 that ranged from D to F. Com-
plete details of the corridors were given by Murphy et al. (2020). 

The INRIX travel time data that were provided consisted of 15-min 
average weekday travel times for each of the NPMRDS segments that 
made up a given corridor. These segment travel times were summed 
to provide the 15-min average travel time for the corridor. There were 
16 unique travel time data sets for each year because there were four 
corridors, each corridor was bidirectional, and two peak periods were 
examined for each corridor. Because there were 3 years of data, a total 
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of 48 travel time distributions were obtained. In addition, there were 
65 weekdays during each analysis period, and each 3-h peak period 
consisted of 12 15-min periods. Consequently, each of the 48 data sets 
consisted of a maximum of 780 15-min average travel time observa-
tions. Of the 37,440 (e.g., 780 × 48) 15-min periods studied, 1,440 had 
missing travel time information, and these periods were not consid-
ered in the analysis. 

Fig. 1. Aerial maps of testbed corridors. (Map data © 2021 Google, © Landsat/Coper-
nicus, Maxar Technologies, U.S. Geographical Survey, USDA Farm Service Agency.)  
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Comparison of Travel Time Distributions 

Fig. 2(a) shows a standard boxplot of the average westbound travel 
times observed on the O Street corridor during the AM peak period. 
All 3 years in the analysis, 2018, 2019, and 2020, are shown. The top, 

Fig. 2. Travel time distributions on O St. westbound AM peak (7–10 a.m.): (a) stan-
dard boxplot; and (b) CDF.     
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middle, and bottom of each box plot represent the 75th percentile, 
the median, and the 25th percentile travel times, respectively. The 
upper and the lower boundaries are 1.5 times the interquartile range 
(IQR) (e.g., the difference between the 75th and 25th percentile travel 
times). 

Not surprisingly, the mean and standard deviation values of the av-
erage TTD during the COVID-19 pandemic were lower than in prior 
years. Specifically, the average percentage difference between 2020 
and the preceding years with respect to the mean and standard devi-
ation values were −16.9% and −53.8%, respectively. In addition, the 
IQR in 2020 was 33.3% smaller than the IQR for 2018 and 2019. Be-
cause the travel times along the O Street test bed both were lower, on 
average, and had less variability than for similar periods in 2018 and 
2019, it can be concluded that TTR improved in 2020, independent of 
which reliability definition is used. 

Fig. 2(b) shows the cumulative distribution functions (CDF) of the 
average westbound O Street AM Peak travel time distributions for 
2018, 2019, and 2020. The mean value and standard deviation (SD) 
of each of the CDFs are also presented. The CDF of the average TTD 
from the INRIX data during the onset of the COVID-19 pandemic in 
2020 was considerably different from the average TTD in 2018 and 
2019 [Fig. 2(b)]. Similar to Fig. 2(a), Fig. 2(b) shows that in 2020 the 
travel times along the O Street test bed were both lower (on average) 
and had less variability than for similar periods in 2018 and 2019. 

Fig. 3(a) shows a standard boxplot of the average westbound travel 
times observed on the Dodge Street corridor during the AM peak. Not 
surprisingly, the mean and standard deviation values of the average 
TTD during the COVID-19 pandemic were, on average, 16.7% and 
36.7% lower than in 2018 and 2019, respectively. In addition, the in-
terquartile range of the average TTD, which is a measure of disper-
sion, in 2020 was 39.7% smaller than the interquartile range for 2018 
and 2019. Similar to the O Street corridor, the travel times along the 
Dodge Street corridor both were lower, on average, and had less vari-
ability than for similar periods in 2018 and 2019.  

Fig. 3(b) shows the cumulative distribution function (CDF) of the 
average westbound travel time distributions for 2018, 2019, and 2020 
on the Dodge Street corridor. The CDF of the average TTD during the 
onset of the COVID-19 pandemic in 2020 was considerably different 
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from the average TTD from the 2018 and 2019 values. Similar to Fig. 
3(a), Fig. 3(b) shows that in 2020 the travel times along the Dodge 
Street corridor both were lower, on average, and had less variability 
than for similar periods in 2018 and 2019. 

Fig. 3. Travel time distributions on Dodge St. westbound AM peak (7–10 a.m.): (a) 
standard boxplot; and (b) CDF.   
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Space constraints prevent publishing the boxplots and CDF distri-
butions from the other 14 (e.g., 42 TTDs) scenarios that were ana-
lyzed. However, similar results were obtained for all 14 scenarios ex-
amined. In all cases, the average travel time CDF for 2020 was shifted 
to the left of the average travel time CDF for 2018 and 2019. In addi-
tion, for each scenario, the variance and range of the average travel 
times in 2020 were considerably smaller than those in 2018 and 2019. 
It is hypothesized that this result was a direct result of the lower traf-
fic volumes that occurred because of the COVID 19 pandemic, which 
resulted in faster speeds and lower variability in speed along each of 
the four corridors. 

A natural question is whether a given 2020 TTD was statistically 
different from the corresponding TTD in 2018 and 2019. To answer 
this question a Kolmogorov–Smirnov (KS) test was used to test the 
differences between cumulative distribution functions of the average 
TTDs for all 16 scenarios (e.g., 48 TTDs). This test was conducted at 
the 95% significance level. It was found that the differences in TTD 
across all 16 scenarios between 2020 and either of the preceding 
2 years (e.g., 2018 or 2019) were statistically significant. In other 
words, the travel times on all four test corridors for both peak peri-
ods and both directions had lower means and smaller standard de-
viations during the COVID-19 pandemic than in prior years. These 
differences in TTDs were significant at the 95% level. Based on the 
generic reliability definitions listed earlier, it can be concluded that 
all 16 scenarios studied had more-reliable travel times in 2020 than 
in 2018 or 2019.   

Comparison of Travel Time Distribution Metrics 

Although it was not possible to show all 48 travel time distributions 
because of paper size limitations, it is possible to illustrate their sta-
tistical metrics. Table 1 lists the mean and median travel times values, 
which are standard measures of central tendency, of all 48 TTDs that 
were analyzed. The columns correspond to the 16 scenarios, whereas 
the rows indicate the particular metric (e.g., mean and median) for a 
given year. As would be expected based on the preceding analysis, all 
16 mean travel times observed in 2020 decreased compared with those 
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in 2018 and 2019. The decrease ranged from 7.1% to 23.2%, and the 
average decrease was 14.0%. 

Similarly, all 16 median travel times observed in 2020 decreased 
compared with those in 2018 and 2019. The decrease ranged from 
6.8% to 21.8%, and the average decrease was 12.9%. The slight dif-
ference between the mean and median decreases (e.g., 14.0% and 
12.9%) was attributable to the fact that the 2020 distributions had 
fewer outliers (e.g., travel times considerably higher than the mean) 
than those for 2018 and 2019, and the median is more robust to out-
liers than the mean (Rousseeuw and Hubert 2011). 

For all 48 TTDs examined, the mean travel time was greater than 
the median travel time, indicating that the underlying travel time dis-
tributions were not symmetric but rather were skewed to the right. In 
addition, the average differences between the mean and median travel 
times were 2.6% and 2.4% in 2018 and 2019, respectively. This differ-
ence was reduced to 1.3%, or by approximately 50%, in 2020. It may 
be inferred that the travel time distributions became more symmet-
ric in 2020. This phenomenon is explored subsequently. 

Table 2 lists two standard measures of dispersion of the travel 
time distribution: the standard deviation, and the IQR. The skewness, 
which is a measure of symmetry, for all 48 TTDs also is shown. 

Interestingly, the change in standard deviations from 2018 and 
2019 compared with that in 2020 was much more severe than the 
changes in the measures of central tendency (e.g., mean and median). 
In particular, the decrease in standard deviation between 2020 and 
the years 2018 and 2019 ranged from 16.5% to 69.4%, with an aver-
age decrease of 43.4%. The IQR sometimes is preferred as a measure 
of dispersion because it is robust to outliers (Rousseeuw and Hubert 
2011). The differences in IQR ranged from −67.5% to 10.3%, with an 
average IQR decrease of 37.5%. Westbound Superior Street experi-
enced a modest increase in IQR during the pandemic, which is in con-
trast to the other 14 scenarios in which the IQR decreased. The over-
all average decrease in IQR (37.5%) and standard deviation (43.4%) 
indicates that in 2020 there were considerably fewer periods with 
higher-than-normal travel times (e.g., fewer outliers). This was con-
firmed visually through an examination of all 48 boxplots. 

Because the mean and standard deviation for all 16 scenarios (e.g., 
all four corridors, both directions, and both peak periods) decreased 
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in 2020, it can be argued that the corridors became more reliable with 
respect to travel time because of the pandemic. A driver would experi-
ence lower average travel times and these average travel times would 
have much less variability in 2020 than in 2018 or 2019, all else be-
ing equal. This observation is analyzed further in the “Comparison of 
Travel Time Reliability Metrics” section.   

All 48 TTDs were skewed positively, and this finding is typical of 
most travel time distributions (Tufuor et al. 2020; Tufuor and Rilett 
2019; Mahmassani et al. 2014). On average, the COVID-19 pandemic 
caused an 18.2% reduction in the skewness values. In other words, 
the 2020 TTDs in general were more symmetrical than those in 2018 
and 2019. This confirms the observation that the differences between 
the mean and median travel time values were smaller in 2020 than 
in 2018 or 2019. Four of the 16 scenarios became less symmetrical. It 
was hypothesized that the overall move towards greater symmetry in 
the TTDs occurred because the number of extremely high travel times 
was reduced during the pandemic. This was true for the O Street and 
Dodge Street examples — the number of high travel times were re-
duced in 2020 [Figs. 2(a) and 3(a)]. This general pattern was con-
firmed in the other scenarios. 

In addition, the testbeds with the highest annual average daily traf-
fic values (e.g., Dodge Street and O Street) had the greatest reduction 
in the mean, median, standard deviation, IQR, and skewness values. 
This is not surprising, because these corridors are used extensively 
by commuters in the peak periods, and would be the most affected by 
the reduction in work travel caused by the pandemic. 

Two tests were used to identify whether the differences that were 
identified previously were statistically significant. Welch’s t-test was 
used to test the differences between the mean values. This test was 
selected because, in contrast to Student’s t-test, Welch’s t-test con-
trols the Type I error when comparing unequal variance (Derrick et 
al. 2016). The difference between the median values was tested by us-
ing the Mann–Whitney–Wilcoxon rank-sum test (U test), which is a 
powerful nonparametric test (Landers 1981). 

The results showed that for all 48 cases analyzed, the differences 
in mean travel time between 2020 and both 2019 and 2018 were sta-
tistically significant at the 95% significance level. Comparable results 
were found for the median values. This is not surprising, because 
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similar conclusions were found previously when comparing the em-
pirical TTDs using a KS test. 

In summary, the results indicated that travel times on all four cor-
ridors decreased because of the pandemic, and these decreases were 
statistically significant. In addition, the measures of dispersion values 
were reduced, and these reductions were greater than the reductions 
in the measures of central tendency. It was hypothesized that this oc-
curred because there were fewer outliers (e.g., periods of higher travel 
times) in 2020 than in 2018 and 2019. In other words, the lower traf-
fic volumes associated with the COVID-19 pandemic had a greater im-
pact on travel time measures of dispersion than on measures of cen-
tral tendency. Lastly, the travel time reliability on all four test beds 
for both peak periods and both directions improved in 2020, regard-
less of which qualitative reliability definition was used. 

Comparison of Travel Time Reliability Metrics 

The characteristics of distributions and their various statistical-based 
metrics are well known and have received considerable study in the 
field of statistics (Spiegelman et al. 2011). Interestingly, although 
transportation agencies have access to comprehensive TTDs, they have 
gravitated to the use of nonstatistical metrics to described reliability. 
It is the authors’ belief that this has occurred because of the qualita-
tive terminology used to define reliability. Without specific quantita-
tive descriptions, transportation professionals can interpret reliability 
terms such as consistency, dependability, and variations in a variety 
of ways—and have, as is described subsequently.   

The common reliability metrics described in this section all are 
based on the underlying TTD and/or key statistical metrics related to 
the TTD. In fact, the HCM6 arterial travel time reliability methodology 
explicitly estimates the TTD first, and subsequently uses this TTD to 
identify TTR metrics. Although many TTR metrics can be used for ar-
terial roads, there is no clear answer to the question of which metric 
is best for describing reliability. One of the few benefits of the 2020 
pandemic is that it has created a natural experiment in which these 
types of research questions can be explored in detail. As described in 
the preceding section, the pandemic had a profound and statistically 
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significant effect on travel times for the 16 scenarios examined on the 
test corridor. This section explores which, if any, of the TTR metrics 
best captures this change. 

One of the most widely used TTR metrics is the travel time index 
[Eq. (1)] (Schrank et al. 2019; FHWA 2017). The TTI is a ratio of two 
different TTD metrics. The numerator is the mean travel time for 
the period, corridor, and direction under consideration [e.g., week-
day westbound (WB) PM peak period on Dodge Street]. The denomi-
nator is the free-flow travel time, typically measured in the off-peak, 
on the same corridor for the same conditions. This paper estimated 
the free-flow travel time using the methodology presented in the cur-
rent sixth edition of the Highway Capacity Manual (Transportation 
Research Board 2016). This approach is deterministic, and results in 
a static value for each scenario. The higher the TTI value, the greater 
is the difference in the free-flow travel time (e.g., a TTI of 4 means 
that that the average travel time will be 4 times the free-flow travel 
time). This metric often is used to analyze potential operational im-
provements (Schrank et al. 2019). Because the TTI measures how the 
mean travel time relates to free flow conditions, it implicitly assumes 
that a more reliable travel time is one that is closer to the free-flow 
travel time, all else being equal. 

TTItcd =
  μTtcd          ∀ t = 1, 2;  ∀ c = 1, 4;  ∀ d = 1, 2              (1) 

                                                  μFtcd

where TTItcd = travel time index for period t, corridor c, and direction 
d; t = period (1 = AM peak, 2 = PM peak); c = corridor (1 = O Street, 
2 = Superior Street, 3 = 27th Street, and 4 = Dodge Street); d = direc-
tion [1 = eastbound (EB) or northbound (NB), 2 = WB or southbound 
(SB)]; μTtcd = mean TTD for period t, corridor c, and direction d (s); 
and μFtcd = mean free flow TTD for period t, corridor c, and direction d 
(s). Free-flow travel time usually is measured under uncongested con-
ditions, and it often is assumed to be deterministic and static. 

The planning time index [Eq. (2)] is of the same format as the TTI 
in that both are ratios. The difference is that in the PTI, the 95th per-
centile travel time replaces the mean travel time in the numerator. 
This metric compares the near-worst-case travel time to the free-flow 
travel time conditions and, as the name implies, attempts to capture 
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how much extra time a traveler should plan to add to their trip, com-
pared with free flow conditions, to ensure an on-time arrival (FHWA 
2017). 

PTItcd =
  P95tcd          ∀ t = 1, 2;  ∀ c = 1, 4;  ∀ d = 1, 2         (2)                                  μFtcd  

where PTItcd = planning time index for period t, corridor c, and direc-
tion d; and P95tcd = 95th percentile travel time for period t, corridor c, 
and direction d (s). 

Table 3 lists the TTR metrics calculated for the 48 periods analyzed 
in this paper. In 2020, the TTI values decreased by 7.2%–23.4%, with 
an average reduction of 14.0%. The PTI values decreased by 9.4%–
33.7%, with an average reduction of 19.7%. These results are not 
surprising, because although both the travel time mean and travel 
time standard deviation decreased, the latter had the greatest change. 
Therefore, the PTI, which is related to the spread or dispersion of the 
distribution, had a greater percentage drop than the TTI. The key to 
understanding why the PTI had a greater change than the TTI lies in 
the underlying travel time distributions and their associated statis-
tics, as shown previously. 

In addition, the percentage difference in means across all 3 years 
were exactly the same as the percentage differences in TTI, all else 
being equal. This can be seen by comparing the percentage change in 
mean travel time values in Table 1 and the percentage change in TTI 
values in Table 2. This occurs because the TTI is simply the mean di-
vided by a constant. For similar reasons, the percentage difference 
in the 95th percentile values across all 3 years were the same as the 
percentage difference in PTI values. Both the TTI and PTI define reli-
ability with respect to a single metric— in the case of the TTI it is the 
mean travel time, and in the case of the PTI it is the 95th percentile 
travel time. In summary, using the TTI and PTI metrics to compare 
changes in reliability over time (e.g., 2020 versus 2019) gives the ex-
act same result as using the mean and 95th percentile travel time val-
ues, respectively. 

The LOTTR [Eq. (3)] is the ratio of the 80th percentile travel time 
to the 50th percentile travel time (e.g., median travel time) for a given 
period, corridor, and direction under consideration. 
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Table 3. Travel time reliability metrics (unitless)

 Dodge Street  O Street  Superior Street  84th Street

 EB WB EB WB EB WB NB SB

Year AM PM AM PM AM PM AM PM AM PM AM PM AM PM AM PM

Travel time index (TTI)
2018 1.47 1.93 1.63 1.92 1.37 1.51 1.38 1.63 1.33 1.42 1.40 1.40 1.16 1.19 1.14 1.14
2019 1.50 1.82 1.60 1.92 1.31 1.47 1.33 1.51 1.32 1.38 1.41 1.44 1.21 1.24 1.14 1.17
2020 1.15 1.57 1.35 1.47 1.15 1.25 1.12 1.23 1.23 1.24 1.26 1.29 1.06 1.08 1.05 1.06

Percentage change (negative %)
%Δa 23.0 16.2 16.7 23.2 13.7 16.3 16.9 21.7 7.1 11.6 10.0 9.3 10.7 11.3 7.7 8.6

Planning time index (PTI)
2018 1.94 2.56 2.10 2.66 1.71 2.05 1.82 2.15 1.59 1.88 1.73 1.64 1.34 1.41 1.30 1.27
2019 1.81 2.40 1.93 2.89 1.56 1.85 1.73 1.89 1.50 1.63 1.64 1.69 1.40 1.49 1.30 1.36
2020 1.32 1.83 1.60 1.84 1.33 1.44 1.31 1.51 1.40 1.43 1.50 1.50 1.17 1.17 1.15 1.13

Percentage change (negative %)
%Δa 29.7 26.3 20.4 33.7 18.5 26.2 26.2 25.2 9.2 18.5 10.9 10.2 14.5 19.5 11.6 13.9

Level of travel time reliability (LOTTR)
2018 1.16 1.15 1.13 1.20 1.12 1.17 1.15 1.16 1.10 1.13 1.08 1.06 1.06 1.08 1.06 1.05
2019 1.10 1.14 1.10 1.33 1.09 1.12 1.09 1.13 1.06 1.06 1.08 1.09 1.08 1.10 1.06 1.07
2020 1.08 1.09 1.09 1.11 1.07 1.06 1.09 1.08 1.07 1.07 1.09 1.08 1.04 1.04 1.04 1.03

Percentage change (negative %)
%Δa 5.0 5.0 2.4 12.6 3.1 7.4 2.7 5.2 0.4 2.4 0.5 0.5 2.5 4.7 1.5 2.8

Buffer index (BI)
2018 0.32 0.33 0.29 0.38 0.25 0.36 0.32 0.32 0.20 0.32 0.23 0.17 0.15 0.18 0.14 0.11
2019 0.20 0.32 0.20 0.51 0.19 0.26 0.30 0.25 0.13 0.18 0.16 0.18 0.16 0.21 0.14 0.16
2020 0.15 0.16 0.19 0.25 0.15 0.15 0.16 0.23 0.14 0.15 0.18 0.16 0.10 0.08 0.09 0.07

Percentage change (negative %)
%Δa 42.6 49.6 22.4 44.4 30.1 50.0 47.1 19.3 15.9 38.9 6.2 6.4 32.6 56.5 34.1 46.9

Coefficient of  variation  (COV)
2018 0.18 0.18 0.16 0.22 0.14 0.17 0.20 0.17 0.11 0.17 0.13 0.09 0.11 0.10 0.09 0.10
2019 0.22 0.17 0.11 0.28 0.10 0.13 0.16 0.14 0.09 0.11 0.10 0.11 0.10 0.15 0.08 0.09
2020 0.08 0.09 0.10 0.17 0.08 0.08 0.10 0.12 0.08 0.09 0.10 0.09 0.06 0.09 0.05 0.04

Percentage change (negative %)
%Δa 60.3 45.0 24.0 30.0 33.1 44.4 44.3 20.5 21.4 38.7 11.1 7.8 46.4 24.6 39.8 56.9

EB = eastbound; WB = westbound; NB = northbound; and SB = southbound; italics indicate positive change.
a. Estimated as the quotient of 1) the difference between the 2020 value and the average of the 2018 and 2019 values, and 2) 

the average of the 2018 and 2019 values. Note that numbers in italics indicate a positive change.
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LOTTRtcd =
  P80tcd       ∀ t = 1, 2;    ∀ c = 1, 4;    ∀ d = 1, 2       (3) 

                                 P50tcd

where LOTTRtcd = level of travel time reliability for period t, corridor 
c, and direction d; P80tcd = 80th percentile travel time for period t, cor-
ridor c, and direction d (s); and P50tcd = 50th percentile travel time (or 
median travel time) for period t, corridor c, and direction d (s). 

One might be tempted to argue that the LOTTR is a measure of dis-
persion, because it is a direct function of a travel time range defined 
by the 50th to the 80th percentile travel times. It was found that for 
all 16 scenarios the correlation coefficient values between the LOTTR 
and the IQR and the LOTTR and standard deviation were 0.90 and 
0.87, respectively. This demonstrates a high level of linear correlation 
between LOTTR and two of the most commonly used measures of dis-
persion (standard deviation and IQR). In essence, as the measure of 
dispersion increases for a given median travel time, so too does the 
LOTTR value. 

The differences in LOTTR values ranged from −12.3% to 0.5%, with 
an average reduction of 3.5% (Table 3). The 2020 LOTTR values for 
the westbound a.m. and PM peak periods on Superior Street had mar-
ginal increases of approximately 0.9% and 0.5%, respectively. These 
results indicate that this corridor actually became less reliable in the 
AM and PM peaks during the pandemic in spite of the fact that both 
the mean and standard deviation of travel time for these scenarios de-
creased. The other 14 LOTTR values all experienced a decrease. Re-
gardless, the LOTTR values had the least change of all the TTR met-
rics between 2020 and the nonpandemic years of 2018 and 2019. A 
closer examination of the data across all 16 scenarios found that the 
reductions in the 80th percentile and the 50th percentile travel times 
were approximately proportional. This is why the LOTTR values were 
relatively inelastic to the large reductions in volume associated with 
the pandemic. 

Focusing solely on the LOTTR values might lead an analyst to con-
clude that the COVID-19 pandemic had only a marginal effect on travel 
time reliability on the test corridors. The correct interpretation is that 
the pandemic had a significant effect on travel times (e.g., both the 
mean and standard deviation decreased significantly), but its effects 
on the 50th percentile travel time and the  80th percentile travel time 
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were approximately equal. The fact that the LOTTR values were rela-
tively inelastic to the changes brought about by the pandemic is not a 
small issue, because this metric is used as the performance measure 
of the National Highway System. Both O Street in Lincoln and Dodge 
Street in Omaha are part of the NHS. 

Interestingly, both the standard deviation and IQR had consider-
able differences between 2020 and the preceding years (e.g., 2018 
and 2019). This was because the standard deviation and IQR are strict 
measures of dispersion, whereas the LOTTR is a ratio of two TTD met-
rics. Therefore, although the standard deviation and IQR are corre-
lated to the LOTTR, they measure different attributes of the underly-
ing distribution, and this becomes clearer when a comparison across 
years is conducted. 

The buffer index [Eq. (4)] is also a ratio. The numerator is the dif-
ference between the 95th percentile travel time and the mean travel 
time, and the denominator is the mean travel time. The BI attempts to 
capture the extra time that an average traveler would need to add to 
the average travel time to ensure on-time arrival for 95% of all trips 
(FHWA 2017). 

BItcd =
 P95tcd − μTtcd     ∀ t = 1, 2;   ∀ c = 1, 4;   ∀ d = 1, 2     (4)                                 μTtcd

where BItcd = buffer index for period t, corridor c, and direction d. 
The BI is aligned closely with the coefficient of variation [Eq. (5)]. 

The COV is the ratio of the TTD standard deviation to the TTD mean. 
Both the COV and the BI attempt to capture the same phenomena—
the ratio of a metric representing the spread of the TTD to a metric 
representing the central tendency of the TTD. The COV of travel time 
has been used to quantify TTR (Pu 2011), although the USDOT has dis-
couraged its use for reasons noted previously (FHWA 2017). 

COVtcd =
  σTtcd       ∀ t = 1, 2; ∀ c = 1, 4; ∀ d = 1, 2                 (5)                                μTtcd

where COVtcd = COV of travel time for time period t, corridor c, and 
direction d (s); and σTtcd = standard deviation of travel time for time 
period t, corridor c, and direction d (s).  
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The BI values decreased by 7.7%–59.0%, with an average reduc-
tion of 35.0% (Table 3). In addition, of all four TTR metrics examined, 
the BI metric had the greatest percentage change in values because of 
the pandemic year. As discussed previously, the BI is a ratio of a mea-
sure of dispersion to a measure of central tendency. Because the de-
crease in the measures of dispersion was greater than the decrease in 
the measures of central tendency, it is not surprising that the BI had 
the greatest change in all TTR metrics. Similar results were found for 
the COV, the average reduction of which was −35.1%, with a range of 
−10.0% to −60.0%. The fact that the BI and COV gave similar results 
is not surprising, because both metrics measure essentially the same 
components of the underlying TTD. 

In summary, the TTR metrics during the COVID-19 pandemic were, 
on average, lower than comparable TTR metrics for the 2018 and 
2019 period (Table 3). In other words, travel times on the test corri-
dors were more reliable during the pandemic. A natural question is, 
How much did travel time reliability improve during the pandemic? 
As shown previously, it is difficult to answer this question using the 
common TTR metrics. Specifically, the LOTTR metric indicated that 
the change in reliability was 3.5%, whereas the buffer index metric 
showed that the change in reliability was 35.0%. The TTI and PTI met-
rics indicated that the increase in reliability was between these two 
extremes, at 14.0% and 19.7%, respectively. This wide range of an-
swers to a relatively straightforward question clearly is problematic 
from a user perspective. 

All four metrics answered a slightly different variation of the same 
question. Specifically 

• TTI: What is the change in the relationship between the mean 
travel time and the baseline free flow travel time, across the 
different years? This is the same question as: What is the dif-
ference in mean travel time across the different years? The an-
swers to both questions are the same. 

• PTI: What is the change in the relationship between 95th per-
centile travel time and the baseline free flow travel time, 
across the different years? This is the same question as: What 
is the difference in the 95th percentile travel time across the 
different years? The answers to both questions are the same. 
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• LOTTR: What is the change in the ratio of the 80th percentile 
travel time to the 50th percentile travel time across the dif-
ferent years? This essentially is asking if the rate of change of 
the 80th percentile change is less than, equal to, or greater to 
the change in the 50th percentile travel time. If the change in 
both metrics is approximately the same, the LOTTR does not 
change—as was found in this analysis. 

• BI: What is the change in the ratio of the difference between the 
95th percentile travel time and the mean travel time? This is a 
similar question to: What is the change in the ratio of a mea-
sure of dispersion (IQR or standard deviation) to a measure of 
central tendency (mean or median)? As shown, the BI and COV 
are highly correlated, and the answers to both questions are 
similar. 

The answer of which is the best metric to use to measure reliabil-
ity is up to the analyst. It is hypothesized that the preceding analysis 
also shows why no TTR metric has received widespread acceptance in 
the transportation community. All four metrics describe an answer to 
a different question related to reliability. 

As shown previously, the 2020 travel time distributions were differ-
ent from the comparable travel time distributions in 2018 and 2019, 
and these differences were statistically significant. Specifically, the 
2020 TTD in general had reduced measures of central tendency (e.g., 
mean and median), reduced measures of dispersion (e.g., standard 
deviation and IQR), and reduced measures of symmetry (e.g., skew-
ness). The authors contend that standard statistical measures describe 
changes in reliability over time as well, and arguably better, than do 
the standard TTR metrics. 

Proposal for Future TTR Analyses 

Because of the wide range of definitions of travel time reliability, a 
number of diverse TTR metrics have been developed. It is clear from 
the preceding analyses that none of these TTR metrics were able to 
capture, on their own, the change in reliability on the test corridors 
as a result of the COVID-19 pandemic. This was because the metrics 
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answered different versions of the same question: Did travel time re-
liability change? If, similar to the MAP-21 legislation, one believed 
that the LOTTR was the best reliability metric then the answer is that 
travel time reliability experienced only a marginal change of 3.5%. If 
one believes that reliability is based on a ratio of a measure of disper-
sion to a measure of central tendency, then the BI and COV analyses 
indicate that TTR increased substantially— on the order of 35%. Al-
ternatively, if one believes that reliability is related to the mean travel 
time or the 95th percentile travel time, then the TTI and PTI analyses 
indicate an answer that lies between these two extremes. 

The truth is that if one wants to analyze a difference between two 
TTDs, then the most efficient way is to compare the distributions di-
rectly. As was shown in this paper, this can be accomplished easily. 
The benefit to this approach is that there are accepted techniques for 
measuring whether differences in distributions are statistically signif-
icant. The second-best approach is to analyze changes in various met-
rics associated with the distributions. As shown in this paper, the typ-
ical process is to examine the changes in (1) central tendency (mean, 
median, and so forth), (2) dispersion (standard deviation and IQR), 
and (3) symmetry. It can be argued that the change in TTD kurtosis 
also could be analyzed. Critically, all of the aforementioned metrics 
have accepted techniques for inferring whether any differences are 
statistically significant. 

As this paper has demonstrated, measuring travel time reliability 
is actually a multiattribute decision-making problem. Based on the 
current definitions and associated TTR metrics, reliability clearly is 
a function of changes in the measures of central tendency (mean or 
median), changes in dispersion (standard deviation or IQR), changes 
in the relationship between measures of central tendency and mea-
sures of dispersion, and changes in symmetry (skewness). The key 
question is how much weight a given analyst places on each of these 
components. 

Consequently, to identify the best TTR metric, it is necessary to 
know (1) what components of the TTD the end user considers impor-
tant for identifying reliability, and (2) how much weight the end user 
puts on each of these components (e.g., improvement in a given mea-
sure of central tendency versus a given improvement in a measure of 
dispersion). Clearly, the developers of the TTI assigned zero weight to 
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changes in the measure of dispersion. The developers of the LOTTR 
clearly felt that if both the 50th and 80th travel times improved (or 
became worse) at the same rate, then the corridor would not be iden-
tified as becoming more (or less) reliable. 

Because of the aforementioned issues, the authors recommend that 
statistically based metrics be used for measuring travel time reliabil-
ity in the future. The benefit of using commonly accepted statistical 
metrics is twofold. First, there is a rich literature on the characteris-
tics of these measures, including how to test if differences are statis-
tically significant and how to identify confidence intervals about the 
predicted values. Secondly, there are a large number of robust statisti-
cal measures that would be appropriate for travel time analysis which 
have not yet been used by the  transportation community. For exam-
ple, it is well known that travel times often are susceptible to outliers. 
There is a rich literature on metrics that are robust to outliers, and 
these would be natural candidates for new TTR metrics (Arachchige 
et al. 2020; Rousseeuw and Hubert 2011; Spiegelman et al. 2011). 

The argument for developing and using nonstatistical TTR metrics 
is that the users have trouble understanding standard statistical met-
rics. However, it was shown that the TTR metrics are all highly cor-
related with existing statistical metrics. The authors contend that if 
users are able to understand the nonstatistical metrics, they also are 
capable of understanding the statistically based metrics. 

The authors want to stress that adopting standard statistical met-
rics and techniques does not obviate the need for communicating ap-
propriate information to end users. With respect to system users such 
as Transportation Systems Management and Operations (TSMO) op-
erators, the authors argue that it is not too much to ask that these us-
ers be familiar with introductory statistical concepts as described in 
this paper. The ability to estimate confidence intervals for travel time 
forecasts, and to understand what they mean, would be invaluable to 
the engineers and analysts responsible for designing, planning, and 
operating the transportation system. With respect to the public, the 
authors agree that using statistical terms for communication is prob-
lematic. However, the authors also believe that the current TTR met-
rics are not much better. For example, if the transportation agencies 
in Lincoln and Omaha were to tell the traveling public that travel time 
reliability essentially was unchanged during the pandemic, as would 
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be the conclusion based on the LOTTR analysis, there clearly would 
be a great deal of confusion. Most travelers would feel that reliability 
had improved because both average travel time and the variability of 
travel time was reduced significantly. The authors argue that the over-
arching goal should be to provide answers to users related to their spe-
cific needs. Specific questions, such as: When should I leave to be on 
time 95% of the time?, What will be the travel time corridor if I leave 
in 15 minutes?, and so forth, all can be answered using the travel time 
statistics and techniques advocated in this paper. The added benefit is 
that the transportation agencies can put confidence bounds on the an-
swers. This might entail telling users that the agency cannot reason-
ably provide an answer because the confidence bounds are so large. 

Concluding Remarks 

This paper examined the effect of COVID-19 on travel time and travel 
time reliability on arterial roadways in Nebraska. Specifically, the 
travel time distribution of previous years (e.g., 2018 and 2019) within 
the same period (i.e., March–May) was compared with the travel time 
distribution during the COVID-19 pandemic in 2020. The paper also 
assessed the sensitivity of the TTR metrics to changes in the travel 
time distribution caused by the pandemic. 

Four arterial roadways were used as the test corridors. The travel 
time data from INRIX on these corridors within the AM peak (7–10 
a.m.) and the PM peak (4–7 p.m.) were used to analyze the travel time 
distributions and reliability metrics. A total of 16 scenarios, each with 
3 TTDs for the years 2018, 2019, and 2020, were examined. It was 
found that during the COVID-19 pandemic 

1. The 2020 TTDs were different from the equivalent 2018 and 
2019 distributions, and these differences were statistically dif-
ferent at the 95% level of significance according to the KS test. 
In all 16 cases, the box plots showed that the measures of cen-
tral tendency, the measures of dispersion, and the measure of 
symmetry all were reduced compared with those of the previ-
ous years, all else being equal. 
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2. The average TTD mean and standard deviation values for all 
16 scenarios were reduced by an average of 14.0% and 43.4%, 
respectively. In general, the greatest changes occurred on the 
test corridors that had the highest prepandemic volumes. Not 
surprisingly, the test corridors could be considered more reli-
able during the pandemic regardless of which TTR definition 
was used. 

3. Four standard travel time metrics were compared for all 16 
scenarios. It was found that the travel time index, the planning 
time index, the level of travel time reliability, and the buffer 
index were reduced, on average, by 14.0%, 19.7%, 3.5%, and 
35.0%, respectively. In other words, the question of whether 
the test corridors were more reliable during the pandemic was 
a function of which TTR metric was chosen. This was not sur-
prising, because each TTR metric provides information on dif-
ferent components of reliability. 

4. Interestingly, the LOTTR metric had the lowest percentage 
change. This was attributed to the fact that the LOTTR is a ra-
tio and both the numerator (i.e., 80th percentile travel time) 
and the denominator (i.e., 50th percentile travel time) were 
reduced at approximately the same rate across all 16 scenar-
ios. The USDOT has chosen the LOTTR metric for evaluation of 
TTR on the US National Highway System. This metric may be 
problematic for monitoring purposes, because it was found to 
be inelastic to relatively major changes in traffic volume. 

This paper illustrated the importance of selecting appropriate met-
rics—and having a deep understanding of these metrics—when eval-
uating transportation systems. The authors argue in this paper that 
travel time reliability, as commonly defined in the US, has three com-
ponents: changes in measures of central tendency, which are measured 
by metrics such as the mean, median, and TTI; changes in measures 
of dispersion, which are measured by metrics such as the standard 
deviation and PTI; and relational changes in the measure of disper-
sion to measures of central tendency, which are measured by metrics 
such as the BI and COV. It also can be argued that changes in symme-
try (e.g., skewness) also are a component of reliability. 
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The authors argue in this paper that a better approach to measur-
ing TTR and evaluating transportation systems is to use statistically 
based theory and practice. It was demonstrated that the most com-
mon TTR metrics used are highly correlated with standard statistical 
measurements. This fact is not surprising, because both the TTR met-
rics and the statistical measures often attempt to measure the same 
phenomena. For example, the TTI, PTI, and BI metrics are highly cor-
related with the mean, P95, and coefficient of variation (COV), respec-
tively. Because (1) the statistical measures are well-understood and 
documented, and (2) there are standard statistical tests that can be 
used to tell whether changes in travel time are statistically significant, 
the authors argue that these would be more appropriate metrics for 
measuring travel time reliability. 

The rationale for using nonstatistical metrics is that the traveling 
public does not understand statistical metrics. The authors agree with 
this statement. However, the authors do not believe that the statistical 
measures advocated in this paper are too complicated for transporta-
tion engineers tasked with operating the transportation system, be-
cause the metrics are covered in most introductory statistical courses 
and textbooks (Spiegelman et al. 2011). More importantly, it is easy to 
translate these statistical measures into information that an average 
user of the system can understand (e.g., When should I leave?, How 
long will my trip take?, and so forth). The authors argue that using 
the approach advocated in this paper will lead to more-accurate in-
formation being provided to users—or even providing no information 
if the statistics indicate  that the forecast bounds are such that the in-
formation would be of little value to the user. 

Lastly, using the TTD to measure TTR is not a new concept. The 
HCM6 TTR methodology first estimates/forecasts a TTD, and then es-
timates TTR metrics from the TTD. The authors propose that when 
system operators evaluate reliability, they should use accepted, sta-
tistically based metrics rather than the ad hoc TTR metrics currently 
used. This does not preclude using other metrics for users (e.g., road-
way users and decision makers) who may have difficulty understand-
ing the statistical metrics. However, as stated previously, these met-
rics should be tailored to the user’s specific needs, and would be based 
on sound, statistical theory. 
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