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Abstract: Thermal imaging is a developing tool that can help turf managers reduce water 

consumption and improve irrigation scheduling, but in-depth studies are needed to 

maximize this potential.  This study evaluated the ability of thermal imaging to identify 

water stress in a creeping bentgrass (Agrostis stolonifera ‘007’) putting green.  Water 

use and canopy temperature (Tc) were measured for plots subjected to three levels of 

measured water replacement (full, half, and none) to evaluate changes over a range of 

soil water potentials (SWP).  Water use was consistent across the irrigation treatments 

up to several days before observed wilt with crop coefficients (Kc) between 0.83-1.01. As 

drought conditions progressed (SWP <-1501kPa), Kc decreased.  Segmented linear 

regression was used to quantify the trends and identify the critical value of -1501 kPa.  

Various metrics utilizing Tc were evaluated for a response to water stress.  Two metrics, 

standard deviation of Tc and Tc relative to non-water stressed turf, show potential to 

indicate periods of stress prior to visible wilt.  A strong diurnal pattern was observed in all 

Tc metrics confirming the need to normalize Tc for current weather conditions.  Multiple 

regression using 2018 data was used to develop a model using weather parameters of 

air temperature, solar radiation, relative humidity, and wind speed to estimate Tc values 

of a non-water stressed baseline.  A two parameter model using air temperature and 

solar radiation input provided a strong fit (adjusted R2=0.955) and when applied to 

unpublished dataset from a 2016 study measuring Tc on a creeping bentgrass putting 
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green.  This study shows water use remained consistent until SWP reached a wilting 

point, followed by a sharp decrease in water use approaching Kc of zero.  We show that 

metrics utilizing Tc can be early indicators of water stress in turfgrass.  However, further 

research with different microclimates and plot sizes would be needed to identify specific 

values of these metrics that quantify water stress.  We also describe a multiple 

regression model to predict Tc of non-water stressed baseline under various weather 

conditions.  Understanding how Tc of turf with no water stress behaves in different 

weather can improve identification of water stress.   
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CHAPTER 1: INTRODUCTION 

1.1 Abstract 

Improved irrigation scheduling has the potential to reduce water consumption 

and improve playing conditions on putting greens.  Deficit irrigation and limited irrigation 

application frequency are valuable strategies to reducing water consumption and 

maintaining plant health. To maximize the benefits from these strategies, it is critical to 

have an understanding of creeping bentgrass water use, specifically as it nears water 

stress since creeping bentgrass is the most common turf species used on putting greens 

in the United States.  As soil moisture reaches a critically low level, water uptake and 

turgor pressure in leaves are reduced.  This triggers a decline in the rate of transpiration 

which, in turn, results in an increase in canopy temperature (Tc) when compared to a 

non-water stress plant. This change in Tc has been used as an indicator of water stress 

in crops but specific values and spatial and temporal pattern changes have not been 

identified for a creeping bentgrass putting green.  Since Tc fluctuates significantly with 

weather conditions, numerous metrics such as Tc versus a non-water stressed baseline 

(NWSB) and variation in Tc have been utilized to detect changes in Tc attributable to 

water stress. Progress in thermal imaging technology has made it an increasingly 

practical tool to frequently and autonomously measure and interpret Tc and related 

metrics of plant water use over a large area.  If we can improve understanding of 

creeping bentgrass water use and Tc as the plant approaches water stress, then thermal 

imaging could be utilized to inform irrigation decisions and reduce water consumption.   
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1.2 Literature Review 

Creeping bentgrass (Agrostis stolonifera) is a cool-season turfgrass that is 

commonly used in golf courses.  It is the most common species used in putting greens 

with over 27,000 acres of creeping bentgrass putting greens across the United States 

(Lyman et al., 2007).  Its tolerance of low mowing and highly aggressive (stoloniferous) 

growth habit make it ideal for putting green applications (Warnke et al., 2003).  Due to its 

vigorous growth habit, creeping bentgrass requires frequent inputs of water, fertilizer, 

and cultivation to provide an acceptable hard and fast putting surface that allows the ball 

to roll faster.  Precise management of soil moisture in putting greens helps to create the 

ideal putting green surface conditions for golf.  Expensive equipment and many man 

hours are required to monitor and maintain soil moisture in a range that provides quality 

playing conditions and plant health.  Responsible use of water resources is critical to the 

success and sustainability of golf course operations. 

Golf courses in the United States used an estimated 1.859 million acre-feet of 

water in 2014, with 156,000 acre-feet coming from municipal drinking water (Gelernter et 

al., 2015).  This is greater than 1.6 billion gallons each day.  At an average cost of $298 

per acre-foot, over 500 million dollars were spent on water at golf courses.  Note, golf 

course water consumption has decreased (a 22% reduction from 2006 to 2014) due to 

fewer courses and improved conservation and irrigation practices.  However, further 

improvement in irrigation efficiency will be financially and environmentally beneficial as 

water scarcity is projected to increase in coming years, particularly in the Pacific and 

Southwest regions where golf course water use is the highest (Gelernter et al., 2015, 

Marston et al., 2020).   

 The goal of efficient irrigation scheduling is to minimize the use of water 

resources while maintaining plant health to avoid water stress.  Deficit irrigation and 
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reduced irrigation application frequency are two strategies that are known to reduce 

water consumption (Gómez‐Armayones et al., 2018).  A study on deficit irrigation from 

DaCosta and Huang (2006b) showed that creeping bentgrass mowed at fairway height 

(9.5mm) can be maintained at an acceptable quality when replacing only 60% of actual 

evapotranspiration, including through the summer months when water consumption is at 

its peak.  Similarly, Sass and Horgan (2006) showed no decline in creeping bentgrass 

quality maintained at greens height (5mm) when replacing 80% of measured water loss 

compared to 100%.  Fu and Dernoeden (2009) showed that deep, infrequent irrigation 

used less water and provided better quality and color in creeping bentgrass.  When 

irrigating equal amounts of total water at 1-, 2-, or 4-day intervals, Jordan et al. (2003) 

showed improved root length density at the less frequent 4-day interval.  Irrigating only 

when the turf is near water stress decreases irrigation frequency and lowers the required 

inputs for a healthy playing surface (DaCosta and Huang, 2006a; Fu and Dernoeden, 

2009).  Understanding how the plant uses water can help to identify water stress and 

inform irrigation decisions. 

Transpiration is movement of water vapor from inside the leaf, through stomata 

on the leaf surface, and into the atmosphere.  Transpiration serves many purposes for 

the plant.  It supports the movement of water and nutrients from the soil and into the 

plant where it supports vital functions.  Open stomata allow water vapor to escape, 

called transpiration, and CO2 to enter the turf leaf and sustain carbon assimilation during 

photosynthesis.  Transpiration is beneficial to the plant as it dissipates excess heat 

energy as liquid water is converted into gaseous water vapor.  This movement of water 

from the soil through the plant to the air is driven by a water potential gradient (from high 

potential in the soil to low potentials in the air). Under sufficient water supply the water 

potentials may be as high as ~-10 kPa in the soil, ~-100 in roots to -1,000 kPa in leaves, 
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and ~-100,000 kPa in the air (Rye et al., 2016).  The water potential values will affect the 

transpiration rate.  For instance, as soil moisture decreases, the water potential of the 

soil becomes more negative, reducing the gradient and decreasing the rate of 

transpiration.  Similarly, changes to water vapor in the atmosphere, or the vapor 

pressure deficit (VPD), will affect the gradient.  More moisture in the atmosphere 

(increased humidity) increases the water potential of the air, reduces the gradient, and 

decreases the rate of transpiration where drier air would increase the rate.  Evaporation 

of soil moisture directly into the atmosphere is another component of soil water loss and 

needs to be factored into irrigation decisions. 

Evapotranspiration (ET), the sum of water lost through transpiration from leaves 

and evaporation from soil, is a common measurement used to inform irrigation decisions 

(Beard, 1973).  The rate of ET is affected by many factors including available soil 

moisture, stomatal conductance, and microclimatic conditions including solar radiation, 

relative humidity, and wind speed (Feldhake et al., 1983, Aronson et al., 1987, DaCosta 

and Huang, 2006a). ET estimations are used to determine when to irrigate and how 

much water to apply.  Common methods of estimating ET include the simple pan 

evaporation, lysimetry with the water balance equation, eddy covariance, and empirical 

calculations using weather data and/or estimations of physical characteristics of the 

plant (Romero and Dukes, 2016).  One of the most commonly used empirical 

calculations for ET is the Penman-Montieth equation (Allen et al., 1998).  The FAO 

implementation of this equation makes some assumptions about the crop such as: 

assumed crop height of 0.1m, a fixed surface resistance of 70 s m-1, and an albedo of 

0.23.  Those assumptions combined with relevant weather data produce a sufficient 

estimate of a reference ET (ETo) on an hourly, daily, or monthly interval.  Access to 

reference ET values is readily available to turfgrass managers from several non- and for-
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profit weather data services.  However, this calculated reference ET needs to be 

adjusted for the particular vegetation surface of interest using a crop.  A crop coefficient 

(Kc) is developed for individual crops or species to relate the ETo to actual water use for 

the plant of interest.  The Kc is calculated as: 

 
K𝑐 =

ET𝑚
𝐸𝑇𝑜

 
(1) 

 

where Kc is the crop coefficient, ETm is the actual evapotranspiration of the crop, and 

ETo is the reference evapotranspiration. Published Kc
 values for cool-season species 

such as creeping bentgrass range from 0.8 to 1.3, meaning actual ET is 80-130% of the 

reference evapotranspiration (Aamlid et al., 2016).  However, water use can vary with 

cultivar, season, management regime, and other factors (DaCosta and Huang, 2006a).  

The rate of ET can also be affected by available soil moisture (Huang, 2008).  If the ET 

rate can be measured frequently and accurately, irrigation can be withheld until soil 

moisture approaches a critical level (before the plant wilting point without jeopardizing 

plant health), thus reducing water consumption.   

As soil moisture is depleted via ET, water potential in the soil decreases, 

requiring a greater force to move water from the soil into the plant.  If soil moisture 

continues to decrease, it eventually reaches the wilting point, where the water potential 

gradient is no longer strong enough to move water into the plant and the plant 

experiences water stress.  The soil water potential (SWP) at which this occurs varies 

across soils and species but is approximately -1500 kPa (Ritchie, 1981).  When the plant 

can no longer extract sufficient water from the soil, symptoms of water stress, commonly 

referred to as drought stress, can appear.  A loss of visual quality, change in color (leaf 

firing), loss of turgor pressure in leaves, and a rise in Tc are all symptoms of drought 

stress (Stier et al., 2020). The loss in turgor pressure causes wilting of the leaves and 
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triggers a reduction in stomatal conductance.  As stomata close, transpiration and thus, 

transpirational cooling, are reduced.  The lack of transpirational cooling, in turn, causes 

an increase in Tc.  This can be explained through the energy balance equation: 

 𝑅𝑛 = 𝐻 + 𝐿𝐸 (2) 

where Rn is net radiation incident up on the canopy, H is the sensible heat flux, and LE is 

the latent heat flux or energy consumed in the process of transpiration as liquid water in 

the leaf is converted to gaseous water vapor as it exits stomata (Martin et al., 2005a).  

As the energy from sunlight (quantified as Rn) is absorbed by the leaf, it is partitioned 

into H, where it is emitted from the leaf, or LE, where the energy is consumed in 

transpiration.  As ET declines due to insufficient moisture or other factors, a greater 

portion of the energy absorbed by the canopy is emitted as H and measured as an 

increase in Tc (relative to Ta) when compared to a fully transpiring plant with sufficient 

soil moisture.  Canopy temperature measurements have been used as an indicator of 

drought stress in other species such as: cotton (Alchanatis et al., 2010, Sela et al., 

2007a), grapevine (Moeller et al., 2007), olive (Ben-Gal et al., 2009), and pepper 

(Camoglu et al., 2018). 

 Results were less conclusive in earlier research when trying to measure stress in 

turfgrasses: Kentucky bluegrass (Poa pratensis) (Throssell et al., 1987), bermudagass 

(Cynodon dactlyon) (Carrow, 1993; Jalali-Farahani et al., 1993), and creeping bentgrass 

maintained at fairway heights (Martin et al., 1994) but technology has improved 

significantly since these studies were conducted.  (Horst et al., 1989) stated that different 

calculations are necessary to quantify stress for each species, season, and mowing 

height. Specific metrics, values and spatial and temporal patterns need to be identified 

for creeping bentgrass in a putting green management regime.  Canopy temperature 

alone, however, cannot be used as a drought stress metric due to the interaction of 
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weather and Tc (Carlson et al., 1972).  These weather parameters include air 

temperature (Ta), solar radiation (SR), relative humidity (RH), and WS.  Accounting for 

these factors is critical in using Tc to detect the drought stress.  A number of stress 

indices involving Tc have been developed to measure drought stress in plants.  The most 

commonly used metric is the crop-water stress index (CWSI) developed by (Idso, 1982): 

 
𝐶𝑊𝑆𝐼 =

(𝑇𝑐 − 𝑇𝑎)𝑎𝑐𝑡 − (𝑇𝑐 − 𝑇𝑎)𝐿𝐿
(𝑇𝑐 − 𝑇𝑎)𝑈𝐿 − (𝑇𝑐 − 𝑇𝑎)𝐿𝐿

 
(3) 

where (𝑇𝑐 − 𝑇𝑎)𝑎𝑐𝑡 is the measured canopy temperature minus air temperature, 

(𝑇𝑐 − 𝑇𝑎)𝐿𝐿 is canopy temperature minus air temperature at the lower limit of water 

stress, and (𝑇𝑐 − 𝑇𝑎)𝑈𝐿 is the canopy temperature minus air temperature at the upper 

limit of water stress. The upper and lower limits are commonly referred to as the water-

stressed baseline and non-water-stressed baseline (NWSB), respectively. To accurately 

measure stress, good estimations of these baselines are needed but they can be difficult 

to predict due the effects of constantly changing weather.  Taghvaeian et al. (2013) 

found that baselines will vary based on local conditions.  Payero et al. (2005) developed 

a strong model (r2=0.89) to predict the NSWB of tall fescue (Festuca arundinacea) using 

multiple regression with factors: Ta, SR, VPD, and wind speed. They speculated that this 

model would be applicable across locations, but it has not been widely tested at other 

sites or on other species.   

Another stress index that has been theorized but never tested in turfgrass is the 

variation of Tc over a given area (Fuchs, 1990), partly because the technology to easily 

measure this has not been available until recently.  The value in this metric is that it only 

requires measurement of actual Tc and no estimates or models are needed.  Regardless 

of the metric, a deeper understanding of the relationship between soil moisture, plant 



8 
 

 

water use, and Tc is needed to incorporate these metrics into irrigation scheduling 

decisions on creeping bentgrass putting greens.  

Thus, as soil moisture decreases, changes in Tc patterns are expected, as was 

observed in Feldhake et al. (1984).  If these changes in soil moisture can be detected 

through Tc metrics, irrigation scheduling decisions can be streamlined and improved.  To 

improve interpretation of these metrics, understanding of how ET and soil moisture 

change as creeping bentgrass begins to exhibit drought stress is needed.  While Salaiz 

et al. (1991) reported daily ET for various species of creeping bentgrass to be between 

3.2-12.5 mm d-1 when mowed at 12.5mm, research is lacking for ET and Tc values of 

creeping bentgrass as soil moisture decreases and the plant experiences moisture 

stress.  

Advances in technology and digital image analysis have made thermal imaging a 

practical tool for measuring Tc for large areas (Costa et al., 2010, Jones, 2004, Jones 

and Leinonen, 2003).  Infrared cameras are used to create thermal images through the 

detection of emitted radiation from the surface of interest in the infrared portion of the 

spectrum (780nm-14μm) and converts the emitted energy into a temperature 

measurement which is represented by a colored pixel.  Thermal cameras can be hand-

held and mobile or mounted in a location and wirelessly transmit data.  A single piece of 

equipment could provide remote, continuous, automated, and non-destructive 

measurements of Tc.  Additionally, thermal images provide the spatial distribution of Tc, 

potentially identifying underlying issues, such as leaky irrigation heads.  If data 

interpretation utilizing Tc metrics can be improved and incorporated into user-friendly 

software, it would be widely useful to golf course managers in scheduling irrigation to 

minimize the use of water resources while maximizing plant health.   
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The goal of this thesis research is to improve understanding of creeping 

bentgrass water use as soil moisture decreases and improve interpretation of Tc data in 

creeping bentgrass putting greens with the aim of improving irrigation efficiency.  

Specific objectives include i) quantify water use and SWP as soil moisture changes in 

creeping bentgrass for a sand-based putting green, ii) relate changes in creeping 

bentgrass Tc to soil moisture status, and iii) create a model to predict the Tc of a NWSB 

under varying weather conditions.   
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CHAPTER 2: WATER USE PATTERNS OF A CREEPING BENTGRASS PUTTING 

GREEN WITH DIFFERENT IRRIGATION STRATEGIES 

2.1 Abstract 

Efficient irrigation scheduling is critical for putting greens management to minimize water 

consumption, sustain plant health, and maximize playability.  This study was conducted 

to improve understanding of water use in creeping bentgrass (Agrostis stolonifera Hud. 

'007') under different irrigation strategies in conditions suitable for putting green 

management to help maximize efficiency of irrigation scheduling.  Water use was 

quantified using crop coefficients (Kc) values calculated by dividing values of potential 

ET (ETo) by measured ET (ETm) gathered from weighing lysimeters.  Irrigation strategies 

evaluated include full ETm replacement (100WR), half replacement (50WR) and no water 

replacement (0WR).  Segmented regression was used to quantify data trends. Measured 

evapotranspiration (ETm) and Kc values changed with soil water potential in 0WR 

treatment.  We observed two distinct trends in water use as SWP decreased: i) 

consistent water use with sufficient soil moisture conditions, characterized by healthy, 

green turf, and ii) rapid decrease in water use with limiting soil moisture, characterized 

by plant wilt, thinning, and leaf firing.  The critical point, when water use began to 

decline, was identified to be -1501kPa.  The sufficient soil moisture conditions showed 

Kc values of 0.88-0.92 where soils nearing wilting point rapidly approach a Kc of zero.  

These results suggest that water use remains consistent for creeping bentgrass until a 

critical point of -1501 kPa is reached and water use declines.  Improved knowledge of 

the relationships between Kc and SWP will help managers understand how creeping 

bentgrass uses water over a range of soil moisture conditions, leading to more informed 

irrigation decisions and a reduction in water consumption. 
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2.2 Introduction 

As water resources become more limited, turfgrass managers must adapt and 

use less irrigation and maintain plant viability.  One way to reduce water consumption is 

through efficient irrigation scheduling.  Efficient irrigation scheduling minimizes water use 

while maintaining plant health.  To improve irrigation efficiency, it is critical to understand 

plant water use.  Turfgrass water use is known to vary significantly with species, 

irrigation frequency, and soil moisture (Biran et al., 1981).  Cool-season grasses, like  

creeping bentgrass and Kentucky bluegrass rate very high in water use (ET rates >10 

mm d-1) compared to warm-season grasses (6 to 7 mm d-1), like bermudagrass 

(Cynodon dactylon) or zoysiagrass (Zoysia matrella) (Beard and Kim, 1989). Water 

consumption is reduced when irrigation is only applied at the onset of plant wilt.  

Minimizing excess soil moisture reduces the amount of water lost through ET, thus 

reducing the amount of water consumed in turfgrass management. 

Evapotranspiration is the sum of water loss due to evaporation from the soil and 

transpiration through plant leaves (Beard, 1973).  The rate of ET is controlled by many 

factors, including microclimate, plant available water and stomatal conductance 

(Feldhake et al., 1983; DaCosta and Huang, 2006a; DaCosta and Huang, 2006c).  

Microclimatic factors affecting ET rate include Ta, solar radiation, relative humidity, and 

wind speed.  Water potential is another factor that influences interactions between soil, 

water, plants, and atmosphere. A water potential gradient determines the movement of 

water from the soil (greatest potential) to the plant and then to the air (least potential).  

This differential is called the VPD and it is the driving force of ET.  The total water 

potential of the soil becomes greater (more negative) as soil moisture is depleted, 

meaning more energy is required from the plant to remove water from the soil.  At a level 

of soil moisture called the wilting point, the plant can no longer extract water from the soil 
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and begins to wilt.  The water potential at which this occurs is thought to be around         

-1500 kPa (Ritchie, 1981), however this value will vary with plant and soil characteristics.  

Understanding the SWP at which the plant begins to wilt can help to inform irrigation 

decisions, providing managers with greater control over soil moisture and water 

resources. 

Plant control of ET is also accomplished through regulation of stomatal 

conductance. Stomata are pores on the leaf surface that facilitate gas exchange 

between the leaf and the atmosphere. Adjacent guard cells control the pore size of each 

stoma which regulate conductance in response to various environmental stimuli. Water 

stress triggers the production of abscisic acid which causes the guard cells to close leaf 

stomata and reduce the rate of transpiration. In a study evaluating minimum required 

irrigation for Kentucky bluegrass mowed at 5mm, a decrease in ET rate was measured 

after 3 weeks of deficit irrigation (Minner, 1984).  However, research in closely mowed 

creeping bentgrass, the most commonly used species in putting greens in the United 

States (Lyman et al., 2007), is lacking.   

Weighing lysimeters allow for the measurement of ET in turfgrasses.  Through a 

water balance approach (Allen et al., 1998), repeated mass measurements of the 

lysimeters are used to calculate the amount of water lost via ET from a turf stand, 

producing a measured ET value (ETm).  This has been the standard method to measure 

ET in turfgrass (Romero and Dukes, 2016) due to its relative simplicity.  Weighing 

lysimeters have been used to measure and compare ET rates of various species of 

turfgrass (Biran et al., 1981; Aronson et al., 1987; Kim and Beard, 1988; Fu and 

Dernoeden, 2009).  Lysimeter studies report daily ET values for ten cultivars of creeping 

bentgrass to range from 3.2 mm d-1 to 10.7 mm d-1 when mowed at 12.5 mm (Salaiz et 

al., 1991). However, lysimetry it is not free of error.  Factors that require attention to 
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minimize error are: 1) matching vegetative and soil conditions inside the lysimeter to the 

surrounding area, 2) providing sufficient depth of rooting, 3) minimizing the gap between 

the lysimeter and soil profile, 4) allowing sufficient fetch for consistent wind conditions 

(Allen et al., 2011).  Despite these concerns, weighing lysimeters are a cost-efficient 

option to measure water use.  These ETm values can be compared to a reference ET 

value (ETo) value to calculate a crop coefficient term (Kc). 

Crop coefficients provide a means for turf managers to approximate how much 

water has been consumed by the turf. A more accurate Kc will lead to more precise 

application of irrigation water, will help to minimize water waste and allow for enhanced 

playing conditions, in putting green situation. Crop coefficients vary with species, 

season, and location (eg., soil and climate).  In a study evaluating water use for various 

creeping bentgrass cultivars mowed at 12.5 mm, measured Kc values range from 0.68 to 

0.79 in mid-June and 0.91 to 1.26 in mid-August when crop water use is at its maximum 

(Salaiz et al., 1991).  However, turf in the study was irrigated to non-limiting soil moisture 

conditions.  No reports of water use values over a range of soil moisture could be found.  

DaCosta & Huang (2006) report acceptable turf quality for fairway height creeping 

bentgrass (9.5 mm) when replacing only 60% of ETm (equal to 0.60 Kc) in summer 

months of the humid Northeast while replacing only 40% ETm was sufficient in fall 

months.  Thus, deficit irrigation is a valid strategy to minimize water consumption in 

locations with frequent precipitation using Kc values to estimate ET. However, specific 

replacement Kc values for creeping bentgrass putting greens could not be identified.  

Further understanding of creeping bentgrass water use rates and changes under water 

stress could improve irrigation efficiency and reduce water consumption on many golf 

courses around the country. 
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The objectives of this study are to i) measure water use rate of CBC putting 

greens as soil moisture transitions from field capacity to the wilting point, ii) quantify the 

SWP associated with the wilting point for a creeping bentgrass putting green, and iii) 

evaluate ETm and Kc in a CBC putting green that received three different levels of 

irrigation.   

2.3 Materials and Methods 

Site Description 

This study was conducted in the summers of 2017 and 2018 at the UNL East 

Campus Turfgrass Research Center in Lincoln, NE (40°50’N, 96°39’W) on a ‘007’ 

creeping bentgrass (Agrostis stolonifera Hud.) research field maintained as a United 

States Golf Association (USGA) putting green.  The turf stand was established during 

August 2016 with the 40 cm root zone is 85% sand/15% peat moss by volume and built 

according to USGA recommendations for a putting green (USGA, 2014).  Overhead 

irrigation was withheld but natural precipitation was allowed (due to practical 

considerations).  Individual plots were irrigated by hand, using a flowmeter attached to a 

hose, as part of treatments.  Plots were mowed five days each week with a walk-behind 

reel mower (Greensmaster eFlex® 2100, The Toro Company, Bloomington, MN).  

Height of cut was 3.3 mm in 2017 and 2.8 mm in 2018.  Nitrogen fertilizer (46-0-0) in the 

form of urea was applied at a rate of 12 kg ha-1 every 14 days.  To aid water penetration 

into the soil, a surfactant, Revolution (modified alkylated polyol; Aquatrols, Paulsbury, 

NJ), was applied on 22 June 2017 and 11 June 2018 at rates of 9.5 and 19.0 L ha-1 

respectively. 
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Experimental Design 

The study area consisted of 12 plots arranged in three replicate blocks of four 

treatments.  Treatments were arranged in a randomized complete block design and 

were randomized to plot separately for each year.  Each plot measured 2.1 x 1.4 m with 

a 0.6 m buffer zone around each plot (Fig. 2.1).  All plots began collection periods at field 

capacity.  

Three water replacement treatments were used to evaluate the relationship 

between ETm, Kc, and SWP.  A fourth treatment, involving irrigating based on a 

proprietary stress index, was excluded from this study.  Treatments included replacing 0, 

50, & 100% of ETm (0WR, 50WR, & 100WR).  ETm was calculated via a weighing 

lysimeter located in the center of each plot (described below).  Irrigation was applied by 

hand-watering with hose depending on ETm values.  This was typically every 2-3 days 

without precipitation events.  Lysimeters were removed prior to irrigation and weighed. A 

flowmeter attached to the hose allowed a precise amount of irrigation to be applied.  

Irrigation was applied slowly and carefully to ensure that water being applied stayed in 

the intended area and did not run into the empty lysimeter hole.  Lysimeters were then 

replaced and irrigated slowly using a water bottle with a proportional amount of water to 

the plot.  This process ensured irrigation applied to lysimeters entered the soil profile 

rather than spilling into the lysimeter/wall gap.  Water was replaced on the plots every 2-

3 days to allow for a measureable amount of water to be applied but replacement was 

more frequent when ETm values were higher.  The collection periods were ended when 

the lysimeters of 0WR plots no longer showed decreasing weight due to water loss 

indicating they were completely dry.   
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Lysimetry 

Weighing lysimeters (Fig. 2.2), 16.7 L in volume, were installed in the center of 

each plot and extended the full depth of soil profile with the bottom resting on the gravel 

layer.  Existing turf and root zone mix were used in lysimeters to match conditions of the 

surrounding turf.  The soil around the lysimeter was secured with 10 mm thick polyvinyl 

chloride tubing.  Lysimeters were removed and weighed on an Ohaus (Pine Brook, NJ) 

Explorer® Precision High Capacity Balance EX35001 four to seven times weekly.  Water 

leaching through the lysimeter was captured in a removable catch can attached to the 

bottom of the lysimeter.  A water balance equation was used to calculate water lost to 

ETm:  

 𝐸𝑇𝑚 = 𝐿𝑌𝑆𝑃𝑟𝑒𝑣 − 𝐿𝑌𝑆 − 𝐿𝑒𝑎𝑐ℎ𝑎𝑡𝑒 − 𝑃𝑟𝑒𝑐𝑖𝑝 (4) 

where LYSPrev is the mass of the lysimeter from the previous day after water has been 

replaced, LYS is the mass of the lysimeter that day prior to water replacement, Leachate 

is the mass of leachate collected in the catch can, and Precip is the mass of precipitation 

incident on the area of the lysimeter. 

This ETm value was then used to calculate a measured crop coefficient using eq. 

1.  ETo data were gathered from the Nebraska Mesonet Lincoln IANR Station using the 

High Plains Regional Climate Center (HPRCC) Daily Penman equation: 

 
𝜌𝑤𝐿𝐸(𝐸𝑇𝑜) =

∆

∆ + 𝛾
(𝑅𝑛 − 𝐺) +

𝛾

∆ + 𝛾
(1.1 + 0.017𝑊)(𝑒𝑠 − 𝑒𝑎) 

(5) 

where ρw is density of water, LE is the latent heat flux ETo is reference 

evapotranspiration, Δ is slope of the saturation vapor pressure temperature relationship, 

γ is the psychrometric constant, Rn is net radiation (estimated from global solar 

radiation), G is heat flux in soil (estimated as zero), W is daily wind run, es is saturated 
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vapor pressure, and ea is actual vapor pressure with vapor pressure values calculated 

daily (Walter-Shea et al., 2021)  

 To start each dry down run at field capacity soil moisture, plots were irrigated for 

three hours and allowed to sit overnight to allow excess water to flow through the soil 

profile with initial lysimeter weights recorded in the morning.  Plots were allowed a longer 

period to let excess water flow through in 2018 due to some unexpected data in 2017 

that indicated soil moisture may have been maintained above field capacity.   

Weather Data 

Hourly weather data were collected from the Nebraska State Climate Office 

Nebraska Mesonet Lincoln IANR station.  This station is located 1km to the southwest of 

the research plots.  Weather values recorded from this station include Ta, relative 

humidity, soil temperature, solar radiation, wind speed, wind direction, and ETo.  

Reference ET was calculated daily using the HPRCC Daily Penman equation.  

Data Collection 

Data were collected during two growing seasons: 26 June through 2 August 2017 

(38 days) and 26 June through 27 July 2018 (32 days).  Weather data provided by the 

NSCO are hourly averages with the reference ET being a daily value; lysimeter and soil 

moisture data were measured 4 to 7 times per week, as previously described.  The date 

of visible wilt was recorded when symptoms of water stress such as leaf firing and loss 

of turgor pressure were clearly observed when lysimeters were measured.   

Volumetric water content (VWC) through time-domain reflectometry was 

measured using a FieldScoutTDR 300 hand-held soil moisture meter (Spectrum 

Technologies, Inc., Aurora, IL) as an average of five readings within each plot. VWC was 
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measured before each weighing event.  The 7.6 cm length rod was used in the standard 

soil-type mode.   

Water Retention Curve 

A water retention curve was created to relate the measured soil VWC obtained 

from the TDR 300 to the SWP. This curve was generated from a total of 12 intact soil 

cores (one from within each plot of the study area) after the data collection period in 

2018.  Each core had a height of 7.6 cm and a diameter of 8.9 cm.  The 12 cores were 

saturated overnight and then weighed.  Water was then removed from the cores at 

various pressures using a ceramic plate extractor (15 bar Ceramic Plate Extractor, 

Soilmoisture Equipment Corp; Santa Barbara, CA).  Ceramic plate extractors removed 

water at pressures of 0.33, 1.00, 3.00, and 5.00 MPa with each core being weighed after 

each round of pressure.  Volumetric water content was calculated at each pressure 

using the measured weight, oven dry weight, and volume of the core (Grossman and 

Reinsch, 2002; Blanco-Canqui et al., 2007).   

Data Analysis 

A segmented linear regression was calculated with the Solver data package in 

Microsoft Excel to relate the x-variable (SWP) and the y-variable (VWC) vs z.  

Segmented linear regression identifies a critical value where Kc abruptly changes with a 

change in SWP.  Fisher’s least significant difference was calculated in JMP® 13 (SAS 

Institute Inc., Cary, NC) for SWP, ETm, and Kc by date.  
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2.3 Results 

Weather 

In 2017, mean daily Ta for the collection period (26 June to 2 Aug) was 25.3 ±3.0 

°C, ranging from 18.5-31.9 °C.  There was 207 mm of precipitation across six rain events 

over the 38 days of the study period (Fig. 2.3).  An average of 104 mm of precipitation 

fall during this period in Lincoln, Nebraska.  From 12 July through 2 August only a minor 

rain event of 4.3 mm occurred on 17 July.  These 20 days of minimal precipitation 

allowed for significant dry-down of 0WR plots in which differences were observed in 

relation to irrigated plots.  Mean SR was 218 ±55 W m-2 for the collection period.  

Relative humidity was 70 ±7%.  Wind speed averaged to 4.1 ±1.6 m s-1.  Mean VPD was 

1.11 ± 0.41 kPa.  Mean ETo was 5.98 ±1.82 mm. The greatest ETo value from the 

weather station dataset was on 21 July with 9.55 mm.  On this day, mean Ta was 31.9 

°C, SR was 261 W m-2, RH was 53%, WS was 7.2 m s-1, and VPD was 2.34 kPa. 

In 2018, mean Ta for the collection period was 25.5 ±2.6 °C.  There was a total 

99 mm of precipitation across three rain events over the 32 days of the study period (Fig. 

2.4).  An average of 89 mm of precipitation fall during this period in Lincoln, Nebraska 

From 6 July to 27 July, a small rain event of only 6 mm occurred on 19 July for a total of 

21 days with minimal precipitation where significant dry-down occurred on 0WR plots.  

Mean SR was 234 ±55 W m-2.  Relative humidity was 72 ±7%.  Wind speed averaged to 

3.2 ±1.8 m s-1.  Mean VPD was 1.05 ±0.42 kPa.  Mean ETo was 5.84 ±1.77 mm. The 

greatest ETo value was recorded 29 June with 10.97 mm.  On this day, mean Ta was 

31.2 °C, SR was 270 W m-2, RH was 57%, WS was 10.1 m s-1, and VPD was 2.06 kPa. 
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Irrigation Applied  

The longer collection period and greater mean ETo in 2017 lead to greater 

number of irrigation events and irrigation quantity than in 2018.  In 2017, 100WR plots 

received 302.7 mm of irrigation across 19 irrigation events for an average of 15.9 mm 

per event.  The 50WR plots received 174.3 mm of irrigation for an average of 9.2 mm 

per event. In 2018, 100WR received 120.8 mm of irrigation across 8 irrigation events for 

an average of 15.1 mm per event.  The 50WR plots received 58.9 mm of irrigation for an 

average of 7.4 mm per event.  Water replacement for 50WR plots was greater than 50% 

of 100WR both years simply due to ETm of 50WR being greater than 50% of ETm for 

100WR.  0WR plots received no supplemental irrigation in either year.   

Soil Moisture 

The soil water-retention curve (Fig. 2.5) allows for the extrapolation of SWP 

based on the measured VWC.  To relate VWC (%) and Ψs (kPa), a logarthimic curve 

was found to fit the model at R2=0.955.  The model indicates that field capacity soil 

moisture conditions (between -33 & 0 kPa) occur from 12.9 – 13.4% VWC with the 

commonly cited permanent wilting point of -1500 kPa occurring at 2.7% VWC.   

Starting soil moistures were similar in both years (Fig. 2.6), ranging from 14.7% 

to 22.2% VWC.  It is presumed that the starting soil moistures were greater than 15% at 

FC due to insufficient time to drain before starting data collection period.  The 100WR 

treatment was maintained near or above field capacity in both years, ranging from 14.3 

to 22.2% VWC in 2017 and 8.0 to 19.4% VWC in 2018.  In 2017, VWC for 50WR 

treatment was within 130 kPa (2.0% VWC) of 100WR on all dates except 10 July when 

the difference was 409 kPa (6.0% VWC).  Greater separation of treatments was 

observed in 2018, where 50WR was within 130 kPa of 100WR until 13 July at which 



21 
 

 

point the difference increased gradually to 654 kPa (5.3% VWC) on 27 July, the end of 

the study. 

The 0WR treatment had the most dry-down in both years, with soil moisture 

levels ranging from 20.6 to 5.6% VWC in 2017 and 16.4 to 2.1% VWC in 2018.  In 2017, 

rain events on 29 June and 3 July replenished soil moisture in 0WR plots.  In the 

following eight rain-free days, VWC fell from 17.9% to 9.8% (179 to -428 kPa) on 11 

July.  The 37.3 mm rain event on 12 July increased VWC to 18.3%.  Over the next 11 

rain-free days, VWC fell to 6.9% (-786 kPa) with visible wilt (Fig. 2.8) occurring on 24 

July.  The 78 mm rain event on 26 July caused a brief spike in soil moisture followed by 

quick drop off to lowest measured value of 5.6% VWC (-1030 kPa) of 2017.  In 2018, 

rain events on 30 June and 4 July prevented dry-down of 0WR plots.  On 5 July, VWC 

was measured at 16.4% (104 kPa).  The following 22 days had minimal rain, allowing 

0WR plots to dry-down.  On 13 July, after eight rain-free days VWC fell to 4.2% (-1252 

kPa) with visible wilt of the turf occurring on that day.  Soil water potential fell 

consistently (~176 kPa day-1) from 6 July to 16 July, at which point the rate of decline 

decreased to ~24 kPa day-1.   

Water Use 

To compare water use across treatments, two measurements of ET were 

considered: i) ETm to represent the total amount of water lost, calculated using lysimeter 

weights in the water balance equation (Eq. 4), and ii) Kc, calculated as the quotient of  

ETm and ETo (Eq. 1). This method is used to normalize water use based on weather 

conditions and allows for treatment comparisons across days.  In the 2017 collection 

period, lysimeters were weighed on 27 of the 38 days with 16 of those days being 

unaffected by precipitation.  In the 2018 collection period, lysimeters were weighed on 

25 of the 32 days with 21 days being unaffected by precipitation. Only days unaffected 
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by precipitation (heavy rain events affected lysimeter weights for multiple days) were 

used for analysis.   

There was a notable difference in water use measurements between 2017 and 

2018 (Figs. 2.8 and 2.9).  In 2017, water use was inconsistent and unexpectedly high for 

100WR treatments, showing 54% greater mean ETm than 2018, while mean ETo was 

only 2% greater. The high values in 2017 suggested that the initial soil water content 

was much greater than field capacity, leading to inaccurate water use values for the 

100WR treatment.  This led to a modification in methods for the second year of data 

collection, yielding more realistic and consistent results.  This is an example of potential 

complications of lysimetry. 

In 2017, daily mean ETm was 6.1 mm with an average Kc value of 0.96 for 50WR 

(Fig. 2.8).  Crop coefficient values were greater than 0.70 on all days of measurement 

across all water replacement treatments except on 4 July when Kc was 0.55, suggesting 

no limiting soil moisture conditions in the collection period.  Mean ETm values for 0WR 

were 5-20% less than 50WR for all dates up to 19 July, at which point, water use began 

to decline for 0WR after 55.6 mm of ETm.  This decline in ETm and Kc coincided with a 

drop in soil moisture, measuring 13.4% on 19 July and 9.2% on 20 July.  From 20 July to 

2 August, Kc declined from 0.73 to 0.00, suggesting that a soil moisture threshold had 

been crossed, preventing the creeping bentgrass from removing the water from the soil.  

In comparison with observed visible wilt on 24 July, the decrease in water use began 5 

days earlier. 

In 2018, 100WR and 50WR daily mean ETm measured 5.7 and 5.5mm, 

respectively.  Daily values ranged from 1.6 to 10.2 mm for both treatments, with half of 

all values falling between 4.5 and 6.6mm.  Mean Kc values were 0.93 and 0.90 for 

100WR and 50WR, respectively.  Daily Kc values ranged from 0.52 to 1.39, with half of 
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all values falling between 0.85 and 0.98.  There was no clear relationship between ETm 

and soil moisture for these two treatments.  Measured Kc for 50WR & 100WR remained 

consistent throughout the 2018 collection period (see Fig. 2.7), falling below 0.70 only 

twice: 29 June (0.66 for 100WR) and 25 July (0.52 for both treatments) with the following 

day measuring greater than 0.70 on both occasions.  The lack of any decrease in Kc for 

50WR as soil moisture decreased to -969 kPa or 5.6% VWC by the end of the collection 

period suggests that water use for the bentgrass putting green did not vary with SWP in 

this range.   

However, water use did decline for 0WR plots at lower SWP than were 

experienced by the 50WR plots.  0WR plots displayed two distinct trends of water use 

categorized into: sufficient and insufficient soil moisture. In the period of sufficient soil 

moisture (26 June to 13 July), Kc for 0WR plots was greater than 0.70 and ETm was 

generally within 5% of 50WR & 100WR.  The period of insufficient soil moisture (16 July 

to 27 July) is characterized by a sharp decrease in water use, where Kc measured 0.21 

on 19 July and ended at just 0.06 on 27 July, the final day of day of data collection.  This 

closely coincides with observed visible wilt on 13 July.   

To quantify the two distinct trends of water use for the 0WR treatment, 

segmented least square regression (R2=0.95) was applied to the SWP as a function of 

Kc.  This regression shows a slope of zero for Kc when SWP is greater than the critical 

point of -1501kPa, indicating -1500 kPa as a critical soil water potential value for 

creeping bentgrass (Fig. 2.10).  This supports the findings in the 50WR and 100WR 

treatments that water use remains consistent (near the y-intercept value of b=0.88) at 

levels of sufficient soil moisture, which agrees with measurements from 50WR and 

100WR treatments.  When SWP drops below the critical value of -1500 kPa (soil gets 

drier), the slope for Kc trends downward (m=0.0012) indicating that water use declines 
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rapidly once the soil dries past this critical point.  The positive slope for the insufficient 

soil moisture segment illustrates a downward trend in water use due to the more 

negative SWP values representing a drier soil.  The 0WR treatment crossed this critical 

point of SWP on the 15 July, two days after observed visible wilt, after a cumulative 66.4 

mm of ETm up to this date of the study period.  

2.4 Discussion 

Change in Water Use with Soil Moisture 

We found two distinct trends, or phases, of water use in a creeping bentgrass  

putting green: i) consistent water use with measured Kc around 90%, associated with 

SWP greater than -1501 kPa (wilting point), and 2) a sharp decline in water use with Kc 

approaching zero, occurring after soil dries down past the wilting point threshold 

identified in this study.  This wilting point, calculated using segmented regression of ETm 

and SWP, closely agrees with the accepted WP of -1500 kPa mentioned in Ritchie 

(1981) and (Aamlid et al., 2016). This number is applied to a wide variety of species and 

soil types so confirmation of this value in a creeping bentgrass putting green could help 

to increase precision of soil moisture management in similar situations.  Biran et al 

(1981) shows a similar trend of consistent ET followed by quick decline in water use for 

both warm- and cool-season grasses but a dearth of presented data makes it difficult to 

quantify. The rapid transition from healthy to visibly wilted turf observed in the 0WR plots 

emphasizes the need for managers to understand the relationship between measured 

soil moisture and SWP.  Understanding that water use is consistent at a wide range of 

SWP’s could aid turf managers in reducing irrigation frequency and minimize the 

excessive use of water resources.  To our knowledge, no research has previously been 

conducted on water use of creeping bentgrass as it transitions from field capacity to 

wilting point in a putting green situation.   
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Overly frequent irrigation combined with soil moisture maintained above field 

capacity is a potential cause of the unexpectedly high water use measurements in 2017.  

In 2018, we adjusted by allowing more time for excess water to drain from lysimeters 

after irrigating plots to field capacity to start the study.  Aamlid et al (2016) observed Kc 

values of various cool-season turf species up to three times greater on the first day after 

irrigation (1.67-2.85) compared to measurements from the following days (0.81-0.91).  

Our study, like Aamlid et al (2016), measured no leachate on these days indicating that 

excess water was quickly evaporated away.  Allowing more time for drainage before 

initiating the study and irrigating less frequently in 2018, Kc values were in line with 

values reported in the literature (Aamlid et al., 2016, Salaiz et al., 1991).  By reducing 

irrigation applications and controlling soil moisture below field capacity, managers can 

avoid this unnecessary water loss.  

Applicability of these data can be improved through repetitions under different 

management regimes like species and mowing height, and also by increasing the 

number of study locations (e.g., soil type and climate).  In this study, days with rainfall 

events prevented more frequent lysimeter weight measurements.  Subsurface 

movement of water from an adjacent plot into the northernmost block of the study was 

suspected and may have led to increased soil moisture measurements for those 

experimental units.  An oasis effect was observed on some lysimeters (Fig. 2.11) where 

turf inside the lysimeter had a limited rooting depth, and thus limited access to water 

(Fig. 2.2) as compared to the vegetation in the plot.  Turf surrounding the lysimeter was 

able to reach soil moisture deeper in the soil profile, potentially down to the gravel layer.   

ETm and Kc Rates in a Creeping Bentgrass Putting Green 

In 2017, we observed Kc values on well-watered plots between 0.52 and 2.22 for 

the 100WR treatment, with half of all measurements between 0.89 and 1.36. In 2018, 
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after adjusting our methods to account for the unnecessary water use, Kc for 100WR 

measured 0.52 to 1.39. For 50WR, we saw values between 0.52 and 1.30 with half of all 

values between 0.86 and 1.00.  These values agree with findings from Salaiz et al. 

(1991) who found Kc values from 0.60 to 1.31 across ten different creeping bentgrass 

species.  These species had ranges of Kc values spanning up to 0.50 units which is 

similar to values we observed for the 50WR treatment in both years and 100WR 

treatment in 2018 while the wider range for 100WR treatment can be explained by too 

frequent irrigation at field capacity soil moisture.  Our Kc measurements trend slightly 

lower potentially due to a lower mowing height (2.8 mm compared to 12.5mm in the 

Salaiz et al. study) leaving less plant material to transpire water.  (Poro et al., 2017) 

concluded that adjustments to Kc are justified for different cut creeping bentgrass height 

in a study conducted in the humid northeast (both green and fairway heights were 

evaluated).   

Our measured daily ETm values ranged from 1.6 to 14.3 mm for 100WR in 2018 

with half of those falling between 5.8 to 12.3mm.  We saw 1.6 to 7.8 mm for 50WR 

treatment in 2018 with half of those falling between 4.4 and 6.4mm.  These numbers 

agree well with those of Salaiz et al. (1991) who measured ETm values of 3.2 to 10.7 mm 

across the ten species.  We attribute our lower ETm values to those reported due to a 

lower mowing height.   

Future Research 

We propose combining findings from this study with simultaneous Tc 

measurements to gain insight on how creeping bentgrass putting greens transition into 

drought stress.  Early identification of drought stress using remote sensing can lead to 

quicker, more precise management decisions.   
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2.5 Conclusion 

This study reveals temporal water use patterns as creeping bentgrass undergoes 

water stress when managed as a putting green.  Crop coefficients remained consistent 

for all treatments when SWPs were greater than -1501kPa, which we define as the 

wilting point for creeping bentgrass under study conditions.  At values below this wiling 

point, water uptake decreased and eventually ceased at which point the turf entered 

dormancy.  With minimal difference in water use and visual quality between 50WR and 

100WR, we see that over-irrigation will lead to unnecessary consumption of water 

resources with no benefits to plant health or aesthetics.  Increasing understanding of 

water use patterns for this species in this management regime will help to increase 

efficiency of water resources and provide managers with better control of their facilities.   
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2.6 Tables & Figures 

 

Figure 2. 1 Layout of research area. 

Lysimeters are located in the center of each plot.  Treatments were randomized to plot 

each year.  Alleys prevented sub-surface movement of water between treatments. 
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Figure 2. 2 Diagram of lysimeter measurements. 

Diagram showing how the lysimeter fit into surrounding field conditions.  Lysimeters 
rested in a PVC tube extending the length of the soil profile.  A foam strip surrounded the 
top of the lysimeter to minimize the wall/liner gap at the surface.  Catch cans were 
removable to allow measurement of leachate volume. 
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Figure 2. 3 Weather trends from 2017 that influence water use. 

Hourly trends for air temperature (Ta), solar radiation (SR), relative humidity (RH), and 
wind speed in 2017.  Data for reference ET (ETo), and precipitation in (Precip) is daily.  
Weather data missing for 29 June.   
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Figure 2. 4 Weather trends from 2018 that influence water use. 

Hourly trends for air temperature (Ta), solar radiation (SR), relative humidity (RH), and 
wind speed in 2018.  Data for reference ET (ETo), and precipitation in (Precip) is daily. 
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Figure 2. 5 Water-retention curve for research area to convert volumetric water content 
to a soil water potential.   

Field capacity (dashed line = -33 kPa) occurs 12.9% VWC while wilting point (dashed 
line = -1502 kPa) is 2.7% VWC.  The logarithmic equation for converting VWC to SWP 
was determined based on pressure required to remove water from cores using ceramic 
plate extractors at -33, -100, -300, -500 kPa while the -1500 kPa measurements were 
from oven dried soil.  Soil cores were collected in 2018. 
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Figure 2. 6  Trends of soil water potential by treatment for both years.   

Average Soil water potential for each treatment during data collection periods in 2017 
(A) and 2018 (B).  Rain events denoted along the x-axis.  Treatments are full water 
replacement (100WR), half water replacement (50WR), and no water replacement 
(0WR).  Standard error is shown. Treatment differences greater than Fisher’s LSD0.05 are 
significantly different.  Gray line denotes first day visible wilt was clearly observed. 
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Figure 2. 7  Images of 0WR plots on day of visible wilt 

Images of discoloration and leaf firing on 0WR plots indicating visible drought stress. 
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Figure 2. 8  Average Water use data by date for all treatments in 2017. 

Average Crop coefficients calculated using Daily Penman equation. Treatments are full 
water replacement (100WR), half water replacement (50WR), and no water replacement 
(0WR) (n=4).  Standard error is shown. Treatment differences greater than Fisher’s 
LSD0.05 are significantly different.  Only days unaffected by rain are shown.  Gray line 
denotes first day visible wilt was clearly observed. 

 

 

 



36 
 

 

 

 

Figure 2. 9 Average Water use data by date for all treatments in 2018. 

Average Crop coefficients calculated using Daily Penman equation.  Treatments are full 
water replacement (100WR), half water replacement (50WR), and no water replacement 
(0WR) (n=4).  Standard error is shown. Treatment differences greater than Fisher’s 
LSD0.05 are significantly different.  Only days unaffected by rain are shown.  Gray line 
denotes first day visible wilt was clearly observed. 
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Figure 2. 10 Relationship of measured crop coefficients and soil water potential from 
2018. 

Crop coefficients from 2018 as a function of soil water potential for full water 
replacement (A), half water replacement (B), and no water replacement (C).  Trendlines 
are shown for each treatment with segmented linear regression used to calculate two 
distinct trends of water use for the no water replacement treatment. 
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Figure 2. 11 Image of oasis effect in 2018. 

Image of Plot 4 (0WR) on 7/25/2018.  Here we see the “oasis effect” of the lysimeter due 
to physical separation from the soil profile.  We suspect subsurface movement of water 
from the area at the top of the image created this difference in soil moisture between the 
lysimeter and the upper half of the plot. 
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CHAPTER 3: USE OF CANOPY TEMPERATURE TO MEASURE WATER STRESS IN 

CREEPING BENTGRASS 

3.1 Abstract 

Canopy temperature measured via thermal imagery can provide insight regarding 

spatial plant-water status of turf but improved data interpretation is needed to inform 

irrigation scheduling practices.  This study was conducted to better understand how Tc of 

creeping bentgrass (Agrostis stolonifera '007') is affected by soil moisture and weather.  

A camera system recorded various metrics utilizing Tc along with current weather 

information on a ten-minute interval. Responses from this data were related to visual 

observance of wilt to evaluate their usefulness in irrigation scheduling.  To further 

improve detection of water stress, multiple regression analysis was used to create a 

model (n=3216) to predict Tc of a non-water stressed turf using four weather parameters: 

Ta, SR, RH, and WS.  Here we show that metrics such as Relative to Non-Water 

Stressed Baseline (RelNWSB) and Standard Deviation of Tc (SDTc) over a measured area 

can be used to indicate drought stress prior to visible wilt.  In 2017 and 2018, RelNWSB for 

plots receiving 0WR exceeded 4 °C in the mid-afternoon one day prior to visible wilt, 

where plots receiving 50WR did not exceed 2 °C at any point.  The SDTc metric 

exceeded 2 °C for 0WR two days prior to visible wilt in 2017 when non-water stressed 

plots did not regularly exceed 1 °C. Results for SDTc in 2018 are inconclusive. Models 

using Ta and SR were most predictive when tested on a 2016 dataset with the median 

difference between predicted and measured Tc (TΔ) at 0.90±1.27 °C.  While results 

improve the understanding of relationships between Tc, soil moisture, and weather, 

further research is necessary to develop precise decision-making tools.   
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3.2 Introduction 

Thermal imaging is emerging as a useful tool for the management of turfgrass.  It 

provides both qualitative and quantitative spatial and temporal data to the manager.  

Qualitative data are measured as infrared radiation collected by the detector via a lens 

and composed into thermal imagery. A color scale relates each pixel of the image, 

corresponding to an area on the surface, to a temperature. This image shows the spatial 

relationship of Tc and helps to identify hot spots or other underlying issues.  Collected 

over time, provides temporal coverage. For the quantitative aspect, values of Tc 

measurements can be extracted from each pixel of the image to give a more precise 

measurement than visually assessing temperatures using the color scale provided with 

each image.  While both sets of information can be useful for decision making in 

turfgrass, interpretation of quantitative Tc data needs to be improved to be fully utilized 

by turf managers for efficient water use.   

Canopy temperature is a measure of infrared radiation emitted from the surface 

of plant leaves.  The amount of radiation emitted is related to the amount of solar and 

thermal radiation absorbed by the plant material.  This absorbed radiation can be 

partitioned into two measurable categories, explained by equation (2): 

 𝑅𝑛 = 𝐻 + 𝐿𝐸 (6) 

where Rn is net radiation incident on the canopy, H is the sensible heat flux or energy, 

and LE is the latent heat flux or energy consumed in the processes of transpiration as 

liquid water in the leaf is converted to gaseous water vapor as it exits stomata (Martin et 

al., 2005b) and evaporation of water from the soil and plant surface.  As plant health 

declines due to drought stress or other factors, transpiration rate will decrease leading to 

a decrease in energy absorbed in LE, an increase in temperature and an increase in 
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sensible energy (H); the surface temperature is detectable through thermal infrared 

cameras.   

Canopy temperature data from infrared thermometry or thermography has been 

used to gain insight into plant-water status of various crops such as cotton (Alchanatis et 

al., 2010; Sela et al., 2007b), grapevine (Moeller et al., 2007), olive (Ben-Gal et al., 

2009), and pepper (Camoglu et al., 2018).  These techniques have also been tested on 

various species and management regimes of turfgrass such as: Kentucky bluegrass 

(Throssell et al., 1987, Martin et al., 1994), bermudagrass (Carrow, 1993; Jalali-Farahani 

et al., 1993) and creeping bentgrass (Martin et al., 1994) but no research can be found 

for creeping bentgrass maintained at putting green heights.  Healthy, unstressed turf is 

thought to maintain a Tc slightly below ambient Ta due to transpirational cooling.  An 

increase of Tc in relation to Ta would indicate reduced transpiration and thus, an increase 

in plant stress.   

A number of factors are known to influence Tc, such as: Ta, SR, WS, and soil 

moisture (Carlson et al., 1972).  Stress indices utilizing Tc data have been developed to 

quantify the level of water stress in plants.  Fuchs (1990) proposed that the variation of 

Tc over a given area would indicate water stress.  Using Tc variation would eliminate the 

need for multiple measurements to detect stress.  One of the more common stress 

indices is the empirical crop water stress index (CWSI) developed by Idso (Idso, 1982): 

𝐶𝑊𝑆𝐼 =
(𝑇𝑐 − 𝑇𝑎)𝑎𝑐𝑡 − (𝑇𝑐 − 𝑇𝑎)𝐿𝐿
(𝑇𝑐 − 𝑇𝑎)𝑈𝐿 − (𝑇𝑐 − 𝑇𝑎)𝐿𝐿

 
(7) 

where (𝑇𝑐 − 𝑇𝑎)𝑎𝑐𝑡 is the measured canopy temperature minus air temperature, 

(𝑇𝑐 − 𝑇𝑎)𝐿𝐿 is canopy temperature minus air temperature at the lower limit of water 

stress, and (𝑇𝑐 − 𝑇𝑎)𝑈𝐿 is the canopy minus air temperature at the upper limit of water 
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stress. The upper and lower limits are commonly referred to as the water-stressed 

baseline (WSB) and non-water-stressed baseline (NWSB), respectively. 

Accurate estimations of the WSB and NWSB are needed to make the CWSI a 

practical decision-making tool for turf managers.  Constantly changing weather 

conditions and thus, changing Tc, create a range of potential values for baselines 

(Taghvaeian et al., 2014).  Researchers have created models that predict these 

baselines under various conditions using different weather factors (Payero et al., 2005; 

Martin et al., 1994; Throssell et al., 1987) including air temperature and vapor pressure 

deficit but no attempt to model these baselines for a creeping bentgrass putting green 

could be found.   

The purpose of this study is to evaluate if frequent measurements of Tc and 

weather parameters can be used to detect early signs of water stress in a creeping 

bentgrass putting green.  More specific objectives include: i) observe the Tc under 

various weather conditions, ii) understand how soil moisture affects the Tc, and iii) 

develop a model to predict the Tc of NWSB for a creeping bentgrass putting green using 

weather parameters. 

3.3 Methods & Materials 

Site Description 

This data for this chapter was collected simultaneous to the data from Chapter 

Two on the same research plot (Fig. 2.1), a creeping bentgrass (Agrostis stolonifera 

‘007’) putting green.  Data was collected in two periods: 26 June through 3 August of 

2017 and 26 June through 27 July of 2018.  The study area consisted of 12 plots 

arranged in three replicate rows of four treatments with data from the fourth treatment 

omitted from this this study.  Each plot measured 2.1 x 1.4 m with a 0.6 m buffer zone 
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around each plot.  Overhead irrigation was withheld but natural precipitation was 

allowed.  Rain tarps were used to cover the research area on two occasions (26 July 

2017 & 17 July 2018) when a brief rain event was identified ahead of time.  Plots were 

irrigated by hand, using a flowmeter attached to a hose, as part of treatments.  Buffer 

zones were unirrigated.  Plots were mowed five times weekly with a walk-behind reel 

mower (Greensmaster eFlex® 2100, The Toro Company, Bloomington, MN).  Height of 

cut decreased gradually from 4.1 to 3.3 mm in 2017 and was maintained at 2.8 mm in 

2018.  Nitrogen fertilizer (46-0-0) in the form of urea was applied at a rate of 12.21 kg ha-

1 semi-weekly.  A surfactant, Revolution (Modified Alkylated Polyol), was applied on 22 

June 2017 and 24 May 2018 at rate of 9.5 and 19.0 L ha-1 respectively.  

Lysimeters 

To measure ET and calculate Kc, a 16.7 L weighing lysimeter was buried in the 

center of each plot.  Existing turf and root zone mix were used in lysimeters to match 

surrounding conditions. Lysimeters were removed and weighed on an Ohaus (Pine 

Brook, NJ) Explorer Precision High Capacity Balance in the morning on days of 

measurement.  Sizable precipitation events would affect lysimeter weights for 1-2 days 

so no data was collected on these days.  Kc values and measured ET (ETm) and were 

calculated in the same manner as in Chapter 2 (equations 1 and 4 respectively).  

Measurements of ETm and Kc on days following rain events were excluded. 

Irrigation Treatments 

Three irrigation treatments were employed to evaluate how ETm and Kc varied at 

different soil moisture levels.  Treatments were three levels of water replacement: 0, 50, 

& 100% (0WR, 50WR, & 100WR).  A fourth treatment, using a proprietary formula to 

schedule irrigation, was conducted simultaneously but data is omitted from this research.  
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Amount of water to be replaced was determined with ETm values measured with the 

water balance equation (Eq. 4) for individual plots.  Irrigation was applied after all 

lysimeters were weighed.  Plots were irrigated using a TeeJet XR8006 (TeeJet, 

Wheaton, IL) while lysimeters were removed.  Irrigation volume was monitored with a 

flowmeter.  Lysimeters were then replaced and irrigated separately from the plot with a 

water bottle using a proportional amount of water as the rest of the plot received.  This 

ensured that all water applied entered the soil and no water was lost into the wall/liner 

gap (Fig. 2.2).   

Treatments were arranged in a randomized complete block design for each study 

year.  All plots were irrigated to field capacity at the onset of the study in each year.  

Camera System 

A camera system (Hawkeye System® by Itricorp, Haymarket, VA) consisting of a 

FLIR (forward-looking infrared) camera to measure canopy temperature (Tc) and an 

RGB camera for standard color imaging was mounted near the research site (Fig. 3.1).  

The camera system was mounted to a pole 7 m above the ground and 20 m away from 

the study area.  The system faced north and was angled toward the ground at 15°.   

The FLIR, or thermal, camera was sensitive to infrared radiation between 

wavelengths of 7-13.5 μm.  The thermal camera contains an uncooled vanadium oxide 

microbolometer detector.  Camera lens provides a 25° field-of-view and an image of 

320x240 pixel resolution.  The system recorded separate images from both cameras on 

a ten-minute interval and stored the digital images in a database where the images and 

thermal data could be accessed.  Each pixel in the thermal image, representing 3.8cm2 

on the surface, provides an average thermal measurement within the pixel area. The 

system allows for each plot to be selected and measured separately, eliminating the 
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need for additional image processing after the fact.  The mean and standard deviation of 

the thermal measurements for each plot are extracted from the images, referred to as Tc 

and SDTc.   

In this research, a new Tc metric was defined to evaluate water stress.  This 

metric, canopy temperature relative to a non-water stressed baseline (RelNWSB), is 

defined as: 

 𝑅𝑒𝑙𝑁𝑊𝑆𝐵 = 𝑇100𝑊𝑅 − 𝑇𝑐 (6) 

where T100WR is the canopy temperature of the 100WR treatment and Tc is the canopy 

temperature of the plot of interest. Negative values indicate a greater Tc for the plot of 

interest in relation to 100WR, indicating reduced transpiration and increased stress.  The 

100WR represents a non-water stressed baseline in this study since soil moisture 

remains sufficient, allowing the turf to fully transpire.   

A weather station (AmbientWeather WS-1002-WIFI, Ambient Weather, Chandler, 

AZ) was located on the north side of the research area.  The camera system collected 

current weather data simultaneous to each image capture. 

Weather Data 

Hourly weather data was collected from the AWDN as part of the HPRCC.  Weather 

observations from a nearby the Nebraska State Climate Office Mesonet Lincoln IANR 

Station were retrieved from the High Plains Regional Climate Center website. Hourly 

averaged values downloaded from the site include Ta, RH, soil temperature, SR, WS, 

wind direction, and ETo, calculated in the same manner as Chapter Two. This weather 

station was located approximately 1km to the southeast of the study area on the 

University of Nebraska campus. Weather data from Mesonet station was checked 

against the ten-minute readings from the AmbientWeather station to ensure accuracy.  
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Soil Moisture Measurements 

A FieldScoutTDR 300 hand-held time-domain reflectometry soil moisture meter 

(Spectrum Technologies, Inc., Aurora, IL) was used to measure soil volumetric water 

content (VWC) in the standard soil-type mode using a 7.6 cm length rod.  VWC was 

measured at five locations within each plot before each lysimeter weighing event.  An 

average VWC was calculated for each plot. A water-retention curve relating VWC 

readings with SWP measurements (see Section 2.3). 

Data Analysis 

Multiple regression models to predict Tc based on current weather conditions 

were developed using the ‘Regression’ function in Microsoft Excel 2016.  Weather 

factors used to calculate Tc were Ta, SR, RH, and WS.  Numerous combinations of these 

factors were tested to evaluate which factors are needed to develop a sufficient model.  

Weather data from the 2017 and 2018 data collection periods were used.  Canopy 

temperature of three reps of 100WR were averaged to determine Tc of the NWSB.  

Multiple regression formulae were applied to a dataset from 2016 to evaluate accuracy 

of predictions.  The 2016 dataset includes three days of Tc and weather data from a 

creeping bentgrass plot at the UNL Turfgrass Research Center with soil moisture 

maintained near field capacity, similar to the 100WR treatment of this study.  Adjusted R2 

was used to account for number of factors used to create model.  Adjusted R2
 and R2 are 

equal for single factor models.   
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3.4 Results & Discussion 

Canopy Temperature and Weather 

Figure 3.1 shows a strong diurnal pattern of Tc peaking in the mid-afternoon and 

reaching its lowest level pre-dawn at all levels of water replacement.  The diurnal 

variation in Tc, often greater than 20 °C in the summer, can be attributed to diurnal 

change in weather conditions.  

In 2017, Ta ranged from 9.7 – 37.7 °C with daily highs between 23.1 – 37.7 °C. 

Daily peak of SR ranged from 267 – 961 W m-2 with a mean value of 820 W m-2.  

Relative humidity ranged from 25.5 – 98.0% with a mean value of 68.1%. Mean WS was 

2.0 m s-1. 

In 2018, Ta ranged from 14.6 – 36.1 °C with daily highs between 19.7 – 36.1 °C.  

Daily peak of SR ranged from 416 – 930 W m-2 with a mean value of 824 W m-2.  

Relative humidity ranged from 37.1 – 99.8% with a mean value of 71.5%.  Mean WS 

was 1.4 m s-1. 

Canopy temperature measurements ranged from 9.3 – 41.3 °C for 50WR and 

100WR treatments and 8.7 – 47.8 °C for 0WR in 2017.  In 2018, the ranges were 13.8 – 

42.8 °C for 50WR and 100WR and 13.4 – 55.1 °C in 0WR.  Temperature ranges were 

smaller for 50WR and 100WR due to higher evaporation rates (Chapter 2) due to 

sufficient soil moisture (high VWC). The highest and lowest Tc values were observed in 

the 0WR treatment when soil moisture was insufficient for plant transpiration.  

Linear regression analysis on the 2018 dataset shows that Rs followed by Ta are 

the most influential factors on Tc with R values of 0.89 and 0.84, respectively (Fig. 3.3).  

Both show strong positive correlation.  Relative humidity showed a negative correlation 

with an R value of 0.76.  Wind speed showed a weak, positive correlation with an R 
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value of 0.48.  The correlation of WS and Tc might be expected to increase if weather 

station was located on-site and measurements were recorded simultaneously due to 

frequent changes in WS in each microclimate.   

Soil Moisture 

As demonstrated in Chapter 2, ETm values were relatively constant when soil 

moisture was readily available to plants (high soil water potential, SWP) but decreased 

when SWP value fell below -1501 kPa in 2018when soil water was bound too tightly to 

the soil to be utilized by the plants through transpiration, resulting in drought stress 

indicated by reduced ETm.   

In 2018, all treatments started with a positive SWP, meaning soil moisture was 

sufficient and slightly above field capacity at the time of measurement.  Both 50WR and 

100WR plots maintained SWP values greater than -1006 kPa (Fig. 3.4), indicating 

sufficient soil moisture throughout and no drought stress (note: no plant wilting was 

observed in these treatments).  SWP for 100WR plots were greater than those for 50WR 

plots on all dates from 12 July through the end of data collection as expected since 

100WR plots receiving more irrigation and will benefit from higher ET.  Pattern of SWP 

for 0WR was similar to the two other treatments until 10 July, five days after a rain event 

of 23mm.  Following that rain event, SWP for 0WR fell from 104 kPa to -1501 kPa on 15 

July and to -2030 kPa on 25 July. 

In 2017, the first day of visible drought stress was 24 July. In 2018, visible 

drought stress occurred on 13 July.  Metrics indicating the onset of drought stress prior 

to these dates could be useful in irrigation scheduling.   

Canopy Temperature Minus Air Temperature 
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In 2018, Tc – Ta ranged between -10 and 10 °C for all treatments on all days until 

13 July (Fig. 3.5).  Values followed a diurnal pattern coinciding with times when Ta, 

reached a maximum in the mid-afternoon and minimum at pre-dawn (Figure 3.1)) when 

ET rates were relatively constant until soil moisture reached a critical level (see Chapter 

2).   

From 13 July to 15 July, the mid-afternoon peak in Tc – Ta increased from 17.0, 

to 25.5 °C for the 0WR treatment.  This period coincides with the SWP at the wilting 

point when drought stress set in and ET rate dropped considerably (Fig. 2.6). From July 

15 on to the end of the study period, mid-afternoon values remained above 20 °C. This 

data suggests that creeping bentgrass maintained at putting green heights would 

undergo drought stress when Tc – Ta exceeds 10 °C.  

A small increase in mid-afternoon Tc – Ta was also observed for 50WR and 

100WR after July 15.  This is likely due to drought stress around the edges of the plots in 

the unirrigated buffer zones as they exhibited symptoms of drought at the same time as 

the unirrigated 0WR plots.  Values of Tc – Ta never exceeded 15 °C for either treatment.  

Values for 50WR and 100WR were consistently within 2-3 °C of each other with mid-

afternoon peaks slightly higher for 50WR.   

After the onset of drought stress for 0WR plots, a trend was observed at night 

where Tc – Ta for 0WR was 1 to 2 °C cooler than other treatments.  This could be due to 

the lack of soil moisture buffering temperature change.  This could be of value because 

weather parameters like SR and WS are less variable at night potentially making it 

easier to discern changes in temperature caused by drought stress.  However, more 

trials are needed to o make decisive conclusions. ‘ 

 



50 
 

 

Canopy Temperature Relative to Non-Water Stressed Baseline 

In this study, the NWSB is defined using data from the 100WR treatments as 

they were irrigated to replace all water lost through ET ensuring sufficient soil moisture 

for full transpiration.  A simplified approach to the CWSI is utilized in which a Tc 

estimated water stressed baselines and NWSB are used to account for current weather 

conditions.  Thus any increase in Tc for 0WR or 50WR relative to the 100WR 

(representing a NWSB) plots would indicate water stress via reduced ET.   

In 2017, ranges of RelNWSB for 50WR and 0WR were -0.8 to 1.1 °C and -1.9 to 

10.4 °C, respectively (Fig. 3.6).  Similar to Tc measurements, values were at their 

maximum in the mid-afternoon and were at their minimum prior to sunrise.  On 23 July, 

one day prior to visible wilt, the mid-afternoon RelNWSB peaked exceeded 2.0 °C for 0WR. 

In the following days, the peak in RelNWSB increased to a maximum value of 8.0 °C with 

peak values being 4oC or higher through the end of the collection period.  Nighttime 

values for the 0WR treatment plots were consistently greater than -1.0 °C until 23 and 24 

July at which point values below -1.0 °C were common.  For 50WR treatments, Tc was 

consistently within 1.1 °C of the 100WR plots which represented the NWSB (Figure 3.6).   

In 2018, ranges of RelNWSB for 50WR and 0WR were -1.4 to 6.2 °C and -2.8 to 

13.9 °C, respectively.  On 11 July, four days prior to visible drought stress in the 0WR 

treatment plots, mid-afternoon RelNWSB peak reached 2.0 °C.  From 11 July to 15 July, 

as SWP crossed the critical value of -1501 kPa (Fig. 3.9), the RelNWSB value increased to 

13.9 °C.  Similar to 2017, when mid-afternoon RelNWSB values reached 2.0 °C on July 22, 

nighttime values dropped below -1.0 °C for the first time in the collection period.  The 

trend is attributed to the unintentional inclusion of drought stressed alleys when images 

were analyzed.  As values for 0WR increased, RelNWSB temporal trends for 50WR 
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treatment plots mimicked those of the 0WR treatment but to a lesser degree as values 

were frequently less than half of 0WR values at the mid-afternoon peak.   

These results suggest that measuring Tc relative to a NWSB can indicate water 

stress with a greater signal-to-noise ratio than Tc-Ta.  While 2018 data showed signs of 

drought stress prior to visual detection, due to the subjective nature of visually 

determining water stress, further research is needed to make the claim that it can be an 

early indicator of water stress on a consistent basis.  Results of this study indicate that 

creeping bentgrass managed at putting green heights would be at or near drought stress 

when Tc regularly exceeds 2 °C when compared to a NWSB.  Payero et al., (2005) 

looked at modeling a NWSB in various weather conditions for tall fescue and found that 

models were improved using near-noon values.  Similarly, this study found mid-day 

values were the most revealing as it relates to measuring water stress.  There may be 

value in investigating the nighttime signature of RelNWSB as an early indicator of water 

stress as it responded inversely but to a lesser degree than mid-afternoon 

measurements.  

Standard Deviation of Canopy Temperature 

Variation in Tc as measurement of water stress caused by reduced stomatal 

conductance was suggested by (Fuchs, 1990) and discussed by (Jones, 2004).  The 

standard deviation of Tc (SDTc) output by the camera system used in this study allowed 

for the evaluation of variance in Tc as plots transitioned from non-stressed to drought 

stress conditions (Figure 3.6).  Similar to other metrics, maximum values were observed 

in the mid-afternoon and minimum values were observed at nighttime.  Brief, irregular 

spikes in SDTc (Fig. 3.7) were images containing non-turf objects such as people or 

maintenance equipment.   
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In 2017, two days before visible wilt (22 July), maximum daily SDTC values rarely 

exceeded 0.50 °C for all treatments.  From 22 July through 25 July, maximum daily 

values for the 0WR treatment increased to 3.70 °C and frequently remained above 3.00 

°C for the rest of the 2017 study period, indicating greater variance in temperature in the 

measured areas.  In this same period, daily maximum SDTC values for 50WR and 

100WR increased slightly but never exceeded 1.00 °C.  The series of thermal images 

(Fig. 3.8), indicate areas of reduced transpiration increasing in size as the study 

progresses from a non-stressed to drought stress conditions, corresponding to the 

increase in SDTc. 

In 2018, similar to 2017, from the beginning of the study period until two days 

prior to visible wilt (11 July) daily maximum SDTc values did not exceed 0.50 °C for any 

treatment.  However, from 11 July to 15 July, midday maximum SDTc values increased 

for all treatments and remained high from the remainder of the 2018 study period (27 

July). The increase in SDTc maximum values was greatest for the 50WR treatment; a 

daily peak of 3.54 °C was observed on 15 July and exceeded 4.00 °C on five days from 

19 July and the end of the collection period.  Daily maximum SDTc values for the 0WR 

treated plots increased to n 3.00-3.50 °C.  Daily maximum SDTc values for the 100WR 

treatment were the lowest of the three treatments, reaching values between 1.00 and 

2.00 °C.   

The increase in SDTc for 0WR treatment in 2017 corresponds to a drop in SWP, 

with a noticeable increase occurring two days prior to visible wilt, meaning SDTc could be 

used to identify drought stress.  However, 2018 results did not support this as Tc 

variation increased in all treatments while SWP only dropped for 0WR.  Unfortunately, 

this could be a consequence of the drought-stressed buffer zones being unintentionally 

included in the measurement area within the camera system.  As suggested by Fuchs 
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(1990), variation of Tc did increase with drought stress but inconsistent results between 

years means more research is necessary to make definitive claims on the value of SDTc 

as an early predictor of drought stress.   

Modeling Canopy Temperature for Non-Water Stressed Baseline 

An accurate estimation of Tc for a NWSB is necessary for a metric like RelNWSB to 

be useful in making irrigation decisions.  This study applied multiple regression analysis 

to the 2018 dataset to create a model that would predict Tc of a NWSB for creeping 

bentgrass putting greens using four weather parameters (Ta, SR, RH, & WS).  A total of 

3,216 time points from the 2018 data collection period were used.  Canopy temperature 

of three replications of 100WR were averaged to determine Tc of the NWSB.  Models 

were created for the whole dataset and also split into days when plots received 

irrigation/precipitation and did not receive irrigation/precipitation to evaluate whether 

water at the surface would affect the model.  Models using various combinations of 

weather parameters were evaluated to test which factors provided the best fit to a 

regression line.   

Ta and SR show the strongest correlations to Tc (Fig. 3.3 and Table 3.1).  Models 

containing these two factors gave the best fit with any number of factors.  Model fit 

increased slightly with number of factors.  Models with the best fit were: 4-factor model 

(R2=0.971, 3 factor model (Ta, SR, WS) (R2=0.966), 3-factor model (Ta, SR, RH) 

(R2=0.964), and 2-factor model (Ta, SR) (R2=0.955) for all three datasets 

When evaluating No Irrigation and Irrigation models, RH as a single factor shows 

stronger correlation on days with irrigation (R2=0.44) compared to days with no irrigation 

(R2=0.31).  Wind speed as a single factor showed a better fit on days with no irrigation 

(R2=0.27) compared to days with irrigation (R2=0.11).  However, only small differences 
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were observed between datasets using 2-, 3-, or 4-factor models including RH or WS.  

For all 2-, 3-, and 4-factor models, the No Irrigation dataset showed a slightly better fit 

than the Irrigation dataset.   

To test the model with the best fit, the 4-factor model was applied to the 2017-

2018 dataset (Fig. 3.10).  In 2017 (n=5685), the model predicted Tc to be slightly higher 

than measured values overall with the median TΔ of 0.64±2.03 °C with 90% of TΔ falling 

between -3.32 and 3.26 °C.  In 2018 (n=4435), median Tc was 0.70±2.06 °C with 90% of 

TΔ falling between -3.47 and 3.26 °C.  While the RelNWSB metric appeared to be sensitive 

to drought stress around 2 °C, errors in predictions for the model with best bit frequently 

exceeded ±3 °C, meaning that a more accurate model would be needed to confidently 

make irrigation scheduling decisions. 

For both 2017 and 2018, the model trended to predict slightly warmer Tc at night 

and slightly cooler in the day compared to measured values suggesting separate models 

for these conditions may be valuable.  Payero et al. (2005), when modeling NWSB for 

tall fescue maintained at lawn height, found that stratifying regression models according 

to amount of SR improved results.  The models developed in that study were found to be 

more accurate during the daytime (SR>0), agreeing with results from this study that 

separate models for day and night would improve predictions of Tc for NWSB.  Models 

with more factors produced a greater adjusted R2 meaning that including RH and WS 

improved the fit of the models.  However, the improvement was slight so depending on 

availability of weather data, the 2-factor model could be effective.  Error in predictions 

also appeared to increase at periods of high WS; this error could be minimized if an on-

site weather station was used.   

Canopy temperature and weather data were available for non-water stressed 

plots of creeping bentgrass maintained as a putting green over the course of three days 
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in 2016.  The best 2-, 3-, and 4-factor models were applied to this dataset (n=369) to 

evaluate performance (Fig. 3.11).  Data was only available between 5:00AM and 

10:00PM CDT on these days.  

The 2-factor model (Ta, SR) provided the most accurate predictions of Tc for a 

NWSB in 2016 (Fig. 3.12) with a median TΔ was 0.90±1.27 °C with 90% of values 

measuring between -1.21 and 3.39 °C.  For the 3-factor model (Ta, SR, WS), median TΔ 

was 1.35±1.65 °C with 90% of values measuring between -0.88 and 4.89 °C.  For the 4-

factor model, median TΔ was 1.17±1.67 °C with 90% of values measuring between -1.08 

and 4.84 °C.  The value of the 2-factor model on this dataset could be due to data 

including mostly times when SR>0.  This further supports the idea that separate models 

for day and night would improve predictions, increasing the likelihood that models could 

improve irrigation decisions.   

3.5 Conclusions 

This study shows that thermal imaging can provide valuable information on plant 

water status of a creeping bentgrass putting green.  Measurements such as SDTc and 

RelNWSB showed a clear response to drought stress with the potential to show early 

indications of drought stress to aid in irrigation scheduling.  The RelNWSB showed the 

earliest indication of drought stress on the 0WR plots but this requires an accurate 

estimation of Tc for a NWSB in the existing weather conditions.  The SDTc, which 

requires no additional measurements or estimations, also increased for 0WR prior to 

visible drought stress. However, research covering a wider range of conditions and 

scales would be needed to precisely quantify the values at which irrigation should be 

triggered to maintain healthy turf and minimize irrigation applied.  

In attempting to predict Tc for a NWSB of a creeping bentgrass putting green, this 

study produced a model with a high goodness-of-fit (R2=0.971) using Ta, SR, RH, and 
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WS while a similar fit was also found using only Ta and SR (R2=0.955).  However, 

differences between Tc predicted by the model and measured values were great enough 

at times that a more accurate model would be needed to confidently inform irrigation 

decisions.  This model could be improved by developing separate models for daytime 

and nighttime.   

This study shows that thermal imaging can produce various valuable 

measurements to help turf managers make decisions but more research will be 

necessary to improve interpretation of these data for different species and management 

regimes.   
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3.6 Tables & Figures 

 

Figure 3. 1 Layout of research area and thermal camera. 

Hawkeye camera system was mounted on the wooden electrical pole on the right side of 

the image, facing north.  White box on the left side of the image is a datalogger 

recording soil moisture information from TDR probes buried in each plot. 
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Figure 3. 2  Canopy and air temperature and solar radiation in 2017 and 2018. 

Canopy temperature by treatment, air temperature, and solar radiation as a function of 
time in A) 2017 and B) 2018.  Values of Tc are means of three replications at each time 
point. Visible wilt in turf occurred on 24 July 2017 and 13 July 2018. Gray line denotes 

first day visible wilt was clearly observed. 

A 

B 



59 
 

 

 

Figure 3. 3 Regression of canopy temperature with weather parameters.   

Relationship between canopy temperature and A) air temperature, B) solar radiation, C) 
relative humidity, and D) wind speed for 100WR plots in 2018.  Canopy temperatures 
were measured every ten minutes and averaged over each hour from 26 June to 27 July 
2018.  Measurements are mean canopy temperature for each plot of the 100WR 
treatment, representing the non-water stressed baseline.   
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Figure 3. 4 Pattern of soil water potential by date for each treatment in 2018. 

Visible wilt was observed on 13 July when soil water potential fell below the wilting point 
of -1501kPa.  As soil moisture decreases, greater force is required to pull water into the 
plant. The full water replacement (100WR) treatment represents the non-water stressed 
baseline (NWSB).  Rain events are denoted along the x-axis.   
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Figure 3. 5 Canopy temperature minus air temperature by date for the 2017 and 2018 

study periods.  

Canopy temperature minus air temperature (Tc – Ta) for all treatments in A) 2017 and B) 
2018.  Values of Tc – Ta are means of three replications.  Visible wilt in turf occurred on 
24 July 2017 and 13 July 2018 indicated by gray box. 
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Figure 3. 6 Canopy temperature relative to the non-water stressed baseline by date in 
both years. 

Canopy temperature relative to a non-water stressed baseline (100WR) by treatment for 
the critical period in a) 2017 and b) 2018.  Zero on the x-axis represents the non-water 
stressed baseline.  Values are means of three replications.  Visible wilt in turf occurred 
on 24 July 2017 and 13 July 2018. 
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Figure 3. 7 Standard deviation of canopy temperature by date for both years.  

Standard deviation of canopy temperature (SDTc) by treatment for the critical period in A) 
2017 and B) 2018.  Values are means of three replications.  Visible wilt in turf occurred 
on 24 July 2017 and 13 July 2018. 
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Figure 3. 8 Thermal images of research area as no water replacement plots begin to 
show visible wilt in 2017. 

Plots with an asterisk received the no water replacement treatment.  Color scale on left 
ranges from 50 °C (white) to 32 °C (dark purple).  White lines were added to denote plot 
area from buffer zones.  
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Figure 3. 9 Relationship between canopy temperature relative to non-water stressed 

baseline metric and soil water potential. 

Relationship between RelNWSB and SWP in 2018 of A) 50WR and B) 0WR.  SWP of 
100WR is represented in green as a point of comparison.  SWP (square points) are 
plotted on the secondary axis.  Gray line denotes first day of visible wilt. 
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Table 3. 1 Performance of models to predict canopy temperature of a non-water 
stressed baseline in various weather conditions. 

Models were separated into days with or without rain/irrigation, and combined models to 
evaluate if recent precipitation affected models.  Models with fewer numbers of factors 
require less data collection to make a prediction. Units are degrees Celsius, watts per 
meter squared, percent, and meters per second respectively.  

# of 

Factors Model Factors Multiple R Adjusted R2
Y-Intercept

Air 

Temperature

Solar 

Radiation

Relative 

Humidity Wind Speed

1 Air Temperature (Ta) 0.867 0.752 -1.1 1.10

1 Solar Radiation (SR) 0.817 0.667 22.5 0.016

1 Relative Humidity (RH) 0.609 0.371 43.9 -0.245

1 Wind Speed (WS) 0.415 0.172 22.8 2.24

2 Ta, SR 0.977 0.955 4.2 0.78 0.010

2 Ta, RH 0.870 0.757 3.4 1.03 -0.037

2 Ta, WS 0.867 0.752 -1.1 1.10 0.00

3 Ta, SR, WS 0.983 0.966 3.9 0.84 0.011 -0.66

3 Ta, SR, RH 0.982 0.964 -1.8 0.86 0.011 0.053

3 Ta, RH, WS 0.871 0.758 3.7 1.04 -0.041 -0.14

4 Ta, SR, RH, WS 0.986 0.971 -0.8 0.90 0.011 0.042 -0.56

n= 3216

# of 

Factors Model Factors Multiple R Adjusted R2
Y-Intercept

Air 

Temperature

Solar 

Radiation

Relative 

Humidity Wind Speed

1 Air Temperature (Ta) 0.870 0.758 -1.7 1.13

1 Solar Radiation (SR) 0.829 0.688 21.8 0.017

1 Relative Humidity (RH) 0.555 0.308 41.4 -0.217

1 Wind Speed (WS) 0.524 0.274 21.7 2.97

2 Ta, SR 0.978 0.957 3.8 0.79 0.011

2 Ta, RH 0.873 0.762 2.0 1.07 -0.033

2 Ta, WS 0.871 0.758 -1.9 1.15 -0.13

3 Ta, SR, WS 0.985 0.971 2.6 0.89 0.011 -0.85

3 Ta, SR, RH 0.984 0.967 -1.6 0.85 0.012 0.051

3 Ta, RH, WS 0.874 0.764 2.2 1.10 -0.039 -0.32

4 Ta, SR, RH, WS 0.988 0.976 -1.3 0.92 0.012 0.038 -0.71

n= 1332

# of 

Factors Model Factors Multiple R Adjusted R
2

Y-Intercept

Air 

Temperature

Solar 

Radiation

Relative 

Humidity Wind Speed

1 Air Temperature (Ta) 0.865 0.748 -0.6 1.08

1 Solar Radiation (SR) 0.811 0.658 23.0 0.016

1 Relative Humidity (RH) 0.669 0.447 46.6 -0.279

1 Wind Speed (WS) 0.330 0.108 23.7 1.73

2 Ta, SR 0.977 0.955 4.6 0.77 0.010

2 Ta, RH 0.868 0.754 5.0 0.98 -0.045

2 Ta, WS 0.865 0.748 -0.5 1.07 0.05

3 Ta, SR, WS 0.983 0.967 4.8 0.81 0.011 -0.65

3 Ta, SR, RH 0.981 0.962 -1.7 0.87 0.011 0.054

3 Ta, RH, WS 0.868 0.754 5.4 0.99 -0.048 -0.10

4 Ta, SR, RH, WS 0.985 0.970 0.4 0.87 0.011 0.038 -0.56

n= 1883

Coefficients

Coefficients

Coefficients

ALL

NO IRRIGATION

IRRIGATION
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Figure 3. 10 Comparison of predicted and actual canopy temperatures of a non-water 
stressed baseline using the 4-factor model applied to 2017 and 2018 datasets.  

Predicted and actual canopy temperatures of 100WR plots in 2017 (top) and 2018 
(bottom) with wind speed on the secondary y-axis. Predictions were calculated using the 
4-factor model (air temperature, solar radiation, relative humidity, and wind speed). 
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Figure 3. 11 Comparison of predicted and actual canopy temperatures of a non-water 
stressed baseline using the 2-, 3-, and 4-factor models applied to the 2016 dataset. 

Predicted and actual canopy temperatures of well-watered plots from a study conducted 
in 2016 with wind speed on the secondary y-axis.  Most predictive models were used 
with A) 4-factors [air temperature, solar radiation, relative humidity, and wind speed] B) 
3-factors [air temperature, solar radiation, and wind speed] and C) 2-factors [air 
temperature and solar radiation]. 
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Figure 3. 12 Correlation of predicted and actual canopy temperatures for 2-, 3-, and 4-
factor models applied to 2016 dataset.   

Trendlines for each model are indicated by dashed lines.  Bold dashed line indicates the 

1:1 line. 
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CHAPTER 4: CONCLUSIONS, IMPACTS, AND FUTURE RESEARCH 

The need to minimize use of water resources in the golf industry is ever-

increasing to reduce irrigation and labor resources costs.  One way to reduce water 

consumption without sacrificing the quality of the playing surface is maximize irrigation 

scheduling efficiency.  As thermal imaging technology advances, it becomes a more 

practical, affordable tool to remotely monitor areas of turf for hotspots, which gives 

insight into plant water status.  Canopy temperatures can be used to indirectly gauge 

transpiration rates.  While using thermal imagery analysis to identify canopy temperature 

(Tc) hotspots is relatively simple to understand, an improvement in Tc data interpretation 

can lead to a greater level of irrigation efficiency, reducing consumption of water 

resources and labor used to monitor plant water status.   

This study used a mounted thermal imaging camera to continuously measure Tc 

of a creeping bentgrass putting green built to USGA recommendations that was irrigated 

to three levels of water replacement (100%, 50%, and 0%) in Lincoln, Nebraska.  The 

overall objective was to identify trends in Tc of creeping bentgrass that could be used to 

predict and measure water stress to allow for deficit irrigation without compromising 

plant health.  To reach that objective, it was important to first understand how water use 

changed as soil moisture transitioned from field capacity to wilting point and identify 

patterns as plants approached water stress conditions.  From there, correlations of Tc 

with changes in water use could be used to identify water stress using thermal imagery.  

In evaluating water use, we found that Kc, which normalizes ET for weather 

conditions, were relatively constant when soil water potential (SWP) was above the 

wilting point (Fig. 2.8).  Wilting point was identified as -1501 kPa in this study using 

segmented regression analysis.  When SWP dropped below the wilting point, Kc 
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approached zero in value and the plant entered dormancy when water stress conditions 

persisted and the turfgrass transitioned from normal rates of transpiration to little to 

almost no transpiration.  We had hypothesized a gradual decline in ET but this on/off 

pattern of water use would leave a smaller window than expected to find any changes in 

Tc data to help predict when a healthy, transpiring plant will cross the wilting point 

threshold. 

A rainout structure would have aided in avoiding the effects of precipitation.  This 

could have allowed for more dry-down runs, adding more evidence to support our 

findings.  No water stress conditions were observed in the100WR or 50WR treatments.  

With the use of a rain structure, or had the weather provided a long enough stretch 

without precipitation, it is possible that a more gradual decline in water use could have 

been observed in the 50WR treatment, which represents a more realistic deficit irrigation 

strategy than 0WR.  This rain structure would have also allowed for more days of 

lysimeter measurements and improved the accuracy of water use measurements. 

Other factors that could have improved the quality of data in this study would be 

to: i) irrigate the buffer zones between the plots to avoid water stress, ii) not have data 

collection instruments powered by solar power, and iii) generate the water retention 

curve after both dry-down periods.  Our decision to withhold irrigation in the buffer zones 

was intended to avoid excess water moving into the plots.  However, we found that 

drought stressed buffer zones affected the data more that irrigated turf would have, 

specifically in the SDTc measurement as it proved very sensitive to small hot spots.  Also, 

all of the electricity used at the UNL Turfgrass Research Center was gathered from solar 

cells attached to the main shed and stored in batteries.  There were a handful of times 

where a cloudy stretch of weather would prevent the batteries from charging fast enough 

as they were being used to power the camera system, the weather station, and in-
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ground soil probes.  This created a few small gaps in the data set.  A more reliable 

method of powering this data collection equipment would have removed these small 

gaps.  Soil water potentials are appear quite different between 2017 and 2018 data, 

indicating these years should be evaluated separately.  Values in 2018, the year the 

water retention curve was generated, appear to agree more closely with previous 

research.  Had a retention curve been generated after 2017, values between years may 

have been more similar. 

When evaluating multiple metrics utilizing Tc to detect water stress, the standard 

deviation of Tc (SDTc) and the relative difference between Tc and the non-water-stress 

baseline (NWSB) derived from the 100WR, were used to identify the onset of water 

stress (Fig. 3.6 & 3.7).  Both metrics remove the need for weather data to identify plant-

water status.  The diurnal pattern of Tc metrics consistently peaked mid-day when air 

temperature (Ta) and solar radiation (SR) were at their maxima.  Due to this, we often 

refer to the daily peak of metrics as this is when the greatest difference between 

treatments was observed. 

The thermal imaging system used in this study (Hawkeye System® by Itricorp, 

Haymarket, VA) digitally analyzed each image and extracted a number of measurements 

including the SDTc which measures variation in Tc over the target area.  A large SDTc 

indicated more or larger hotspots within the scene, pointing to increased water stress.  

During the period in the study prior to a visible observation of plant wilting in the 0WR 

treatment, maximum daily SDTc values were small for and exceeded 2 °C one day prior 

to visible wilt; SDTc values did not exceed 1 °C in the 100WR plots at any point in 2017. 

Daily peak of SDTc increased to >3 °C after visible wilt was observed and remained high 

for remainder of the collection period.  Similarly, SWP reached a minimum value and 

plateaued for the remainder of the collection period.  
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The SDTc data in 2018 seems to be affected by drought stress in the buffer 

zones. Buffer zones were unintentionally included in the target area of some plots in the 

camera system that year, leading to an unexpected increase in Tc variation of 50WR 

plots which showed no symptoms of water stress in the majority of the plot but drought 

stress around the edges near the buffer zone.  However, an increase in SDTc for 0WR 

and 50WR in days leading up to visible wilt support the idea that this metric responds to 

impending drought stress as response was related to visible drought in the measured 

area.   

While development of accurate Tc models for various species under different 

management conditions would require extensive research, the impact could be 

significant. Turf managers could apply the model to Tc data from thermal cameras to 

allow for rapid, remote monitoring of plant-water status while providing precise control of 

playing conditions in addition to reducing labor and water consumption.   

Thermal imaging is growing in popularity as a tool for turf managers.  Common 

current methods to track soil moisture include labor-intensive probing of greens with 

handheld soil moisture meters or expensive in-ground sensors that can be difficult to 

install.  Both of these methods measure only single point in the area.  Thermal imagery 

can be collected quickly and remotely without disturbing the playing surface and provide 

spatial relationships of data which can be useful in managing irrigation.  Anecdotally, an 

irrigation issue was identified during the course of this study when a leaky head on a 

nearby plot was spotted as an area with Tc that was consistently cooler than the 

surrounding area.  Thermal cameras can be mounted on trees or buildings and moved 

regularly to monitor different areas.  The system used in this study wirelessly transmitted 

data, requiring only a power source.   
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This technology is becoming increasingly affordable as well.  A thermal camera 

attachment for a cell phone can be purchased for around $200 where handheld systems 

of the past were thousands of dollars.  If cost continues to decrease and data 

interpretation is improved, thermal imagery analysis could be a standard tool for turf 

mangers.   

This research indicates that it may be possible to identify definitive values 

and/patterns as early indicators of drought stress in turfgrass.  Managers could postpone 

watering until a threshold for irrigation is identified using the model and metrics 

described in this study, in turn, reducing water consumption.  This would also be useful 

in highly maintained golf courses looking to push the limits of green speed by drying out 

the soil as much as possible.   

However, these triggers are likely to vary with species, management regime, 

climate, microclimate, and soil.  This study was limited to one research area with a single 

species and mowing height with limited foot traffic and only two dry-down periods due to 

lack of a rain shelter.  While this study shows that metrics can be used as indicators of 

drought stress, more situations need to be evaluated to make specific assertions.  The 

size of the target area would likely greatly influence the magnitude of the SDTc metric.  

While creeping bentgrass is the most commonly used species in putting greens in the 

United States, species such bermudagrass (Cynodon dactylon spp.) and annual 

bluegrass (Poa annua) also account for a large percentage of putting green area and 

require significant water inputs because of the climates they are grown in.   

Research that would further increase the impact of this study would be to 

specifically identify the metric thresholds to trigger irrigation and minimize water 

consumption for additional species, locations, and management.  In summation, water 
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use of creeping bentgrass remained consistent until SWP reached the wilting point, 

when water rapidly slowed down with Kc approaching zero.  Observations of Tc 

combined with water use findings show that metrics utilizing Tc are responsive to water 

stress.  Further research on specific values of these metrics could prove that early 

indication of water stress could be detected, allowing for precision irrigation scheduling. 
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