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Distinctive gene expression patterns and
imprinting signatures revealed in reciprocal
crosses between cattle sub-species
Ruijie Liu1, Rick Tearle1, Wai Yee Low1, Tong Chen1, Dana Thomsen1,3, Timothy P. L. Smith2,
Stefan Hiendleder1,3 and John L. Williams1,4*

Abstract

Background: There are two genetically distinct subspecies of cattle, Bos taurus taurus and Bos taurus indicus, which
arose from independent domestication events. The two types of cattle show substantial phenotypic differences,
some of which emerge during fetal development and are reflected in birth outcomes, including birth weight. We
explored gene expression profiles in the placenta and four fetal tissues at mid-gestation from one taurine (Bos
taurus taurus; Angus) and one indicine (Bos taurus indicus; Brahman) breed and their reciprocal crosses.

Results: In total 120 samples were analysed from a pure taurine breed, an indicine breed and their reciprocal cross
fetuses, which identified 6456 differentially expressed genes (DEGs) between the two pure breeds in at least one
fetal tissue of which 110 genes were differentially expressed in all five tissues examined. DEGs shared across tissues
were enriched for pathways related to immune and stress response functions. Only the liver had a substantial
number of DEGs when reciprocal crossed were compared among which 310 DEGs were found to be in common
with DEGs identified between purebred livers; these DEGs were significantly enriched for metabolic process GO
terms. Analysis of DEGs across purebred and crossbred tissues suggested an additive expression pattern for most
genes, where both paternal and maternal alleles contributed to variation in gene expression levels. However,
expression of 5% of DEGs in each tissue was consistent with parent of origin effects, with both paternal and
maternal dominance effects identified.

Conclusions: These data identify candidate genes potentially driving the tissue-specific differences between these
taurine and indicine breeds and provide a biological insight into parental genome effects underlying phenotypic
differences in bovine fetal development.
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Background
There are substantial phenotypic and genetic differences
among cattle breeds, in particular between indicine and
taurine breeds (Bovine HapMap Consortium 2009). The
taurine and indicine subspecies of cattle arose from in-
dependent domestication events resulting in a high de-
gree of genetic divergence [1]. Phenotypically, indicine
cattle are more tolerant of hot, humid environments and
show greater resistance to parasites such as ticks; hence
they are better adapted to survive in tropical areas [2].
However, the productivity of indicine cattle is lower than
taurine cattle across a range of traits when measured in
temperate zones, including growth and meat quality.
Crossbreeding has been used to harness the positive
traits of the two types to improve the performance of
cattle in tropical environments [3]. Genes such as
MSRB3 and PLAG1, which are involved in energy and
muscle metabolism, have been shown to have
subspecies-specific alleles that affect weight and body
condition [4]. However, the genetic factors involved in
adaptation to tropical conditions remain largely
unknown.
Phenotypic differences between indicine and taurine

breeds emerge during fetal development [5] and are
reflected in birth outcomes, including birth weight [6].
Fetal growth rate accelerates after mid-gestation (~day
150) [7] and subspecies-specific phenotypes emerge. For
example, taurine cattle have a greater myotube cross
sectional area and greater bone size than indicine cattle
at day 153 [8, 9]. Maternally inherited genes have been
shown to contribute disproportionately to myofiber
development and muscle and bone in reciprocal crosses,
suggesting parent-of-origin imprinting effects [8, 9].
Advances in genome sequencing technology have facil-

itated the detailed exploration of transcriptome com-
plexity and dynamics. Studies of gene expression in
adult bovine tissues, including muscle [10], liver [11, 12],
mammary gland [13] and adipose tissue [14] from either
taurine or indicine breeds have identified genetic vari-
ation associated with differences in feed efficiency, milk
composition and deposition of intramuscular fat. How-
ever, there is little information available on differences
in gene expression between breeds during fetal develop-
ment. A comparison of gene expression between taurine
and indicine breeds may provide biological insights into
the origin of their phenotypic differences.
This study investigated the transcriptome of the pla-

centa and four somatic tissues at mid-gestation from
two cattle breeds (Angus and Brahman) and their recip-
rocal crosses. The differentially expressed genes (DEGs)
detected between the breeds and between the reciprocal
crosses at this fetal stage represent candidates that may
be involved in establishing phenotypic differences be-
tween the cattle subspecies.

Results
Expression profiles of five tissues
A total of 120 samples were analysed, which comprised
brain, liver, lung, muscle and placenta samples from 3
pure Angus, 3 pure Brahman, 3 Brahman cross Angus
and 3 Angus cross Brahman fetuses. Between 60 and
100M 100 bp PE reads, or 90-130M 75 bp PE reads per
sample passed quality control. Reads were aligned to the
extended Brahman reference genome (UOA_brahman_1
plus non-PAR Y chromosome from UOA_angus_1)
using hisat2 with default settings, giving an average
mapping rate of 89%. The total number of expressed
genes among samples ranged from 16,368 to 17,013 and
showed no substantial variation between tissues. There
was a high correlation coefficient between expression of
the same genes in each tissue in pure bred Brahman (Bi)
and Angus (Bt) (Supplementary Fig. 1a-e). There were
14,143 genes expressed in all tissues (Supplementary
Fig. 1f) with 5 genes consistently represented among the
20 most abundant transcripts in all five tissues: Insulin-
Like Growth Factor 2 (IGF2), Eukaryotic Translation
Elongation Factor 1 Alpha 1 (EEF1A1), Collagen Type
III Alpha 1 Chain (COL3A1), Actin Beta (ACTB) and the
paternally expressed gene 3 (PEG3).
Multi-scaling analysis grouped samples from each of

the 5 tissues into tight clusters which were distinct from
each other (Fig. 1a). A multi-factor model was used to
account for and remove tissue effects, after which a PCA
separated the samples by genetic groups in the first
principle component (x-axis) and by sex in the second
principle component (y-axis) (Fig. 1b). The expression
for each tissue from each genetic type showed the same
pattern within sex, with the 2 purebred groups well sep-
arated for all tissues, while the reciprocal crosses were
less well separated (Supplementary Fig. 2a-e). The 20
most highly expressed genes in each tissue are reported
in Supplementary Table 1.

Differential gene expression between purebred groups
There were 1085, 1495, 1935, 2515 and 2645 genes for
which the normalized average number of mapped reads
(CPM) differed significantly between purebred Bt and Bi
brain, placenta, lung, liver and muscle, respectively. We
designated these as differentially expressed genes
(DEGs). Muscle had the largest number of DEGs among
the tissues studied, but about 84% of these showed a fold
change (FC) < 2, while in other tissues ~ 62–72% showed
a FC < 2. The most significantly enriched gene ontology
(GO) biological process and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways in muscle in-
cluded collagen metabolic process (GO:0032963); colla-
gen fibril organization (GO:0030199); amino sugar and
nucleotide sugar metabolism (bta00520) and glycine,
serine and threonine metabolism (bta00260). Genes in
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all four of these pathways had higher expression in Bt
than in Bi.
Among the DEGs, ~ 10% in each tissue were lncRNAs.

About 92% of DE lncRNAs had the opposite transcrip-
tional direction to differentially expressed genes located
within 100 kb.

DEGs common to all five tissues in pure-bred groups
There were 110 DEGs between Bi and Bt in common for
all five tissues, comprising 50 annotated protein-coding
genes, 42 genes lacking annotation in the reference gen-
ome and 18 lncRNAs (Fig. 2a). Alignment of the unan-
notated protein-coding genes to known genes in other

cattle and ruminant reference genomes facilitated the
annotation of 37 of the unnamed DEGs, based on > 90%
sequence identity. Of the 87 genes for which annotation
was obtained (See Supplementary Table 2) and that were
DE in all five tissues between the purebred animals, 84
had consistent relative abundance between subspecies Bt
and Bi with respect to genotype in all tissues. The 3 excep-
tions were Aldehyde Oxidase 1 (AOX1), Choline Dehydro-
genase (CHDH), Syntaxin 11 (STX11), whose expression
was in a different direction (Bt vs Bi) in the liver compared
with the other 4 tissues. GO pathway analysis of the set of
87 annotated genes showed that they were significantly
enriched in 10 GO terms with p-value < 0.05, including

Fig. 1 Multi-dimensional scaling (MDS) plot of sample expression profiles in five tissues. a The first two dimensions separate the samples by
tissue type. b After accounting for the tissue source, samples are separated by genetic group in the first dimension (X-axis) and by sex in the
second dimension (Y-axis). (1-pure Bt, 2-BtXBi, 3-BiXBt, 4-pure Bi. Male samples are shown in blue and female red)

Fig. 2 DEG across 5 tissues. a Venn diagram depicting the distribution of DEGs across five tissues at FDR cut off 0.05. b Significantly enriched
gene ontology terms for biological process (purple), Molecular function (red) and cellular component (blue) for 87 annotated DEGs genes that
were in common across all five tissues. Bars indicate the percentage of DEGs in the GO term
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oxidation-reduction process (GO:0055114), intracellular
protein transport (GO:0006886), glycogen catabolic
process (GO:0005980), positive regulation of protein auto-
phosphorylation (GO:0031954) (Fig. 2b).

Tissue-specific genes between purebred groups
Genes that were DE between purebred Bt and Bi in only
one of the five tissues examined were considered tissue
specific DEGs. Using an FDR cut-off of < 0.05 and FC ≥
2, brain, liver, lung, muscle and placenta had 187, 328,
289, 388 and 191 tissue-specific DEGs respectively. GO
biological process pathway enrichment analysis for these
filtered tissue-specific DEGs identified 54 GO terms
(Supplementary Table 3). The liver-specific DEGs were
enriched for 6 GO terms including ion binding (GO:
0043167) and primary metabolic processes (GO:
0044238). Muscle was enriched for 9 GO terms in-
cluding the collagen fibril organization pathway (GO:
0030199). Brain was also enriched for 9 GO terms
that included pathways involved with detection of
stimulus (GO:0050906) and nervous system processes
(GO:0050087). Lung was enriched for 10 GO terms,
most of which were related to fundamental biological
processes, including regulation of molecular function
(GO:0065009) and cellular response to endogenous
stimulus (GO:0071495). Placenta was enriched for 20
GO terms which were linked to proton-transporting
V-type ATPase (GO:0033176) and domain small mol-
ecule metabolic process (GO 0044281).

Differential gene expression between crossbred groups
Comparison of transcript abundance between the recip-
rocal cross-bred groups (Bt x Bi and Bi x Bt) did not re-
veal a substantial number of DEGs (< 20/tissue at FDR
< 0.05), except for liver which had 2473 DEGs. However,
only 143 (5.8%) of the liver DEGs had a fold change
greater than 2. We performed GO biological process
pathway enrichment analysis and KEGG pathway enrich-
ment analysis for the protein coding DE genes with > 2-
fold change. The GO analysis showed that DEGs were
significantly enriched in 6 GO terms, including: macro-
molecule metabolic process (GO:0043170), primary
metabolic process (GO:0044238), cellular metabolic
process (GO:0044237), metabolic process (GO:0008152),
nitrogen compound metabolic process (GO:0006807)
and organic substance metabolic process (GO:0071704)
which are all involved in metabolic processes. The only
significantly enriched KEGG pathway was metabolic
pathways (path: bta01100).
Pairwise comparisons of the DEGs in liver for the 4

genetic groups were performed to explore relation-
ships in expression patterns between pure bred and
crossbred concepti. The sire dominated the liver ex-
pression pattern in Bt-sired crossbred (Bt x Bi) liver

which had 1276 DEGs when compared to purebred
Bi liver, versus 219 DEG when compared with pure-
bred Bt liver. However, the dam breed appears to
dominate expression pattern in Bi-sired crossbreds,
with 317 DEGs in the Bi x Bt crossbred compared
with purebred Bt, but 150 DEGs when compared with
purebred Bi liver transcripts.

Expression pattern of DEGs from the purebred groups in
comparison with crossbred groups
The expression pattern of the 6456 DEGs between tis-
sues of purebred animals was examined in the reciprocal
crossbred groups. Of these DEGs 5784 (~ 90%) showed
an additive expression pattern where both paternal and
maternal genomes contributed to the gene expression
levels in the crossbred groups (Fig. 3a), as suggested by
the transcript abundance falling approximately midway
between that of the two purebred classes. However, tran-
script abundance of some DEGs (672) was more consist-
ent with parent-of-origin driven expression (Fig. 3b-i).
Different types of such effects were observed, predomin-
antly maternal/paternal dominance and Bt or Bi allele
derived dominance. The abundance of DEGs between
crossbred groups fell into three general categories: co-
dominant, dominant and recessive expression patterns,
with dominance in some cases driven by either the male
or the female (Fig. 3). The number of genes falling into
each category are given in Table 1.
GO analysis of the DEGs that overlapped between tis-

sues showed that they were significantly enriched in 19
GO terms including positive regulation of cellular meta-
bolic process (GO:0009893), positive regulation of nitro-
gen compound metabolic process (GO:0051173) and
membrane-enclosed lumen (GO:0031974). The tran-
script levels of the DEGs involved in these significantly
enriched pathways had exclusively higher expression in
the purebred Bt compared with the purebred Bi.

Discussion
The study of gene expression in prenatal development
will help to understand the regulation of fetal tissue-
specific growth and development. Our hypothesis was
that phenotypic differences between subspecies of cattle
may be due, in part, to differential gene expression dur-
ing mid-gestation. Consistent with this hypothesis, in
this study we observed substantial differences in expres-
sion between breeds of cattle from the two genetically
distinct sub-species Bos taurus taurus (Angus) and Bos
taurus indicus (Brahman). In addition, we observed dif-
ferential expression of genes in reciprocal crosses be-
tween these subspecies, some of which revealed parent-
of-origin and breed-of-origin effects on gene expression
in five tissues at mid-gestation.
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We found that five genes had high levels of expression
in all five tissues at this developmental stage (IGF2,
EEF1A1, COL3A1, ACTB and PEG3). These genes play a
crucial role in embryonic development and fetal tissue
growth, as shown by loss-of-function mutations which re-
sult in developmental delay and several diseases including
intellectual disability, immune system abnormalities, cere-
bral abnormalities and abnormally large abdominal organs
[15–19]. EEF1A1 is a member of the eukaryotic elongation
factor family that regulates protein synthesis, that is
expressed in brain, placenta, lung, liver, kidney, and pan-
creas in human adults [20]. COL3A1 is expressed in exten-
sible connective tissues, such as skin and lung. A mutation

in COL3A1 has been linked to vascular disease [21]. Ex-
pression levels of IGF2 have been linked to increased
muscle mass [22] and fetal growth [23].
Other highly abundant transcripts showed tissue-

specific expression levels which were related to tissue
function. Alpha-Fetoprotein (AFP) had liver-specific ex-
pression and encodes a major plasma protein produced
by the liver during fetal development [24]. Two genes
that were highly expressed in the muscle were the
muscle structural protein genes Myosin Heavy Chain 3
(MYH3) and Myosin Binding Protein C, Slow Type
(MYBPC1) [25, 26]. Genes that play an important role in
neurodevelopment including Adenylate Cyclase 1

Table 1 Number of genes showing a parent of origin effect on expression patterns in five tissues

Brain Liver Lung Muscle Placenta

Maternal genome driven - Taurine 0 12 2 16 0

Maternal genome driven - Indicine 0 11 4 11 5

Paternal genome driven – Taurine 6 24 9 16 7

Paternal genome driven - Indicine 5 36 13 13 12

Taurine dominant – activation 27 65 40 33 25

Taurine dominant – inhibition 7 30 24 10 12

Indicine dominant – activation 13 38 17 15 10

Indicine dominant - inhibition 2 22 3 15 5

Fig. 3 Examples of expression patterns among genotype groups. Boxplots illustrating the different expression patterns observed among the 4
genetics groups: Bt x Bt, Bi x Bt, Bt x Bi and Bi x Bi (sire breed given first). Y-axis is expression level (counts per million) on a log2 scale. a Taurus
driven additive expression, irrespective of parent. b Maternal genome driven indicine dominance. c Maternal genome driven taurine dominance.
d Paternal genome driven indicine dominance. e Paternal genome driven taurine dominance. f Taurine dominant – activation. g Taurine
dominant - inhibition. h Indicine dominant - activation. i Indicine dominant – inhibition. j complex inheritance
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(ADCY1), Stathmin 2 (STMN2) and Tubulin Beta 3
Class III (TUBB3) were highly expressed and specific to
the brain [27–29]. All of these genes had high levels of
expression in both the pure breed concepti and the
crosses. The lung was the only tissue that did not have
any highly expressed tissue-specific genes (cut off
Log2CPM > 10) at this developmental stage.
Muscle composition and quality of taurine and indi-

cine cattle breeds differs [30] and is largely determined
during fetal development [31]. We have previously re-
ported greater fast myotube cross sectional area and
greater bone size in taurine than indicine cattle fetuses
at day 153 [8, 9]. In the present study we show that
muscle contained the highest number of DE genes be-
tween purebreds amongst all studied tissues. Signifi-
cantly enriched pathways included collagen metabolic
process, collagen fibril organization, amino sugar and
nucleotide sugar metabolism and glycine, serine and
threonine metabolism. Genes in all four of these path-
ways had higher expression in Bt than in Bi fetuses. Al-
though we did not examine gene expression in bone
tissue, it is known that fetal muscle and bone growth are
linked and collagen pathways also play a major role in
bone growth [32].
Intrauterine stress increases the risk of adult disease

through fetal programming mechanisms. Increased oxida-
tive stress during embryonic and fetal growth can be
caused by environmental and physiological conditions
[33], and may affect key transcription factors that can alter
gene expression during development [34]. From the GO
pathway analysis in the current study, oxidation-reduction
processes and oxidoreductase activity were found to be
significantly associated with the DEGs between the two
pure breeds that were in common to all five tissues.
Heat shock leads to oxidative stress, which has been

associated with reduced production performance in Bos
taurus indicus [35]. During heat stress the steady-state
concentration of free radicals is disturbed, resulting in
both cellular and mitochondrial oxidative damage [36].
A study of the effects of oxidative stress on cattle fertility
indicated that in tropical areas, Bos taurus taurus bulls
have a higher level of reactive oxygen species (ROS) in
their semen than Bos taurus indicus bulls [37]. It has
been suggested that these high levels of ROS cause
major sperm defects in heat stressed Bos taurus taurus
bulls [34]. In our study, TXNRD2, a nuclear genome
encoded mitochondrial protein that scavenges reactive
oxygen species, had a higher level of expression in Bi
than Bt in all tissues. It is possible that TXNRD2 medi-
ated protection of mitochondrial function may help indi-
cine cattle to better adapt to hot environments.
The HSD11B1L encoded protein catalyses the inter-

conversion of inactive to active glucocorticoids, e.g. the
conversion of inactive cortisone to the active forms:

corticosterone and cortisol. These are key hormones that
regulate a variety of physiologic responses to stress
through the hypothalamus-pituitary-adrenal (HPA) axis
that is responsible for the adaptation of stress responses
to restore homeostasis [38]. Higher levels of HSD11B1L
transcripts were found in all Bi tissues compared with
Bt, which may allow indicus cattle to respond more rap-
idly than taurine cattle to stressful situations, including
environmental and biological challenges.
Most of the genes that were DE in all five tissues

showed changes in the level of expression in the same
direction for all tissues. There were 3 exceptions with
different directions of expression in the liver compared
with the other 4 tissues. The liver plays an important
role in metabolic processes and in immune system func-
tion, which affects the response to many diseases [39,
40]. We found that the expression of AOX1 was higher
in all Bi tissues except liver, where it was lower. AOX1
produces hydrogen peroxide and catalyses the formation
of superoxide. Levels of AOX1 increase in mouse liver
following infection [41] suggesting a role in immune re-
sponse by stimulating host immunity, inflammation and
coagulation. Indicine cattle are generally less susceptible
to disease than taurine cattle [42, 43]. For example, they
are more resistant to ticks [44] and tuberculosis [45].
Interestingly AOX1 had lower levels of expression in Bi
than Bt in tissues other than liver. The significance of
this is unclear. The GO terms including genes that were
DE between purebreds in this study showed that those
involved in metabolic processes generally had signifi-
cantly higher expression in Bt compared with Bi. Low
metabolic rate has been associated with thermotolerance
of Bos taurus indicus [46].
Interestingly, the genes that were DE between the liver

of the pure-bred concepti, that were also differentially
expressed between the reciprocal crossbred concepti,
showed a higher expression when the sire was taurine
for both sexes. For example, a critical nuclear receptor
NR4A1 had a higher level of expression in pure Bt and
in the crossbred concepti when the sire was Bt. NR4A1
is involved in inflammation, apoptosis, and glucose me-
tabolism and also regulates a paternally imprinted gene,
SNRPN, which affects neurological and spine develop-
ment [47]. NR4A1 regulates energetic competence of
mitochondria and promotes neuronal plasticity. How-
ever, studies in animal models and of neuropathologies
in humans have shown that sustained expression of this
gene results in increased sensitivity to chronic stress
[48]. Higher levels of expression in Bt may be related to
a reduced tolerance of stress including heat and drought
conditions.
Genomic imprinting, which is reflected in a biased

level of expression of one autosomal copy of a gene and
is dependent on the parent of origin, has been reported
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in all mammalian species in which it has been assessed,
e.g. mice [49], humans [50], and domesticated animals
[51]. Both insulin-like growth factor (IGF2) and pater-
nally expressed gene 3 (PEG3) are imprinted in humans,
mice, cattle and other species [52, 53] and the paternally
inherited copy is expressed during fetal development,
with expression declining rapidly after birth [54]. Both
genes play an important role in controlling fetal growth
rate and nurturing behaviours in mammals. In the
present study, IGF2 and PEG3 were highly expressed in
all samples across the 4 pure and crossbred groups in all
five tissues, suggesting that both PEG3 and IGF2 func-
tions are essential at mid-gestation. The overall levels of
PEG3 and IGF2 transcripts did not differ between breeds
or the direction of the cross, although we were unable to
assign transcripts to a parent of origin to test for
imprinting.

Conclusion
This study identified a large number of genes that
showed significant tissue-specific expression differences
between the taurine and the indicine breeds studied.
These genes were found to participate in pathways related
to tissue-specific function. Genes that were differentially
expressed between Angus and Brahman in all tissues were
found to relate to functions such as immune response and
stress response, that may to some extent explain the
higher resilience of Bi cattle. This study also identified
genes that putatively have parent or breed of origin-
controlled expression patterns. Exploring these further
would require e.g. long read Iso-seq data to resolve haplo-
type specific expression. The current data provide a basis
for future research on parental genome effects underlying
phenotypic differences in cattle fetal development. Taking
these factors into account in breeding and management
may improve the welfare and productivity of cross-bred
cattle in tropical environments.

Material and methods
Animals and sample collection
All animal experiments and procedures described in this
study were compliant with national guidelines and ap-
proved by the University of Adelaide Animal Ethics
Committee which follows ARRIVE Guidelines (https://
arriveguidelines.org/) for approval and monitoring all
studies involving live animals (Approval No. S-094-
2005). The animals and semen used were pure bred
Angus (Bos taurus taurus) and Brahman (Bos taurus
indicus) cattle, subsequently referred to as Bt and Bi re-
spectively. Purebred Bt and Bi females (heifers) of ap-
proximately 16–20 months of age were maintained on
pasture supplemented with silage. The heifers were in-
seminated with semen of purebred Bt or Bi sires and
pregnancy tested by ultrasound scanning. Pregnant

heifers and their concepti were humanely sacrificed at
day 153 +/− 1 of gestation and the conceptus dissected.
Tissues were snap-frozen in liquid nitrogen and then
stored at -80 °C as previously described [8]. The five tis-
sues used in this study, brain, liver, lung, muscle and
placenta, were taken from 3 male and 3 female concepti,
from each of the 4 genetic combinations (Bt x Bt, Bi x
Bt, Bt x Bi, Bi x Bi; paternal genome listed first), giving a
total of 24 samples per tissue.

RNA isolation, library preparation and sequencing
Total RNA was isolated from tissues using the RiboZero
Gold kit, in accordance with the manufacturer’s recom-
mendations (Illumina, San Diego, CA). Sequencing li-
braries were prepared with a KAPA Stranded RNA-Seq
Library Preparation Kit following the Illumina paired-
end library preparation protocol (Illumina, San Diego,
CA). Paired-end (PE) sequence reads were produced on
an Illumina NextSeq500 platform, 2 × 75 bp for placenta,
lung and brain and 2x100bp for liver and muscle.

Data analysis
FastQC [55] was used to assess read quality and adaptor
sequences were removed using cutadapt (Martin, 2011).
The UOA_Brahman and UOA_Angus genome assem-
blies (GCA_003369695.2; GCA_003369685.2) are more
contiguous that the ARS-UCD1.2 assembly and are
completely phased, for this reason, and that data were
produced from Brahman and Angus fetuses, these se-
quences were chosen as the reference. RNA seq reads
were aligned with both UOA_Brahman and UOA_Angus
assemblies and better alignment was found using UOA_
Brahman. Approximately 93.1% sequences aligned to the
Brahman genome whereas only 90.3% sequences aligned
to the Angus genome. Therefore, an extended bovine
Brahman reference genome, consisting of the autosomes
and X chromosome from UOA_Brahman_1 and the
non-PAR Y chromosome from UOA_Angus_1 was used
in the analyses. Reads were aligned to this reference
using hisat2 [56]. The number of annotated clean reads
for each gene was calculated using feature counts from
the Rsubread package [57] with gene definitions from
Refseq and Ensembl annotation v97. Genes with a count
per million (CPM) reads below 0.5 were excluded.
Multi-dimensional scaling (MDS) plots were created
using plotMDS from the limma R package. The expres-
sion of genes was normalised across the libraries by the
Trimmed Mean of M-values (TMM) [58], and potential
batch effects due to samples being sequenced in different
sequencing runs were accounted for using the Remove-
BatchEffect function in the limma package. Ignoring sex
difference, differentially expressed genes (DEGs) with a
false discovery rate (FDR) < 0.05 after down-weighting
high variation replicates, were identified using the
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limma-voom R package [59, 60]. Sequences identified as
protein-coding genes in the assembly, but lacking names,
were annotated using BLASTN with the nucleotide col-
lection nr/nt [61], selecting the top annotated gene if it
had more than 90% identity with the unknown gene.

Functional analysis of DEGs
To facilitate functional analysis of DEGs, cattle gene IDs
were converted to homologous human Ensembl gene
IDs using BioMart R packages [62]. Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway and Gene
Ontology (GO) enrichment analyses of DEGs were per-
formed using the limma R package [63]. GO terms for
molecular functions (MF), biological processes (BP) and
cellular components (CC) were interrogated. Fisher’s
exact tests were carried out and an adjusted P value cal-
culated using the Benjamini-Hochberg procedure for
multiple tests (FDR). GO and KEGG terms with an ad-
justed P value < 0.05 were considered to be significantly
enriched pathways. GSEA software was used to define
and plot the pathway networks for DEGs.

Identification of Brahman and Angus gene expression
pattern in crossbred groups
Some phenotypes of the concepti differed depending on
which was the paternal breed in Bt and Bi reciprocal
crosses, e.g. birth weight and mature size [8, 9]. We
tested whether this difference was reflected in gene ex-
pression differences during fetal development. Genes
where total abundance of transcripts was dominated by
paternal breed were defined as paternally-driven, or
when abundance was dominated by the maternal breed
to be maternally-driven. To identify such genes, we used
the difference in expression between purebred concepti
to define breed-specific transcript abundance. Specific-
ally, the absolute difference of transcript abundance in
Bt versus Bi provided a “normalization” of expected
abundance for a crossbred conceptus. Using that differ-
ence as denominator, we then used the absolute differ-
ence in abundance between the reciprocal crosses to
identify genes influenced by the parental origin.
For example, if we assume a transcript has a difference

in abundance between Angus and Brahman (Bt x Bt / Bi
x Bi) of 3.0 (i.e. higher in Angus) and the difference in
abundance in Angus-sired crossbreds compared with
Brahman-sired crossbreds (Bt x Bi / Bi x Bt) is 2.7, the
ratio of differences is 0.9 and is consistent with parental-
driven expression. We use an arbitrary threshold of > 0.8
to designate parental-driven expression. We then use the
differences in expression between the purebreds and
crossbreds to determine if the gene is maternally or pa-
ternally driven. For convenience, we define the four gen-
etic groups, i.e., the purebreds and crossbreds, by digits,
with Bt xBt, Bi x Bt, Bt x Bi, and Bi x Bi labelled as 1, 2,

3 and 4 respectively. All combinations of pairs of groups
were compared, and for each gene the above ratio was
calculated. Six combinations of expression differences
were obtained: diff1–2, diff1–3, diff1–4, diff2–3, diff2–4
and diff3–4. The threshold was adjusted to identify
genes in the following patterns:

1. Maternally driven-taurine: diff2–3/diff1–4 > 0.8,
diff1–2/diff1–4 < 0.2, diff3–4/diff1–4 < 0.2, high ex-
pression level in Bt

2. Maternally driven-indicine: diff2–3/diff1–4 > 0.8,
diff1–2/diff1–4 < 0.2, diff3–4/diff1–4 < 0.2, high ex-
pression level in Bi

3. Paternally driven-taurine: diff2–3/diff1–4 > 0.8,
diff1–3/diff1–4 < 0.2, diff2–4/diff1–4 < 0.2, high ex-
pression level in Bt

4. Paternally driven-indicine: diff2–3/diff1–4 > 0.8,
diff1–3/diff1–4 < 0.2, diff2–4/diff1–4 < 0.2, high ex-
pression level in Bi

5. Taurine dominant-Inhibition: diff2–3/diff1--4 < 0.2,
diff24/ diff1–4 < 0.8, diff3–4/diff1–4 < 0.8, high ex-
pression level in Bi

6. Taurine dominant-Activation: diff2–3/diff1–4 < 0.2,
diff2–4/ diff1–4 < 0.8, diff3–4/diff1–4 < 0.8, high ex-
pression level in Bt

7. Indicine dominant-Inhibition: diff2–3/diff1–4 < 0.2,
diff1–2/diff1–4 < 0.8, diff1–3/diff1–4 < 0.8, high ex-
pression level in Bt

8. Indicine dominant-Inhibition: diff2–3/diff1–4 < 0.2,
diff1–2/diff1–4 < 0.8, diff1–3/diff1–4 < 0.8, high ex-
pression level in Bi

Demonstrations of Bi and Bt gene expression patterns
in crossbred groups are shown in Supplementary Fig. 3.
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