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 Cattle efficiency during the finishing phase is a crucial factor in determining profit 

in the beef cattle industry. Economically relevant traits associated with efficient production 

include age at slaughter (AAS) and days to finish (DtF). Selection to reduce the number of 

days an animal takes to reach a finish endpoint would ultimately reduce production costs, 

increase net profits, and result in a more sustainable production system. However, most 

harvested animals are from commercial herds, necessitating the use of indicator traits from 

seedstock animals for selection. Potential indicator traits include ultrasound measurements 

that could be genetically correlated to DtF traits. The objectives of the current work were 

to i) estimate genetic parameters and breed effects for AAS and DtF and their relationships 

with routine carcass traits, and ii) estimate genetic correlations between AAS or DtF and 

ultrasound traits (ultrasound intramuscular fat percentage (UIMF), ultrasound rib fat 

(URF), and ultrasound ribeye area (UREA)). Performance records and pedigree 

information were obtained from U.S. Meat Animal Research Center (harvest data) and 

International Genetic Solutions (seedstock data). Univariate and bivariate animal models 

were fitted with ASREML (version 4.0) to estimate the genetic parameters. Days to finish 

and AAS are moderately to highly heritable and generally lowly correlated with routine 

carcass traits. The phenotypic variability in DtF was low. However, there was greater 



 

variability in AAS, which was due to differences in date of birth of the animals and thus 

the ages at weaning. Genetic correlations between AAS or DtF with UIMF were negligible. 

Genetic correlations were negative and low between DtF and UREA and were positive and 

moderate between AAS and UREA. Genetic correlations were negative and moderate to 

high between AAS or DtF and URF. Reducing AAS or DtF in commercial cattle is possible 

through selection in seedstock for ultrasonically measured fat. 
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CHAPTER 1 
 

LITERATURE REVIEW 
 
Introduction 
 

Days to finish is a complex trait that has taken on many different definitions. In 

order to understand the challenge of modeling days to finish, many different factors need 

to be understood and addressed. The first is how animal growth and development can be 

mathematically described. The various factors that affect growth and composition as well 

as how they can change due to selection is also crucial. Furthermore, lessons learned 

from studies that have investigated different efficiency traits in livestock species and the 

models that have been utilized to estimate genetic parameters for days to finish are also 

addressed.  

 
Cattle Industry – Market Values 
 
 Within the United States, approximately 119,000 cattle are slaughtered every day, 

with approximately 520,000 slaughtered per week, producing over 195 million kg of beef 

(USDA Livestock, Poultry, & Grain Market News, 2019). Of the cattle slaughtered in 

2019, the average live weight was 623 kg with dressing percentages around 63% for both 

steers and heifers, which resulted in dressed weights of 376 kg. Additionally, the national 

daily estimated cutout values in 2019 for choice and select grades were $213.98 and 

$207.26 per cwt, respectively, resulting in a choice-select spread of $6.72 per cwt (USDA 

Livestock, Poultry, & Grain Market News, 2019). Furthermore, the national steer and 

heifer grading percent report estimated 10.07% of carcasses graded prime, 73.14% 

graded choice, 13.98% graded select, and 2.82% graded other in June of 2020 (USDA 
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Market News, 2020). The main drivers of carcass value are the weight of the carcass, the 

amount of boneless, closely trimmed retail cuts from the high-value parts of the carcass, 

including the chuck, rib, loin, and round (yield grade), and the evaluation of factors that 

affect the palatability of meat such as carcass maturity, firmness, texture, color of lean, 

and the amount and distribution of marbling within the lean (Hale et al., 2013). Carcasses 

are discounted from the base carcass price index value for being too heavy or light in 

weight, as well as for certain combinations of quality and yield grades. In June of 2020, 

carcass weight discounts ranged -$30.71 to -$4.34 per head with 272 to 408-kg carcasses 

being ideal with no discounts (USDA Market News, 2020). For quality and yield grade 

combinations, discounts ranged from -$22.24 to -$8.98 per head due to being too low in 

quality grade or too high in yield grade, with all other combinations receiving premiums 

that ranged from $0.16 to $12.80 per head (USDA Market News, 2020). Thus, many 

factors of an animal’s carcass can greatly impact the overall profitability for producers.  

Growth and Development Curves 

Growth and development are the first biological processes that lead to the changes 

that will affect an animal’s final carcass price. Owens et al. (1993) stated most 

researchers would describe growth as the production of new cells. Yet, within the 

livestock industry, growth is typically utilized to define an increase in mass of an 

individual over a given amount of time (Owens et al., 1993; Speidel, 2011). Brody (1945) 

described development as the coordination of diverse processes that lead to an adult 

individual, while growth is the biologic synthesis, or production of new biochemical units 

(Speidel, 2011). In other words, growth is a part of development, including one or all of 



3 
 
three processes: 1) cell multiplication, 2) cell enlargement, and 3) incorporation of 

material taken from the environment (Brody, 1945). Focusing on the first two processes 

which result in an increase in animal mass, hyperplasia (increase in the number of cells) 

increases mass early in life, while hypertrophy (increase in the size of cells) occurs later 

in life. Yet, hyperplasia of adipose tissue continues throughout life (Owens et al., 1993). 

These processes can be further defined through a set of growth and aging equations.  

Samuel Brody was one of the first researchers to study the mathematical behavior 

of growth when he developed his growth and aging equations, which are still utilized 

today. Brody started by plotting weight versus age to describe the growth of individuals, 

which resulted in a sigmoidal or s-shaped curve (Brody, 1945). Although the values of 

parameters for the functions can differ, for instance the starting point, when standardized 

the shape remains consistent between breeds of the same species or even between 

species. For example, from weaning to puberty, humans have a longer time interval 

(approximately 3 to 13 years), but within livestock or laboratory animals this period is 

shorter or nonexistent. Ultimately, the differences across and within species could be due 

to differences created when weaning age is determined by production or marketing norms 

rather than by physiological status.  However, when comparisons are made between the 

growth curves of individuals, especially within a given breed or population, individual 

curves tend to be very similar in shape to another individual (Brody, 1945).   
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A growth curve can be segmented into two parts. The first part represents the time 

before puberty in which an animal increases mass at an increasing rate, also known as the 

self-accelerating phase (Owens et al., 1993; Speidel, 2011). The second part represents 

the time after puberty in which an 

animal increases mass at a decreasing 

rate, known as the self-inhibiting 

phase. Figure 1.1, adapted from 

Owens et al. (1993) and Speidel 

(2011), demonstrates the important 

parts of the growth curve. As shown, 

the plotting of weight versus age 

resulted in the common s-shaped or 

sigmoidal curve. The points represent: a) birth, b) the inflection point associated with 

puberty, and c) maturity. The self-accelerating phase is the portion between points a and 

b, or from birth to puberty. The inflection point (b) represents the point at which the 

increase in growth rate ceases but has not yet begun to decrease.  It represents when an 

animal’s gain is most rapid and economical, assuming the cost of inputs are less than the 

value of gain (Brody, 1945). Furthermore, within livestock and laboratory animals, this 

inflection point generally occurs when the animal has reached 30% of their mature 

weight, or approximately 6 months of age in cattle. The self-inhibiting phase is the 

portion between points b and c, or from puberty to maturity (Brody, 1945). During this 

phase, the animal’s body mass is still increasing, but at a decreasing rate. Yet, the reasons 

Figure 1.1. Generalized growth curve.  
Adapted from Owens et al. (1993) and 
Speidel (2011). 
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for post puberty deceleration are not well understood. From studies on isolated muscle 

and bone cultures, growth inhibition can be due to; limitation of resources, accumulation 

of products, or inhibitory factors that restrict cell division (Owens et al., 1993). Lastly, 

point c on the figure represents the animal’s mature weight or stage in life in which 

additional food resources are not converted into muscle formation, but into fat (both 

intramuscular and intermuscular) deposition (Owens et al., 1993; Speidel, 2011).  

Mathematical Representations of Growth Curve 

The growth curve shown above in Figure 1.1 has been depicted through 

mathematical equations by various researchers. Of these mathematical representations of 

the growth curve, five non-linear equations have been used to describe growth patterns in 

beef cattle—Brody, Richards, Von Bertalanffy, Gompertz, and Logistic—with as many 

as 4 parameters needed to define their shapes (Arango and Van Vleck, 2002). These 

equations will be presented, as well as, the pros and cons of these equations, based on 

summarizations by Brown et al. (1976).   

The first equation to predict body weight over time was developed by Brody 

(1945), which is applicable to many species from laboratory to livestock animals. The 

equation is represented below: 

𝑊𝑊 = 𝐴𝐴(1 − 𝐵𝐵𝑒𝑒−𝑘𝑘𝑘𝑘) 

where (W) body weight at age (t) is a function of mature weight (A), a time scale 

parameter (B), and the rate at which a logarithmic function of weight changes per unit of 

time parameter (k).  Within beef cattle studies, the Brody equation has been used 



6 
 
frequently due to it being easily computed, interpreted, and allowing for missing data 

points (Arango and Van Vleck, 2002).  

Several modifications to the Brody model have been made within the literature. 

Another model that has been frequently utilized is the Richards’ function (Richards, 

1959). The function is as follows: 

𝑊𝑊 = 𝐴𝐴(1 − 𝐵𝐵𝑒𝑒−𝑘𝑘𝑘𝑘)𝑀𝑀 

the function is very similar to the Brody equation in which the parameters are described 

above. However, the Richards’ equation has the additional parameter of M. This is a 

shape parameter, which helps to model the variable inflection point that denotes when the 

age of puberty occurs. The Richards’ function has been reported to fit data better than the 

Brody equation (DeNise and Brinks, 1985; López de Torre et al., 1992; Arango and Van 

Vleck, 2002). 

The next equation is the Von Bertalanffy equation, which has a slight variation 

from the Brody function (Brown et al., 1976). The modifications are as follows: 

𝑊𝑊 = 𝐴𝐴(1 − 𝐵𝐵𝑒𝑒−𝑘𝑘𝑘𝑘)3 

where the parameters are as described earlier for the Brody function and the form is a 

Richards’ function with M=3. Another note is that this equation has fixed points of 

inflection relative to mature size (Brown et al., 1976).  

  Another equation which is based on the Brody model is the Logistic equation. The 

Logistic equation is represented as: 

𝑊𝑊 = 𝐴𝐴(1 + 𝑒𝑒−𝑘𝑘𝑘𝑘)−𝑀𝑀 
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where the parameters are the same as within the Brody model, except for the removal of 

B, a time scale parameter, and the inclusion of parameter M from the Richards’ equation, 

which is a shape parameter. This generalized Logistic form permits a variable point of 

inflection (Nelder, 1962; Brown et al., 1976).  

Finally, the last of the highly utilized growth models is the Gompertz model 

which is described below (Winsor, 1932): 

𝑊𝑊 = 𝐴𝐴𝑒𝑒−𝐵𝐵𝐵𝐵−𝑘𝑘𝑘𝑘 

where (W) is the body weight at age (t) is a function of mature weight (A), a time scale 

parameter (B), and the rate at which a logarithmic function of weight changes per unit of 

time parameter (k) as represented in the Brody model. As with the Von Bertalanffy 

function, this model also has a fixed inflection point, although with respect to mature size 

(Brown et. al, 1976). The Gompertz model has been reported to show less bias for 

estimation of ‘A’ (López de Torre et al., 1992; Arango and Van Vleck, 2002).  

Model Comparisons. In numerous studies, the advantages and disadvantages of these 

growth models have been compared, specifically when utilizing beef cattle growth data 

(Brown et al., 1976; DeNise and Brinks, 1985; López de Torre et al., 1992; Arango and 

Van Vleck, 2002). When comparing these models, each one gives an estimate of mature 

weight (A) and rate of maturity (k). Given the k parameter, larger k values indicate early 

maturing individuals, while a smaller k value indicates late maturing individuals. In 

regard to inflection point, the point where the growth rate changes from an increasing rate 

of increase to a decreasing rate of increase, the Brody model is the only model that does 

not include a point of inflection. However, both the Von Bertalanffy and the Gompertz 
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functions have a fixed inflection point. Furthermore, the Richards and Logistic equations 

both permit a variable point of inflection, which is a function of M, the shape parameter 

(Richards, 1959; Brown et al., 1976).   

Brown et al. (1976) discussed the goodness of fit of these models. First and 

foremost, one of the issues with each function is that there are dependencies among the 

parameter values. None of the models described earlier periods of growth as sufficiently 

as later periods of growth. The Gompertz and Logistic equations overestimated the earlier 

age weights to a larger degree than the other three models. Furthermore, an important 

consideration of choosing the appropriate model is how the fit of the curves vary over 

different time periods. The Gompertz model consistently overestimated weights earlier in 

age of the animal post-weaning. The Brody model tended to fit data well after 6 months 

of age; however, prior to 6 months the model either over or underestimated weights for 

about 50% of the animals, partially due to a non-sigmodal pattern. The Von Bertalanffy 

also overestimated weights prior to 6 months of age but fit the data reasonably well for all 

other ages. Similarly, the Logistic equation overestimated earlier age weights, but 

underestimated mature weights. Finally, the Richards model, in some circumstances, has 

been shown to provide a generally unbiased fit at all ages (Brown et al., 1976). 

Another study by DeNise and Brinks (1985) focused on the comparison of the 

Brody and Richards models applied to beef cattle growth data. Although both curves fit 

the age-weight data and estimated similar mature weights (A), the fit of the Brody model 

depended on the data available. When individuals were missing birth or mature weight 

observations, the Brody model fit the data poorly when expected to project beyond this 
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range of information. The Richards model appeared to be less reliant on the range of data 

provided. Nevertheless, although the Brody model is utilized quite frequently based on 

the ease of computation and interpretation, with algorithms fitting a four-parameter 

model just as easily as a three-parameter function, the Richards model may be the best 

choice (DeNise and Brinks, 1985). López de Torre et al. (1992) also found that the 

Richards equation better estimated individual growth curves when compared to the Brody 

model. A summarization of the advantages and disadvantages of the five growth curve 

models are shown below (Table 1.1).  

Table 1.1. Advantages and disadvantages of growth curve models1. 

1Adapted from Speidel (2011).  
 

Although these growth curve models can estimate the weight of an animal at any 

given age, to improve the beef cattle population the parameters of the growth curve or 

their relative relationships may need to be changed over time. Some of the reasons for 

altering the shape of the growth curve were outlined by Fitzhugh Jr. (1976). The first 

reason mentioned to change the shape of the growth curve was to produce efficient 

Model Advantages Disadvantages 

Brody 
Fits observed data Dependent on input data 
Simple Computation Over- or underestimated mature 

weights 

Richards 

Unbiased fit for all ages Requires higher density of weight 
records 

Flexible due to additional 
parameters 

 

Von Bertalanffy Fit data well for all other ages Overestimated weights prior to 6 
months of age 

Gompertz Less bias for mature weight 
(A) estimation 

Overestimated early weights 

Logistic Flexible due to additional 
parameters 

Overestimated early weights 
Underestimated mature weights 
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growth of progeny sent to slaughter, while maintaining smaller and lower maintenance 

parents. The second and third reasons were to improve efficiency through increased 

maturation rate or to reduce dystocia by decreasing birth weight of progeny relative to 

dam size. The final reason to change the shape of the growth curve was to decrease age at 

puberty to increase fertility or decrease carcass fat at a preferred market weight. One way 

to alter the shape of the growth curve for the reasons defined above is through selection 

(Fitzhugh Jr., 1976). However, selection decisions towards altering growth also need to 

consider the costs or benefits associated with changes to body composition.  

Cattle Growth and Composition Factors 
 
 The growth curve mainly focused on the change in weight over the life cycle of 

an animal. Yet, when considering ever-increasing feed costs, the focus of beef cattle 

production is to balance growth rate and feed intake, thus maximizing the animal’s 

efficiency within the feedlot. However, there are many other biological factors that can 

impact weight gain as well as the optimum harvest endpoint of an individual. These 

biological factors include breed, sex, management, and the genetic value of the animal 

(additive and non-additive). The following sections will discuss how these factors can 

influence weight or composition of individual animals. 

Breed  
   

Rapid growth rate, due to its economic importance, has been greatly desired to 

lessen the number of days an animal spends in the feedlot. Berg and Butterfield (1976) 

stated that the shape of growth curves for different cattle breeds differ, ultimately 

affecting how quickly an animal grows. These differences in the observed growth rates 
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during the growing period, including the finishing period, result in animals who differ in 

size (Berg and Butterfield, 1976). For instance, if an animal spends more time in the self-

accelerating phase (Figure 1.1), more weight gain occurs in proportion to the animal’s 

overall body weight than when compared to animals that spend more time in the self-

inhibiting phase (Brody, 1945). Thus, animals that spend more time within the self-

accelerating phase will appear to have a faster growth rate, which could favor a given 

breed of cattle.  

 Growth rate over a given time is often summarized using average daily gain 

(ADG), or the average daily change in body weight, over that period. One of the studies 

that evaluated ADG of different breed types was Smith et al. (1976). The steers within 

this study were produced from Hereford and Angus based dams bred to seven sire breeds. 

The animals were evaluated after 180 days on feed after weaning and a subsequent 

backgrounding period. The largest and fastest gaining animals during the pre-weaning 

stage (200 days) were the Charolais and Simmental sired steers, followed by South 

Devon, Hereford, Angus, and Limousin-sired steers, while the Jersey-sired steers were 

the slowest gaining. This breed ranking was the same for 405-day weight as well, 

meaning Simmental and Charolais sired steers were the heaviest animals, and those 

animals had a 20% increase in ADG compared to the Jersey-sired steers (Smith et al., 

1976). Thus, steers with Continental sires had higher ADG than those steers sired by 

British or dairy breeds. Another study by Chewning et al. (1990) investigated the ADG of 

bulls from purebred herds for feedlot performance post-weaning. The bulls with the 

highest ADG from the first bull test were Charolais based, with Angus bulls being the 
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slowest gaining. For the second bull test, Charolais, Maine Anjou, and Simmental breeds 

were the highest, with Brangus and Beefmaster bulls having the lowest ADG (Chewning 

et al., 1990). Again, the bulls from Continental breeds had higher ADG than those from 

British or Indicus breeds. Smith and Rahnefeld (1988) had similar findings in which 

animals with a higher percentage of Continental-based breeds in their pedigree had higher 

ADG than those animals with more British-based breeds when fed to a constant number 

of days. Urick et al. (1991) found that ADG to 382 days of age was highest for 

Simmental-sired steers when compared to Red Poll-, Angus-, and Pinzguaer-sired steers, 

which were not different in gain. Furthermore, Tarentaise-sired steers were intermediate 

in ADG, but were not different when compared to all other breeds (Urick et al., 1991). 

These results showed that some Continental breeds do not always gain more than British 

breeds, as Tarentaise-sired steers were not significantly different from both the British 

and Continental-sired steers. Given the breed comparison studies mentioned previously 

summarized results from the 1970-1990s, caution should be used when making 

inferences to breed differences among current germplasm given these breeds have been 

under various degrees of selection for growth and composition traits since the time these 

studies were conducted.  

 Other studies regarding differences in ADG between breeds came to different 

conclusions compared to those discussed above. Wyatt et al. (2002) found that feedlot 

ADG did not differ among sire or dam breeds. However, this was mostly due to 

harvesting steers individually at a constant end point of 10mm backfat. However, Block 

et al. (2001) found that Hereford- and Angus-crossed steers had higher ADG than 
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Charolais-crossed steers. In another study, medium-framed Hereford steers gained 

similarly to larger-framed Charolais steers when fed a low-energy diet (McKinnon et al., 

1993). In addition to analyzing differences in ADG between cattle breeds, these studies 

included other factors such as feeding animals to a constant endpoint, as well as 

variations in diet energy level. These factors may have led to alternate conclusions 

regarding breed differences for ADG. Yet, the most important factor that could have 

impacted the change in breed rank for ADG would be genetic trends in the U.S. beef 

cattle industry over time which will be discussed in subsequent sections.  

 Evaluating animals that gain more efficiently compared to their contemporaries 

should also include how much feed intake an animal consumes to meet a particular 

amount of gain. In regard to feed efficiency, most studies chose a given endpoint to 

harvest the animals. For the studies with a constant age endpoint, the Continental breeds 

are more efficient than the British breeds in converting feed into weight gain (Smith et 

al., 1976; Chewning et al., 1990; Urick et al., 1991). However, when fed to a constant fat 

endpoint, British breeds were found to be more efficient due to their smaller size, 

enabling them to reach mature size faster, and begin converting feed into fat quicker than 

their Continental contemporaries (Smith et al., 1976; Block et al., 2001). For instance, 

Smith et al. (1976) found that Hereford-, Angus-, Jersey-, and South Devon-sired steers 

took at least 50 days less to reach 5% fat in the longissimus muscle than Limousin-, 

Charolais-, and Simmental-sired steers. Chewning et al. (1990) also found that in regard 

to feed:gain Angus bulls had the highest conversion when compared to Simmental, 

Charolais, and Maine Anjou bulls. This means it took Angus bulls more feed to increase 
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one unit of gain compared to the Continental breeds. Nonetheless, when making 

marketing decisions for a group of cattle to reach a specific endpoint, consideration of the 

breed type and the number of days allotted to reach this endpoint are crucial. Ultimately, 

British breeds of cattle will need fewer days on feed to reach a given fat endpoint (Block 

et al., 2001; Wyatt et al., 2002), while Continental breeds of cattle will need less days on 

feed to reach a given weight endpoint (Smith et al., 1976; Smith and Rahnefeld, 1988; 

Chewning et al., 1990; Urick et al., 1991). 

Table 1.2. Sire breeds used in the Germplasm Evaluation Program1 

1Adapted from Cundiff et al. (2001).  
2In Cycle V and VI, composite MARC III (¼ Angus, ¼ Hereford, ¼ Pinzgauer, and ¼ 
Red Poll) cows were also included.  
3N Red = Norwegian Red and S R&W = Swedish Red & White 

Germplasm Evaluation.  In order to reasonably compare breeds and estimate heterotic 

effects, a designed experiment is required.  Given that breeds change overtime due to 

selection, such an experiment must be long-term in order to provide current estimates of 

Cycle I 
70-72 

Cycle II 
73-74 

Cycle III 
75-76 

Cycle IV 
86-90 

Cycle V 
92-94 

Cycle VI 
97-98 

F1 crosses (Hereford or Angus dams)2 

Hereford 
Angus 
Jersey 
S. Devon 
Limousin 
Simmental 
Charolais 

Hereford 
Angus 
Red Poll 
Braunvieh 
Gelbvieh 
Maine Anjou 
Chianina 

Hereford 
Angus 
Brahman 
Sahiwal 
Pinzgauer 
Tarentaise 

Hereford 
Angus 
Longhorn 
Salers 
Galloway 
Nellore 
Shorthorn 
Piedmontese 
Charolais 
Gelbvieh 

Hereford 
Angus 
Tuli 
Boran 
Belgian Blue 
Brahman 
Piedmontese 

Hereford 
Angus 
Wagyu 
N Red3 

S R&W3 

Friesian 

3-way crosses (F1 dams)     
Hereford 
Angus 
Brahman 
Devon 
Holstein 

Hereford 
Angus 
Brangus 
Santa Gert. 
 

 

   



15 
 
breed differences to inform breed selection and breeding system designs. The Germplasm 

Evaluation (GPE) program at the Roman L. Hruska U.S. Meat Animal Research Center 

was established to investigate heterosis and breed differences for various composite 

populations. The GPE was originally conducted over a series of cycles to evaluate 

performance traits of crossbred cattle through a variety of studies. Table 1.2 shows the 

mating plans for Cycles I through VI. The base cows for this mating plan including 

Angus (453) and Hereford (217) cows that calved at 4 years of age or older. Starting in 

1992, 714 Composite MARC III (¼ Angus, ¼ Hereford, ¼ Pinzgauer, and ¼ Red Poll) 

cows were included into the plan that calved at 4 years of age or older. These cows were 

mated by artificial insemination (AI) for 21 days of the breeding season to produce 

progeny of the sire breeds listed in Table 1.2 each year (Cundiff et al., 2001).  

Breed Differences. Large differences among breeds have been found for most 

bioeconomic traits (Trail and Gregory, 1982; Cundiff et al., 1986). Marshall (1994) found 

substantial variation for sire breeds for the traits of carcass weight, fat depth, marbling 

score, ribeye area, and retail product. Charolais, Salers, Hereford Angus cross, Shorthorn, 

and Maine Anjou were ranked as the largest breeds for carcass weight, with Longhorn 

and Jersey breeds being the smallest (Marshall, 1994). Gregory et al. (1994) found that 

Simmental, Charolais, Gelbvieh, and Braunvieh were the heaviest, while Hereford was 

the lightest along with Red Poll and Angus. For fat depth, Angus, Hereford/Angus cross, 

Beefmaster, Hereford, and Santa Gertrudis had the most, while Piedmontese, Chianina, 

Charolais, and Longhorn had the least (Marshall, 1994). Angus had the largest adjusted 

fat depth followed by Hereford and Red Poll, with Simmental, Charolais, and Gelbvieh 
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having the least (Gregory et al., 1994). For marbling, Jersey, Red Angus, Angus, 

Shorthorn, and South Devon ranked the highest, while Chianina, Charolais, Brahman, 

Limousin, and Sahiwal ranked the lowest (Marshall, 1994). Again, Angus, Red Poll, 

Hereford and Pinzgauer had the highest marbling scores, while Limousin and Gelbvieh 

had the lowest (Gregory et al., 1994). The Piedmontese breed easily had the largest 

ribeye area, followed by Chianina, Charolais, Maine Anjou, and Limousin breeds 

(Marshall, 1994). Limousin and Braunvieh had the largest ribeye areas while Red Poll, 

Angus, and Hereford breeds had the smallest ribeye areas (Gregory et al., 1994). Finally, 

for the most retail product the ranking consisted of Charolais, Piedmontese, Chianina, 

Holstein, Salers, and Maine Anjou (Marshall, 1994). Breed rankings vary across traits, 

but for the fat-based traits of marbling or fat thickness British breeds tended to rank 

higher, while for lean muscle-based traits Continental breeds tended to rank higher than 

British breeds. However, as stated before, breed differences estimated from the 1990s 

may greatly differ from present day breed differences given that within-breed selection 

has occurred.   

 Albertí et al. (2008) evaluated differences in growth and carcass traits in bulls of 

European beef breeds.  The mean slaughter age of the animals within this study was 

450.6 + 39.0 days; however, Angus, South Devon, Jersey, and Limousin breeds were 

younger with ages ranging from 398-429 days. The Highland cattle breed was older at 

approximately 511 days. The heaviest breed at slaughter was Charolais at 634 kg, with 

Jersey being the lightest. Holstein, Angus, Danish Red, Simmental, Limousin, Highland, 

Casina, and Pirenaica were intermediate in slaughter weights. Carcass weight differences 
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showed a greater amount of variation between breeds. Carcass weights ranged from 

Jersey with 189.7 kg to 386.6 kg for Charolais cattle. The intermediate breeds for carcass 

weight followed the Charolais breed by Pirenaica, Limousin, Asturiana de los Valles, 

South Devon, Simmental, Piedmontese, Angus, Holstein, Highland, and Casina. For loin 

muscle depth the highest-ranking were found with Piedmontese and Asturiana de los 

Valles with more than 52 cm2, then South Devon, Pirenaica, Limousin, Charolais, 

Simmental, Angus, Holstein, Highland, and lowest for Jersey at 24.9 cm2. For fatness 

score (1-15), the highest-ranking score breeds were Angus, Danish Red, Charolais, 

Limousin, Holstein, Simmental, Highland, South Devon, Casina, Pirenaica, and Jersey. 

Piedmontese was the lowest. For fat % from the 6th rib dissection, breed rankings were 

Angus, Highland, Danish Red, Holstein, Charolais, Casina, South Devon, Limousin, 

Jersey, Simmental, Pirenaica, Asturiana de los Valles, with Piedmontese ranking the 

lowest (Albertí et al., 2008). These estimates had similar conclusions to the other studies 

discussed above as dairy and “local” breeds in this study (Jersey, Casina, Highland, 

Holstein, Danish Red, and Angus) had higher levels of fat, while Piedmontese, Asturiana 

de los Valles, Charolais, Limousin, and Simmental breeds had larger carcass weights or 

higher muscle percentages.   

Breed Changes. Genetic trends of the U.S. beef cattle breeds have been analyzed over 

time. As breeds put selection emphasis on specific traits towards a more common 

marketing scheme, differences between breeds may not be as large from year to year 

(Kuehn and Thallman, 2016). Therefore, in studies that include breed differences, the 

point of time being referenced is crucial. In general, Van Vleck and Cundiff (2004) 
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concluded that many breeds were continuing to become more similar to the Angus breed. 

In 2004, most sire breed weaning weight means were within 4.5 kg of the Angus mean. 

For yearling weight, Angus-sired calves had heavier yearling weights than 11 breeds, 

with only two breeds being heavier (Simmental and Charolais breeds; Van Vleck and 

Cundiff, 2004). In 2016, these results have stayed relatively consistent as the Angus 

breed had the greatest rate of genetic change for yearling weight with a +1.36 kg increase 

from 2014 (Kuehn and Thallman, 2016). In regard to carcass traits, breed of sire 

differences were not included in the study of Van Vleck and Cundiff (2004). In 2016, 

changes from 2014 breed of sire differences were small for marbling, ribeye area, fat 

thickness and carcass weight. However, in Limousin, the sire means for marbling 

increased (+0.06) compared to the average of the other breeds in the GPE program. More 

importantly, due to improved accuracy of sire carcass EPDs, with the greatest percentage 

of data being added to performance records on carcass traits, in the GPE program, the 

breed of sire differences are most likely to change in the future for these traits (Kuehn 

and Thallman, 2016). Thus, although breed differences are specific to a given time point 

for both carcass and growth traits, there seems to be greater genetic trends for growth 

traits in the given studies.   

Crossbreeding. In addition to selection, crossbreeding is another method of creating 

genetic improvement within livestock systems (Cundiff, 1970). Crossbreeding allows for 

the utilization of heterosis and combining desired characteristics in commercial cattle that 

may not be present in purebred parents (Cundiff, 1970). The benefits of crossbreeding 

cattle have been well documented, showing improvements in fertility, maternal ability, 
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and growth rate through heterosis (Cundiff, 1970; Fitzhugh et al., 1975; Gray et al., 

1978). Cundiff (1970) found that within crossbreds, especially crossbred cows, 

pregnancy rates could be increased by 20-25% within British breeds. Furthermore, 

crossbreeding between Zebu and British breeds resulted in higher degrees of heterosis 

than between Continental and British breeds (Cundiff, 1970; Williams et al., 2013), as 

well as for Zebu and Continental crossed breeds. Furthermore, individual heterosis was 

found to be larger for British-by-British crossbreds than British-by-Continental 

crossbreds (Williams et al., 2013). This could be due to present British breeds being 

closer to Continental breeds from gains made through selection, or that current 

Continental breeds are the result of grading up from British breeds (Williams et al., 

2013). In regard to carcass traits, British by Zebu crosses had the heaviest carcass 

weights, largest ribeye areas and most fat thickness (Williams et al., 2013), with British-

by-British crosses having the lightest carcass weights and smallest ribeye areas, and 

British-by-Continental crosses having the least fat thickness. For marbling score, 

Continental-by-Zebu had the highest marbling scores, while Continental-by-Continental 

crosses had the lowest (Williams et al., 2013). Nonetheless, commercial producers who 

would like to take advantage of the benefits of crossbreeding are met with a challenge 

when comparing bulls across breeds to be utilized in the next breeding season, as not all 

current genetic evaluations compare bulls from different breeds (Williams et al., 2013). 

This is another benefit of the GPE program as it enables the calculation of across-breed 

EPD adjustment factors for producers wanting to compare breeds for sire selection.  
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Sex 

 Other than breed type, sex can also greatly impact the growth and composition of 

an animal’s carcass. In all species, intact males tend to have more lean mass, which is 

attributed to the hormone testosterone within the body (Bredella, 2017). On the other 

hand, females tend to have more body fat than males due to the absence of testosterone 

(Bredella, 2017). Tanner et al. (1970) reported that bulls, steers, and heifers had ADG of 

1.33, 1.16, and 0.94 kg, respectively. Carcass cutability was 2.3 to 2.7% higher for bulls 

than steers and heifers which were not significantly different (Tanner et al., 1970; 

Mandell et al., 1997). Furthermore, bulls have increased rate of gain, feed efficiency, and 

yield of retail cuts when compared to steers and heifers (Hedrick, 1968; Hedrick et al., 

1969; Mandell et al., 1997; Bureš and Bartoň, 2012). However, steers and heifers are 

advantageous in marbling scores and carcass quality (Hedrick et al., 1969). Overall, bulls 

tend to gain faster, have larger carcass weights, and convert feed into more lean muscle 

mass. Steers fall in the middle of the sexes for gain, while still having increased marbling 

scores when compared to bulls. Finally, heifers gain the slowest of the sexes, but will 

have increased backfat and marbling scores when compared to bulls.  

Management 

 Decisions made by cattle producers or feedlot owners on the management of their 

cattle can greatly influence growth or carcass composition of an animal. There are several 

management decisions that can alter the growth curve of an animal. For instance, 

hormone implants and nutrition changes are the two biggest factors that could modify the 

chosen endpoint to market a given animal.  
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 Hormone implants can fall into two basic categories, estrogenic or androgenic 

compounds. Estrogenic compounds imitate the naturally occurring hormone estrogen, 

which are found in compounds estradiol benzoate, estradiol 17-beta, and zeranol (Reuter 

et al., 2005). Androgenic compounds imitate the naturally occurring hormone 

testosterone and is found in testosterone propionate or trenbolone acetate (TBA) 

implants. Another compound utilized in implants is synthetic progesterone, yet its effect 

on animals is less effective than the other two types of compounds. The implants are 

typically made of a powder that is compacted into a pellet form. This pellet is then placed 

under the skin on the back of an animal’s ear. The implant is designed to slowly release 

the compound into the animal’s bloodstream over time (Reuter et al., 2005). The main 

reason to utilize a hormonal implant in cattle production is to improve growth rates by 

10-30%, and feed efficiency by 5-15% (Galbraith, 1982; Duckett et al., 1996; Preston, 

1999; Montgomery et al., 2001; Nichols et al., 2002; Ribeiro et al., 2020).  Furthermore, 

carcass traits such as ribeye area and hot carcass weight were improved with the addition 

of an implant (Duckett et al., 1996; Preston, 1999; Roeber et al., 2000). However, in 

regard to carcass quality, marbling scores and tenderness decreased with the addition of 

hormone implants (Roeber et al., 2000; Hunter et al., 2001; Boles et al., 2009). 

Importantly, the amount of time and how aggressive the implant treatment protocol 

utilized is can affect the resulting marbling scores, as less time or lower dose implants 

can result in little to no difference in performance (Apple et al., 1991; Hunter et al., 2001; 

Montgomery et al., 2001). Overall, hormonal implants tend to increase lean muscle gain 

and depending on the treatment can reduce fat deposition.  
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 Feedlot ration composition can be categorized by concentrate level, crude protein 

concentration, and fat supplementation, including the differences in source of crude 

protein (Owens and Gardner, 2000). As concentrate level increased within the diet, 

dressing percentage, ribeye area, and marbling score increased at a decreasing rate 

(McKinnon et al., 1993; Owens and Gardner, 2000; Block et al., 2001). Higher crude 

protein levels provided larger dressing percentages and marbling scores (Owens and 

Gardner, 2000; Pethick et al., 2004). Fat supplement additions can increase dressing 

percentages, marbling score, and ribeye area (Owens and Gardner, 2000; Pethick et al., 

2004). In regard to the different use of protein sources, soybean meal has been found to 

increase ribeye area, (Loerch and Berger, 1981); however, no significant differences were 

detected when averaged across multiple studies for soybean meal, specifically (Owens 

and Gardner, 2000). The additions of various supplements or amounts of grain tend to 

increase energy levels within the diet, which increase the amount of muscle or fat gained 

by the animal. However, due to the effects of other factors such as breed or sex, 

generalizing these results is challenging.  

Genetics 

Additive. Multiple studies have concluded that most genetic variation is due to additive 

variance when using traditional pedigree information for various livestock species 

(Falconer and Mackay, 1996; Lynch and Walsh, 1988; Hill et al., 2008).  Furthermore, no 

difference was found in the accuracy of prediction across traits when models including 

only additive effects were compared to models that included additive and dominance 

effects (Bolormaa et al., 2015). In many studies, the heritabilities of growth and carcass 
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traits have been estimated. Koots et al. (1994) reported average heritabilities for post-

weaning gain, market weight, and backfat thickness as 0.31, 0.41, and 0.44, respectively. 

Gregory et al. (1995) estimated heritabilities for purebred and composite cattle for 

various growth and carcass traits, which included fitting breed groups as fixed effects. 

For purebred cattle, reported estimates were 0.33, 0.26, 0.20, 0.20, 0.45, and 0.17 for 

post-weaning ADG, slaughter weight, carcass weight, adjusted 12th rib fat, marbling 

score, and ribeye area, respectively. For composite cattle, the authors reported estimates 

of 0.48, 0.37, 0.34, 0.39, 0.55, 0.35 for post-weaning ADG, slaughter weight, carcass 

weight, adjusted 12th rib fat, marbling score, and ribeye area, respectively. Overall, there 

was no consistent tendency for heritability estimates to be higher for composites than the 

purebred animals, even though higher heritability estimates would be expected without 

accounting for heterosis as a fixed effect in the model (Gregory et al., 1995). Koch et al. 

(1982) reported heritability estimates of 0.57, 0.58, 0.41, 0.56, 0.40 for feedlot gain, retail 

product, fat thickness, ribeye area, marbling score, respectively.  

Non-additive. Although most estimates of dominance and epistatic variances have been 

reported as negligible, several studies have found small, but significant non-additive 

variance estimates (Bolormaa et al., 2015). Starting with pedigree-based studies, 

Montaldo and Kinghorn (2003) utilized a multiple-trait animal model that included fixed 

effects of direct breed, maternal additive genetic, and direct dominance effects. Direct 

dominance effects were positive for weights including birth, 200-day, and 600-day 

weight, except for 400-day weight. However, the author’s cautioned drawing conclusions 

on additive and dominance effects, and values of (co)variances among breeds, especially 
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from populations with non-designed crosses (Rodríquez-Almeida et al., 1997; Montaldo 

and Kinghorn, 2003). Abdel-Aziz et al. (2003) analyzed growth traits with a univariate 

animal model that included fixed effects of sex, contemporary group, individual 

heterosis, maternal heterosis, breed, and age of dam. They found individual and maternal 

heterosis estimates for ADG were significant (P < 0.01). Similarly, Dillard et al. (1980) 

studied growth traits with a univariate animal model including contemporary group, age 

of dam, direct and maternal breed, and direct and maternal heterosis fixed effects. They 

reported that maternal heterosis was significant (P < 0.01) for ADG; however, the effects 

were not large (0.02 kg). Furthermore, these effects only accounted for 1% of the 

phenotypic variation (Dillard et al., 1980). For genome-wide association studies on 

growth and carcass traits, Bolormaa et al. (2015) utilized the model below: 

y =  1n𝜇𝜇 + Xb + hetβ + g + d + e, 

in which y is the vector of phenotypic values, 𝟏𝟏𝐧𝐧 a vector of 1’s, μ is the overall mean, X 

is a design matrix relating observations to fixed effects of contemporary group, sex, and 

breed, b is a vector of fixed effects, het is a vector containing the average heterozygosity 

over all single nucleotide polymorphisms (SNP) for each animal, β is the regression of 

each trait on heterozygosity, g is a vector of genomic breeding values distributed as 

𝑁𝑁 ~ (0,𝐆𝐆σg2), where σg2 is additive genetic variance explained by SNPs and G is the 

genomic relationship matrix, d is a vector of dominance deviations distributed as 

𝑁𝑁 ~ (0,𝐃𝐃σd2), where σd2  is dominance variance explained by the SNP and D is the 

dominance relationship matrix, and e is the vector of random residual effects. A 

significant dominance variance (P < 0.05) was detected for intramuscular fat (%), carcass 
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retail beef yield (%), live weight at post-weaning, and live weight at feedlot exit, 

although the estimates had large standard errors and the variance explained by SNPs 

varied widely between traits. Furthermore, no difference in accuracy of predictions across 

nine traits was found when comparing a model with only additive effects fitted and a 

model with both additive and dominance effects fitted (Bolormaa et al., 2015). For 

epistatic effects, post-weaning weight had 153 significant interactions (P < 10-5) between 

the lead SNP (BTA14_25), which explained the most additive variation, and other SNPs. 

The highest number of epistatic interactions between the lead SNP and other SNPs was 

found with post-weaning weight, feedlot weight, intramuscular fat, rib fat, and residual 

feed intake (Bolormaa et al., 2015). Although significant non-additive effects were found 

in multiple studies, further evaluation is needed to determine the importance of non-

additive effects for growth traits, as well as the importance of including non-additive 

genetic effects in genetic evaluations. 

Genetic Evaluations for Efficiency  

 Reducing the number of days for an animal to reach a desired endpoint is not a 

new idea. Lindholm and Stonaker (1957) evaluated the phenotype for reducing the 

number of days it takes to reach a finish endpoint for cattle in the feedlot. A phenotypic 

correlation of -0.46 was estimated between the number of days taken to reach a given 

quality grade and net income per cwt (Lindholm and Stonaker, 1957).  Further research 

has been conducted across species for days to finish and the studies including cattle will 

be discussed hereafter.  
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 Beef cattle researchers termed “Economically Relevant Traits” as those traits that 

directly increase profit or reduce costs, which include traits such as days to slaughter 

weight, days to fat thickness, and days to finish (Golden et al., 2000). Regarding these 

traits, some studies have been conducted to evaluate their potential to respond to 

selection. McWhir and Wilton (1987) found that days to market finish when adjusted to a 

constant 7 mm backfat was highly heritable (0.80) and when adjusted to a constant 

market weight heritability increased (h2=0.90). However, the study reported large 

standard errors for these estimates. The large standard errors were determined to be from 

pooling of within breed estimates, removal of environmental variation from station tests, 

or random sampling error (McWhir and Wilton, 1987), which would impair the reliability 

of these estimates. Johnston et al. (1992) reported a heritability estimate of 0.24 for 

number of days to a constant backfat of 8.9 mm. In this study, genetic correlations were 

also estimated between carcass traits and number of days to finish. Genetic correlations 

between number of days to finish and adjusted marbling score, adjusted ribeye area, and 

adjusted carcass weight were 0.24, 0.32, and 0.29, respectively. Estimates of genetic 

correlations between number of days to finish and birth weight, weaning weight, yearling 

weight, and average daily gain were -0.09, -0.39, -0.52, and -0.38, respectively (Johnston 

et al., 1992). Speidel et al. (2016) evaluated three different traits of days to weight, days 

to ultrasound back fat, and days to ultrasound ribeye area. Heritability estimates for days 

to weight ranged from 0.54 to 0.72, with endpoints at 293 and 863 kg. For days to 

ultrasound ribeye area the heritability estimates ranged from 0.34 to 0.51, corresponding 

to ultrasound ribeye areas of 125 and 35 cm2. For days to ultrasound backfat heritability 
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estimates ranged from 0.37 to 0.55, corresponding to ultrasound backfat endpoints of 30 

and 1.53 mm, respectively (Speidel et al., 2016).    

 The swine industry has been more focused on reducing the number of days to 

finish weight. The first within-herd evaluations for days to 105 kg and days to backfat 

depth were reported in 1986, and the first across-herd evaluations in 1990 (Stewart et al., 

1991). Harris and Newman (1994) discussed indexes used by the swine industry. The 

performance of a single animal from weaning at 6.8 kg to 105 kg at market was called the 

post-weaning function. The sow-herd function represented the time from conception to 

weaning for one female but included the post-weaning function of each offspring in the 

litter. Additional indexes were developed depending on how a breed was utilized within a 

commercial crossbreeding program. A terminal sire index was the numerical 

representation of how the post-weaning function deviated from a mean of 100. Similarly, 

the maternal line index was the numerical representation of how the sow-herd function 

deviated from a mean of 100. Finally, the general-purpose index was an average of the 

maternal line and terminal sire indexes, usually employed for rotational crossbreeding 

systems. Finally, an indirect EPD for feed per kg of gain was predicted through genetic 

variances and covariances from backfat and days to 105 kg. Incorporation of a function 

for days to 105 kg or days from weaning to market was utilized in the formation of each 

of these swine indexes.   

 Genetic parameter estimates for days to finish traits for various swine breeds are 

summarized below. Kennedy et al. (1985) found that for days to 90 kg for Yorkshire, 

Landrace, Duroc, and Hampshire swine breeds the heritability estimates were 0.36, 0.40, 
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0.27, and 0.46, respectively. Furthermore, genetic correlations between backfat and days 

to 90 kg ranged from -0.43 to -0.07 for all breeds (Kennedy et al., 1985). Keele et al. 

(1988) reported heritability estimates for days to 100 kg of 0.25 + 0.01, 0.22 + 0.04, and 

0.11 + 0.05 for Duroc, Yorkshire, Hampshire breeds, respectively, and 0.22 + 0.01 

pooled across these breeds. In the National Swine Improvement Federation guidelines, it 

was concluded that for days to 104.4 kg the heritability estimate is 0.35 (Keele et al., 

1988). Kaplon et al. (1991) stated that for Duroc the heritability estimate for days to 113 

kg was 0.69. Overall, the heritability estimates for days to a given weight ranged from 

0.11 to 0.69. For both species, there seems to be sufficient genetic variation to select for a 

reduction in the number of days to a given endpoint.  

Genetic Evaluations of Beef Cattle Data 

Models Utilized 

Within the beef cattle industry, a given trait can be measured once to several 

endpoints for the purpose of genetic evaluation. Days to finish observations have been 

represented in multiple ways through past research studies. McWhir and Wilton (1987) 

and Johnston et al. (1992) had a single observation of the number of days an animal took 

to reach a finish endpoint. Days to a single endpoint was evaluated by a univariate model, 

but a multivariate model was utilized to estimate genetic correlations between days to 

finish and carcass traits However, Speidel et al. (2016) had approximately five weight or 

age observations per animal to analyze for days to a given endpoint enabling a random 

regression model. Furthermore, data summarization can provide an idea of how the data 

are distributed, which may lead to the use of survival analysis models if the data are not-
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normally distributed. Discussion of the benefits and restrictions for each of the models 

will be addressed individually, along with considerations of the distribution of the data. 

The first group of models discussed will be those that utilize normally distributed data.  

Normally Distributed Data 

Univariate models. In 1973, Henderson developed the statistical approach now widely 

used to predict additive genetic merit in livestock (Benyshek et al., 1988; Golden et al., 

2009). The mixed model procedures, which provided BLUP (Best Linear Unbiased 

Predictions) of breeding values soon became a crucial component of national beef sire 

evaluations (Henderson, 1975). In matrix notation, the animal model is represented as: 

𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍 + 𝑒𝑒, 

 

where 𝑦𝑦 is a vector of observations, 𝑋𝑋 is an incidence matrix relating fixed effects in 

vector 𝑏𝑏 to observations in 𝑦𝑦, Z is an incidence matrix relating random effects in vector 𝑢𝑢 

to observations in 𝑦𝑦, and 𝑒𝑒 is a vector of random residuals. The model specifications are: 

E(𝑦𝑦) = 𝑋𝑋𝑋𝑋, E(𝑢𝑢) = 0, E(𝑒𝑒) = 0 

and:  

V(𝑢𝑢) = A𝜎𝜎𝑢𝑢2, V(𝑒𝑒) = I𝜎𝜎𝑒𝑒2 

 

where A is Wright’s numerator relationship matrix for animals in u, and I is an identity 

matrix with order equal to the number of observations. The mixed model equations or the 

linear system to be solved for the continuously observed traits is represented below: 

 



30 
 

�
𝑋𝑋′𝑋𝑋 𝑋𝑋′𝑍𝑍
𝑍𝑍′𝑋𝑋 𝑍𝑍′𝑍𝑍 + 𝐴𝐴−1𝜎𝜎𝑒𝑒

2

𝜎𝜎𝑢𝑢2
� �𝑏𝑏𝑢𝑢� = �𝑋𝑋

′𝑦𝑦
𝑍𝑍′𝑦𝑦� 

 

From 1973 to 1984, the univariate animal model was utilized within National Cattle 

Evaluations (NCE) (Benyshek et al., 1988). However, a problem during this time was the 

performance limitations of computers. These evaluations were run on mainframe 

computers that were housed at universities or at companies with time-sharing service. 

Thus, due to being shared resources, the availability of computing resources was 

restricted.  Furthermore, at that time, computers were extremely expensive, slow, and had 

limited memory and storage capacity. A breakthrough was achieved with methodologies 

for deriving the elements of the inverse of A without computing A itself (Henderson, 

1975; Quaas, 1976). The simultaneous advancements in both computer performance and 

developments in computational methods drove the evolution from univariate models to 

multivariate models within cattle evaluations (Benyshek et al., 1988; Golden et al., 2009).   

Multivariate models. Henderson and Quaas (1976) introduced multivariate genetic 

evaluation, which predicts genetic values for multiple traits through the incorporation of 

genetic and residual covariance among the traits (Mrode, 2005). Furthermore, this model 

can be extended to analyze different measurements on an individual animal if the 

measurements are treated as separate and are genetically correlated. For instance, birth 

weight and weaning weight are analyzed using a multivariate model as separate 

measurements but genetically correlated traits, even though both observations are from a 

single animal (Speidel, 2011). The multivariate model in matrix form is shown below as 

described by Mrode (2005): 
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𝑦𝑦𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑏𝑏𝑖𝑖 + 𝑍𝑍𝑖𝑖𝑢𝑢𝑖𝑖 + 𝑒𝑒𝑖𝑖, 

Where yi is a matrix of observations for the ith trait, bi is a vector of fixed effects for the 

ith trait, ui and ei are vectors of random animal genetic and residual effects for the ith trait, 

respectively. Xi and Zi are incidence matrices relating the observations in y to the fixed 

effects in b and random animal genetic effects in u. 

 

This model can then be represented as: 

�
y1
y2� = �X1 0

0 X2
� �b1b2

� + �Z1 0
0 Z2

� �
u1
u2� + �

e1
e2� 

Random effects in the model are assumed to have means of zero and genetic variances 

equal to: 

var�
u1
u2� = �

𝜎𝜎𝑔𝑔1
2 𝜎𝜎𝑔𝑔1,𝑔𝑔2

𝜎𝜎𝑔𝑔2,𝑔𝑔1 𝜎𝜎𝑔𝑔2
2 � ⊗ A 

and residual variances equal to: 

var�
e1
e2� = �

I𝜎𝜎𝑒𝑒1
2 I𝜎𝜎𝑒𝑒1,𝑒𝑒2

I𝜎𝜎𝑒𝑒2,𝑒𝑒1 I𝜎𝜎𝑒𝑒2
2 � 

where 𝜎𝜎𝑔𝑔1
2 ,𝜎𝜎𝑔𝑔2

2  are the additive genetic variances for y1 and y2 and 𝜎𝜎𝑔𝑔1,𝑔𝑔2 ,𝜎𝜎𝑔𝑔2,𝑔𝑔1are the 

additive genetic covariances between y1 and y2, respectively. Additionally, 𝜎𝜎𝑒𝑒1
2 ,𝜎𝜎𝑒𝑒2

2 are the 

residual variances for y1 and y2 and 𝜎𝜎𝑒𝑒1,𝑒𝑒2 ,𝜎𝜎𝑒𝑒2,𝑒𝑒1are the residual covariances between y1 

and y2, respectively. Furthermore, A is Wright’s numerator relationship matrix, and I is 

an identity matrix. Henderson and Quass (1976) were the first to implement the 

multivariate BLUP model shown above to analyze a three-trait beef cattle model, 

including birth weight, weaning weight, and post-weaning gain.  
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One issue with the multivariate model is the potential for high correlations 

between successive measurements. For example, within beef cattle evaluations, weaning 

weight and yearling weight have genetic and phenotypic correlations between the two 

traits of 0.78 and 0.72, respectively (Koots, 1994). As weaning weight is a part of 

yearling weight, post-weaning gain is instead utilized for yearling weight predictions. 

These high correlations can result in two main issues for the analysis. First, the two traits 

within the model predict the same information and therefore including both traits is not 

necessary. Second, the power of various tests of significance could be affected due to the 

high correlation between the traits (Foster et al., 2006).  

Random Regression. Random regression has been utilized to analyze longitudinal data, 

or data collected over multiple time points. During the 1980’s random regression, also 

known as random coefficients models, were introduced (Henderson, 1982; Jennrich and 

Schluchter, 1986). Yet, these models were not utilized on livestock data until the 1990’s 

with the analysis of milk production records for dairy cattle by Ptak and Schaeffer 

(1993). This study grouped dairy cows into similar herd, year, and season by a general 

shape or curve for mean lactation records. However, these groupings did not represent a 

true random regression model as it did not account for the differences between individual 

animals. Soon after, Schaeffer and Dekkers (1994) were able to account for the curves of 

the lactation records within similar herd, year, and season, as well as the deviation of 

each individual animal’s lactation curve from the overall mean shape. Additionally, they 

were able to account for changes in correlation structure of repeated records on 

individuals over time (Schaeffer and Dekkers, 1994). Meyer (2004) has shown that being 



33 
 
able to account for changes in the correlation structure can increase prediction accuracy 

of the random regression model by 5.9% when compared to a multivariate model.  

The random regression model can be represented in matrix form as shown by Mrode 

(2005): 

𝐲𝐲 = 𝐗𝐗𝐗𝐗 + 𝐐𝐐𝐐𝐐 + 𝐙𝐙𝐙𝐙𝐙𝐙 + 𝐞𝐞, 

where y is a vector of repeated test day yields, X is an incidence matrix relating 

observations in y to fixed effects and fixed regression coefficients, b is a vector of 

solutions for fixed effects and fixed regressions, Q is an incidence matrix of covariates 

relating observations in y to random additive genetic regression coefficients, u is a vector 

of random additive direct genetic effects, Z is an incidence matrix of covariates relating 

observations in y to pe for each animal, e is a vector of random residuals, including 

temporary environmental effects for each observation. The variances for this model are: 

var�
𝐮𝐮
𝐩𝐩𝐩𝐩
𝐞𝐞
� = �

𝐀𝐀⊗ 𝐆𝐆 0 0
0 𝐈𝐈 ⊗ 𝐏𝐏 0
0 0 𝐈𝐈𝜎𝜎𝑒𝑒2

� 

where A is Wright’s numerator relationship matrix, G is the (co)variance matrix of the 

additive genetic random regression coefficients, I is an identity matrix, Pe is the 

(co)variance matrix of the permanent environmental random regression coefficients, and 

𝜎𝜎𝑒𝑒2is the variance of random residuals.  

Additionally, as some measurements are taken between multiple years, the random 

residual variance has been allowed to vary. The residual variance structure was modified 

from 𝐈𝐈𝜎𝜎𝑒𝑒2 as described above to: 

var[𝐞𝐞] = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝜎𝜎𝑒𝑒𝑘𝑘
2 �, 
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where k is equal to the total number of differing residual variances (Jamrozik et al., 

1997). An additional method utilized to model heterogeneous residual variances is for the 

variance to follow a continuous function (Rekaya et al., 2000). Furthermore, if 

homogeneous residual variances do not hold across all phases of production, a change in 

the model should be made to account for the changes in residual variance between 

production phases (Olori et al., 1999). The assumption of homogeneous residual 

variances biases the estimates of residual variances which results in over- or under-

estimation of heritability values for the given trait being analyzed (Olori et al., 1999). 

Although, in regard to permanent environmental variances, the assumption of 

homogeneous residual variances has no effect (López-Romero et al., 2003).   

Non-Normally Distributed  

Survival Analysis. Survival analysis is a way of analyzing traits that consist of the length 

of time between two events. As days to finish is the number of days between feedlot 

entry and harvest (two events), survival analysis can be utilized to model this trait 

(Márquez et al., 2013). This model is used to study the length of time until a part fails or 

the length of time an individual survives (Ducroqc, 1994; Beaudeau et al., 1995). Yet, 

another way of utilizing this model is when analyzing the length of time until a success 

(Kachman, 1999). The survival function is the probability that animal i survives to at 

least until time t, given its risk function, which can be represented as: 

𝑆𝑆(𝑡𝑡; 𝜂𝜂𝑖𝑖) = Pr(𝑇𝑇𝑖𝑖 ≥ 𝑡𝑡) = 1 − 𝐹𝐹(𝑡𝑡; 𝜂𝜂𝑖𝑖) =  � 𝑓𝑓(
∞

𝑡𝑡
𝑤𝑤; 𝜂𝜂𝑖𝑖) 𝑑𝑑𝑑𝑑 

where 𝑇𝑇𝑖𝑖 is the time to failure, 𝐹𝐹(𝑡𝑡; 𝜂𝜂𝑖𝑖) is the cumulative distribution for 𝑇𝑇𝑖𝑖 , and 𝑓𝑓(𝑤𝑤; 𝜂𝜂𝑖𝑖) 

is the density function for 𝑇𝑇𝑖𝑖 . As described in Kachman (1999), the challenge was to then 
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develop a reasonable model for the survival function. A hazard function was one 

approach utilized. The hazard function measures the risk of failure of an individual at 

time t, and is denoted below: 

𝜆𝜆(𝑡𝑡; 𝜂𝜂𝑖𝑖) =  lim
Δ𝑡𝑡→0

Pr (𝑇𝑇𝑖𝑖 < 𝑡𝑡 + ∆𝑡𝑡|𝑇𝑇𝑖𝑖 > 𝑡𝑡)
∆𝑡𝑡

=  
𝑓𝑓(𝑡𝑡; 𝜂𝜂𝑖𝑖) 
𝑆𝑆(𝑡𝑡; 𝜂𝜂𝑖𝑖) 

 

The hazard function can also be looked at over short periods of time (∆𝑡𝑡), or at a constant 

time (endpoint) over a given time. This function can be modeled several ways with the 

Cox (Cox, 1972) and Weibull (Kachman, 1999; Kalbfleish and Prentice, 2002) models 

being the most common (Márquez et al., 2013). The Weibull model allows for the 

flexibility to model increasing or decreasing hazards but assumes that the hazard function 

has a Weibull distribution (Kachman, 1999; Márquez et al., 2013). However, the Cox 

model makes no distributional assumption on the hazard function (Márquez et al., 2013). 

Thus, to determine the appropriate model to utilize for the hazard function, the fit of the 

models to the data should be investigated.  

Utilizing crossbred data in genetic evaluations 

 A multibreed evaluation that includes all purebred and crossbred individuals 

within a single analysis would benefit commercial producers (Arnold et al., 1992). This 

would allow for all progeny of an individual to be utilized within the evaluation, resulting 

in greater accuracies and less bias associated with breeding value estimates (Klei et al., 

1996). The first multibreed model for weight traits was conducted in 1997 by the 

American Simmental (ASA) and Canadian Simmental Associations (CSA), which was 

implemented by Cornell University (Pollak and Quaas, 1998). Soon after, the same 

collaboration worked on carcass traits that included ultrasound measurements. 
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Meanwhile the University of Georgia developed a multibreed evaluation for weight traits 

(Pollak and Quaas, 1998). Arnold et al. (1992) suggested the importance of correctly 

identifying the amount of a given breed within an individual, as their estimates will be a 

function of their breed makeup. However, breed associations do not always keep track of 

exact breed fractions, as they are often designated to a certain group by a given set of 

rules. Thus, two animals could be considered purebreds although there could be different 

amounts of other breeds within their pedigree, resulting in differing heterosis effects. 

Therefore, the correct breed fractions for each animal within a multibreed evaluation is 

crucial for accurate breeding value estimates (Arnold et al., 1992; Pollak and Quaas, 

1998). Another challenge with a multibreed evaluation is accounting for direct and 

maternal breed and heterosis effects (Williams et al., 2013). Although these effects can be 

estimated through breed association data or literature studies (Williams et al., 2013), 

there would need to be genetic connectedness between animals within the evaluation 

through similar breeds or sires (Kennedy and Trus, 1993). A strength of the GPE program 

is that it has a mating plan with the animals utilized recorded from the start of the 

evaluation program, resulting in accurate information on breed fractions and genetic 

connectedness between the management groups. This design allows for reliable 

assessments of breed and heterosis effects for genetic evaluations.    
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CHAPTER 2 

GENETIC PARAMETER ESTIMATES FOR AGE AT SLAUGHTER AND DAYS 

TO FINISH IN A MULTIBREED POPULATION 

 

ABSTRACT 

Efficiency during the finishing phase is an important trait complex in the beef cattle 

industry. Selection to improve traits that impact feedlot efficiency such as number of days 

on feed would lead to decreased production costs, increased net profit, and ultimately aid 

in improving sustainability. The objective of this study was to estimate genetic 

parameters for various definitions of days to finish (DtF), the number of days from 

weaning to slaughter and age at slaughter (AAS), the number of days from birth to 

slaughter, as well as the given carcass traits. Records were from 7,747 steers and heifers 

from the Germplasm Evaluation (GPE) project at the U.S. Meat Animal Research Center 

(USMARC). Age at weaning (AAW), DtF, AAS, and carcass/growth traits including 

adjusted fat thickness (AFT), final weight (FW), hot carcass weight (HCW), marbling 

score (MARB), and ribeye area (REA) were analyzed using univariate and bivariate 

animal models. Age at slaughter and DtF were adjusted to different carcass trait 

endpoints to depict differences in potential marketing systems. Fixed effects fitted for 

AAS, DtF, and carcass traits included contemporary group (concatenation of birth year, 

birth season, sex, and treatment group), and linear covariates of breed proportions, direct 

heterosis, and the carcass trait that represented a market endpoint (i.e., AFT, FW, HCW, 

MARB, or REA), which the others were rotated through when one carcass trait was a 
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response variable. Fixed effects for AAW, treated as a trait of the dam, included 

contemporary group (birth year and season), and linear covariates of breed proportions, 

direct heterosis, and age in days. For bivariate models, the same linear covariate of a 

given carcass trait was fitted for both models (i.e., same assumed market endpoint). 

Univariate heritability estimates for AAS, AAW, DtF, AFT, FW, HCW, MARB, and 

REA ranged from 0.52-0.59, 0.04, 0.33-0.39, 0.45-0.52, 0.34-0.55, 0.34-0.55, 0.54-0.55, 

and 0.50-0.56, respectively. Including MARB or AFT as the linear covariate led to the 

highest and lowest, respectively, heritability estimates for AAS and DtF. Depending on 

the endpoint, genetic correlations between AAS and AFT, FW, HCW, MARB, and REA 

ranged from 0.16 to 0.32, -0.08 to 0.33, 0.19 to 0.36, 0.14 to 0.20, and -0.06 to 0.13, 

respectively. Genetic correlations between DtF and AFT, MARB, and REA were 

negligible. Genetic correlations between DtF and FW and HCW ranged from -0.10 to 

0.29 and -0.37 to -0.17, respectively. Genetic correlations between AAW and DtF ranged 

from -0.64 to -0.73. Standard errors were less than 0.12 for all estimates. Phenotypic 

variability in DtF was low, and increased variability in AAS was due to differences in 

date of birth and thus AAW, which varied among calves due differences in weaning dates 

at the various management units. Overall, DtF and AAS were moderately to highly 

heritable and generally lowly correlated with routine carcass traits, while AAW was 

lowly heritable with moderate to high, negative correlations to DtF. Despite the 

encouraging heritability estimates obtained for AAS and DtF, the low degree of variation 

for DtF and the increased variation in AAS due to variation in date of birth, potentially 

hinders genetic progress.  
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INTRODUCTION 

Feedlot efficiency has been a main concern relative to environmental sustainability of the 

beef cattle industry (Opio et al., 2013). The number of days to finish and feed intake are 

economically relevant traits that ultimately affect production costs (Golden et al., 2000); 

improving these two traits would lead to increased economic returns to the production 

system (Archer et al., 1999) and decreased environmental footprint. Lindholm and 

Stonaker (1957) reported a moderate phenotypic correlation of -0.46 between the number 

of days to a given quality grade and the net income per cwt. Considerable effort and 

expense have been spent on collecting individual animal feed intake on immature 

seedstock animals as a means of producing Expected Progeny Differences (EPDs) for dry 

matter intake as indicators of feed consumption in commercial growing animals (Rolfe et 

al., 2011; Welch et al., 2012).  

Currently in the U.S., dry matter intake EPDs represent the only predictions of genetic 

merit for costs associated with finishing cattle. However, the amount of feed consumed 

only represents a portion of the variable costs of finishing cattle, with other costs 

including yardage, morbidity, and mortality (Koch et al., 1963; Anderson et al., 2005). 

The number of days cattle spend in a feedlot to reach a desired endpoint (e.g., weight, 

fatness, quality grade) is a function of the amount of feed they consume, rate of growth, 

and rate of tissue deposition (Owens et al., 1995). Reducing the amount of time on feed 

needed to reach a desired endpoint would be economically advantageous (MacNeil et al., 
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1991). However, the choice of the finish endpoint, such as weight, back fat, marbling, or 

ribeye area, depends on the biological type of cattle being marketed and the marketing 

systems available to the owners (Bullock and Logan, 1972; Amer et al., 1994; Williams 

and Bennett, 1995). Unfortunately, the number of published studies relative to days to 

finish are limited. Speidel et al. (2016) utilized random regression models for the 

prediction of the number of days to reach a given finish end point within an Angus- and 

Charolais-based dataset. The authors reported moderate to high heritability estimates for 

days to reach 513 kg, days to ultrasound ribeye area, and ultrasound back fat, which 

ranged from 0.54 to 0.74, 0.35 to 0.51, and 0.37 to 0.55, respectively. In another study, 

Berry et al. (2017) analyzed the deviation in age at slaughter adjusted to a predefined 

carcass weight and subcutaneous fat cover; heritability estimates ranged from 0.23 to 

0.26. Based on these earlier studies, there clearly is potential for selection to reduce the 

number of days an animal spends in the feedlot. The objective of this study was to 

estimate genetic parameters for age at slaughter (AAS), age at weaning (AAW), days to 

finish (DtF), and their relationships with growth and carcass traits including adjusted fat 

thickness (AFT), adjusted based on the fat covering over the outside of the carcass, final 

live weight (FW), hot carcass weight (HCW), marbling score (MARB), and ribeye area 

(REA) in a multibreed beef cattle population.   
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MATERIALS AND METHODS 

Animals 

Data were recorded from steers and heifers (n=7,747) from 4,109 dams from the U.S. 

Meat Animal Research Center (USMARC) Germplasm Evaluation (GPE) project near 

Clay Center, Nebraska, during the years 2007 to 2017. The pedigree included 85,872 

animals. Within each year, spring and fall calving seasons were observed. Multiple 

weaning dates within a year-season combination occurred due to different management 

units (pole sheds) at USMARC weaning calves on separate days. Calves from a single 

pole shed were then allocated to multiple feedlot pens with calves from other pole sheds, 

so as not to confound feedlot pen and pole shed. After weaning, calves were placed into a 

feedlot where they received a starter ration from 6 to 19 weeks and were then transitioned 

to a finishing ration for the duration of time until harvest. A feedlot pen was managed as 

one pen with all animals in a pen harvested at the same time. During the time on feed, 

some cattle were allocated to experimental studies. These experimental studies included 

treatments such as implants, beta agonists, and probiotics. As these treatments can alter 

the amount of feed converted to lean muscle mass, experimental treatment was 

considered as part of the contemporary group definition. Harvest was determined by 

visual inspection of group averages for weight and fat endpoints for a given pen. All 

animal procedures followed USMARC standard operating procedure and cattle were 

treated according to Federation of Animal Science Societies guidelines (FASS, 2010).  

The breeds evaluated were part of the continuous GPE project, which periodically 

samples artificial insemination (AI) sires of the 18 most influential breeds in the U.S. 
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with genetic evaluation programs (Angus, Beefmaster, Brahman, Brangus, Braunvieh, 

Charolais, ChiAngus, Gelbvieh, Hereford, Limousin, Maine Anjou, Red Angus, Salers, 

Santa Gertrudis, Shorthorn, Simmental, South Devon, and Tarentaise) that conduct 

national cattle evaluations (Snelling et al., 2019). Continuous GPE included a fall calving 

season, whereas the early iterations of the GPE program only had spring calving seasons. 

In each breeding season, the females were designated into two groups; the first group 

received a single service AI mating followed by natural service, while the other group 

were bred using natural service for the full season. Cows were exposed to F1 and 

purebred bulls developed in GPE, and occasionally some Angus calving ease bulls from 

the USMARC selection program (Bennett, 2008) as heifers. Matings were designated by 

breed composition groups (F1, 50% to <75%; backcross, 75% to <87.5%; and purebred, 

>87.5% of any single breed) and birth year x season (Snelling et al., 2019).  

 

Traits 

Before harvest, a final live weight (FW) was recorded. At harvest, hot carcass weight 

(HCW), ribeye area (REA), fat thickness (AFT), which was adjusted based on the 

distribution of fat elsewhere on the carcass, and marbling score (MARB), where 400 = 

Slight00 and 500 = Small00, were collected. Age at weaning (AAW) was defined as the 

number of days from birth until weaning. However, given replacement heifers were 

retained and were often born earlier in the calving season, deviations of animal age from 

the average age of animals weaned on the same date were used as phenotypes for AAW. 

Days to finish (DtF) was calculated as the number of days from weaning until harvest. 
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The age at slaughter (AAS) is the sum of AAW and DtF and was calculated as the 

number of days from birth until harvest.  

 

Statistical Analysis 

Variance components and fixed effects were estimated using ASReml version 4.0 

(Gilmour et al., 2015).  

Univariate Animal Models. The univariate animal models used to analyze AAS, DtF, and 

carcass traits is shown below: 

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 + 𝒆𝒆, 

where y is a vector of phenotypic records, X is a design matrix relating the observations 

to the fixed effects in b, Z is an incidence matrix relating observations to random additive 

genetic effects in u, and e is a vector of random residuals. The random additive genetic 

effects and residuals were assumed to be distributed ~𝑁𝑁(0,𝑨𝑨𝜎𝜎𝑎𝑎2) and ~𝑁𝑁(0, 𝑰𝑰𝜎𝜎𝑒𝑒2), 

respectively where A was the numerator relationship matrix, and I was an identity matrix. 

Fixed effects included contemporary group (concatenation of birth year, birth season, sex, 

and treatment group), and linear covariates of direct heterosis, breed proportions, and the 

chosen endpoint (i.e., AFT, FW, HCW, MARB, REA, or AAS. For the univariate animal 

models used to analyze the carcass traits, the fixed effects described above were utilized 

with the linear covariates of the chosen endpoint rotating among the remaining carcass 

traits.  

The univariate animal model to analyze AAW is shown below: 

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 + 𝑾𝑾𝑾𝑾𝑾𝑾 + 𝒆𝒆, 
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where y is a vector of phenotypic records, X is a design matrix relating the observations 

to the fixed effects in b, Z is an incidence matrix relating observations to random additive 

genetic effects in u, W is an incidence matrix relating observations to permanent 

environmental effects in pe, and e is a vector of random residuals. The random additive 

genetic effects, permanent environmental effects, and residuals were assumed to be 

distributed ~𝑁𝑁(0,𝑨𝑨𝜎𝜎𝑎𝑎2), ~𝑁𝑁(0, 𝑰𝑰𝜎𝜎𝑝𝑝𝑝𝑝2 ), and ~𝑁𝑁(0, 𝑰𝑰𝜎𝜎𝑒𝑒2), respectively. Age at weaning was 

treated as a trait of the cow and the model included fixed effects of contemporary group 

(concatenation of calf’s birth year and birth season), as well as linear covariates of direct 

heterosis, breed proportions, and cow age in days.  

Bivariate Animal Models. The bivariate animal models used to analyze AAS or DtF with 

carcass traits is shown below: 

𝒚𝒚𝑖𝑖 = 𝑿𝑿𝑖𝑖𝒃𝒃𝑖𝑖 + 𝒁𝒁𝑖𝑖𝒖𝒖𝑖𝑖 + 𝒆𝒆𝑖𝑖, 

where yi is a vector containing records on the ith trait, Xi is a design matrix relating the 

observations to the fixed effects in bi, Zi is an incidence matrix relating observations to 

random additive genetic effects in ui, and ei is a vector of random residuals. The genetic 

effects were assumed to be distributed multivariate normal with mean 0 and (co)variance 

Φ ⊗ A, where ⊗ is the Kronecker product, Φ is the additive genetic (co)variance 

matrix, and A is the numerator relationship matrix. The residuals were assumed to be 

distributed multivariate normal with mean 0 and variance 𝑹𝑹⊗ I, where 𝑹𝑹 was the 

residual (co)variance matrix and 𝑰𝑰 was an identity matrix. For a given bivariate analyses, 

both traits were adjusted to the same carcass endpoint. 
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The relationship between AAW and DtF was also investigated with the bivariate model 

defined below: 

𝒚𝒚𝑖𝑖 = 𝑿𝑿𝑖𝑖𝒃𝒃𝑖𝑖 + 𝒁𝒁𝑖𝑖𝒖𝒖𝑖𝑖 + 𝑾𝑾𝑾𝑾𝑾𝑾 + 𝒆𝒆𝑖𝑖, 

where yi is a vector containing records on the ith trait, Xi is a design matrix relating the 

observations to the fixed effects in bi, Zi is an incidence matrix relating observations to 

random additive genetic effects in ui, W is an incidence matrix relating observations to 

permanent environmental effects in pe for AAW, and ei is a vector of random residuals. 

The residual effects between AAW and DtF were assumed uncorrelated.  Models for 

AAW and DtF included the same fixed effects as described in the univariate animal 

models. 

  

RESULTS & DISCUSSION 

Summary statistics of the growth and carcass traits are reported in Table 2.1.  

Heritability estimates 

Univariate heritability estimates for AAS and DtF ranged from 0.52-0.59 and 0.33-0.39, 

respectively (Table 2.2). Heritability estimates for DtF were lower than estimates for 

AAS. A covariate of AFT led to the lowest heritability estimates for both AAS and DtF 

(Table 2.2). Berry et al. (2017) reported lower heritability estimates for AAS ranging 

from 0.23 to 0.26. Berry et al. (2017) modelled age at slaughter fitting fixed effects of 

contemporary group, sex, carcass weight, and carcass fat. Residuals from this model were 

then used as response variables in an animal model to estimate genetic parameters.  In 

either case, the lower heritability estimates reported by Berry et al. (2017) could be a 
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function of the population used and the fact that the authors simultaneously adjusted 

records for both carcass weight and fat cover. Relative to DtF, Speidel et al. (2016) 

reported heritability estimates for days to reach 513 kg, days to ultrasound ribeye area, 

and ultrasound back fat which ranged from 0.54 to 0.74, 0.35 to 0.51, and 0.37 to 0.55, 

respectively, using random regression models applied to data from Angus and Charolais 

based animals. The fact that these estimates were obtained with random regression 

models over a larger time period could account for the differences observed, as animals 

may be within different points of their growth curve, resulting in different heritability 

estimates. McWhir and Wilton (1987) reported heritability estimates for days to 7 mm 

subcutaneous back fat depth of 0.65 for a data set with various breeds of cattle, while 

Johnston et al. (1992) reported an estimate of heritability of 0.24 for days to 8.9 mm back 

fat in a Charolais population. Previous estimates of heritability are within the same ranges 

reported herein except for the estimate of DtF adjusted to a HCW endpoint, which was 

lower than the reported range from Speidel et al. (2016).  

The heritability estimate for AAW was 0.04 (Table 2.2) which falls within the range of 

estimates reported by other studies. Snelling et al. (2019) reported heritability estimates 

for calf weaning age by parity from random regressions models which ranged from 0.03 

for 2-year-old dams to 0.50 for 12-year-old dams. Much of the data used herein was also 

used by Snelling et al. (2019) and most cows were between ages 2 and 5. The age at 

weaning of the calf is affected by calf date of birth and date of weaning. The birth date of 

the calf is dependent on when a cow conceives and gestation length. Days to calving is 

the interval of time from exposure to calving for the cow (Johnston and Bunter, 1996). 
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Other studies reported heritability estimates for days to calving from 0.06 to 0.11 

(Donoghue et al., 2004; Minick-Bormann and Wilson, 2010). Heritability estimates for 

AFT, FW, HCW, MARB, and REA can be found in Table 2.3 and were within the 

ranges reported by Koots et al. (1994). One note is that when a weight trait was a 

response variable and had a weight trait fitted as a covariate, the additive genetic 

variation and residual variation decreased, as well as the heritability. The variation that 

was left over would have been association with non-carcass weight gain. 

Genetic correlation estimates 

Genetic correlations between AAS and carcass traits are reported in Table 2.4. Genetic 

correlation estimates between AAS and AFT or MARB ranged from 0.16 to 0.32 and 

0.14 to 0.20, respectively, depending on the chosen endpoint for AAS. These correlations 

suggest that the younger an animal is at harvest, the less back fat or marbling the animal 

will have. In the growth curve, fat deposition occurs last when compared to bone or 

muscle, in agreement with these estimates (Berg and Butterfield, 1976). Genetic 

correlations between AAS and REA ranged from -0.06 to 0.18, with the carcass weight 

variable as the covariates being close to zero, suggesting REA is independent of AAS. 

For AAS and FW or HCW, genetic correlations ranged from -0.08 to 0.33 and 0.19 to 

0.36, respectively.  

Genetic correlations between DtF and carcass traits are found in Table 2.5. Genetic 

correlations between DtF and AFT, MARB, and REA were near zero. However, genetic 

correlations of DtF with FW and HCW ranged from -0.10 to 0.29 and -0.37 to -0.17, 

respectively. The only positive genetic correlation was between DtF and FW with a HCW 
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covariate (0.29). This estimate implies a positive relationship between the non-carcass 

weight gain and increased days on feed. However, the -0.37 genetic correlation between 

DtF and HCW with a FW covariate implies increased carcass weight, while a decrease in 

days on feed. Genetic correlation estimates between AAS or DtF and carcass traits have 

not been previously reported for beef cattle. In swine Kennedy et al. (1985) reported 

genetic correlation estimates between back fat and days to 90 kg ranging from -0.43 to -

0.05 for various breeds. Bryner et al. (1992) estimated genetic correlations between back 

fat and average daily gain of approximately zero for Yorkshire boars.  

Genetic correlations between AAW and DtF adjusted to given endpoint are found in 

Table 2.6. Depending on the chosen endpoint for DtF, the genetic correlations between 

AAW and DtF ranged from -0.73 to -0.64. These high, negative genetic correlations 

suggest that older animals at weaning require fewer days to reach a finish endpoint. 

Given AAW and DtF are components of AAS, reducing the length of time spent in one 

phase (i.e., pre-weaning) would increase the length of time spent in the second phase (i.e., 

finishing). Genetic correlation estimates between AAW and DtF have not been 

previously reported for beef cattle. 

In general, phenotypic variability was low for DtF, with respect to AAS, ranging from 

19.24 to 21.96 days2, with a CV of 0.04-0.05 compared to 0.12-0.11 for AAS depending 

on the carcass trait covariate that was fitted (Table 2.1). Animals entered the feedlot and 

were harvested at based on an average weight or fat whilst maintaining an industry 

acceptable average number of days on feed, reducing the total amount of phenotypic 

variation observed.  Given that weaning date varied across management units at the 
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USMARC within a year-season, within contemporary group variation for DtF is at least 

partially attributable to differences in weaning date. Increased phenotypic variation in 

AAS was observed, ranging from 179 to 192 days2, depending on the carcass trait 

covariate that was fitted. As AAS is comprised of the two components of AAW and DtF, 

the increased variation results from AAW, or the differences in date of birth of the calf. 

The relatively low variation observed in DtF, and its origin, make this trait complex 

problematic for inclusion in routine genetic evaluations. Data for routine genetic 

evaluations would likely come from limited cull seedstock animals and predominately 

from commercial animals where sire was known (i.e., sire testing programs or part of 

breed organization marketing programs).  In the case of data from commercial entities, 

the sources of variation contributing to DtF and AAS in field data could not be 

deconstructed to appropriately account for differences in date of birth or weaning. Given 

AAS in a calf-fed system is comprised of AAW and DtF, it is possible that selection to 

reduce AAS, absent simultaneous consideration of AAW, could indirectly reduce AAW 

leading to sub-fertile females (Johnston and Bunter, 1996; Minick-Bormann and Wilson, 

2010). Collectively, these issues may prohibit the inclusion of either DtF or AAS in 

genetic evaluations.   

Due to the low variability observed in this dataset, breed effect estimates for AAS and 

DtF were less than the standard errors and thus were not reported. Estimates (SE) of 

direct heterosis for DtF and AAS ranged from -0.60 to -0.95 (0.19) day and -6.62 to -8.37 

(0.56) day, respectively, suggesting that crossbred animals will require fewer days to 

reach a desired finish endpoint.  
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Implications 

The heritability estimates obtained from the current study for AAS and DtF suggest that 

selection could be utilized to reduce the age at slaughter or the number of days on feed to 

reach a desired endpoint. However, the general lack of variation for days to finish and 

that variation that exists for both DtF and AAS includes components related to weaning 

age and date make the utility of DtF and AAS in routine genetic evaluations questionable. 

It is evident that in calf-fed systems the age at which an animal is harvested is dictated by 

the age at which they were weaned and the number of days they were in the feedlot. The 

two traits appear to be favorably correlated (negative correlation), but selection for 

reduced age at slaughter without consideration of the components could lead to an 

indirect and undesirable decrease in the age at weaning. 
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TABLES 

Table 2.1. Summary statistics for growth and carcass traits  

 

 

 

 
 

 

 

1AAS = age at slaughter, the number of days from birth until harvest (days), AAW = age 
at weaning, the number of days from birth until weaning (days), AFT = adjusted fat 
thickness (cm), DtF = days to finish, the number of days from weaning until harvest (days), 
FW = final live weight (kg), HCW = hot carcass weight (kg), MARB = score where 400 = 
Slight00 and 500 = Small00 (USDA, 1997), REA = ribeye area (cm2).  
  

Trait1 Mean (SD) CV 
 Steers Heifers Steers/Heifers 

AAS 451  (18.4) 433  (20.4) 0.04/0.05 
AAW 164  (18.9) 151  (17.0) 0.12/0.11 
AFT 1.33 (0.48) 1.25 (0.44) 0.36/0.35 
DtF 287  (11.0) 281  (15.2) 0.04/0.05 
FW 626  (60.8) 548  (51.4) 0.10/0.09 

HCW 395  (39.9) 348  (33.8) 0.10/0.10 
MARB 506  (77.0) 501  (66.5) 0.15/0.13 
REA 87.9 (10.2) 88.4 (9.58) 0.12/0.11 
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Table 2.2. Genetic parameter estimates1 (SE) for univariate models for age at slaughter 
(AAS2), age at weaning (AAW3), and days to finish (DtF4)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1ℎ2= heritability, 𝜎𝜎𝑎𝑎2= additive genetic variance, 𝜎𝜎𝑒𝑒2= residual variance.  
2AAS = age at slaughter, the number of days from birth until harvest (days).  
3AAW = age at weaning, the number of days from birth until weaning (days). 
4DtF = days to finish, the number of days from weaning until harvest (days). 
5AFT = adjusted fat thickness (cm), FW = final live weight (kg), HCW = hot carcass weight 
(kg), MARB = score where 400 = Slight00 and 500 = Small00(USDA, 1997), REA = ribeye 
area (cm2). 

Response 
Trait Covariate4    

ℎ2 𝜎𝜎𝑎𝑎2 𝜎𝜎𝑒𝑒2 𝜎𝜎𝑝𝑝𝑝𝑝2  

AAS 

AFT 0.52 (0.04) 95.0 (7.45) 86.1 (6.05) - 
FW 0.57 (0.04) 103 (7.52) 78.6 (5.99) - 

HCW 0.56 (0.04) 100 (7.39) 78.3 (5.90) - 
MARB 0.59 (0.04) 110 (7.89) 77.6 (6.24) - 
REA 0.59 (0.04) 112 (8.04) 78.4 (6.35) - 
None 0.59 (0.04) 113 (8.10) 78.2 (6.39) - 

DtF 

AFT 0.33 (0.03) 6.41 (0.58) 12.83 (0.53) - 
FW 0.38 (0.03) 8.29 (0.70) 13.65 (0.61) - 

HCW 0.38 (0.03) 8.37 (0.70) 13.59 (0.61) - 
MARB 0.39 (0.03) 8.40 (0.70) 13.40 (0.61) - 
REA 0.38 (0.03) 8.31 (0.70) 13.63 (0.61) - 
None 0.38 (0.03) 8.34 (0.70) 13.61 (0.60) - 

AAW None 0.04 (0.01) 7.39 (2.76) 184.8 (3.83) 4.73 (3.53) 
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Table 2.3. Genetic parameter estimates1 (SE) for univariate models for carcass traits2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1ℎ2=heritability, 𝜎𝜎𝑎𝑎2= additive genetic variance, 𝜎𝜎𝑒𝑒2= residual variance.  
2AFT = adjusted fat thickness (cm), FW = final live weight (kg), HCW = hot carcass weight 
(kg), MARB = score where 400 = Slight00 and 500 = Small00 (USDA, 1997), REA = ribeye 
area (cm2)

Response 
Trait Covariate   

ℎ2  𝜎𝜎𝑎𝑎2 𝜎𝜎𝑒𝑒2 

AFT 

Age 0.48 (0.04) 0.08 (0.01) 0.08 (0.005) 
FW 0.52 (0.04) 0.07 (0.01) 0.07 (0.005) 

HCW 0.52 (0.04) 0.07 (0.01) 0.07 (0.005) 
MARB 0.49 (0.04) 0.07 (0.01) 0.08 (0.005) 
REA 0.45 (0.04) 0.07 (0.01) 0.08 (0.005) 
None 0.50 (0.04) 0.08 (0.01) 0.08 (0.005) 

FW 

AFT 0.55 (0.04) 1341 (101) 1087 (81.5) 
Age 0.51 (0.04) 1313 (104) 1287 (84.8) 

HCW 0.34 (0.03) 88.8 (9.18) 176 (8.15) 
MARB 0.53 (0.04) 1432 (110) 1277 (88.8) 
REA 0.53 (0.04) 1267 (96.9) 1112 (78.2) 
None 0.53 (0.04) 1453 (112) 1293 (85.3) 

HCW 

AFT 0.55 (0.04) 588 (44.3) 473 (35.6) 
Age 0.50 (0.04) 578 (45.9) 578 (37.6) 
FW 0.34 (0.03) 40.2 (4.15) 79.5 (3.68) 

MARB 0.53 (0.04) 641 (49.1) 575 (39.8) 
REA 0.53 (0.04) 537 (41.1) 482 (33.3) 
None 0.53 (0.04) 655 (50.2) 584 (40.6) 

MARB 

AFT 0.55 (0.03) 2092 (153) 1747 (123) 
Age 0.54 (0.03) 2211 (161) 1904 (130) 
FW 0.54 (0.03) 2249 (163) 1898 (131) 

HCW 0.54 (0.03) 2236 (162) 1891 (130) 
REA 0.54 (0.03) 2253 (165) 1942 (133) 
None 0.54 (0.03) 2281 (165) 1927 (133) 

REA 

AFT 0.50 (0.04) 36.0 (2.95) 36.0 (2.42) 
Age 0.55 (0.04) 42.9 (3.19) 34.5 (2.55) 
FW 0.56 (0.04) 37.7 (2.79) 29.6 (2.23) 

HCW 0.55 (0.04) 35.4 (2.63) 28.5 (2.11) 
MARB 0.55 (0.04) 42.8 (3.20) 34.7 (2.57) 
None 0.56 (0.04) 43.3 (3.21) 34.5 (2.57) 
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Table 2.4. Genetic parameter estimates1 (SE) for multivariate models for age at slaughter 
(AAS2) and carcass traits3 

1𝑟𝑟𝑔𝑔= additive genetic correlation, 𝑟𝑟𝑟𝑟 = residual genetic correlation, ℎ12= heritability of trait 
1, ℎ22= heritability of trait 2.  
2AAS = age at slaughter (days), the number of days from birth until harvest. 
3AFT = adjusted fat thickness (cm), FW = final weight (kg), HCW = hot carcass weight 
(kg), MARB = score where 400 = Slight00 and 500 = Small00 (USDA, 1997), REA = ribeye 
area (cm2).  

Response Trait 
Covariate     

1 2 𝑟𝑟𝑔𝑔 𝑟𝑟𝑟𝑟 ℎ12 ℎ22 

AAS AFT 

None 0.27 (0.05) 0.07 (0.05) 0.59 (0.04) 0.50 (0.04) 
FW 0.18 (0.05) 0.02 (0.05) 0.57 (0.04) 0.52 (0.04) 

HCW 0.16 (0.05) 0.00 (0.05) 0.56 (0.04) 0.52 (0.04) 
MARB 0.21 (0.05) 0.05 (0.05) 0.59 (0.04) 0.49 (0.04) 
REA 0.32 (0.05) 0.07 (0.05) 0.59 (0.04) 0.46 (0.04) 

AAS FW 

None 0.33 (0.05) 0.11 (0.05) 0.59 (0.04) 0.53 (0.04) 
AFT 0.25 (0.05) 0.09 (0.05) 0.53 (0.04) 0.55 (0.04) 
HCW -0.08 (0.06) -0.03 (0.04) 0.56 (0.04) 0.34 (0.03) 

MARB 0.31 (0.05) 0.10 (0.05) 0.59 (0.04) 0.53 (0.04) 
REA 0.31 (0.05) 0.11 (0.05) 0.59 (0.04) 0.53 (0.04) 

AAS HCW 

None 0.36 (0.05) 0.13 (0.05) 0.59 (0.04) 0.53 (0.04) 
AFT 0.28 (0.05) 0.12 (0.05) 0.53 (0.04) 0.55 (0.04) 
FW 0.19 (0.06) 0.09 (0.04) 0.57 (0.04) 0.34 (0.03) 

MARB 0.34 (0.05) 0.12 (0.05) 0.59 (0.04) 0.53 (0.04) 
REA 0.35 (0.05) 0.13 (0.05) 0.59 (0.04) 0.53 (0.04) 

AAS MARB 

None 0.18 (0.05) 0.10 (0.05) 0.59 (0.04) 0.55 (0.03) 
AFT 0.15 (0.05) 0.08 (0.05) 0.52 (0.04) 0.55 (0.03) 
FW 0.15 (0.05) 0.09 (0.05) 0.57 (0.04) 0.55 (0.03) 

HCW 0.14 (0.05) 0.09 (0.05) 0.56 (0.04) 0.55 (0.03) 
REA 0.20 (0.05) 0.10 (0.05) 0.59 (0.04) 0.54 (0.03) 

AAS REA 

None 0.10 (0.05) 0.04 (0.06) 0.59 (0.04) 0.56 (0.04) 
AFT 0.18 (0.06) 0.04 (0.05) 0.52 (0.04) 0.50 (0.04) 
FW -0.02 (0.05) -0.01 (0.05) 0.57 (0.04) 0.56 (0.04) 

HCW -0.06 (0.05) -0.02 (0.05) 0.56 (0.04) 0.56 (0.04) 
MARB 0.13 (0.05) 0.02 (0.05) 0.59 (0.04) 0.55 (0.04) 
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Table 2.5. Genetic parameter estimates1 (SE) for multivariate models for days on feed 
(DtF2) and carcass traits3 

1 𝑟𝑟𝑔𝑔= additive genetic correlation, 𝑟𝑟𝑟𝑟 = residual genetic correlation, ℎ12= heritability of trait 
1, ℎ22= heritability of trait 2.  
2DtF = days on feed (days), the number of days from feedlot entry until harvest. 
3AFT = adjusted fat thickness (cm), FW = final weight (kg), HCW = hot carcass weight 
(kg), MARB = score where 400 = Slight00 and 500 = Small00 (USDA, 1997), REA = ribeye 
area (cm2

Response Trait 
Covariate     

1 2 𝑟𝑟𝑔𝑔 𝑟𝑟𝑟𝑟 ℎ12 ℎ22 

DtF AFT 

None -0.05 (0.06) 0.10 (0.04) 0.38 (0.03) 0.50 (0.04) 
FW  0.01 (0.06) 0.08 (0.04) 0.38 (0.03) 0.52 (0.04) 

HCW  0.04 (0.06) 0.03 (0.04) 0.38 (0.03) 0.52 (0.04) 
MARB -0.05 (0.06) 0.06 (0.04) 0.39 (0.03) 0.49 (0.04) 
REA -0.06 (0.06) 0.11 (0.04) 0.38 (0.03) 0.45 (0.04) 

DtF FW 

None -0.18 (0.06) 0.09 (0.04) 0.38 (0.03) 0.53 (0.04) 
AFT -0.10 (0.06) 0.02 (0.04) 0.34 (0.03) 0.55 (0.04) 
HCW  0.29 (0.07) -0.25 (0.03) 0.38 (0.03) 0.33 (0.03) 

MARB -0.18 (0.06) 0.07 (0.04) 0.39 (0.03) 0.53 (0.04) 
REA -0.16 (0.06) 0.09 (0.04) 0.38 (0.03) 0.53 (0.04) 

DtF HCW 

None -0.26 (0.06) 0.19 (0.04) 0.39 (0.03) 0.53 (0.04) 
AFT -0.17 (0.06) 0.13 (0.04) 0.34 (0.03) 0.55 (0.04) 
FW -0.37 (0.07) 0.29 (0.03) 0.37 (0.03) 0.33 (0.03) 

MARB -0.26 (0.05) 0.17 (0.04) 0.39 (0.03) 0.53 (0.04) 
REA -0.24 (0.06) 0.20 (0.04) 0.38 (0.03) 0.53 (0.04) 

DtF MARB 

None 0.01 (0.06) 0.15 (0.04) 0.38 (0.03) 0.55 (0.03) 
AFT 0.02 (0.06) 0.11 (0.04) 0.33 (0.03) 0.55 (0.03) 
FW 0.03 (0.06) 0.14 (0.04) 0.38 (0.03) 0.55 (0.03) 

HCW 0.05 (0.05) 0.13 (0.04) 0.38 (0.03) 0.55 (0.03) 
REA 0.01 (0.06) 0.16 (0.04) 0.38 (0.03) 0.54 (0.03) 

DtF REA 

None -0.10 (0.06) 0.04 (0.04) 0.38 (0.03) 0.56 (0.04) 
AFT -0.02 (0.06) 0.04 (0.04) 0.33 (0.03) 0.50 (0.04) 
FW -0.03 (0.06) 0.00 (0.04) 0.38 (0.03) 0.56 (0.04) 

HCW  0.01 (0.06) -0.05 (0.04) 0.38 (0.03) 0.56 (0.04) 
MARB -0.09 (0.06) 0.04 (0.04) 0.39 (0.03) 0.55 (0.04) 
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Table 2.6. Genetic parameter estimates1 (SE) for multivariate models for age at weaning 
(AAW2) and days to finish (DtF3) 

1𝑟𝑟𝑔𝑔= additive genetic correlation, 𝑟𝑟= repeatability for trait 1, ℎ12= heritability of trait 1, ℎ22= 
heritability of trait 2.  
2AAW = age at weaning (days), the number of days from birth until weaning. 
3DtF = days to finish (days), the number of days from weaning until harvest. 
4AFT = adjusted fat thickness (cm), FW = final weight (kg), HCW = hot carcass weight 
(kg), MARB = score where 400 = Slight00 and 500 = Small00 (USDA, 1997), REA = ribeye 
area (cm2). 
 
  

Response Trait Covariate 
for 24 

    
1 2 𝑟𝑟𝑔𝑔 𝑟𝑟 ℎ12 ℎ22 

AAW DtF 

None -0.69 (0.11) 0.07 (0.01) 0.06 (0.01) 0.39 (0.03) 
AFT -0.64 (0.12) 0.07 (0.01) 0.05 (0.01) 0.38 (0.03) 
FW -0.68 (0.11) 0.07 (0.01) 0.05 (0.01) 0.39 (0.03) 

HCW -0.70 (0.11) 0.07 (0.01) 0.06 (0.01) 0.39 (0.03) 
MARB  -0.73 (0.11) 0.07 (0.01) 0.06 (0.01) 0.40 (0.03) 
REA -0.69 (0.11) 0.07 (0.01) 0.06 (0.01) 0.39 (0.03) 
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CHAPTER 3 

GENETIC CORRELATION ESTIMATES BETWEEN ULTRASOUND TRAITS 

IN SIRES AND AGE AT SLAUGHTER AND DAYS TO FINISH IN 

COMMERCIAL PROGENY 

 
 
ABSTRACT 

Ultrasound traits measured on seedstock animals have been utilized as indicator traits that 

are genetically correlated to economically relevant carcass traits in commercial relatives. 

In beef cattle genetic evaluations, there is a reduced availability of carcass data and as 

ultrasound measurements are relatively inexpensive to collect, the use of ultrasound 

measurements combined with carcass records can help to increase the accuracy of carcass 

trait evaluations. One economically relevant trait important to feedlot profitability is the 

number of days on feed to reach a desired endpoint. The availability of indicator traits for 

the number of days on feed in seedstock operations would be beneficial to making more 

timely and accurate selection decisions towards improving efficiency in the finishing 

phase. The objective of this study was to estimate genetic parameters between age at 

slaughter (AAS) or days to finish (DtF) and ultrasound traits including ultrasound 

intramuscular fat percentage (UIMF), ultrasound rib fat (URF), and ultrasound ribeye 

area (UREA). Data from steers and heifers (n=7,747) from the Germplasm Evaluation 

(GPE) project at the U.S. Meat Animal Research Center (USMARC) were collected 

including AAS, DtF and growth/carcass traits of adjusted fat thickness (AFT), final live 

weight (FW), hot carcass weight (HCW), marbling (MARB), and ribeye area (REA). 
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Ultrasound measurements from bulls and heifers (n= 6,631) with same sires as the 

crossbred progeny from USMARC were provided by International Genetic Solutions 

(IGS) for traits UIMF, URF, and UREA. AAS and DtF were adjusted to different carcass 

endpoints to reflect different potential marketing systems. Bivariate animal models 

including AAS and ultrasound traits, or DtF and ultrasound traits, were fitted including 

fixed effects of contemporary group (concatenation of birth year, birth season, sex, and 

treatment group), and linear covariates of breed proportion, direct heterosis, and for both 

AAS and DtF a carcass endpoint trait. Fixed effects for the ultrasound traits included 

contemporary group (ultrasound scan group which included sex), and linear covariates of 

breed proportion, direct heterosis, and age. Heritability estimates for UIMF, URF, and 

UREA were 0.42, 0.38, and 0.45, respectively. Genetic correlations between AAS or DtF 

and UIMF were negligible. Genetic correlations were low between DtF and UREA, 

ranging from -0.13 to -0.19, and were moderate between AAS and UREA, ranging from 

0.25 to 0.42. Genetic correlations were moderate to high between AAS or DtF and URF, 

ranging from -0.52 to -0.68 and -0.54 to -0.59, respectively. Reduced AAS or DtF in 

commercial progeny therefore appears possible through selection in seedstock cattle 

based on ultrasonically measured rib fat. 

 

Key Words: beef cattle, age at slaughter, days to finish, genetic parameters, carcass 

ultrasound  
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INTRODUCTION 

Carcass trait prediction using ultrasound technology has been utilized for over fifty years 

(Stouffer et al., 1959), and has been incorporated in beef cattle genetic evaluations 

(Bertrand et al., 2001). Even more importantly, records on growth and ultrasound traits 

are abundantly available to estimate variance components for incorporation into genetic 

selection programs; however, there is much less data available for carcass traits (Su et al., 

2017). Therefore, most beef cattle breed associations utilize ultrasound traits along with 

carcass measurements in multi-trait models to increase accuracy of the evaluations as 

opposed to using just carcass data alone (Crews and Kemp, 2002; MacNeil and 

Northcutt, 2008). Live-animal ultrasound measurements on seedstock cattle have be 

shown to be accurate predictors of their respective carcass traits in harvested progeny 

(Perkins et al., 1992; Moser et al., 1998; Reverter et al., 2000; Hassen et al., 2001; Bergen 

et al., 2006a, Bergen et al., 2006b). However, most of these studies have focused on the 

carcass traits collected at harvest and not traits associated with feedlot efficiency. Santana 

et al. (2012) estimated genetic correlations between ultrasound carcass traits and residual 

feed intake (RFI) and feed conversion ratio (FCR). The genetic correlation estimate 

between RFI and rump fat thickness was 0.34, while the estimates between FCR and 

ultrasound ribeye area and backfat thickness were -0.43 and -0.31, respectively. The 

number of days an animal spends on feed has also been proposed as an economically 

relevant trait that could be used to improve efficiency but would not require directly 

capturing individual animal feed intake (Golden et al., 2000). Increased economic return 

to the production system could be achieved through selection to reduce the number of 
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days to a harvest specific endpoint (Archer et al., 1999). However, given days to harvest 

would only be recorded on terminal progeny, live-animal indicators that could be 

measured on seedstock animals could improve the rate of genetic gain for this trait 

complex. The objective of this study was to estimate genetic correlations between age at 

slaughter (AAS) or days to finish (DtF) recorded on commercial cattle and carcass 

ultrasound records including ultrasound intramuscular fat percentage (UIMF), ultrasound 

rib fat (URF), and ultrasound ribeye area (UREA) from seedstock relatives.   

 

MATERIALS & METHODS 

For carcass data, all animal procedures followed USMARC standard operating procedure 

and cattle were treated according to Federation of Animal Science Societies guidelines 

(FASS, 2010). For ultrasound data, Animal Care and Use committee approval was not 

obtained given the data were extracted from existing industry databases, specifically the 

American Simmental Association and the American Gelbvieh Association. 

Carcass Data 

All carcass data including AAS, DtF, adjusted fat thickness (AFT), adjusted based on the 

fat covering the outside of the carcass, final live weight (FW), hot carcass weight (HCW), 

marbling (MARB), and ribeye area (REA) (n = 7,747) were obtained from the 

Continuous Germplasm Evaluation (GPE) project at the U.S. Meat Animal Research 

Center (USMARC) in Clay Center, Nebraska from 2007 to 2017. The breeds evaluated 

were part of the continuous GPE project, which periodically samples artificial 

insemination (AI) sires of the 18 most influential breeds in the U.S. with genetic 
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evaluation programs (Angus, Beefmaster, Brahman, Brangus, Braunvieh, Charolais, 

ChiAngus, Gelbvieh, Hereford, Limousin, Maine Anjou, Red Angus, Salers, Santa 

Gertrudis, Shorthorn, Simmental, South Devon, and Tarentaise) that conduct national 

cattle evaluations (Snelling et al., 2019). Continuous GPE included both spring and fall 

calving seasons each year. In each breeding season, the females were designated into two 

groups; the first group received a single service AI mating followed by natural service, 

while the other group were bred using natural service for the full season. Cows were 

exposed to F1 and purebred bulls developed in GPE, and occasionally some Angus 

calving ease bulls from the USMARC selection program (Bennett, 2008) as heifers. 

Matings were designated by breed composition groups (F1, 50% to <75%; backcross, 

75% to <87.5%; and purebred, >87.5% of any single breed) and birth year x season 

(Snelling et al., 2019). The pedigree included 85,872 animals.  

Steers and heifers at a given management unit (pole shed) were weaned on the same date 

and were placed into the feedlot and co-mingled in pens with animals from other pole 

sheds. The animals were put on a starter ration that lasted 6 to 19 weeks before they were 

transitioned to a finishing ration until harvest. The animals placed into a pen at weaning 

stayed in the same pen until harvest. During finishing, some cattle were subjected to 

various experimental studies including treatments such as implants, beta agonists, and 

probiotics. Given these treatments can modify the amount of feed converted to lean 

muscle mass, treatment was considered as part of the contemporary group definition. 

Visual determination of group averages for predicted weight and fat endpoints for a given 

pen determined the time of harvest, with all animals in a pen harvested on the same date. 
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Final live weight was recorded before harvest. At harvest, fat thickness (adjusted based 

on the distribution of fat elsewhere on the carcass) (AFT), HCW, REA, and MARB 

(score where 400 = Slight00 and 500 = Small00; USDA (1997)) were collected. The AAS 

is calculated as the number of days from birth until harvest and DtF is the number of days 

from weaning until harvest.  

 

Ultrasound Data 

Ultrasound records (n=37,591) from bulls and heifers were obtained from International 

Genetic Solutions (IGS), along with pedigree information (n=63,134). Further description 

of the data can be found in Su et al. (2017). These data represented the progeny of 

Gelbvieh and Simmental sires (n=97) that had offspring in the USMARC dataset with 

AAS and DtF records (n=324). Ultrasound measurements included UIMF, URF, and 

UREA traits. After removing contemporary groups that had less than 20 animals 

included, the remaining dataset had 6,731 animals.  

 

Statistical Analysis 

Variance components and fixed effects were estimated using ASReml version 4.0 

(Gilmour et al., 2015). Bivariate models included either AAS or DtF and each ultrasound 

trait (UIMF, URF, and UREA). The bivariate model utilized is shown below: 

 

𝒚𝒚𝑖𝑖 = 𝑿𝑿𝑖𝑖𝒃𝒃𝑖𝑖 + 𝒁𝒁𝑖𝑖𝒖𝒖𝑖𝑖 + 𝒆𝒆𝑖𝑖, 

 



80 
 
where yi is a vector containing records on the ith trait, Xi is a design matrix relating the 

observations to the fixed effects in bi, Zi is an incidence matrix relating observations to 

random additive genetic values in ui, and ei is a vector of random residuals. The random 

animal effects were assumed to have null means and (co)variances: 

�
𝒖𝒖1
𝒖𝒖2� = �

𝑨𝑨𝜎𝜎𝑢𝑢1
2 𝑨𝑨𝜎𝜎𝑢𝑢1𝑢𝑢2

𝑨𝑨𝜎𝜎𝑢𝑢2𝑢𝑢1 𝑨𝑨𝜎𝜎𝑢𝑢2
2 �, 

 

where A is the Wright’s numerator relationship matrix and 𝜎𝜎𝑢𝑢𝑖𝑖
2  is the additive direct 

genetic variance for ith trait and 𝜎𝜎𝑢𝑢1𝑢𝑢2  is the additive direct genetic covariance between 

the ith traits. The random residual effects were assumed to have variances: 

�
𝒆𝒆1
𝒆𝒆2� = �

𝑰𝑰𝜎𝜎𝑒𝑒1
2 0

0 𝑰𝑰𝜎𝜎𝑒𝑒2
2 �, 

 

where I is an identity matrix and 𝜎𝜎𝑒𝑒𝑖𝑖
2  is the residual error variance for the ith trait. No 

animal had both harvest data (AAS and DtF) and ultrasound data; therefore, residual 

covariances were null. For AAS and DtF, fixed effects included contemporary group 

(concatenation of birth year, birth season, sex, and treatment group), and linear covariates 

of breed proportion, direct heterosis, and a carcass trait for a given market endpoint 

(AFT, FW, HCW, MARB, REA). For the ultrasound traits (UIMF, URF, and UREA), 

fixed effects included contemporary group (scan group which included sex), and linear 

covariates of scan age, direct heterosis, and breed proportion.  
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RESULTS AND DISCISSION 

Summary statistics for the growth, carcass, and ultrasound traits are shown in Table 3.1.  

Heritability estimates 

Univariate heritability estimates were 0.42, 0.40, and 0.47 for UIMF, URF, and UREA, 

respectively (Table 3.2). Su et al. (2017) reported heritability estimates of 0.42, 0.37, and 

0.44 for UIMF, URF, and UREA, respectively, from records taken from the American 

Simmental Association. Crews and Kemp (2001) obtained heritability estimates for 

ultrasound longissimus muscle area of 0.52 (0.47) and ultrasound fat depth of 0.35 (0.49) 

in composite bulls (heifers) at 14 months of age. Crews et al. (2003) observed heritability 

estimates of 0.47 (0.52) for ultrasound intramuscular fat percentage, 0.53 (0.69) for 

ultrasound fat thickness, and 0.37 (0.51) for ultrasound longissimus muscle area for 

Simmental bulls (heifers).  

From the bivariate analyses, the heritability estimates for AAS ranged from 0.52 to 0.59 

(Table 3.3) and for DtF ranged from 0.33 to 0.38 (Table 3.4), respectively, depending on 

the chosen endpoint.  

Genetic correlation estimates 

Genetic correlation estimates (SE) between AAS and UIMF ranged from -0.11 to 0.10 

(0.24 to 0.26), depending on the chosen endpoint for AAS (Table 3.3). For AAS and 

URF, the estimates ranged from -0.68 to -0.52 (0.19 to 0.21). The largest genetic 

correlation estimate was -0.68 between AAS and URF when the covariate AFT was used. 

This suggests with a fat-constant endpoint, greater genetic progress can be made in 

decreasing AAS if URF would be included within the genetic evaluation with positive 
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selection pressure. Although this was the largest genetic correlation, all estimates 

between AAS and URF were moderate regardless of the endpoint assumed for AAS. This 

is a possible artifact of harvest being, in part, determined by visual inspection of average 

weight or visual fatness of the pens of cattle. For AAS and UREA, the genetic 

correlations (SE) ranged from 0.21 to 0.43 (0.20 to 0.21), depending on the chosen 

endpoint for AAS (Table 3.3). Interestingly, the largest estimate of 0.43 between AAS 

and UREA was when no endpoint covariate for AAS was fitted. This was similar to the 

estimates when AFT (0.41) and MARB (0.37) covariates were fitted. This suggests that 

increasing UREA has the potential to increase AAS, specifically when non-weight 

endpoints are utilized.   

Genetic correlation estimates (SE) between DtF and UIMF ranged from -0.14 to -0.01 

(0.26 to 0.27), between DtF and URF ranged from -0.59 to -0.54 (0.23), and between DtF 

and UREA ranged from -0.19 to -0.12 (0.25), depending on the chosen endpoint for DtF 

(Table 3.4). The moderate negative genetic correlation estimates between DtF and URF 

suggest that regardless of the assumed endpoint for DtF, decreasing URF in seedstock 

animals could lead to decreased days on feed in commercial offspring. 

Most studies that have evaluated age at slaughter and days to finish traits focused on 

estimating heritabilities and not genetic correlations with carcass traits (Berry et al., 2017; 

Speidel et al., 2016). Furthermore, multiple studies have reported genetic correlation 

estimates between ultrasound traits on yearling bulls and the carcass traits associated with 

their harvested progeny (e.g., Perkins et al., 1992; Moser et al., 1998; Reverter et al., 

2000; Hassen et al., 2001; Bergen et al., 2006a, Bergen et al., 2006b), but only a few have 



83 
 
reported genetic correlations between ultrasound or carcass traits and feed efficiency 

traits such as residual feed intake and feed conversion ratio (Hoque et al., 2005; Santana 

et al., 2012). Santana et al. (2012) reported genetic correlation estimates between FCR 

and ultrasound ribeye area or backfat thickness of -0.43 and -0.31, respectively. 

Furthermore, Hoque et al. (2005) found genetic correlations between FCR in Waygu 

bulls and carcass traits such as ribeye area, backfat thickness, and marbling score of their 

progeny as 0.99, -0.81, and -0.95, respectively. Additionally, genetic correlations 

between RFI and ribeye area, backfat thickness, and marbling score were 0.83, -0.74, and 

-0.41, respectively. Nkrumah et al. (2007) obtained genetic correlation estimates of feed 

efficiency traits and ultrasound traits for composite steers that differed from those 

reported by Hoque et al. (2005). They looked at a partial efficiency of growth (the 

energetic efficiency for ADG above maintenance), which was calculated as the ratio of 

ADG to the difference between average daily dry matter intake and expected dry matter 

intake for maintenance. The genetic correlation estimates between ultrasound back fat 

and residual feed intake, feed to gain ratio, partial efficiency of growth, and dry matter 

intake were -0.04, -0.29, 0.02, and 0.29, respectively. Genetic correlation estimates 

between ultrasound marbling score and those feed efficiency traits were 0.44, 0.08, -0.56, 

and 0.53, respectively, and for ultrasound longissimus muscle area the correlations were -

0.65, 0.54, -0.76, and 0.44, respectively. The standard errors for these estimates ranged 

from 0.16 to 0.23. Given age at slaughter implicitly considers the amount of feed intake 

required to achieve a given weight gain, these traits would be more closely related to the 

feed to gain ratio rather than traits that only consider feed intake or partial efficiency. The 
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genetic correlation estimates between ultrasound traits and feed to gain ratio were similar 

to estimates in the current study both in direction and magnitude for AAS. Contrastingly, 

for days to finish and ultrasound traits, especially for UREA and UIMF, the genetic 

correlations estimated herein differed in direction.  Mao et al. (2013) reported genetic 

correlations between feed efficiency traits and ultrasound traits for Angus or Charolais 

steers. For Angus steers, the genetic correlation estimates between ultrasound 

longissimus muscle area and residual feed intake, midpoint metabolic body weight, dry 

matter intake, average daily gain, and feed conversion ratio were 0.31, 0.89, 0.64, 0.53, 

and 0.06, respectively. The Charolais steers estimates were 0.30, 0.37, 0.34, 0.13, and 

0.11 for the same traits, consecutively. Genetic correlation estimates between ultrasound 

back fat and residual feed intake, midpoint metabolic body weight, dry matter intake, 

average daily gain, and feed conversion ratio for Angus steers were 0.17, 0.23, 0.26, 0.21, 

and -0.02, respectively; in Charolais steers, the corresponding estimates were 0.33, 0.04, 

0.29, 0.06, and 0.30, consecutively. The standard errors for these estimates ranged from 

0.18 to 0.40, which was attributed to the small sample size in this study, which ranged 

from 71 to 100 animals depending on the year or breed on which the data were collected. 

The genetic correlation estimates reported in the current study differed in magnitude, and 

in some cases direction, from those involving FCR presented in Mao et al. (2013). The 

largest estimates tended to be those including midpoint metabolic body weight, 

specifically those from Angus steers. Mao et al. (2013) concluded that the small sample 

size, uniform management, and feedlot test environments could have led to increased 

estimates of genetic correlations.  



85 
 
CONCLUSIONS 

Moderate genetic correlation estimates between AAS or DtF and ultrasound traits suggest 

that selection to reduce a commercial animal’s age at slaughter or days on feed is feasible 

with the addition of seedstock ultrasound traits into a genetic evaluation. Of the 

ultrasound traits investigated, the inclusion of URF would be the most likely to improve 

the accuracy of an evaluation for AAS or DtF in seedstock animals. However, progress 

could be limited if genetic variation for either the goal trait (preferably AAS) or the 

indicator trait (URF) is limited.  

 
LITERATURE CITED 

Archer, J. A., E. C. Richardson, R. M. Herd, and P. F. Arthur. 1999. Potential for selection 

to improve efficiency of feed use in beef cattle: A review. Austr. J. Agric. Res. 

50:147-161.  

Bennett, G. L. 2008. Experimental selection for calving ease and postnatal growth in seven 

cattle populations. I. Changes in estimated breeding values. J. Anim. Sci. 92:1412-

1422.  

Bergen, R., S. P. Miller, J. W. Wilton, D. H. Crews Jr., and I. B. Mandell. 2006a. Genetic 

correlations between live yearling bull and steer carcass traits adjusted to different 

slaughter end points. 1. Carcass learn percentage. J. Anim. Sci. 84:546-557.  

Bergen, R., S. P. Miller, J. W. Wilton, and I. B. Mandell. 2006b. Genetic correlations 

between live yearling bull and steer carcass traits adjusted to different slaughter end 

points. 2. Carcass fat partitioning. J. Anim. Sci. 84:558-566.  

 



86 
 
Berry, D. P., A. R. Cromie, and M. M. Judge. 2017. Rapid Communication: Large 

exploitable genetic variability exists to shorten age at slaughter in cattle. J. Anim. 

Sci. 95:4526-4532.  

Bertrand, J. K., R. D. Green, W. O. Herring, D. W. Moser. 2001. Genetic evaluation for 

beef carcass traits. J. Anim. Sci. 79E:E190-E200.  

Crews, D. H. and R. A. Kemp. 2001. Genetic parameters for ultrasound and carcass 

measures of yield and quality among replacement and slaughter beef cattle. J. 

Anim. Sci. 79: 3008-3020.  

Crews, D. H. and R. A. Kemp. 2002. Genetic evaluation of carcass yield using ultrasound 

measures on young replacement beef cattle. J. Anim. Sci. 80:1809-1818.  

Crews, D. H., E. J. Pollak, R. L. Weaber, R. L. Quaas, and R. J. Lipsey. 2003. Genetic 

parameters for carcass traits and their live animal indicators in Simmental cattle. J. 

Anim. Sci. 81:1427-1433.  

FASS. 2010. Guide for the animal care and use of agricultural animals in research and 

teaching. 3rd ed. Champaign, Illinois.  

Gilmour, A. R., B. J. Gogel, B. R. Cullis, and R. Thompson. 2015. ASReml user guide 

release 4.1 structural specification. VSN Int. Let., Hemel Hempstead, UK 

Golden, B. L., D. J. Garrick, S. Newman, and R. M. Enns. 2000. Economically relevant 

traits: A framework for the next generation of EPDs. Proc. Beef Improvement 

Federation: Wichita, KS, pp. 2-13. 



87 
 
Hassen, A., D. E. Wilson, V. R. Amin, G. H. Rouse, and C. L. Hays. 2001. Predicting 

percentage of intramuscular fat using two types of real-time ultrasound equipment. 

J. Anim. Sci.79:11-18.  

Hoque, M. A., K. Hiramoto, and T. Oikawa. 2005. Genetic relationship of feed efficiency 

traits of bulls with growth and carcass traits of their progeny for Japanese Black 

(Wagyu) cattle. Anim. Sci. J. 76(2): 107-114.  

MacNeil, M. D., and S. L. Northcutt. 2008. National cattle evaluation system for combined 

analysis of carcass characteristics and indicator traits recorded by using ultrasound 

in Angus cattle. J. Anim. Sci. 86:2518-2524.  

Mao, F., L. Chen, M. Vinsky, E. Okine, Z. Wang, J. Basarab, D. H. Crews Jr., and C. Li. 

2013. Phenotypic and genetic relationships of feed efficiency with growth 

performance, ultrasound, and carcass merit traits in Angus and Charolais steers. J. 

Anim. Sci. 91:2067-2076.  

Moser, D. W., J. K. Bertrand, I. Misztal, L. A. Kriese, and L. L. Benyshek. 1998. Genetic 

parameter estimates for carcass and yearling ultrasound measurements in Brangus 

cattle. J. Anim. Sci. 76:2542-2548.  

Nkrumah, J. D., J. A. Basarab, Z. Wang, C. Li, M. A. Price, E. K. Okine, D. H. Crews Jr., 

and S. S. Moore. 2007. Genetic and phenotypic relationships of feed intake and 

measures of efficiency with growth and carcass merit of beef cattle. J. Anim. Sci. 

85:2711-2720.  



88 
 
Perkins, T. L., R. D. Green, and K. E. Hamlin. 1992. Evaluation of ultrasonic estimates of 

carcass fat thickness and longissimus muscle area in beef cattle. J. Anim. Sci. 

70:1002-1010.  

Reverter, A., D. J. Johnston, H. U. Graser, M. L. Wolcott, and W. H. Upton. 2000. Genetic 

analyses of live-animal ultrasound and abattoir carcass traits in Australian Angus 

and Hereford cattle. J. Anim. Sci. 78:1786-1795.  

Santana, M. H. A., P. Rossi Jr., R. Almeida, and D. C. Cucco. 2012. Feed efficiency and 

its correlations with carcass traits measured by ultrasound in Nellore bulls. Lives. 

Sci. 145:252-257.  

Snelling, W. M., L. A. Kuehn, R. M. Thallman, G. L. Bennett, and B. L. Golden. 2019. 

Genetic correlations among weight and cumulative productivity of crossbred beef 

cows. J. Anim. Sci. 97:63-77.  

Speidel, S. E., R. K. Peel, D. H. Crews Jr., and R. M. Enns. 2016. Random regression 

models for the prediction of days to weight, ultrasound rib eye area, and 

ultrasound back fat depth in beef cattle. J. Anim. Sci. 94:471-482.  

Stouffer, J. R., M. V. Wellentine, and G. H. Wellington. 1959. Ultrasonic measurement 

of fat thickness and loin eye area on live cattle and hogs. J. Anim. Sci. 18:1483. 

(Abstr.) 

Su, H., B. Golden, L. Hyde, S. Sanders, and D. Garrick. 2017. Genetic parameters for 

carcass and ultrasound traits in Hereford and admixed Simmental beef cattle: 

Accuracy of evaluating carcass traits. J. Anim. Sci. 95:4718-4727.  



89 
 
USDA. 1997. Official United States Standards for Grades of Carcass Beef. Agric. 

Marketing Service, USDA, Washington, DC. 

 



90 
 

TABLES 

Table 3.1. Summary statistics for harvest and ultrasound traits                                                                                                                        

 

 

 

 
 
 
 
 

 

 

 

1AAS = age at slaughter, the number of days from birth until harvest (days), AAW = age 
at weaning, the number of days from birth until weaning (days), AFT = adjusted fat 
thickness (cm), DtF = days to finish, the number of days from weaning until harvest (days), 
FW = final live weight (kg), HCW = hot carcass weight (kg), MARB = score where 400 = 
Slight00 and 500 = Small00 (USDA, 1997), REA = ribeye area (cm2). 
2UIMF = ultrasound intramuscular fat percentage (%), URF = ultrasound rib fat (cm), 
UREA = ultrasound ribeye area (cm2).  
3Data obtained from the US Meat Animal Research Center from harvested animals. 
4Data obtained from International Genetic Solutions from seedstock animals.   

Harvest Traits1 Counts Mean (SD) 
Steers3 Heifers3 

AAS 7747 451  (18.4) 433  (20.4) 
AAW 7747 164  (18.9) 151  (17.0) 
AFT 7747 1.33 (0.48) 1.25 (0.44) 
DtF 7747 287  (11.0) 281  (15.2) 
FW 7747 626  (60.8) 548  (51.4) 

HCW 7747 395  (39.9) 348  (33.8) 
MARB 7747 506  (77.0) 501  (66.5) 
REA 7747 87.9 (10.2) 88.4 (9.58) 

Ultrasound Traits2  Bulls4 Heifers4 

UIMF 6731 2.84 (0.77) 3.44 (0.98) 
URF 6731 0.50 (0.19) 0.46 (0.19) 

UREA 6731 86.9 (10.2) 68.7 (11.8) 
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Table 3.2. Genetic parameter estimates1 (SE) for univariate models for ultrasound 
intramuscular fat percentage (%) (UIMF), ultrasound rib fat (cm) (URF), and ultrasound 
ribeye area (cm2) (UREA) 

  
 
 
 
 
 

1𝜎𝜎𝑎𝑎2= additive genetic variance, 𝜎𝜎𝑒𝑒2= residual variance.  
  

Response 
Trait 

  
Heritability  𝜎𝜎𝑎𝑎2 𝜎𝜎𝑒𝑒2 

UIMF 0.42 (0.06) 0.17 (0.02) 0.23 (0.02) 
URF 0.40 (0.05) 0.007 (0.001) 0.01 (0.001) 

UREA 0.47 (0.05) 28.1 (3.69) 31.9 (2.72) 
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Table 3.3. Genetic parameter estimates1 (SE) for multivariate models for ultrasound 
intramuscular fat (%) (UIMF), ultrasound rib fat (cm) (URF), ultrasound ribeye area (cm2) 
(UREA) and age at slaughter (days) (AAS) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1𝑟𝑟𝑔𝑔= genetic correlation, ℎ12= heritability of trait 1, ℎ22= heritability of trait 2.  
2AFT = adjusted fat thickness (cm), FW = final weight (kg), HCW = hot carcass weight 
(kg), MARB = score where 400 = Slight00 and 500 = Small00 (USDA, 1997), REA = ribeye 
area (cm2). 
 

  

Response Trait 
Covariate2    

1 2 𝑟𝑟𝑔𝑔 ℎ12 ℎ22 

UIMF AAS 

None 0.08 (0.25) 0.42 (0.06) 0.54 (0.04) 
AFT 0.01 (0.26) 0.42 (0.06) 0.52 (0.04) 
FW 0.10 (0.24) 0.42 (0.06) 0.57 (0.04) 

HCW 0.06 (0.24) 0.42 (0.06) 0.56 (0.04) 
MARB -0.11 (0.25) 0.42 (0.06) 0.58 (0.04) 
REA 0.07 (0.25) 0.42 (0.06) 0.59 (0.04) 

URF AAS 

None -0.57 (0.21) 0.41 (0.05) 0.54 (0.04) 
AFT -0.68 (0.19) 0.41 (0.05) 0.52 (0.04) 
FW -0.58 (0.20) 0.40 (0.05) 0.57 (0.04) 

HCW -0.55 (0.20) 0.40 (0.05) 0.56 (0.04) 
MARB -0.54 (0.20) 0.41 (0.05) 0.59 (0.04) 
REA -0.52 (0.21) 0.41 (0.05) 0.59 (0.04) 

UREA AAS 

None 0.43 (0.20) 0.47 (0.05) 0.54 (0.04) 
AFT 0.41 (0.20) 0.47 (0.05) 0.53 (0.04) 
FW 0.24 (0.21) 0.47 (0.05) 0.57 (0.04) 

HCW 0.21 (0.21) 0.47 (0.05) 0.56 (0.04) 
MARB 0.37 (0.20) 0.47 (0.05) 0.59 (0.04) 
REA 0.31 (0.21) 0.47 (0.05) 0.59 (0.04) 
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Table 3.4. Genetic parameter estimates1 (SE) for multivariate models for ultrasound 
intramuscular fat (%) (UIMF), ultrasound rib fat (cm) (URF), ultrasound ribeye area (cm2) 
(UREA) and days to finish (days) (DtF) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1𝑟𝑟𝑔𝑔= genetic correlation,  ℎ12= heritability of trait 1, ℎ22= heritability of trait 2.  
2AFT = adjusted fat thickness (cm), FW = final weight (kg), HCW = hot carcass weight 
(kg), MARB = score where 400 = Slight00 and 500 = Small00 (USDA, 1997), REA = ribeye 
area (cm2). 
 

 
 
 

 

 

 

 

  

Response Trait 
Covariate2    

1 2 𝑟𝑟𝑔𝑔 ℎ12 ℎ22 

UIMF DtF 

None -0.09 (0.26) 0.42 (0.05) 0.33 (0.03) 
AFT -0.12 (0.26) 0.42 (0.06) 0.33 (0.03) 
FW -0.01 (0.27) 0.42 (0.05) 0.38 (0.03) 

HCW -0.04 (0.27) 0.42 (0.06) 0.38 (0.03) 
MARB -0.14 (0.27) 0.42 (0.06) 0.38 (0.03) 
REA -0.06 (0.27) 0.42 (0.06) 0.38 (0.03) 

URF DtF 

None -0.54 (0.23) 0.39 (0.05) 0.33 (0.03) 
AFT -0.56 (0.23) 0.39 (0.05) 0.33 (0.03) 
FW -0.58 (0.23) 0.40 (0.05) 0.38 (0.03) 

HCW -0.58 (0.23) 0.40 (0.05) 0.38 (0.03) 
MARB -0.56 (0.23) 0.40 (0.05) 0.38 (0.03) 
REA -0.59 (0.23) 0.40 (0.05) 0.38 (0.03) 

UREA DtF 

None -0.14 (0.25) 0.47 (0.05) 0.38 (0.03) 
AFT -0.19 (0.25) 0.47 (0.05) 0.33 (0.03) 
FW -0.13 (0.25) 0.47 (0.05) 0.38 (0.03) 

HCW -0.14 (0.25) 0.47 (0.05) 0.38 (0.03) 
MARB -0.13 (0.25) 0.47 (0.05) 0.38 (0.03) 
REA -0.12 (0.25) 0.47 (0.05) 0.38 (0.03) 
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CHAPTER 4 

SYNTHESIS  

 

CONCLUDING REMARKS 

The goal of increased efficiency in the production system for the beef cattle industry has 

gained momentum in the past two decades. Particularly in the feedlot sector, a drive for 

efficiency has risen both due to a desire to decrease costs and increase outputs as well as 

concerns regarding environmental sustainability. Yet, even with the large efforts to 

identify efficient animals, a dry matter intake EPD was the only genetic evaluation trait 

available to predict genetic merit for costs related to finishing cattle. However, feed 

intake is only one of the components that affect production costs. For instance, animals 

who spend less time in the feed yard will utilize less resources, including less labor, less 

yardage, and less morbidity or mortality. Due to the elevated costs to collect feed intake 

data as well as the various definitions that represent this trait, the question of which traits 

selection pressure should be applied to became challenging. Fortunately, another 

definition for feedlot efficiency, days to finish, can be described as a function of the 

amount of feed consumed, growth rate, and most importantly the rate of tissue deposition. 

As this trait is calculated as the difference between harvest date and weaning date, there 

is no need to collect expensive feed intake data. Days to finish was identified in other 

studies with the potential for selection to reduce the number of days an animal spends on 

feed. Therefore, the purpose of this dissertation was to estimate genetic parameters for 

days to finish with carcass trait covariates towards a specific finish target as well as other 
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traits such as age at slaughter and age at weaning, and to consider their relationships with 

growth and harvest traits. Animals that would have days to finish or age at slaughter traits 

are predominately within the commercial sector, where record keeping is not always a top 

priority. Thus, to make genetic progress in future generations, a need to identify indicator 

traits that could be utilized for selection to reduce days to finish or age at slaughter in 

genetic evaluations at the seedstock level were essential. A second objective of this 

dissertation was to estimate genetic correlations between days to finish and age at 

slaughter traits from commercial progeny with a common sire to ultrasound traits 

collected from seedstock progeny.  

A key conclusion was that selection could be utilized to reduce the age at slaughter and 

the number of days on feed. However, the extent of variation in days to finish was less 

than in other efficiency traits considered, with most of the variation resulting from 

different weaning dates. As days to finish was a portion of the time for age at slaughter, 

the lack of variation is consistent across both traits, making the utilization of these traits 

in genetic evaluations questionable. Furthermore, a reduction in the age at slaughter could 

have an undesirable impact on the age at weaning component, if not considered together. 

Based on the genetic correlation estimates, selection decisions based on seedstock 

ultrasound traits could be used to reduce a commercial animal’s age at slaughter or days 

to finish. Although ultrasound rib fat would provide improved accuracy in the 

evaluations, the genetic progress could be limited when low variation exists for days to 

finish or even one of the ultrasound traits. Ultimately, although age at slaughter and days 

to finish could be used for selection, the lack of variation within the dataset limits the 
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utility of using these traits towards reducing production costs and increasing 

environmental sustainability within the beef cattle industry. 
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