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Let M be a graded module over a standard graded polynomial ring S. The Total

Rank Conjecture by Avramov-Buchweitz predicts the total Betti number of M should

be at least the total Betti number of the residue field. Walker proved this is indeed

true in a large number of cases. One could then try to push this result further by

generalizing this conjecture to finite free complexes which is known as the Generalized

Total Rank Conjecture. However, Iyengar and Walker constructed examples to show

this generalized conjecture is not always true.

In this thesis, we investigate other counterexamples of the Generalized Total Rank

Conjecture and some of their properties. Under the BGG correspondence, a finite

free graded complex over the exterior algebra with small homology corresponds to a

free complex over the polynomial ring with a small total Betti number. Therefore,

we focus on examples of finite free complexes over the exterior algebra with small

homology. The main examples we consider are Koszul complexes of quadrics, and

we show the Koszul complex of one general quadric and the Koszul complex of two

general quadrics have the smallest possible homology among complexes over the ex-

terior algebra with the same graded Poincaré series. Finally while analyzing these

Koszul complexes, we notice the dimension of their total homology has a nice asymp-

totic behavior and investigate under what conditions other complexes have this same

asymptotic behavior.
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Chapter 1

INTRODUCTION

One way to study a graded module, M , over a standard graded polynomial ring

Sn = k[x1, . . . , xn], is to study invariants of M . A particular invariant of interest is

the total Betti number of M . The ith Betti number of M , denoted βi(M), is the rank

of the ith free module in the minimal graded free resolution of M (see Definition 2.16)

and the total Betti number of M is
∑

i βi(M). For example, the minimal graded

free resolution of k is the Koszul complex on the generators x1, . . . , xn. The ith free

module in the Koszul complex is S
(ni)
n which implies

βi(k) =

(
n

i

)
.

Thus, by the Binomial Theorem, the total Betti number of k is

∑
i

βi(k) =
n∑
i=0

(
n

i

)
= 2n.

After considering the residue field, the next logical step is to try to understand

the finite length modules of Sn. Recall an Sn-module M has finite length if there

exists a filtration

0 = M0 ⊆M1 ⊆ . . . ⊆Mn = M

of Sn-modules such that Mi+1/Mi
∼= k. Since we can think of finite length modules
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as essentially being built from k, then it is reasonable to predict the Koszul complex

is the smallest possible resolution among all resolutions of finite length modules as

stated in the following well-known conjecture (see [4, 1.4] and [11, Problem 24]):

Conjecture 1.1 (Buchsbaum, Eisenbud, Horocks Conjecture). If M is a non-zero

Sn-module with finite length then

βi(M) ≥
(
n

i

)
.

This conjecture is known as the BEH conjecture and has been proven in a variety

of cases. By the binomial theorem, the validity of the BEH conjecture would imply

the validity of the following weaker conjecture (see [1, Page 148]):

Conjecture 1.2 (Total Rank Conjecture). If M is a non-zero Sn-module with finite

length then ∑
i

βi(M) ≥ 2n.

In [17], Walker proved this conjecture when char k 6= 2. One can then try to push

this result further by considering a generalization of the Total Rank Conjecture to

Betti numbers of finite free complexes.

Recall we have the following result (see Theorem 2.17):

βi(M) = dimk TorSni (M,k)

where given a free resolution G of M over Sn we define

TorSni (M,k) = Hi(G⊗Sn k).

We can generalize this description in order to define the ith Betti number of a graded

complex F.
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Definition 1.3. Let F be a free graded complex over Sn then

βi(F) = dimk TorSni (F, k)

where

TorSni (F, k) = Hi(F⊗Sn k).

One could equivalently define the Betti numbers of a complex by defining βi(F) to

be the rank of the ith free module in a minimal free complex that is quasi-isomorphic

to F.

The Total Rank Conjecture (see Conjecture 1.2) can be generalized to finite free

complexes as follows.

Conjecture 1.4 (Generalized Total Rank Conjecture). If F is a finite free graded

complex over Sn such that the total homology H(F) is non-zero and has finite length

then ∑
i

βi(F) ≥ 2n.

However, Iyengar and Walker [13] showed this conjecture is false in general by

providing a counterexample. They posed the following question.

Question 1.5 ( [13, page 11]). Is there a real number a > 1 such that each finite free

complex F over Sn with total homology H(F) non-zero and of finite length satisfies

∑
i

βi(F) ≥ an?

In this thesis, we will investigate this question by analyzing other counterexamples

to the Generalized Total Rank Conjecture that could provide insight on a choice of

a. These counterexamples will arise by considering finite free graded complexes over

the exterior algebra En = k〈e1, . . . , en〉.
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The BGG correspondence allows us to relate complexes of graded free En-modules

to complexes of graded free Sn-modules. This correspondence is given by two functors

R and L and we have the following useful corollary of the BGG correspondence (see

Section 2.2 for more details).

Definition 1.6. A complex F of graded En-modules is called perfect if it is quasi-

isomorphic to a finite free graded complex over En.

Corollary 1.7. Under the BGG correspondence, a perfect complex F of graded En-

modules corresponds to a complex G of graded Sn-modules with finite length total

homology. In addition

dimkH(F) =
∑
i

βi(G).

Therefore we can restate Question 1.5 into an equivalent question that is in terms

of the homology of a complex over the exterior algebra.

Question 1.8. Is there a real number a > 1 such that each non-exact perfect complex

F over En satisfies

dimkH(F) ≥ an

or equivalently (
dimkH(F)

)1/n ≥ a?

In order to more easily discuss results related to this question, we introduce the

following notation.

Definition 1.9. Let F be a finite free complex over the exterior algebra En then the

homological growth factor of F is

HGF (F) =

∑
i

dimk

(
Hi(F)

)1/n

.
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Chapter 2 contains background on relevant topics for this thesis. Since we work

over the exterior algebra which is a graded ring, Section 2.1 covers the necessary def-

initions and results on graded modules and graded complexes. Section 2.2 is devoted

to the BGG correspondence. Even though the material in this section will be rarely

referenced throughout the rest of this thesis, the BGG correspondence is crucial for

motivating our interest in complexes over the exterior algebra with small homology.

Therefore we carefully work out details of the correspondence, some examples, and

proofs of important results including Corollary 1.7 stated above.

In Chapter 3, we begin investigating counterexamples to Conjecture 1.4. Section

3.1 focuses on the Koszul complex of one general quadric which, under BGG, corre-

sponds to the original counterexample given by Iyengar and Walker [13]. Section 3.2

considers the Koszul complex of two generic quadrics. We show that both of these

families of complexes gives counterexamples to the Generalized Total Rank Conjec-

ture. Specifically, we demonstrate that, for some values of n, the homological growth

factor is strictly less than 2. Finally, we notice both types of complexes have the same

asymptotic behavior, namely the homological growth factor is asymptotically at least

2.

While analyzing these complexes, we note there exists a value of n such that the

homological growth factor of the Koszul complex of two generic quadrics is smaller

than every homological growth factor of the Koszul complex of one general quadric.

It is then reasonable to ask, can we find a complex with an even smaller homological

growth factor? Chapter 4 introduces the idea of minimal homology in order to assist

in answering this question.
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Definition 1.10. A finite free graded complex F over the exterior algebra has mini-

mal homology if

dimkH(F) ≤ dimkH(G)

for any finite free graded complex G over the exterior algebra with the same graded

Poincaré series as F.

We show the Koszul complex of one general quadric and the Koszul complex of

two general quadrics have minimal homology. Thus there are no complexes with

the same graded Poincaré series as these complexes that have a smaller homological

growth factor.

However this does not imply other types of complexes cannot also have minimal

homology. Since every complex with graded Poincaré series 1+st2 is a Koszul complex,

then clearly every complex with minimal homology having this graded Poincaré series

is Koszul. However there are complexes with graded Poincaré series 1 + 2st2 + st4

that have minimal homology and are not Koszul. We give a few examples of such

complexes, and also give the following characterization when n ≥ 9.

Theorem 1.11. Let k be an infinite field and F be a graded complex over the exterior

algebra with graded Poincaré series 1 + 2st2 + st4. If n ≥ 9 and F has minimal

homology then F has the form

F : En(−4)


−λq2

λq1


−−−−−−→ En(−2)2

(
q1 q2

)
−−−−−−→ En

for some nonzero scalar λ.

Finally in Chapter 5, we return to analyzing the asymptotic behavior of the homo-

logical growth factor of complexes. As previously mentioned, the homological growth
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factor of the Koszul complex of one general quadric and the Koszul complex of two

generic quadrics is asymptotically at least 2. We then generalize this result and show

in Section 5.2 that families of Koszul complexes of a fixed number of quadrics have this

same asympotic behavior and in Section 5.3 that some families of Koszul complexes

of a varying number of quadrics have this same asymptotic behavior.

Koszul complexes are not the only families of complexes whose homological growth

factor is asymptotically at least 2. In Sections 5.2 and 5.3, we give conditions under

which a family of complexes over the exterior algebra has this asymptotic behavior (see

Theorem 5.9 and Proposition 5.12). However, not every complex has this behavior

and Section 5.4 is devoted to giving an example of a family of complexes whose

homological growth factor is asymptotically strictly less than 2.
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Chapter 2

BACKGROUND

In this chapter, we cover the necessary definitions and results that are used in the

rest of this thesis. The more experienced reader can skip this chapter and refer back

to it when needed.

2.1 Graded rings

This section contains details about graded modules, complexes and Betti numbers.

Unless stated otherwise, the details and results from this section are from [16].

2.1.1 Modules and complexes

Definition 2.1. A ring R is graded if there exists a collection of subgroups {Ri}i∈Z

such that

1. R =
⊕

i∈ZRi

2. RiRj ⊆ Ri+j for all i, j ∈ Z

Definition 2.2. Let A be a ring. A graded ring R is a standard graded A-algebra if

R0 = A and R is generated by R1 as an A-algebra.
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Throughout we will assume the ring R is a standard graded k-algebra where k is

a field. In this case, we also have

m = R+ =
⊕
i≥1

Ri

is the unique homogeneous maximal ideal of R.

The polynomial ring Sn = k[x1, . . . , xn] with deg(xi) = 1 is an example of a

standard graded k-algebra where the ith subgroup of Sn is the k-vector space spanned

by all the monomials of degree i. Another example is the exterior algebra En =

k〈e1, . . . , en〉 with deg(ei) = 1, and the ith subgroup of En is the k-vector space

spanned by all the wedge products of degree i.

Definition 2.3. An R-module M is called graded if there exists a collection of k-

vector spaces {Mi}i∈Z such that

1. M =
⊕

i∈ZMi as a k-vector space

2. RiMj ⊆Mi+j for all i, j ∈ Z.

In addition, for any p ∈ Z we denote by M(−p) the graded R-module such that

M(−p)i = Mi−p for all i ∈ Z.

If a graded module is finitely generated, then we can measure the size of the

module by measuring the size of each of its components. In order to better study the

size of a finitely generated module we can form the Hilbert series of the module.

Definition 2.4. Let M =
⊕

iMi be a finitely generated graded R-module. The

function i 7→ dimk(Mi) is called the Hilbert function of M and the series

hM(t) =
∑
i

dimk(Mi)t
i
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is called the Hilbert series of M . Note that the Hilbert series of a shifted module is

given by

hM(−p)(t) = tphM(t).

Another way to study modules is to form complexes of modules.

Definition 2.5. A graded complex over R is a sequence of homomorphisms of graded

R-modules

F : · · · → Fi+1
di+1−−→ Fi

di−→ Fi−1 → · · ·

such that di−1di = 0 for all i and each di is a homomorphism of degree 0 (i.e.

deg(di(f)) = deg(f) for all f ∈ Fi). Note the complex F is bigraded as a k-vector

space because each Fi is a graded module. Therefore for all i,

Fi =
⊕
j∈Z

Fi,j

and an element of Fi,j is said to have homological degree i and internal degree j.

Example 2.6. Let x1, . . . , xr ∈ R and let Er = k〈e1, . . . , er〉. The Koszul complex

of x1, . . . , xr over R is

KosR(x1, . . . , xr) : 0→ Fr
dr−→ · · · d2−→ F1

d1−→ F0 → 0

where Fi is a free R-module with basis {ej1 ∧ · · · ∧ eji | 1 ≤ j1 < · · · < ji ≤ r} and

the differential is given by

di(ej1 ∧ · · · ∧ eji) =
i∑

p=1

(−1)p+1xjpej1 ∧ · · · ∧ êjp ∧ · · · ∧ eji

where êjp means ejp is omitted from the product.

Definition 2.7. The homology in degree i of a complex F is the graded R-module

Hi(F) = ker(di)/ image(di+1)
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and the total homology is the graded R-module

H(F) =
⊕
i

Hi(F).

Definition 2.8. A graded complex F is exact if Hi(F) = 0 for all i.

Proposition 2.9. If

0→M ′ →M →M ′′ → 0

is a short exact sequence of finitely generated graded R-modules with degree 0 homo-

morphisms then

hM(t) = hM ′(t) + hM ′′(t).

Given the above proposition, we can define the Hilbert series of a finite free graded

complex.

Definition 2.10. A graded complex over R is finite free if it is a bounded graded

complex of finite rank free R-modules.

Definition 2.11. Let F be a finite free graded complex over R

F : 0→ Fr → Fr−1 → · · · → Fs+1 → Fs → 0

where Fi is in homological degree i. The Hilbert series of F is

hF(t) =
∑
i

(−1)ihFi(t).

Another useful series used to study complexes is the graded Poincaré series.

Definition 2.12. Let F be a graded finite free complex over R. We define its Poincaré

series to be

PF(t) =
∑
i

rank(Fi)t
i
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where Fi is the free module in homological degree i. Since Fi is graded then

Fi =
⊕
p∈Z

R(−p)ci,p

for some ci,p ≥ 0. We define the graded Poincaré series to be

PF(s, t) =
∑
i,p

ci,ps
itp.

2.1.2 Resolutions and Betti numbers

Definition 2.13. A graded free resolution of a finitely generated graded R-module

M is a finite free graded complex over R

F : · · · → Fi
di−→ Fi−1 → · · · → F1

d1−→ F0

along with a map ε : F0 →M such that the augmented graded complex

· · · → Fi
di−→ Fi−1 → · · · → F1

d1−→ F0
ε−→M → 0

is exact.

We are often interested in the smallest graded resolution of M in the sense that the

ranks of each of its free modules is less than or equal to the rank of the corresponding

free module in any other graded free resolution of M . As we will see in the next

theorem, this notion is equivalent to a graded free resolution being minimal.

Definition 2.14. A graded free resolution F over R is minimal if it satisfies the

condition

di+1(Fi+1) ⊆mFi

for all i where m = R+ is the unique homogeneous maximal ideal of R.
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Theorem 2.15. Let M be a finitely generated graded R-module.

1. There exists a minimal graded free resolution of M .

2. Let F be a minimal graded free resolution of M . If G is a graded free resolution

of M then G ∼= F⊕T for some trivial complex T, and the direct sum is a direct

sum of complexes. Recall a trivial complex is the direct sum of complexes of the

form

0→ R(−p) 1−→ R(−p)→ 0

that are possibly placed in different homological degrees.

3. Up to isomorphism, there exists a unique minimal graded free resolution of M .

Therefore we can define the following invariant of a graded module.

Definition 2.16. Let F be a minimal graded free resolution of a finitely generated

graded R-module M . The ith Betti number of M over R is

βRi (M) := rank(Fi).

By Theorem 2.15, Betti numbers do not depend on the choice of the minimal graded

free resolution of M , so this is well-defined.

There are also other ways to find the Betti numbers of a module as described in

the following result.

Proposition 2.17. Let M be a finitely generated graded R-module. Then

βi(M) = dimk TorRi (M,k)

= dimk ExtiR(M,k)
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We can further refine the definition of Betti numbers to get the graded Betti

numbers of a module.

Definition 2.18. Let F be a minimal graded free resolution of a graded finitely

generated R-module M . Since F is graded, then each free module in the resolution

is of the form

Fi =
⊕
p∈Z

R(−p)ci,p

for some ci,p ≥ 0. We define the graded Betti numbers of M to be

βRi,p(M) = ci,p.

Remark 2.19. Since TorRi (M,k) and ExtiR(M,k) are graded R-modules we also have

by Proposition 2.17

βRi,p(M) = dimk(TorRi (M,k))p = dimk(ExtiR(M,k))p.

2.2 The Bernstein, Gel’fand, Gel’fand correspondence

Let S = k[x1, . . . , xn] be the polynomial ring with deg(xi) = 1 and letE = k〈e1, . . . , en〉

be the exterior algebra with deg(ei) = −1. This will be the only section where the

exterior algebra will be negatively graded in order to better align with the litera-

ture on the BGG correspondence. Throughout this section, we will cover the main

definitions and the important results related to the BBG correspondence needed to

motivate this thesis. For more details on this correspondence, see [7] or the original

paper [2].
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2.2.1 Properties of the exterior algebra

The exterior algebra E = k〈e1, . . . , en〉 is a graded commutative ring with multipli-

cation denoted by ∧. In particular

1. ei ∧ ej = −ej ∧ ei for all i, j

2. ei ∧ ei = 0 for all i.

In addition, E is graded with E =
⊕

iEi where Ei is the k-vector space spanned by

all wedge products of degree i. Recall we are assuming deg(ei) = −1 for all 1 ≤ i ≤ n,

so E =
⊕n

i=0E−i.

Remark 2.20. E is a finite dimensional k-vector space with

dimk E−i =

(
n

i

)
.

Remark 2.21. Homk(E, k) is a graded left E-module with Homk(E, k) =
⊕n

i=0 Homk(E−i, k)

and E-module structure given by xh(e) = h(e∧x) for all x, e ∈ E and h ∈ Homk(E, k).

Proposition 2.22. Let E = k〈e1, . . . , en〉 be the exterior algebra with deg(ei) = −1.

Then

Homk(E, k) ∼= E(−n)

as left graded E-modules.

Proof. First note the map 〈−,−〉 : E × E → k given by

〈e, x〉 = coefficient of e1 ∧ · · · ∧ en in e ∧ x

is k-bilinear, and thus gives a k-linear map ϕ : E(−n)→ Homk(E, k) defined by

ϕ(x) = [e 7→ 〈e, x〉].
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We claim ϕ is a graded left E-module isomorphism. Let x, y ∈ E then notice

[
xϕ(y)

]
(e) = ϕ(y)(e ∧ x) = 〈e ∧ x, y〉 = 〈e, x ∧ y〉 = ϕ(x ∧ y)(e).

Thus ϕ is a left E-module homomorphism.

Now supppose x ∈ E is homogeneous of degree −d. Thus x ∈ E−d = E(−n)n−d.

Note φ(x) 6= 0 only on Ed−n, so φ(x) ∈ Homk(Ed−n, k) = Homk(E, k)n−d. Therefore

ϕ is degree preserving, so ϕ is a left graded E-module homomorphism.

It remains to show ϕ is bijective. Since ϕ is a k-linear map and dimk E(−n)) =

dimk Homk(E, k) then it sufficies to show ϕ is injective. First let us prove the follow-

ing claim.

Claim 1: For all nonzero x ∈ E there exists e ∈ E such that 〈e, x〉 6= 0.

Let x ∈ E be nonzero. For a subset I ⊆ [n], set eI = ei1 ∧ · · · ∧ ei` when

I = {i1, . . . , i`} and i1 < . . . < i`. Then

x =
∑
I⊆[n]

aIeI

for some aI ∈ k with aI 6= 0 for some I ⊆ [n]. Let d = min
{
|I| | aI 6= 0

}
and let

J ⊆ [n] be such that |J | = d and aJ 6= 0. Then notice

e[n]\J ∧ x = ±aJ(e1 ∧ . . . ∧ en)

because e[n]\J ∧ aIeI = 0 for all I 6= J . Since aJ 6= 0, then 〈e[n]\J , x〉 6= 0 so we have

proven our claim.
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Now suppose x1, x2 ∈ E such that ϕ(x1) = ϕ(x2). Then 〈x1, e〉 = 〈x2, e〉 for all

e ∈ E which implies 〈x1 − x2, e〉 = 0 for all e ∈ E. Then by Claim 1, x1 − x2 =

0 so x1 = x2. Thus ϕ is injective, so we conclude ϕ is a left graded E-module

isomorphism.

Corollary 2.23. E is injective as a left E-module.

Proof. By [3, Lemma 3.1.6], Homk(E, k) is an injective left E-module. Thus by

Proposition 2.22, E is an injective left E-module.

2.2.2 Defining the functors

Definition 2.24. Suppose P =
⊕

j Pj is a graded E-module and define L(P ) to be

the graded complex of S-modules

L(P ) : · · · ψ−→ S ⊗k Pj
ψ−→ S ⊗k Pj−1

ψ−→ · · ·

where ψ(f ⊗ p) =
∑

i(xif ⊗ ei ∧ p) and S ⊗k Pj is in homological degree j.

Remark 2.25. By the definition of L(P ), we have the following equality

L(P (−a)) = ΣaL(P ).

Generalize this definition to a graded complex of E-modules in the following way.

Definition 2.26. Suppose we have a graded complex of E-modules

F : · · · → Fi+1 → Fi → · · · .

Applying L to each module in F gives the following double complex
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· · · S ⊗k (Fi+1)j S ⊗k (Fi+1)j−1 · · ·

· · · S ⊗k (Fi)j S ⊗k (Fi)j−1 · · ·

where the vertical maps are induced by the differential of F and the horizontal com-

plexes are the complexes L(Fi) defined in Definition 2.24. Define L(F) to be the total

complex of this double complex.

Proposition 2.27. L is a functor from the category of graded complexes of E-modules

to the category of graded complexes of S-modules.

The functor L has a right adjoint functor R which can be defined in an analogous

way.

Definition 2.28. Let M =
⊕

dMd be a graded S-module and define R(M) to be

the complex of graded E-modules

R(M) : · · · φ−→ Homk(E,Md)
φ−→ Homk(E,Md+1)

φ−→ · · ·

where φ(α) = [e 7→
∑

i xiα(ei ∧ e)] and Homk(E,Md) is in homological degree −d.

Remark 2.29. By the definition of R(M), we have the following equality

R(M(−a)) = ΣaR(M).

This definition generalizes to graded complexes of S-modules in the same way as

L in Definition 2.26.
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Definition 2.30. Let G be a graded complex of S-modules. Define R(G) to be the

total complex of the double complex formed by applying R to each module in G.

Proposition 2.31. R is a functor from the category of graded complexes of S-modules

to the category of graded complexes of E-modules.

2.2.3 Examples

In order to better understand these functors, we have provided a few examples below.

Example 2.32. Let E = k〈e1, e2〉 and S = k[x1, x2]. Then L(E) is the complex

0→ S ⊗k k
ψ−→ S ⊗k E−1

ψ−→ S ⊗k E−2 → 0.

Note each module in this complex is a free S-module and the differential acts on the

basis elements in the following way

ψ(1⊗ 1) = x1 ⊗ e1 + x2 ⊗ e2

ψ(1⊗ e1) = x1 ⊗ e1 ∧ e1 + x2 ⊗ e2 ∧ e1 = −x2 ⊗ e1 ∧ e2

ψ(1⊗ e2) = x1 ⊗ e1 ∧ e2 + x2 ⊗ e2 ∧ e2 = x1 ⊗ e1 ∧ e2

ψ(1⊗ e1 ∧ e2) = 0.

Thus we have the following isomorphic complex

0→ S


x1

x2


−−−−→ S2

(
−x2 x1

)
−−−−−−−−→ S → 0

which is HomS(KosS(x1, x2), S), and it is quasi-isomorphic to Σ−2k.
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We can also consider the dual of E as a k-vector space which we denote as E∗ :=

Homk(E, k). Since E∗ ∼= E(−2) by Proposition 2.22, then we have

L(E∗) ∼= L(E(−2)) = Σ2L(E) ' Σ2(Σ−2k) = k.

Example 2.33. Let E = k〈e1, e2〉 and S = k[x1, x2]. Then R(k) is the following

complex

0→ Homk(E, k)→ 0.

Therefore R(k) = E∗ := Homk(E, k). By Example 2.32 we conclude

L(R(k)) = L(E∗) ' k

and

R(L(E∗)) ' R(k) = E∗.

Example 2.34. Let E = k〈e1, e2〉, S = k[x1, x2], and w = e1 ∧ e2. Consider the

Koszul complex

KosE(w) : E(2)
w−→ E.

In order to find L(KosE(w)), we first consider the double complex

0 S ⊗k k S ⊗k E−1 S ⊗k E−2 0

0 S ⊗k k S ⊗ E−1 S ⊗ E−2 0

id⊗ w

Using the calculations in Example 2.32 and the fact

id⊗ w(1⊗ 1) = 1⊗ e1 ∧ e2

we have the following isomorphic double complex
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0 S S2 S 0

0 S S2 S 0

[
1

]

x1

x2

 (
−x2 x1

)

x1

x2


(
−x2 x1

)

Thus L(KosE(w)) is isomorphic to the total complex of this double complex which is

given by the following complex

0→ S



x1

x2

0


−−−−→ S3



−x2 x1 1

0 0 −x1

0 0 −x2


−−−−−−−−−−−−−→ S3

(
0 x2 −x1

)
−−−−−−−−−−→ S → 0.

2.2.4 Relevant results

As seen in the above examples, the functors L and R do not define an equivalence of

categories between the category of graded complexes of E-modules and the category

of graded complexes of S-modules. However by refining these categories so that

quasi-isomorphisms become isomorphisms, we have an equivalence of categories as

desired.

Theorem 2.35 ( [7, Corollary 2.7]). The functors R and L define an equivalence of

categories

Db(S -mod) ∼= Db(E -mod)

where Db(S -mod) (or Db(E -mod)) is the derived category of bounded complexes of

finitely generated S-modules (or E-modules).
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In addition, we relate the homology and Betti numbers of these complexes using

the following results.

Proposition 2.36. If F is a complex of graded E-modules and G is a complex of

graded S-modules then

1. Hi(R(G))j = TorSi+j(k,G)j

2. Hi(L(F))j = Exti+jE (k,F)j

Proof. This proof is an extension of the proof of [7, Proposition 2.3] which is the

equivalent result for modules.

Part (1):

Let E∗ := Homk(E, k) denote the k-vector space dual of E. As demonstrated in

Example 2.32, L(E∗) is isomorphic to the Koszul complex which is a minimal free

resolution of k over S. Thus

TorSi+j(k,G)j = Hi+j(L(E∗)⊗S G)j. (2.2.1)

Now for all a, R(Ga) is the complex of E-modules

R(Ga) : · · · φ−→ Homk(E, (Ga)b)
φ−→ Homk(E, (Ga)b+1)

φ−→ · · ·

where φ(α) = [e 7→
∑

i xiα(ei ∧ e)]. Since

Homk(E, (Ga)b) ∼= Homk(E, k)⊗k (Ga)b = E∗ ⊗k (Ga)b

then R(Ga) is isomorphic to

· · · φ̃−→ E∗ ⊗k (Ga)b
φ̃−→ E∗ ⊗k (Ga)b+1

φ̃−→ · · ·
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where φ̃(α⊗ g) =
∑

i ei ∧ α⊗ xig. Thus R(G) is isomorphic to the total complex of

the following double complex

· · · E∗ ⊗k (Ga+1)b E∗ ⊗k (Ga+1)b+1 · · ·

· · · E∗ ⊗k (Ga)b E∗ ⊗k (Ga)b+1 · · ·

where the horizontal maps are φ̃ and the vertical maps are id⊗ dG. This implies

R(G)i ∼=
⊕
a

E∗ ⊗k (Ga)a−i.

Also

(L(E∗)⊗S G)i+j =
⊕
a

L(E∗)i+j−a ⊗S Ga =
⊕
a

(E∗)i+j−a ⊗k S

as S-modules, so

R(G)i,j ∼=
⊕
a

(E∗)i+j−a ⊗k (Ga)a−i ∼= (L(E∗)⊗S G)i+j,j

as S-modules. Note L(E∗)⊗S G is isomorphic to the total complex of the following

double complex

· · · (E∗)d−a ⊗k Ga+1 (E∗)d−a−1 ⊗k Ga+1 · · ·

· · · (E∗)d−a ⊗k Ga (E∗)d−a−1 ⊗k Ga · · ·
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where the horizontal maps are φ̃ and the vertical maps are id⊗dG which are the same

maps as in the double complex that gives R(G). Therefore using (2.2.1) we conclude

Hi(R(G))j ∼= Hi+j(L(E∗)⊗S G)j = TorSi+j(k,G)j

as S-modules.

Part (2):

Note R(S) is the following complex

0→ Homk(E, S0)→ Homk(E, S1)→ · · · .

Since Homk(E, Si) ∼= Homk(E ⊗k S∗i , k) where S∗i = Homk(Si, k) then applying

Homk(−, k) to R(S) gives the following complex

· · · → E ⊗k S∗1 → E ⊗k S∗0 → 0

which is the minimal free resolution of k over E. Therefore Homk(R(S), k) is a

minimal free resolution of k over E. Then by definition

Exti+jE (k,F) = H i+j(HomE(Homk(R(S), k),F)j. (2.2.2)

Now for all a, L(Fa) is the complex of S-modules

L(Fa) : · · · ψ−→ S ⊗k (Fa)b
ψ−→ S ⊗k (Fa)b−1

ψ−→ · · ·

where ψ(s⊗ f) =
∑

i xis⊗ ei∧ f. Then by definition L(F) is the total complex of the

following double complex
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· · · S ⊗k (Fa+1)b S ⊗k (Fa+1)b−1 · · ·

· · · S ⊗k (Fa)b S ⊗k (Fa)b−1 · · ·

where the horizontal maps are ψ and the vertical maps are id⊗ dF which means

L(F)i =
⊕
a

S ⊗k (Fa)i−a.

Also

HomE(Homk(R(S), k),F)i+j =
⊕
a

HomE(E ⊗k S∗i+j−a, Fa)

∼=
⊕
a

HomE(E,Homk(S
∗
i+j−a, Fa))

∼=
⊕
a

Homk(S
∗
i+j−a, Fa)

∼=
⊕
a

Si+j−a ⊗k Fa.

as E-modules, so

L(F)i,j =
⊕
a

Si+j−a ⊗k (Fa)i−a ∼=
(

HomE(Homk(R(S), k),F)i+j
)
j

as E-modules. Note HomE(Homk(R(S), k),F) is isomorphic to the total complex of

the following double complex
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· · · Sd−a ⊗k Fa+1 Sd−a+1 ⊗k Fa+1 · · ·

· · · Sd−a ⊗k Fa Sd−a+1 ⊗k Fa · · ·

where the horizontal maps are ψ and the vertical maps are id⊗dF which are the same

maps as in the double complex that give L(F). Therefore using (2.2.2) we conclude

Hi(L(F))j ∼= H i+j(HomE(Homk(R(S), k),F))j = Exti+jE (k,F)j.

Definition 2.37. A complex F of graded E-modules is called perfect if it is quasi-

isomorphic to a finite free graded complex over E.

Corollary 2.38. Under BGG, a perfect complex F of graded E-modules corresponds

to a complex G of graded S-modules with finite length total homology. In addition

dimkH(F) =
∑
i

βi(G).

The following is a proof of only the forward direction because the other direction

is not as relevant for this thesis.

Proof. Under BGG, quasi-isomorphic complexes map to the same complex. Therefore

we may reduce to the case where F is a bounded complex of graded free E-modules

of finite rank. Finite rank free E-modules are injective because E is injective as an

E-module by Corollary 2.23. Thus

Exti+jE (k,F)j = H i+j(HomE(k,F))j
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which has finite dimension as a k-vector space for all i and j. Also since F is bounded,

then Hi+j(HomE(k,F))j = 0 for all but a finite number of pairs (i, j). Then by part

(2) of Proposition 2.36, Hi(L(F))j = 0 for all but a finite number of pairs (i, j). Thus

G := L(F) has finite length homology.

Moreover, part (1) of Proposition 2.36 gives

Hi(F)j = Hi(R(L(F)))j = TorSi+j(k,G)j = βi+j,j(G)

which implies

dimkH(F) =
∑
i

βi(G).
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Chapter 3

KOSZUL COMPLEXES OVER THE EXTERIOR

ALGEBRA

We begin investigating Question 1.8 by considering counterexamples to Conjecture

1.4. The original counterexample given by Iyengar and Walker in [13] is a complex

over the polynomial ring and, under BGG, it corresponds to the Koszul complex

of a general quadric over the exterior algebra En = k〈e1, . . . , en〉. Throughout the

rest of this thesis, we are assuming deg(ei) = 1 and a quadric is a homogeneous

element of degree 2. Section 3.1 is devoted to analyzing this original counterexample.

In particular we will show the Koszul complex of a general quadric over En has

homological growth factor (see Definition 1.9) less than 2 for large enough n.

We then produce a new counterexample in Section 3.2 by considering the Koszul

complex of two generic quadrics over the exterior algebra En. We analyze these Koszul

complexes by looking at a lower and upper bound of its homological growth factor.

Using these bounds, we conclude that the homological growth factor of the Koszul

complex of two generic quadrics is less than 2 for some n. In fact, we observe that

the smallest homological growth factor of a Koszul complex of two generic quadrics

appears to be less than the smallest homological growth factor of a Koszul complex

of one general quadric.
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3.1 Koszul complex of one quadric

Let k be a field and let En = k〈e1, . . . , en〉. Consider the Koszul complex

Kosn(w) : En(−2)
w−→ En

where w ∈ En is a quadric.

Definition 3.1. Consider the affine space A(n2)
k over the field k (i.e. A(n2)

k is the set

of all
(
n
2

)
-tuples of elements of k). Let Θ : A(n2)

k → (En)2 be the function defined by

Θ((wij)1≤i<j≤n) =
∑

1≤i<j≤n

wijei ∧ ej.

Remark 3.2. Θ is bijective.

Proposition 3.3. Let k be a field. There exists a Zariski open set U of A(n2)
k such

that for w ∈ (En)2 the following are equivalent

1. w ∈ Θ(U)

2. the map µi : (En(−2))i
w−→ (En)i which is given by µi(x) = wx is injective for

i ≤ bn
2
c+ 1 and surjective for i ≥ bn

2
c+ 2.

Moreover, if n is even and char k = 0 or char k > n+1
2

then U is nonempty and if n

is odd and char k = 0 then U is also nonempty.

Proof. Let w ∈ (En)2. For each i, fix the standard bases for the vector spaces

(En(−2))i and (En)i. Let Mi(w) denote the matrix representing the k-linear trans-

formation

µi : (En(−2))i
w−→ (En)i

with respect to the chosen bases. Note the entries of Mi(w) depend on the coefficients

of w but not on any elements of En.
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The map µi is injective for i ≤ bn
2
c+ 1 and surjective for i ≥ bn

2
c+ 2 if and only

if the rank of Mi is maximal; that is rankMi = min{dimk(En(−2))i, dimk(En)i}. Set

ri = min{dimk(En(−2))i, dimk(En)i}

and let Iri(M) be the ideal generated by the ri × ri minors of M for any matrix M .

Also let Xi be the matrix obtained from Mi(w) by replacing each coefficient wij of w

with the variable xij. Then

w satisfies (2)⇔ rankMi(w) = ri for all 0 ≤ i ≤ n

⇔ Iri(Mi(w)) 6= 0 for all 0 ≤ i ≤ n

⇔ Θ−1(w) 6∈ V (Iri(Xi)) for all 0 ≤ i ≤ n

⇔ Θ−1(w) 6∈ V

 n⋂
i=0

Iri(Xi)


Set U = A(n2)

k \ V
(⋂n

i=0 Iri(Xi)
)

then U is a Zariski open set in A(n2)
k and by the

argument above w satisfies (2) if and only if Θ−1(w) ∈ U . Thus w satisfies (2) if and

only if w ∈ Θ(U).

Now suppose n is even, so n = 2m for some m. By [5, Proposition A.2], if

char k = 0 or char k > n+1
2

then w̃ =
∑m

i=1 e2i−1e2i satisfies (2). Therefore w̃ ∈ Θ(U),

so U is nonempty.

Finally suppose n is odd. By [15, proof of Theorem 5.2], if char k = 0 then the

element w̃ which is the sum of all monomials in En of degree 2 satisfies (2). Therefore

w̃ ∈ U , so U is also non-empty in this case.

Definition 3.4. If n is even then assume char k = 0 or char k > n+1
2

and if n is odd

then assume char k = 0. An element w ∈ (En)2 is general if w ∈ Θ(U) where U is

the non-empty Zariski open set given in Proposition 3.3.
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Proposition 3.5. Let w ∈ En be a general quadric. If n is even, then n = 2m for

some m and

dimkH(Kos2m(w)) =

(
2m+ 2

m+ 1

)
.

If n is odd, then n = 2m+ 1 for some m and

dimkH(Kos2m+1(w)) = 2

(
2m+ 2

m+ 1

)
.

Proof. This proof is an extension of the proof of [13, Proposition 2.1] which proves

the even case for w =
∑n

i=1 e2ie2i−1.

By definition, w ∈ Θ(U) where U is the non-empty Zariski open set given in

Proposition 3.3. Therefore µi : (En(−2))i
w−→ (En)i is injective for i ≤ bn

2
c + 1 and

surjective for i ≥ bn
2
c+ 2 which implies

dimk ker(µi) =


0 i ≤ bn

2
c+ 1(

n
i−2

)
−
(
n
i

)
i ≥ bn

2
c+ 2

and

dimk coker(w)i =


(
n
i

)
−
(
n
i−2

)
i ≤ bn

2
c+ 1

0 i ≥ bn
2
c+ 2.

First suppose n is even, so n = 2m for some m. Then

dimkH(Kos2m(w)) =
∑
i

dimk coker(µi) + dimk ker(µi)

=
m+1∑
i=0

(
2m

i

)
−
(

2m

i− 2

)
+

2m∑
i=m+1

(
2m

i− 2

)
−
(

2m

i

)
=

(
2m

m− 1

)
+ 2

(
2m

m

)
+

(
2m

m+ 1

)
=

(
2m+ 2

m+ 1

)
.
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Now suppose n is odd so n = 2m+ 1 for some m. Then

dimkH(Kos2m+1(w)) =
∑
i

dimk coker(µi) + dimk ker(µi)

=
m+1∑
i=0

(
2m+ 1

i

)
−
(

2m+ 1

i− 2

)
+

2m+1∑
i=m+2

(
2m+ 1

i− 2

)
−
(

2m+ 1

i

)

= 2

((
2m+ 1

m

)
+

(
2m+ 1

m+ 1

))

= 2

(
2m+ 2

m+ 1

)
.

Corollary 3.6. Let n ≥ 8 and w ∈ En be a general quadric then

HGF (Kosn(w)) < 2.

Proof. This proof is an extension of the ideas in [13, Remark 2.5] which prove the

case when n is even.

First notice for n = 8 and n = 9, Proposition 3.5 gives the equalities

dimkH(Kos8(w)) =

(
10

5

)
= 252 < 28

and

dimkH(Kos9(w)) = 2

(
10

5

)
= 504 < 29.

Now suppose n ≥ 10. If n = 2m for some m then by Proposition 3.5 and Stirling’s

approximation

dimkH(Kos2m(w)) =

(
2m+ 2

m+ 1

)
< 22m 4√

π(m+ 1)
< 22m. (3.1.1)
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Now if n = 2m+ 1 for some m then we also have by Proposition 3.5 and (3.1.1) that

dimkH(Kos2m+1(w)) = 2

(
2m+ 2

m+ 1

)
< 22m+1.

We conclude for n ≥ 8

HGF (Kosn(w)) =
(
dimkH(Kosn(w))

)1/n
< 2.

Therefore Corollary 3.6 shows Kosn(w) is a counterexample to Conjecture 1.4

for n ≥ 8. Also, computations performed using Macaulay2 [9] indicate the smallest

homological growth factor occurs when n = 24 and in this case

HGF (Kos24(w)) =

(
26

13

)1/24

≈ 1.961. (3.1.2)

Even though this family of complexes has homology smaller than predicted by

Conjecture 1.4, its homological growth factor is eventually increasing. In particular,

the homological growth factor will asymptotically approach 2.

Corollary 3.7. For all n, let Kn = Kosn(w) for any general quadric w ∈ En then

lim
n→∞

HGF (Kn) = 2.

Proof. First note by Corollary 3.6, HGF (Kn) < 2 for n ≥ 8. Thus

lim sup
n→∞

HGF (Kn) ≤ 2.

Now suppose n is even, so n = 2m for some m. Proposition 3.5 gives

(
dimkH(K2m)

)1/2m
=

(
2m+ 2

m+ 1

)1/2m
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and by using the bounds given by Stirling’s approximation we have the inequality(
2m+ 2

m+ 1

)1/2m

≥

(
8
√
π22m

e2
√
m+ 1

)1/2m

= 2

(
8
√
π

e2
√
m+ 1

)1/2m

.

Since limn→∞(m+ 1)1/m = 1, then

lim inf
m→∞

(
2m+ 2

m+ 1

)1/2m

≥ lim
m→∞

2

(
8
√
π

e2
√
m+ 1

)1/2m

= 2. (3.1.3)

Thus

lim inf
m→∞

HGF (K2m) ≥ 2.

Now suppose n is odd, so n = 2m+ 1 for some m. Proposition 3.5 gives

(
dimkH(K2m+1)

)1/2m+1
= 21/(2m+1)

(
2m+ 2

m+ 1

)1/(2m+1)

.

Then (3.1.3) implies

lim inf
m→∞

(
2m+ 2

m+ 1

)1/(2m+1)

= lim
m→∞

((
2m+ 2

m+ 1

)1/2m
)(2m+1)/2m

≥ 2.

Thus

lim inf
m→∞

HGF (K2m+1) = lim inf
m→∞

21/(2m+1)

(
2m+ 2

m+ 1

)1/(2m+1)

≥ 2.

Therefore in both cases we have shown

lim inf
n→∞

HGF (K2m+1) ≥ 2

so by the Squeeze Theorem, we conclude

lim
n→∞

HGF (K2m+1) = 2.
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3.2 Koszul complex of two quadrics

Let w1, w2 ∈ En = k〈e1, . . . , en〉 be quadrics and consider the Koszul complex

Kosn(w1, w2) : En(−4)


−w2

w1


−−−−−→ En(−2)2

(
w1 w2

)
−−−−−−−→ En.

Recall by Definition 1.9 the homological growth factor of this complex is given by

HGF (Kosn(w1, w2)) =
(
dimkH(Kosn(w1, w2))

)1/n
.

In order to analyze the homological growth factor of these complexes, we will focus

on the dimension of the total homology of Kosn(w1, w2). First consider the following

useful results about the homology of Kosn(w1, w2).

Lemma 3.8. Let w1, w2 ∈ En be quadrics. Consider the maps

α : En(−2)2

(
w1 w2

)
−−−−−−−→ En

β : En(−4)


−w2

w1


−−−−−→ En(−2)2

then dimk ker(β) = dimk coker(α).

Proof. Consider the map of vector spaces

γ : E2
n

(
−w2 w1

)
−−−−−−−−−→ En.

The following is an exact sequence of vector spaces

0→ ker(γ)→ E2
n

γ−→ En → coker(γ)→ 0. (3.2.1)
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Since every short exact sequence of vector spaces is split exact, applying Homk(−, k)

to (3.2.1) gives the following exact sequence of k-vector spaces

0← Homk(ker(γ), k)← Homk(E
2
n, k)

Homk(γ,k)←−−−−−− Homk(En, k)← Homk(coker(γ), k)← 0

which is isomorphic to

0← Homk(ker(γ), k)← E2
n

β←− En ← Homk(coker(γ), k)← 0

because En is a finite-dimensional k-vector space. Therefore ker(β) = Homk(coker(γ), k),

and

dimk ker(β) = dimk Homk(coker(γ), k) = dimk coker(γ) = dimk coker(α).

Proposition 3.9. Let w1, w2 ∈ En be quadrics then

dimkH(Kosn(w1, w2)) = 4 dimk
En

(w1, w2)
.

Proof. Let α and β be the maps given in Lemma 3.8. Then

dimkH(Kosn(w1, w2)) = dimk coker(α) + dimk ker(α)− dimk image(β) + dimk ker(β).

By the Rank-Nullity Theorem, we have the equalities

dimk ker(α) + dimk image(α) = dimk E
2
n = 2 dimk En (3.2.2)

and

dimk ker(β) + dimk image(β) = dimk En. (3.2.3)

By subtracting (3.2.3) from (3.2.2) we obtain

dimk ker(α)− dimk image(β) = dimk coker(α) + dimk ker(β),
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which implies

dimkH(Kosn(w1, w2)) = 2
(
dimk coker(α) + dimk ker(β)

)
.

Then by Lemma 3.8, we conclude

dimkH(Kosn(w1, w2)) = 4 dimk coker(α) = 4 dimk
En

(w1, w2)
.

Therefore finding the dimension of the total homology of Kosn(w1, wn) can be

reduced to finding the dimension of En/(w1, w2). In order to find the dimension, we

can focus on finding the Hilbert series (see Definition 2.4) of En/(w1, w2). However,

the Hilbert series of En/(w1, w2) is not known and challenging to compute (see [6]),

so we instead consider coefficient-wise bounds on the Hilbert series of En/(w1, w2).

3.2.1 Lower bound

First let us consider a coefficient-wise lower bound of the Hilbert series of En/(w1, w2)

where w1, w2 ∈ En are quadrics. This lower bound is the exterior algebra version of

a lower bound given by Fröberg in the commutative setting (see [8]).

Definition 3.10. Given a polynomial g(t) = a0 + a1t + · · · + amt
m let [g(t)] mean

truncation before the first non-positive term. Therefore [g(t)] = a0+a1t+· · ·+aj−1tj−1

where aj ≤ 0 and ai > 0 for all i < j.

Example 3.11. Let g(t) = 1 + 3t+ t2 − 4t3 + 8t4 then [g(t)] = 1 + 3t+ t2.
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Lemma 3.12. Let w ∈ En be a general quadric as in Definition 3.4 then

hEn/(w)(t) = [(1 + t)n(1− t2)].

Proof. Consider the map

µi : (En(−2))i
w−→ (En)i.

Since w is general then, by Definition 3.4, µi is injective for i ≤ bn
2
c+1 and surjective

for i ≥ bn
2
c+ 2. Thus

dimk coker(µi) =


(
n
i

)
−
(
n
i−2

)
i ≤ bn

2
c+ 1

0 i ≥ bn
2
c+ 2.

Since

dimk

(
En

(w1)

)
i

= dimk coker(µi)

we conclude hEn/(w1)(t) = [(1+ t)n(1− t2)] because
(
n
i

)
−
(
n
i−2

)
< 0 for i ≥ bn

2
c+2.

Definition 3.13. Suppose f(t) =
∑

i ait
i and g(t) =

∑
i bit

i with ai, bi ∈ Z. Let

f(t) � g(t) if ai ≥ bi for all i.

Proposition 3.14. Let w1, w2 ∈ En be quadrics with w1 general as in Definition 3.4.

Then we have the coefficient-wise lower bound

hEn/(w1,w2) � [(1 + t)2(1− t2)2].

Proof. Consider the following exact sequence

0→ ann(w2)(−2) ↪→ En
(w1)

(−2)
w2−→ En

(w1)
→ En

(w1, w2)
→ 0.

Then Proposition 2.9 gives the equality

hEn/(w1,w2)(t) = hEn/(w1)(t)−hEn/(w1)(t)t
2+hann(w2)(t)t

2 = hEn/(w1)(t)(1−t2)+hann(w2)(t)t
2.
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Since hann(w2)(t) � 0, then hEn/(w1,w2)(t) � hEn/(w1)(t)(1− t2) which implies

hEn/(w1,w2)(t) �
[
hEn/(w1)(t)(1− t2)

]
.

Then Lemma 3.12 gives

hEn/(w1,w2)(t) �
[
[(1 + t)n(1− t2)](1− t2)

]
. (3.2.4)

Therefore it remains to show

[
[(1 + t)n(1− t2)](1− t2)

]
=
[
(1 + t)n(1− t2)2

]
.

Let

(1 + t)n(1− t2) =
∑
i

ait
i

then

(1 + t)n(1− t2)2 =
∑
i

(ai − ai−2)ti

so

[(1 + t)n(1− t2)2] =
∑
i

cit
i

where ci = ai − ai−2 if aj > aj−2 for all j ≤ i and 0 otherwise. In addition

[(1 + t)n(1− t2)] =
∑
i

bit
i

where bi = ai if aj > 0 for all j ≤ i and 0 otherwise. Thus

[(1 + t)n(1− t2)](1 + t2) =
∑
i

(bi − bi−2)ti

and [
[(1 + t)n(1− t2)](1− t2)

]
=
∑
i

dit
i

where di = bi − bi−2 = ai − ai−2 if aj > aj−2 and aj > 0 for all j ≤ i and 0 otherwise.

Let i0 be the first index where ai0 ≤ 0, then notice we also have ai0 < ai0−2. Therefore
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di = ai − ai−2 if aj > aj−2 for all j ≤ i which implies di = ci for all i. Thus we

conclude [
[(1 + t)n(1− t2)](1− t2)

]
=
[
(1 + t)n(1− t2)2

]
which means (3.2.4) gives

hEn/(w1,w2)(t) �
[
(1 + t)n(1− t2)2

]
.

Definition 3.15. Let b(n, s) be the sth coefficient of [(1 + t)n(1− t2)2].

The following table contains the values of b(n, s) for n ≤ 20. These numbers are

lower bounds for the coefficients of the Hilbert series of En/(w1, w2).

n/s 0 1 2 3 4 5 6 7 8 9
3 1 3 1 0 0 0 0 0 0 0
4 1 4 4 0 0 0 0 0 0 0
5 1 5 8 0 0 0 0 0 0 0
6 1 6 13 8 0 0 0 0 0 0
7 1 7 19 21 0 0 0 0 0 0
8 1 8 26 40 15 0 0 0 0 0
9 1 9 34 66 55 0 0 0 0 0
10 1 10 43 100 121 22 0 0 0 0
11 1 11 53 143 221 143 0 0 0 0
12 1 12 64 196 364 364 0 0 0 0
13 1 13 76 260 560 728 364 0 0 0
14 1 14 89 336 820 1288 1092 0 0 0
15 1 15 103 425 1156 2108 2380 884 0 0
16 1 16 118 528 1581 3264 4488 3264 0 0
17 1 17 134 646 2109 4845 7752 7752 1938 0
18 1 18 151 780 2755 6954 12597 15504 9690 0
19 1 19 169 931 3535 9709 19551 28101 25194 3230
20 1 20 188 1100 4466 13244 29260 47652 53295 28424

Table 3.1: The values of b(n, s) for n ≤ 20
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Definition 3.16. Let k = C. A list of elements w1, w2, . . . , wc ∈ En are generic if all

the coefficients of w1, w2, . . . , wc with respect to the standard basis are algebraically

independent over Q.

Proposition 3.17. The lower bound of Proposition 3.14 is not tight. In fact, if

k = C and w1, w2 ∈ En are generic quadrics then for n ≥ 11 the Hilbert series of

En/(w1, w2) is not equal to [(1 + t)n(1− t2)2].

Proof. Note (1 + t)n(1− t2)2 = (1− 2t2 + t4)
∑n

k=0

(
n
k

)
tk. We will consider when n is

odd and when n is even separately.

First suppose n = 2m. Then the mth coefficient of (1 + t)2m(1− t2)2 is(
2m

m

)
− 2

(
2m

m− 2

)
+

(
2m

m− 4

)
.

By rewriting the binomial coefficients as factorials and simplifying we have the fol-

lowing equality(
2m

m

)
− 2

(
2m

m− 2

)
+

(
2m

m− 4

)
=

(2m)!

m!(m+ 4)!

(
−8m3 + 36m2 + 68m+ 24

)
=

(2m)!

m!(m+ 4)!
(−4)(2m+ 1)(m+ 1)(m− 6).

Therefore the mth coefficient is negative if m > 6 and zero if m = 6. This implies the

mth coefficient of [(1 + t)2m(1− t2)2] will be 0 for m ≥ 6. However the mth coefficient

of hE2m/(w1,w2)(t) is 2m by [6, Proposition 6].

Now suppose n = 2m+ 1. Then the (m+ 1)st coefficient of (1 + t)2m+1(1− t2)2 is(
2m+ 1

m+ 1

)
− 2

(
2m+ 1

m− 1

)
+

(
2m+ 1

m− 3

)
.

By rewriting the binomial coefficients as factorials and simplifying we have the fol-

lowing equality
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(
2m+ 1

m+ 1

)
− 2

(
2m+ 1

m− 1

)
+

(
2m+ 1

m− 3

)
=

(2m+ 1)!

(m+ 1)!(m+ 4)!

(
−8m3 − 4m2 + 28m+ 24

)
=

(2m+ 1)!

(m+ 1)!(m+ 4)!
(−4)(2m+ 3)(m+ 1)(m− 2).

Therefore the (m+1)st coefficient is negative if m > 2 and zero if m = 2. This implies

the (m + 1)st coefficient of [(1 + t)2m+1(1 − t2)2] will be 0 for m ≥ 2. However the

(m+ 1)st coefficient of hE2m+1/(w1,w2)(t) is 1 by [6, Proposition 6].

Remark 3.18. Using a similar argument, one can show when n = 2m then the

(m− j)th coefficient of (1 + t)2m(1− t2)2 will be

(2m)!

(m− j)!(m+ j + 4)!
(−4)(2m+ 1)(m+ 1)(m− 2(j2 + 4j + 3))

which is zero or negative when m ≥ 2(j2 + 4j + 3). Also when n = 2m + 1 then the

(m+ 1− j)th coefficient of (1 + t)2m+1(1− t2)2 will be

(2m+ 1)!

(m− j + 1)!(m+ j + 4)!
(−4)(2m+ 3)(m+ 1)(m− 2(j2 + 3j + 1))

which is zero or negative when m ≥ 2(j2 + 3j + 1).

Finally, consider the following result about the asymptotic behavior of the lower

bound.

Proposition 3.19. Let b(n, s) be the sth coefficient of [(1 + t)n(1− t2)2]. Then

lim inf
n→∞

(∑
s

b(n, s)

)1/n

≥ 2.

Proof. Note (1 + t)n(1 − t2)2 = (1 − 2t2 + t4)
∑n

k=0

(
n
k

)
tk so the sth coefficient of

(1 + t)n(1− t2)2 is (
n

s

)
− 2

(
n

s− 2

)
+

(
n

s− 4

)
.



43

Now let us consider the even and odd case separately. First suppose n = 2m. As

demonstrated in Remark 3.18, the (m−j)th coefficient of (1+ t)2m(1− t2)2 is negative

or zero for m ≥ 2(j2 + 4j + 3). This implies

∑
s

b(2m, s) ≥
m∑
s=0

((
2m

s

)
− 2

(
2m

s− 2

)
+

(
2m

s− 4

))

=

(
2m

m

)
+

(
2m

m− 1

)
−
(

2m

m− 2

)
−
(

2m

m− 3

)
=

(2m)!

m!(m+ 3)!
6(2m+ 1)(m+ 1).

By using the bounds given by Stirling’s approximation,
√

2πmm+1/2e−m ≤ m! ≤

emm+1/2e−m, we have the following inequalities

6(2m+ 1)(m+ 1)
(2m)!

m!(m+ 3)!
≥ 6(2m+ 1)(m+ 1)

√
2π(2m)2m+1/2e−2m

emm+1/2e−me(m+ 3)m+7/2e−m−3

≥ (2m+ 1)(m+ 1)
22mmm

(m+ 3)m+7/2
.

Therefore(∑
s

b(2m, s)

)1/2m

≥ (2m+ 1)1/2m(m+ 1)1/2m
2m1/2

(m+ 3)1/2(m+ 3)7/4m
.

Since limm→∞m
1/m = 1, we conclude

lim inf
m→∞

(∑
s

b(2m, s)

)1/2m

≥ 2.

Now suppose n = 2m + 1. As demonstrated in Remark 3.18, the (m + 1 − j)th

coefficient of (1 + t)2m+1(1 − t2)2 is negative or zero for m ≥ 2(j2 + 3j + 1). This
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implies

∑
s

b(2m+ 1, s) ≥
m+1∑
s=0

((
2m+ 1

s

)
− 2

(
2m+ 1

s− 2

)
+

(
2m+ 1

s− 4

))

=

(
2m+ 1

m+ 1

)
+

(
2m+ 1

m

)
−
(

2m+ 1

m− 1

)
−
(

2m+ 1

m− 2

)
=

(2m+ 1)!

m!(m+ 3)!
4(2m+ 3).

By using the bounds given by Stirling’s approximation, we have the following inequal-

ities

4(2m+ 3)
(2m+ 1)!

m!(m+ 3)!
≥ 4(2m+ 3)

√
2π(2m+ 1)2m+3/2e−2m−1

emm+1/2e−me(m+ 3)m+7/2e−m−3

≥ (2m+ 3)
(2m+ 1)2m+3/2

mm+1/2(m+ 3)m+7/2

≥ (2m+ 3)
22m+1mm+1/2

(m+ 3)m+7/2
.

Therefore(∑
s

b(2m+ 1, s)

)1/(2m+1)

≥ (2m+ 3)1/(2m+1) 2m1/2

(m+ 3)1/2(m+ 3)3/(2m+1)
.

Since limm→∞m
1/m = 1, we conclude

lim inf
m→∞

(∑
s

b(2m+ 1, s)

)1/(2m+1)

≥ 2.
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3.2.2 Upper bound

Now let us consider a coefficient-wise upper bound for the Hilbert series of En/(w1, w2)

which is found by relating the coefficients of the Hilbert series to lattice paths.

Definition 3.20. Let a(n, s) be the number of lattice paths inside a (n + 2− 2s)×

(n+ 2) rectangle that start at the bottom left corner and end at the top right corner

with moves of two types: (x, y)→ (x+ 1, y + 1) or (x, y)→ (x− 1, y + 1).

Example 3.21. Let n = 4, s = 1 then the following is an example of a valid lattice

path counted by a(4, 1).

Theorem 3.22 ( [6, Theorem 5]). Let k = C and let w1, w2 ∈ En be generic quadrics

(see Definition 3.16). The dimension of the sth graded component of En/(w1, w2) is

at most a(n, s). Therefore we have a coefficient-wise upper bound

hEn/(w1,w2)(t) �
∑
s

a(n, s)ts.

In order to calculate a(n, s), we form a bijection between the lattice paths de-

scribed above to another type of lattice paths whose cardinality is easier to compute.

Definition 3.23. A lattice path stays weakly below (or weakly above) the line y =

mx+ b if for each point (x0, y0) on the lattice path, y0 ≤ mx0 + b (or y0 ≥ mx0 + b).



46

Proposition 3.24. Let P1 be the lattice paths which are inside a (n+2−2s)×(n+2)

rectangle and start at the bottom left corner and end at the top right corner with

moves of two types: (x, y) → (x + 1, y + 1) or (x − 1, y + 1). Let P2 be the lattice

paths which start at (0, 0) and end at (s, n − 2 + s) and stay weakly below the line

y = x+n+2−2s and weakly above y = x with moves of two types: (x, y)→ (x+1, y)

or (x, y)→ (x, y + 1). Then P1 and P2 have the same cardinality.

The following example demonstrates how to transform a P1 path into a P2 path,

and provides intuition for the proof of this proposition.

Example 3.25. Suppose n = 6, s = 2 and consider the P1 lattice path in Figure 3.1

which is inside a 4× 8 rectangle.

Figure 3.1

Figure 3.2

By changing every move of type (x, y)→ (x+ 1, y + 1) to (x, y)→ (x, y + 1) and

every move of type (x, y) → (x − 1, y + 1) to (x, y) → (x + 1, y) we get the P2 path

in Figure 3.2 which is drawn in blue. Note the path stays between the diagonal lines

y = x+ 4 and y = x which are drawn in red, so it is indeed a valid P2 path.

Proof of Proposition 3.24. Throughout this proof, we will use the following notation.

Let R moves be of type (x, y)→ (x+1, y+1), L moves be of type (x, y)→ (x−1, y+1),
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U moves be of type (x, y) → (x, y + 1) and O moves be of type (x, y) → (x + 1, y).

Therefore any P1 path has just R and L moves and any P2 path has just U and O

moves.

Consider the function f : P1 → P2 given by taking a P1 path and changing all

R moves to U moves and all L moves to O moves as demonstrated in Example 3.25.

We first show f is well-defined.

Suppose P is a P1 path. Note in any P1 path the number of L moves is s and

the number of R moves is n + 2 − 2s + s = n + 2 − s. Since P stays inside the

(n+2−2s)× (n+2) rectangle, while traveling along P , for 0 ≤ i ≤ n−2 the number

of R moves is always greater than or equal to the number of L moves after a total of

i moves. Also the number of R moves is always less than or equal to n+ 2− 2s plus

the number of L moves after a total of i moves.

Now consider f(P ) which is a lattice path that starts at (0, 0) and ends at

(s, n−2+s). While traveling along f(P ), for 0 ≤ i ≤ n−2 the number of U moves is

greater than or equal to the number of O moves after a total of i moves which means

f(P ) stays weakly above the line y = x. Also the number of U moves is less than or

equal to n+ 2− 2s plus the number of O moves after a total of i moves which means

f(P ) stays weakly below the line y = x+ n+ 2− 2s. Therefore f(P ) is a P2 path, so

f is well-defined.

Now define the function g : P2 → P1 by taking a P2 path and changing all R

moves to U moves and all L moves to O moves. By a similar argument, g is also

well-defined. Since f and g are clearly inverses, we have demonstrated a bijection

between P1 paths and P2 paths.

Given this bijection, we may now use the following results to calculate a(n, s).
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Theorem 3.26 ( [14, Theorem 10.3.3]). Let a+ t ≥ b ≥ a+ r and c+ t ≥ d ≥ c+ r.

The number of all paths from (a, b) to (c, d) staying weakly below the line y = x + t

and weakly above the line y = x+ r is given by

∑
k∈Z

((
c+ d− a− b

c− a− k(t− r + 2)

)
−
(

c+ d− a− b
c− b− k(t− r + 2) + t+ 1

))
.

Corollary 3.27.

a(n, s) =
∑
k∈Z

((
n+ 2

s− k(n+ 4− 2s)

)
−
(

n+ 2

n+ 3− s− k(n+ 4− 2s)

))

or equivalently

a(n, s) =
∑
k∈Z

((
n+ 2

s− k(n+ 4− 2s)

)
−
(

n+ 2

s− 1 + k(n+ 4− 2s)

))
.

Proof. Let a = b = 0, c = s, d = n+ 2− s, t = n+ 2− 2s and r = 0. Then the lattice

paths described in Theorem 3.26 are the P2 lattice paths. By Proposition 3.24, a(n, s)

is the number of P2 lattice paths. Thus the result follows immediately from Theorem

3.26.

Therefore we now have an upper bound for the Hilbert series of En/(w1, w2) that

is easily calculated.

Remark 3.28. It is conjectured the upper bound given in Theorem 3.22 is an equality

(see [6, Conjecture 1]).

This conjecture is currently still an open problem, but it is known that a(n, s) is

equal to the dimension of the sth graded component of En/(w1, w2) for certain values

of s.
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Proposition 3.29 ( [6, Proposition 7]). Let k = C and let w1, w2 ∈ En be generic

quadrics. If s ≤ bn
3
c+ 1 then

dimk

(
En

(w1, w2)

)
s

= a(n, s) =

(
n

s

)
− 2

(
n

s− 2

)
+

(
n

s− 4

)
.

We provide a different proof of this result.

Proof. First note by Proposition 3.14,

hEn/(w1,w2) � [(1 + t)n(1− t2)2]

and when s ≤ bn
3
c+1 then the sth coefficient of [(1+t)n(1−t2)2] is

(
n
s

)
−2
(
n
s−2

)
+
(
n
s−4

)
.

Thus

dimk

(
En

(w1, w2)

)
s

≥
(
n

s

)
− 2

(
n

s− 2

)
+

(
n

s− 4

)
.

By Theorem 3.22, we know dimk(En/(w1, w2))s ≤ a(n, s) so it remains to show

a(n, s) =

(
n

s

)
− 2

(
n

s− 2

)
+

(
n

s− 4

)
.

By Corollary 3.27,

a(n, s) =
∑
k∈Z

((
n+ 2

s− k(n+ 4− 2s)

)
−
(

n+ 2

s− 1 + k(n+ 4− 2s)

))
. (3.2.5)

Notice if k ≥ 2 then

s− k(n+ 4− 2s) ≤ s− n− 2 + s = 3s− n− 4 ≤ n+ 3− n− 4 = −1 < 0.

and

s− 1 + k(n+ 4− 2s) ≥ s− 1 + 2(n+ 4− 2s) = 2n+ 7− 3s ≥ 2n+ 7− n− 3 > n+ 2.
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This implies that if k ≥ 2 then(
n+ 2

s− k(n+ 4− 2s)

)
−
(

n+ 2

s− 1 + k(n+ 4− 2s)

)
= 0.

Also if k ≤ −2 then

s− k(n+ 4− 2s) ≥ s+ 2n+ 8− 4s = 2n+ 8− 3s ≥ 2n+ 8− n− 3 > n+ 2.

and

s− 1 + k(n+ 4− 2s) ≤ s− 1− n− 4 + 2s = 3s− n− 5 ≤ n+ 3− n− 5 < 0.

This implies if k ≤ −2 then(
n+ 2

s− k(n+ 4− 2s)

)
−
(

n+ 2

s− 1 + k(n+ 4− 2s)

)
= 0.

Therefore when using 3.2.5 we only need to consider when −2 ≤ k ≤ 2. Now by

Pascal’s identity the following equality holds(
n+ 2

s− k(n+ 4− 2s)

)
−
(

n+ 2

s− 1 + k(n+ 4− 2s)

)
=

(
n

s− k(n+ 4− 2s)

)
+ 2

(
n

s− 1− k(n+ 4− 2s)

)
+

(
n

s− 2− k(n+ 4− 2s)

)
−
(

n

s− 1 + k(n+ 4− 2s)

)
− 2

(
n

s− 2 + k(n+ 4− 2s)

)
−
(

n

s− 3 + k(n+ 4− 2s)

)
Using this equality and the fact we may restrict to −2 ≤ k ≤ 2, (3.2.5) becomes the

desired equality

a(n, s) =

(
n

s

)
− 2

(
n

s− 2

)
+

(
n

s− 4

)
.
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The following table contains values of a(n, s) calculated using the formula for

a(n, s) given in Corollary 3.27. Note these numbers are upper bounds for the coeffi-

cients of the Hilbert series of En/(w1, w2).

n/s 0 1 2 3 4 5 6 7 8 9 10
3 1 3 1 0 0 0 0 0 0 0 0
4 1 4 4 0 0 0 0 0 0 0 0
5 1 5 8 1 0 0 0 0 0 0 0
6 1 6 13 8 0 0 0 0 0 0 0
7 1 7 19 21 1 0 0 0 0 0 0
8 1 8 26 40 16 0 0 0 0 0 0
9 1 9 34 66 55 1 0 0 0 0 0
10 1 10 43 100 121 32 0 0 0 0 0
11 1 11 53 143 221 144 1 0 0 0 0
12 1 12 64 196 364 364 64 0 0 0 0
13 1 13 76 260 560 728 377 1 0 0 0
14 1 14 89 336 820 1288 1093 128 0 0 0
15 1 15 103 425 1156 2108 2380 987 1 0 0
16 1 16 118 528 1581 3264 4488 3280 256 0 0
17 1 17 134 646 2109 4845 7752 7753 2584 1 0
18 1 18 151 780 2755 6954 12597 15504 9841 512 0
19 1 19 169 931 3535 9709 19551 28101 25213 6765 1
20 1 20 188 1100 4466 13244 29260 47652 53296 29524 1024

Table 3.2: The entries are the values of a(n, s) for n ≤ 20.

3.2.3 Bounding the homological growth factor

Throughout this section let k = C and let w1, w2 ∈ En be generic quadrics. Recall

the homological growth factor of Kosn(w1, w2) is defined to be

HGF (Kosn(w1, w2)) =
(
dimkH(Kosn(w1, w2))

)1/n
and Proposition 3.9 states

dimkH(Kosn(w1, w2)) = 4 dimk
En

(w1, w2)
.
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Theorem 3.22 and Proposition 3.14 gives

∑
s

b(n, s) ≤ dimk
En

(w1, w2)
≤
∑
s

a(n, s)

which implies(
4
∑
s

b(n, s)

)1/n

≤ HGF (Kosn(w1, w2)) ≤

(
4
∑
s

a(n, s)

)1/n

. (3.2.6)

The following table contains the values of these bounds on the homological growth

factor of Kosn(w1, w2) which can be calculated using the values of a(n, s) given in

Table 3.2 and the values of b(n, s) given in Table 3.1.

n (4
∑

s b(n, s))
1/n (4

∑
s a(n, s))

1/n

3 2.714 2.714
4 2.449 2.449
5 2.237 2.268
6 2.196 2.196
7 2.119 2.126
8 2.087 2.09
9 2.057 2.059
10 2.03 2.037
11 2.02 2.021
12 1.996 2.007
13 1.997 1.998
14 1.983 1.988
15 1.98 1.982
16 1.974 1.976
17 1.969 1.972
18 1.967 1.968
19 1.961 1.965
20 1.961 1.963

Table 3.3: The entries in the middle column give a lower bound and the entries in the right
column give an upper bound on the homological growth factor of Kosn(w1, w2).

As seen in this table, there are values of n such that the upper bound is smaller

than 2 which implies there are values of n such that HGF (Kosn(w1, w2)) < 2. This
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immediately gives the following result.

Theorem 3.30. Let k = C and let w1, w2 ∈ En be generic quadrics. Then Kosn(w1, w2)

is a counterexample to Conjecture 1.4 for 13 ≤ n ≤ 20.

In addition, computationally the smallest value for the upper bound appears to hap-

pen when n = 37 and in this case (4
∑

s a(n, s))1/n = 1.9507. In addition, the

smallest value for the lower bound appears to happen when n = 36 and in this case

(4
∑

s b(n, s))
1/n = 1.9489. These calculations along with further computations of the

upper bound of HGF (Kosn(w1, w2)) lead to the following conjecture.

Conjecture 3.31. Let k = C and let w1, w2 ∈ En be generic quadrics. Then

HGF (Kosn(w1, w2)) < 2

when n ≥ 15 and

HGF (Kosn(w1, w2)) > 1.9489

for all n.

Finally we observe the homological growth factor of Kosn(w1, w2) has a similar

asymptotic behavior as Kos2n(w) discussed in Section 3.1 in the sense that the ho-

mological growth factor of Kosn(w1, w2) is asymptotically at least 2.

Proposition 3.32. For all n, let Kn = Kosn(w1, w2) for any quadrics w1, w2 ∈ En

with w1 general (see Definiton 3.4). Then

lim inf
n→∞

HGF (Kn) ≥ 2.

Proof. The homological growth factor of Kn has the following lower bound

HGF (Kn) ≥

(
4
∑
s

b(n, s)

)1/n
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which was given in (3.2.6). By Proposition 3.19

lim inf
n→∞

(
4
∑
s

b(n, s)

)1/n

= lim inf
n→∞

41/n

(∑
s

b(n, s)

)1/n

≥ 2.

Therefore

lim inf
n→∞

HGF (Kn) ≥ lim inf
n→∞

(
4
∑
s

b(n, s)

)1/n

≥ 2.
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Chapter 4

MINIMAL HOMOLOGY

In order to answer Question 1.8, one would like to find the smallest possible total

homology of a graded complex over the exterior algebra. This is a difficult task,

so we proceed by fixing a particular graded Poincaré series and determine which

complexes have the smallest possible total homology amongst those complexes having

that Poincaré series.

Definition 4.1. A finite free graded complex F over the exterior algebra has minimal

homology if

dimkH(F) ≤ dimkH(G)

for any finite free graded complex G over the exterior algebra with PG(s, t) = PF(s, t).

Recall PF(s, t) is the graded Poincaré series of F (see Definition 2.12).

In Section 4.1, we show Koszul complexes of one general quadric have minimal

homology. In fact, Proposition 4.3 demonstrates these are the only complexes with

graded Poincaré series 1 + st2 that have minimal homology. Then in Section 4.2, we

show Koszul complexes of two general quadrics also have minimal homology. However,

there are other complexes with Poincaré series 1 + 2st2 + s2t4 that have minimal

homology and we give a characterization of these complexes when n is large enough.
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4.1 Koszul complex of one quadric

Let k be a field and let En = k〈e1, . . . , en〉. Consider the Koszul complex

Kosn(w) : En(−2)
w−→ En

where w ∈ En is a quadric.

Remark 4.2. Kosn(w) has the following graded Poincaré series

PKosn(w)(s, t) = 1 + st2.

Proposition 4.3. Kosn(w) has minimal homology if and only if w is a general quadric

as in Definition 3.4.

Proof. Let w ∈ En be a quadric and consider

Kosn(w) : En(−2)
w−→ En.

For all i, consider the map

µi : (En(−2))i
w−→ (En)i.

Note

dimk(H(Kosn(w)))i = dimk ker(µi) + dimk coker(µi)

then by the Rank-Nullity Theorem

dimk ker(µi) + dimk coker(µi) =

(
n

i− 2

)
− rank(µi) +

(
n

i

)
− rank(µi)

=

(
n

i− 2

)
+

(
n

i

)
− 2 rank(µi).

Therefore

dimk(H(Kosn(w)))i =

(
n

i− 2

)
+

(
n

i

)
− 2 rank(µi)
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which implies the smallest possible value of dimk(H(Kos2n(w)))i occurs when the

rank of µi is as large as possible, namely when µi is injective for i ≤ bn
2
c + 1 and

surjective for i ≥ bn
2
c+ 2. By Proposition 3.3, this occurs if and only if w is general.

Thus dimkH(Kosn(w)) is as small as possible if and only if w is general.

Note that any finite free graded complex over En with graded Poincaré series

1 + st2 is a Koszul complex of the form Kosn(w) for some quadric w ∈ En. Thus we

conclude Kosn(w) has minimal homology if and only if w is a general quadric.

4.2 Koszul complex of two quadrics

Now let w1, w2 ∈ En = k〈e1, . . . , en〉 be quadrics and consider the Koszul complex

Kosn(w1, w2) : En(−4)


−w2

w1


−−−−−→ En(−2)2

(
w1 w2

)
−−−−−−−→ En.

Remark 4.4. Kosn(w1, w2) has the following graded Poincaré series

PKosn(w1,w2)(s, t) = 1 + 2st2 + s2t4.

Lemma 4.5. For any integers r and s, there exists a Zariski open set Us of A(n2)
k ×A

(n2)
k

such that

dimk

(
En

(w1, w2)

)
s

≤ r

if and only if (Θ−1(w1),Θ
−1(w2)) ∈ Us where Θ : A(n2)

k → (En)2 is the bijection given

in Definition 3.1.
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Proof. Let w1, w2 ∈ (En)2. For each i, fix the standard bases for the vector spaces

(En(−2))2s and (En)s. Let Ms(w1, w2) denote the matrix representing the k-linear

transformation

µs : (E2n(−2))2s

(
w1 w2

)
−−−−−−−→ (E2n)s

with respect to the chosen bases. Note the entries of Ms(w1, w2) depend on the

coefficients of w1, w2 but not on any other elements of E2n. Then

dimk

(
En

(w1, w2)

)
s

≤ r

if and only if dimk coker(µs) ≤ r if and only if dimk coker(Ms(w1, w2)) ≤ r. Since

dimk coker(Ms(w1, w2)) =

(
n

s

)
− rank(Ms(w1, w2))

then dimk coker(Ms(w1, w2)) ≤ r if and only if rank(Ms(w1, w2)) ≥
(
n
s

)
−r. Let It(M)

be the ideal generated by the t × t minors of M for any matrix M . Also let Xs be

the matrix obtained from Ms(w1, w2) by replacing each coefficient of w1, w2 with a

variable. Then

dimk

(
En

(w1, w2)

)
s

≤ r ⇔ rank(Ms(w1, w2)) ≥
(
n

s

)
− r

⇔ I(ns)−r
(Ms(w1, w2)) 6= 0

⇔ (Θ−1(w1),Θ
−1(w2)) 6∈ V

(
I(ns)−r

(Xs)

)

Set Us = A
2(n2)
k \ V

(
I(ns)−r

(Xs)

)
then Us is a Zariski open set in A

2(n2)
k and by the

argument above

dimk

(
En

(w1, w2)

)
s

≤ r

if and only if (Θ−1(w1),Θ
−1(w2)) ∈ Us.
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Proposition 4.6. Let k be an infinite field and let

r = min

{
dimk

En
(q1, q2)

: qi ∈ (En)2

}
.

Then there exists a non-empty Zariski open set U of A(n2)
k × A(n2)

k such that

dimk
En

(w1, w2)
= r

for all w1, w2 ∈ (En)2 with (Θ−1(w1),Θ
−1(w2)) ∈ U .

Proof. Let

rs = min

{
dimk

(
En

(q1, q2)

)
s

: qi ∈ (En)2

}

then by Lemma 4.5 there exists a Zariski open set Us of A(n2)
k × A(n2)

k such that

dimk

(
En

(w1, w2)

)
s

≤ rs

for all w1, w2 ∈ (En)2 with (Θ−1(w1),Θ
−1(w2)) ∈ Us. Note by definition of rs, we also

have

dimk

(
En

(w1, w2)

)
s

≥ rs

for all w1, w2 ∈ (En)2, so

dimk

(
En

(w1, w2)

)
s

= rs

for all w1, w2 ∈ (En)2 with (Θ−1(w1),Θ
−1(w2)) ∈ Us.

Then let U =
⋂n
s=0 Us. Note Us is non-empty for 0 ≤ s ≤ n by definition of rs.

Therefore U is the finite intersection of Zariski open sets and thus a Zariski open

set. Also U is non-empty because k being infinite implies a finite intersection of non-

empty Zariski open sets is non-empty. Finally the definition of U implies that for all
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0 ≤ s ≤ n we have the following equality

dimk

(
En

(w1, w2)

)
s

= rs

for all w1, w2 ∈ (En)2 with (Θ−1(w1),Θ
−1(w2)) ∈ U . Since

r = min

{
dimk

En
(q1, q2)

: qi ∈ (En)2

}
=

n∑
s=0

rs

because U is nonempty, then

dimk
En

(w1, w2)
= r

for all w1, w2 ∈ (En)2 with (Θ−1(w1),Θ
−1(w2)) ∈ U.

Definition 4.7. Let k be an infinite field. A pair of elements w1, w2 ∈ (En)2 are said

to be general if (Θ−1(w1),Θ
−1(w2)) ∈ U where U is the non-empty Zariski open set

given in Proposition 4.6.

Proposition 4.8. Let w1, w2 ∈ En be general quadrics, then Kosn(w1, w2) has mini-

mal homology.

Proof. Suppose F is a graded complex of the form

F : 0→ En(−4)
d1−→ En(−2)2

d0−→ En → 0.

Let

r = min

{
dimk

En
(q1, q2)

: qi ∈ (En)2

}
and let q1, q2 ∈ En be quadrics such that image(d0) = (q1, q2). Then

dimkH0(F) = dimk
En

(q1, q2)
≥ r.
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Now consider the k-vector space dual of F

F∗ : 0→ (En)∗
d∗0−→ (En(−2)2)∗

d∗1−→ (En(−4))∗ → 0

where (−)∗ denotes the k-vector space dual. Since (En)∗ = Homk(En, k) ∼= En(n) (by

the positive graded exterior algebra version of Proposition 2.22), then F∗ is isomorphic

to the complex

0→ (En)(n)
d∗0−→ En(n+ 2)2

d∗1−→ En(n+ 4)→ 0.

The graded shifts of the modules in F∗ imply d∗1 can be represented as a matrix of

two quadrics say q3, q4 ∈ En. Then image(d∗1) = (q3, q4) which implies

dimkH2(F) = dimkH0(F
∗) = dimk

En
(q3, q4)

≥ r.

Thus using the fact dimkH1(F) = dimkH0(F) + dimkH2(F) we conclude

dimkH(F) = 2(dimkH0(F) + dimkH2(F)) ≥ 4r.

Now suppose w1, w2 ∈ En are general quadrics, so dimk En/(w1, w2) = r by Defi-

nition 4.7. Then Proposition 3.9 gives

dimkH(Kosn(w1, w2)) = 4 dimk
En

(w1, w2)
= 4r.

Therefore

dimkH(Kosn(w1, w2)) ≤ dimkH(F)

so by definition Kosn(w1, w2) has minimal homology.

As discussed in Section 3.2, Kosn(w1, w2) produces a counterexample to Conjec-

ture 1.4 for certain values of n when w1, w2 are generic. Since Kosn(w1, w2) has

minimal homology, then there does not exist a complex with graded Poincaré series
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1+st2 +s2t4 that will have smaller total homology and thus produce a stronger coun-

terexample. However, Koszul complexes are not the only complexes with minimal

homology.

Example 4.9. Let q1, q2 ∈ En be quadrics and let λ be a nonzero scalar. Consider

the graded complex

F : En(−4)


−λq2

λq1


−−−−−−→ En(−2)2

(
q1 q2

)
−−−−−−→ En.

Since F is isomorphic to Kosn(q1, q2), the homology of F is the same as the homology

of Kosn(q1, q2). Thus if q1, q2 are general then F will have minimal homology.

Definition 4.10. A complex is called Koszul up to a scalar if it has the form as in

Example 4.9 with λ 6= 0.

We now show that for large enough n, all complexes over En with minimal ho-

mology are Koszul up to a scalar. We first need the following lemma.

Lemma 4.11. Let q1, q2, q3 and q4 be quadrics such that the sequence of maps

0→ En(−4)


q3

q4


−−−→ E2

n(−2)

(
q1 q2

)
−−−−−−→ En → 0

form a graded complex. If

dimk

(
En

(q1, q2)

)
4

=

(
n

4

)
− 2

(
n

2

)
+ 1

then q3 = −λq2 and q4 = λq1 for some scalar λ (i.e. the complex is Koszul up to a

scalar or q3 = q4 = 0).
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Proof. Suppose

0→ En(−4)


q3

q4


−−−→ E2

n(−2)

(
q1 q2

)
−−−−−−→ En → 0

is a complex. Then q1q3 + q2q4 = 0. Consider the following exact complex

0→ ker(φ)→ (E2
n)2

φ−→ (En)4 →
(
En/(q1, q2)

)
4
→ 0

where φ =

(
q1 q2

)
. By assumption dimk

(
En

(q1,q2)

)
4

=
(
n
4

)
− 2
(
n
2

)
+ 1, so

dimk(ker(φ)) = dimk

(
En/(q1, q2)

)
4
− dim(En)4 + dim(E2

n)2

=

(
n

4

)
− 2

(
n

2

)
+ 1−

(
n

4

)
+ 2

(
n

2

)
= 1.

Since q1q3 + q2q4 = 0 then (q3, q4) ∈ ker(φ). However we also have (−q2, q1) ∈ ker(φ)

and dimk ker(φ) = 1. Thus q3 = −λq2 and q4 = λq1 for some scalar λ.

Remark 4.12. Let q1, q2, q3, q4 ∈ En be quadrics. In the case, q3 = q4 = 0 the

complex

F : 0→ En(−4)


q3

q4


−−−→ E2

n(−2)

(
q1 q2

)
−−−−−−→ En → 0

will not have minimal homology because for any general quadrics w1, w2 ∈ En,

dimkH2(F) = dimk En > dimk
En

(w1, w2)

and

dimkH0(F) = dimk
En

(q1, q2)
≥ dimk

En
(w1, w2)

.
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Thus

dimkH(F) = 2
(
dimkH0(F) + dimkH2(F)

)
> 4 dimk

En
(w1, w2)

= dimk Kosn(w1, w2).

Theorem 4.13. Let k be an infinite field and F be a graded complex over En with

graded Poincaré series 1 + 2st2 + st4. If n ≥ 9 and F has minimal homology, then F

is Koszul up to a scalar.

Proof. Since PF(s, t) = 1 + 2st2 + st4, F is a graded complex of the form

0→ En(−4)


q3

q4


−−−→ E2

n(−2)

(
q1 q2

)
−−−−−−→ En → 0

for some q1, q2, q3, q4 ∈ En. Using a similar argument as in the proof of Proposition

3.9, we can show

dimkH(F) = 2
(
dimkH0(F) + dimkH2(F)

)
.

Note H0(F) = En/(q1, q2) and Lemma 3.8 gives

dimkH2(F) = dimk ker

q3
q4

 = dimk coker

(
q4 −q3

)
= dimk

En
(q3, q4)

.

Therefore

dimkH(F) = 2

(
dimk

En
(q1, q2)

+ dimk
En

(q3, q4)

)
. (4.2.1)

Since F has minimal homology, then

dimkH(F) ≤ dimkH(Kosn(w1, w2))

where w1, w2 ∈ En are general quadrics as in Definition 4.7. Then by Proposition 3.9



65

and (4.2.1), we have the inequality

dimk
En

(q1, q2)
+ dimk

En
(q3, q4)

≤ 2 dimk
En

(w1, w2)
. (4.2.2)

Since w1, w2 ∈ En are general quadrics,

dimk
En

(w1, w2)
≤ dimk

En
(q1, q2)

and

dimk
En

(w1, w2)
≤ dimk

En
(q3, q4)

.

These inequalities, along with (4.2.2), imply the following equalities must hold:

dimk
En

(w1, w2)
= dimk

En
(q1, q2)

(4.2.3)

and

dimk
En

(w1, w2)
= dimk

En
(q3, q4)

.

In addition, notice the proof of Proposition 4.6 gives

dimk

(
En

(w1, w2)

)
s

≤ dimk

(
En

(q1, q2)

)
s

for all 0 ≤ s ≤ n. Thus (4.2.3) implies

dimk

(
En

(w1, w2)

)
s

= dimk

(
En

(q1, q2)

)
s

for all 0 ≤ s ≤ n. In particular when n ≥ 9

dimk

(
En

(q1, q2)

)
4

= dimk

(
En

(w1, w2)

)
4

=

(
n

4

)
− 2

(
n

2

)
+ 1

by Proposition 3.29. Therefore Lemma 4.11 determines F is Koszul up to a scalar or

q3 = q4 = 0. However if q3 = q4 = 0 then F would not have minimal homology by
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Remark 4.12. Thus F must be Koszul up to a scalar.

Notice the above result holds only when n ≥ 9. When n ≤ 8, there exist complexes

that are not Koszul up to a scalar and have minimal homology.

Example 4.14. Let n = 6 and consider the sequence of maps

0→ E6(−4)


q3

q4


−−−→ E2

6(−2)

(
q1 q2

)
−−−−−−→ E6 → 0

where

q1 = e1e2 + e3e4 + e5e6

q2 = e1e2 +
1

2
e3e4 − e5e6

q3 = e1e4 + e2e5 + e3e6

q4 = e1e4 − 2e2e5 − e3e6.

Notice q1q3 + q2q4 = 0 so this is in fact a complex. Using Macaulay2 [9], we verify the

dimension of the total homology of this complex is the same as the dimk Kos6(w1, w2)

for generic w1, w2 which can be calculated using Tables 3.1 and 3.2. Thus the complex

described above has minimal homology.

Example 4.15. Let n = 8 and consider the sequence of maps

0→ E8(−4)


q3

q4


−−−→ E2

8(−2)

(
q1 q2

)
−−−−−−→ E8 → 0
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where

q1 = e1e2 + e3e4 + e5e6 + e7e8

q2 = e1e2 + 2e3e4 + 3e5e6 + 4e7e8

q3 = e1e2 − 9e3e4 − 11e5e6 − 11e7e8

q4 = 2e1e2 + 4e3e4 + 4e5e6 + 2e7e8

Note q1q3 + q2q4 = 0 so this is in fact a complex. Using Macaulay2 [9], we verify the

dimension of the total homology of this complex is the same as the dimk Kos8(w1, w2)

for generic w1, w2 which can be calculated using Tables 3.1 and 3.2 and [6, Proposition

6]. Thus the complex described above has minimal homology.

Recall by Theorem 4.13, that for n ≥ 9 if the complex

0→ En(−4)


q3

q4


−−−→ E2

n(−2)

(
q1 q2

)
−−−−−−→ En → 0

has minimal homology then it is Koszul up to a scalar. If we restrict to the case that

q1, q2 are generic quadrics, then we determine a characterization for when the above

sequence of maps is even a complex.

Proposition 4.16. Let k = C and let q1, q2 ∈ En be generic quadrics. If n ≥ 9 then

the sequence of maps

0→ En(−4)


q3

q4


−−−→ E2

n(−2)

(
q1 q2

)
−−−−−−→ En → 0

is a complex if and only if it is Koszul up to a scalar or q3 = q4 = 0.

In order to prove this result, we consider the cases when n is even and when n
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is odd separately. We will first consider the case when n is odd. Before proving the

desired result, we need the following technical lemma.

Lemma 4.17. Let k = C and let q1, q2 ∈ En be generic quadrics. If n = 2m + 1 for

some m ≥ 4 and the sequence of maps

0→ E2m+1(−4)


q3

q4


−−−→ E2

2m+1(−2)

(
q1 q2

)
−−−−−−→ E2m+1 → 0

form a graded complex, then there is a change of variables such that

q1 =
m∑
i=1

eiem+i+1 q3 =
m∑
i=1

bieiem+i

q2 =
m∑
i=1

eiem+i q4 =
m∑
i=1

cieiem+i+1.

for some scalars bi, ci.

Proof. By [6, Theorem 3], there is a change of variables such that q1 =
∑n

i=1 eiem+i+1

and q2 =
∑n

i=1 eiem+i. Suppose q3 =
∑

i<j bi,jeiej and q4 =
∑

i<j ci,jeiej and note the

sequence of maps

0→ E2n(−4)


q3

q4


−−−→ E2

2n(−2)

(
q1 q2

)
−−−−−−→ E2n → 0

forms a complex if and only if q1q3 + q2q4 = 0.

Claim 1: If 1 ≤ i < j ≤ 2m + 1 such that eiej is not of the forms eiem+i+1 or

eiem+i then bi,j = ci,j = 0.
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Case m ≥ 5: Let 1 ≤ i < j ≤ 2m + 1 such that eiej is not of the forms eiem+i+1

or eiem+i. Then choose 1 ≤ ` ≤ m such that ` 6∈ {i − 1, i, j − 1, j, i − 1 − m, i −

m, j− 1−m, j−m}. Note we can always choose such an ` because at most 4 choices

for 1 ≤ ` ≤ m are eliminated by the second condition and m ≥ 5. Then consider

the monomial e`em+`+1eiej. The coefficient of this monomial in q1q3 is bi,j and the

coefficient in q2q4 is 0. Thus in order for q1q3 + q2q4 = 0 we must have bi,j = 0.

Let 1 ≤ i < j ≤ 2m+1 such that eiej is not of the forms eiem+i+1 or eiem+i. Then

choose 1 ≤ ` ≤ m such that ` 6∈ {i, i+1, j, j+1, i−m, i−m+1, j−m, j−m+1}. Note

we can always choose such an ` because at most 4 choices for 1 ≤ ` ≤ m are elimi-

nated by the second condition and m ≥ 5. Then consider the monomial e`em+`eiej.

The coefficient of this monomial in q1q3 is 0 and the coefficient in q2q4 is ci,j. Thus in

order for q1q3 + q2q4 = 0 we must have ci,j = 0.

Case m = 4: Let 1 ≤ i < j ≤ 9 such that eiej is not of the form eiem+i+1

or of the form eiem+i. If there is 1 ≤ ` ≤ 4 such that ` 6∈ {i − 1, i, j − 1, j, i −

5, i − 4, j − 5, j − 4} we obtain bi,j = 0 by the same argument as above. However

there are cases where the second condition eliminates all 4 choices for `, namely

(i, j) ∈ {(2, 4), (2, 8), (4, 6), (6, 8)}. Therefore when (i, j) 6∈ {(2, 4), (2, 8), (4, 6), (6, 8)}

then bi,j = 0. Similarly we know ci,j = 0 when (i, j) 6∈ {(1, 3), (1, 8), (3, 6), (6, 8)}.

Thus it remains to show bi,j = 0 when (i, j) ∈ {(2, 4), (2, 8), (4, 6), (6, 8)} and ci,j =

0 when (i, j) ∈ {(1, 3), (1, 8), (3, 6), (6, 8)}. First suppose (i, j) ∈ {(2, 8), (4, 6), (6, 8)}.

Then consider the monomial ej−4ej+1eiej. The coefficient of this monomial in q1q3

is bi,j and the coefficient in q2q4 is −ci,j+1. Since (i, j) ∈ {(2, 8), (4, 6), (6, 8)}, then

(i, j + 1) ∈ {(2, 9), (4, 7), (7, 9)} and in all these cases we know ci,j+1 = 0. Therefore

in order for q1q3 + q2q4 = 0 we must have bi,j = 0.

Next let us show b2,4 = 0. Consider the monomial e1e6e2e4. The coefficient of this
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monomial in q1q3 is b2,4 and the coefficient in q2q4 is −c1,4. We know c1,4 = 0 so in

order for q1q3 + q2q4 = 0 we must have b2,4 = 0.

Now suppose (i, j) ∈ {(1, 8), (3, 6), (6, 8)} and consider the monomial ej−4−1ej−1eiej.

The coefficient of this monomial in q1q3 is −bi,j−1 and the coefficient in q2q4 is ci,j.

Since (i, j) ∈ {(1, 8), (3, 6), (6, 8)}, then (i, j−1) ∈ {(1, 7), (3, 5), (6, 7)} and in all these

cases we know bi,j+1 = 0 by our argument above. Therefore in order for q1q3+q2q4 = 0

we must have ci,j = 0.

Finally let us show c1,3 = 0. Consider the monomial e4e8e1e3. The coefficient of

this monomial in q1q3 is −b1,4 and the coefficient in q2q4 is c1,3. We know b1,4 = 0 so

in order for q1q3 + q2q4 = 0 we must have b1,3 = 0.

Thus we have proven Claim 1.

Claim 2: bi,j = 0 when 1 ≤ i < j ≤ 2m+ 1 and eiej is of the form eiem+i+1 and

ci,j = 0 when 1 ≤ i < j ≤ 2m+ 1 and eiej is of the form eiem+i.

Let 1 ≤ i ≤ m and choose 1 ≤ ` ≤ m such that ` 6∈ {i, i − 1}. Consider the

monomial e`em+`+1eiem+i+1. The coefficient of this monomial in q1q3 is

bi,m+i+1 + b`,m+`+1 and the coefficient in q2q4 is −ci,m+`+1 if ` = i+ 1 and 0 otherwise.

By Claim 1, ci,m+`+1 = 0 because ` 6∈ {i, i− 1}. Therefore in order for q1q3 + q2q4 = 0

we must have

bi,m+i+1 + b`,m+`+1 = 0.

Next consider the monomial e`+1em+`+2eiem+i+1. The coefficient of this monomial in

q1q3 is bi,m+i+1 + b`+1,m+`+2 and the coefficient in q2q4 is −ci,m+`+2 if ` = i − 2 and

0 otherwise. By Claim 1, ci,m+`+2 = 0 because ` 6∈ {i, i − 1}. Therefore in order for
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q1q3 + q2q4 = 0 we must have

bi,m+i+1 + b`+1,m+`+2 = 0.

Finally consider the monomial e`em+`+1e`+1em+`+2. The coefficient of this monomial

in q1q3 is b`,m+`+1 + b`+1,m+`+2 and the coefficient in q2q4 is −c`,`+m+2. By Claim 1,

c`,`+m+2 = 0. Therefore in order for q1q3 + q2q4 = 0 we must have

b`,m+`+1 + b`+1,m+`+2 = 0.

Thus we have the following system of equations

bi,m+i+1 + b`,m+`+1 = 0

bi,m+i+1 + b`+1,m+`+2 = 0

b`,m+`+1 + b`+1,m+`+2 = 0.

The tivial solution is the only solution to this system, so we conclude bi,m+i+1 = 0 for

all 1 ≤ i ≤ m.

By a very similar argument we also conclude ci,m+i = 0 for all 1 ≤ i ≤ m which

proves Claim 2.

Therefore Claim 1 and Claim 2 imply q3 and q4 are of the following form

q3 =
m∑
i=1

bieiem+i

q4 =
m∑
i=1

cieiem+i+1.

which proves the desired result.
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Proof of Proposition 4.16 when n is odd. Let n = 2m+1 for some m ≥ 4. By Lemma

4.17, we may assume q1, q2, q3 and q4 have the following form

q1 =
m∑
i=1

eiem+i+1 q3 =
m∑
i=1

bieiem+i

q2 =
m∑
i=1

eiem+i q4 =
m∑
i=1

cieiem+i+1.

for some scalars bi, ci. Note the sequence of maps

0→ E2n(−4)


q3

q4


−−−→ E2

2n(−2)

(
q1 q2

)
−−−−−−→ E2n → 0

forms a complex if and only if q1q3 + q2q4 = 0.

We claim bi = bj for all 1 ≤ i < j ≤ m. We will first consider when m ≥ 5. Let

1 ≤ i < j ≤ m and choose 1 ≤ ` ≤ m such that ` 6∈ {i, i − 1, j, j − 1}. Note we

can choose such an ` because m ≥ 5. Consider the monomial e`em+`+1eiem+i. The

coefficient of this monomial in q1q3 is bi and the coefficient in q2q4 is c`. Therefore

in order for q1q3 + q2q4 = 0 we must have bi + c` = 0 which implies bi = −c`. Next

consider the monomial e`em+`+1ejem+j. The coefficient of this monomial in q1q3 is bj

and the coefficient in q2q4 is c`. Therefore in order for q1q3 + q2q4 = 0 we must have

bj + c` = 0 which implies bj = −c` = bi. Thus we conclude bi = bj for all 1 ≤ i, j ≤ m

with i 6= j, and thus q3 = b1q2.

Now let us consider when m = 4. Let 1 ≤ i < j ≤ 4. If there exists 1 ≤ ` ≤ 4

such that ` 6∈ {i, i−1, j, j−1} then by the same argument as above we obtain bi = bj.

The only case when we cannot choose such an ` is when i = 2 and j = 4. For every

other pair i, j, we may use the same argument as when m ≥ 5 to conclude bi = bj.

In particular this means b2 = b3 and b3 = b4, so b2 = b4. Therefore bi = bj for all

1 ≤ i < j ≤ 4, and thus q3 = b1q2.
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By a similar argument, we can also show ci = cj for all 1 ≤ i < j ≤ m so q4 = c1q1.

In addition notice our argument above further proves bi = −c` for all 1 ≤ i, ` ≤ m.

Therefore there exists a scalar λ = −b1 = c1 such that q3 = −λq2 and q4 = λq1.

Now let us consider the case when n is even. Before proving the desired result in

this case, we need the following technical lemma.

Lemma 4.18. Let k = C and let q1, q2 ∈ En be generic quadrics. If n = 2m for some

m ≥ 4 and the sequence of maps

0→ E2m(−4)


q3

q4


−−−→ E2

2m(−2)

(
q1 q2

)
−−−−−−→ E2m → 0

form a graded complex, then there is a change of variables such that

q1 =
m∑
i=1

e2i−1e2i q3 =
m∑
i=1

bie2i−1e2i

q2 =
m∑
i=1

aie2i−1e2i q4 =
m∑
i=1

cie2i−1e2i.

for some scalars ai, bi, ci where ai 6= 0 for all i and ai 6= aj for all i 6= j.

Proof. By [6, Theorem 3], there is a change of variables such that q1 =
∑m

i=1 e2i−1e2i

and q2 =
∑m

i=1 aie2i−1e2i where ai 6= 0 and ai 6= aj for all i 6= j. Suppose q3 =∑
i<j bi,jeiej and q4 =

∑
i<j ci,jeiej and note the sequence of maps

0→ E2m(−4)


q3

q4


−−−→ E2

2m(−2)

(
q1 q2

)
−−−−−−→ E2m → 0

forms a complex if and only if q1q3 + q2q4 = 0.
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Let 1 ≤ i < j ≤ 2m such that eiej is not of the form e2i−1e2i and choose 1 ≤

`1, `2 ≤ m such that `1 6= `2 and 2`1, 2`2 6∈ {i, i + 1, j, j + 1}. Note that such a pair

1 ≤ `1, `2 ≤ m exists because the last condition eliminates at most 2 options from

the m choices and m ≥ 4.

Consider the monomial e2`1−1e2`1eiej. The coefficient of this monomial in q1q3 is

bi,j and the coefficient in q2q4 is a`1ci,j. Thus, in order for q1q3 + q2q4 = 0, we must

have

bi,j + a`1ci,j = 0.

Now consider the monomial e2`2−1e2`2eiej. The coefficient of this monomial in q1q3 is

bi,j and the coefficient in q2q4 is a`2ci,j. Thus, in order for q1q3 + q2q4 = 0, we must

have

bi,j + a`2ci,j = 0.

If ci,j 6= 0 then a`1 =
−bi,j
ci,j

= a`2 which contradicts that a`1 6= a`2 . Therefore ci,j = 0

which implies bi,j = 0.

Thus we have shown bi,j = ci,j = 0 for all 1 ≤ i < j ≤ 2m such that eiej is not of

the form e2i−1e2i. This implies q3 and q4 are of the form

q3 =
m∑
i=1

bie2i−1e2i

q4 =
m∑
i=1

cie2i−1e2i.

which proves the desired result.
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Proof of Proposition 4.16 when n is even. Let n = 2m for some m ≥ 5. By Lemma

4.18, we may assume q1, q2, q3 and q4 have the following form

q1 =
m∑
i=1

e2i−1e2i q3 =
m∑
i=1

bie2i−1e2i

q2 =
m∑
i=1

aie2i−1e2i q4 =
m∑
i=1

cie2i−1e2i.

where ai 6= 0 for all i and ai 6= aj for all i 6= j. Therefore the sequence of maps

0→ E2m(−4)


q3

q4


−−−→ E2

2m(−2)

(
q1 q2

)
−−−−−−→ E2m → 0

forms a complex if and only if q1q3 + q2q4 = 0 if and only if

bi + bj + aicj + ajci = 0 (4.2.4)

for all 1 ≤ i < j ≤ m. Then let Mm be the coefficient matrix for this linear system.

Note there are
(
m
2

)
equations and 2m unknowns which are the bi’s and ci’s. Therefore

Mm has
(
m
2

)
rows and 2m columns. In particular the entry of Mm in the row (i, j)

and column l is 

1 if l ≤ m and l = j or i

ai if l > m and l = i

aj if l > m and l = j

0 otherwise

We prove the rank of Mm is 2m− 1 by induction. First suppose m = 5 and consider

the matrix M5 shown below.
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M5 =



1 1 0 0 0 a2 a1 0 0 0

1 0 1 0 0 a3 0 a1 0 0

1 0 0 1 0 a4 0 0 a1 0

1 0 0 0 1 a5 0 0 0 a1

0 1 1 0 0 0 a3 a2 0 0

0 1 0 1 0 0 a4 0 a2 0

0 1 0 0 1 0 a5 0 0 a2

0 0 1 1 0 0 0 a4 a3 0

0 0 1 0 1 0 0 a5 0 a3

0 0 0 1 1 0 0 0 a5 a4



(4.2.5)

The matrix M5 does not have full rank because there are an infinite number of solu-

tions to the corresponding linear system, namely for any scalar λ we know bi = λai

and ci = −λ for all i is a solution. This corresponds to the case when q3 = −λq2 and

q4 = λq1. Therefore the rank of M5 is at most 9. Using Macaulay2 [9], we calculate

the minor given by deleting the first column and last row, which is

−4a31a2a4 + 4a21a
2
2a4 + 4a31a3a4 − 4a1a

2
2a3a4 − 4a21a

2
3a4 + 4a1a2a

2
3a4

+ 4a31a2a5 − 4a21a
2
2a5 − 4a31a3a5 + 4a1a

2
2a3a5 + 4a21a

2
3a5 − 4a1a2a

2
3a5

and this factors as

−4a1(a1 − a2)(a1 − a3)(a2 − a3)(a4 − a5).

Since the ai’s are all distinct and nonzero, the above polynomial is nonzero which

implies M5 has a nonzero 9× 9 minor and thus has rank 9.
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Now let m > 5 and suppose Mm−1 has rank 2m − 3. First note that, similar to

the m = 5 case, for any scalar λ we have bi = λai and ci = −λ for all i is a solution

and this corresponds to the case when q3 = −λq2 and q4 = λq1. Therefore Mm has

rank at most 2m− 1.

Now notice Mm−1 is a submatrix of Mm because the linear system that corresponds

to Mm contains the equations that make up the linear system that corresponds to

Mm−1. One can obtain the matrix Mm−1 from Mm by deleting every row that has a

nonzero entry in columns m, 2m and by deleting columns m, 2m. For example, notice

we can obtain M4 from M5 (see (4.2.5) for M5) by deleting columns 5, 10 and rows

4, 7, 9, 10.

Let r1, . . . , r` be the rows of Mm that correspond to the rows that make up the

submatrix Mm−1. Since Mm−1 has rank 2m − 3 by assumption then some subset of

size 2m−3 of these rows are linearly independent. Without loss of generality we may

assume r1, . . . , r2m−3 are linearly independent. Next let s1 and s2 be the two rows of

Mm that correspond to the equations

b1 + bm + amc1 + a1cm = 0

b2 + bm + amc2 + a2cm = 0

We want to show r1, . . . , r2m−3, s1, s2 form a linearly independent set. Suppose

γ1r1 + . . .+ γ2m−3r2m−3 + γ2m−2s1 + γ2m−1s2 = 0 (4.2.6)

for some γi. Note this sum is a vector of length 2m and the mth and the (2m)th

entries of this vector are

γ2m−2am + γ2m−1am = 0

γ2m−2a1 + γ2m−1a2 = 0
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because the mth and (2m)th entries of ri are 0 for all 1 ≤ i ≤ `. From the first

equation, since am 6= 0 we conclude γ2m−2 = −γ2m−1 so our second equation becomes

γ2m−1(−a1 + a2) = 0.

Since a1 6= a2 then γ2m−1 = γ2m−2 = 0. Therefore (4.2.6) becomes

γ1r1 + . . .+ γ2m−3r2m−3 + γ2m−2s1 + γ2m−1s2 = γ1r1 + . . .+ γ2m−3r2m−3 = 0.

Since r1, . . . , r2n−3 are linearly independent, we conclude γi = 0 for all i. Thus

r1, . . . , r2n−3, s1, s2 form a linearly independent set which implies Mm has rank 2m−1.

Since Mm has rank 2m− 1 then the solution set of the linear system of equations

(4.2.4) has dimension 1. Thus the only solutions correspond to q3 = −λq2 and

q4 = λq1 for some constant λ.

The following also proves Proposition 4.16 in the even case but only when n ≥ 12.

It has been included because it utilizes a different approach.

Alternate proof of Proposition 4.16 when n is even. Let n = 2m for some m ≥ 6. By

Lemma 4.18 we may assume

q1 =
m∑
i=1

e2i−1e2i q3 =
m∑
i=1

bie2i−1e2i

q2 =
m∑
i=1

aie2i−1e2i q4 =
m∑
i=1

cie2i−1e2i.

where ai 6= 0 for all i and ai 6= aj for all i 6= j. Therefore the sequence of maps

0→ E2m(−4)


q3

q4


−−−→ E2

2m(−2)

(
q1 q2

)
−−−−−−→ E2m → 0
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forms a complex if and only if q1q3 + q2q4 = 0 if and only if

bi + bj + aicj + ajci = 0 (4.2.7)

for all 1 ≤ i < j ≤ m. These equations form a linear system of
(
m
2

)
equations and

2m unknowns which are the bi’s and ci’s. Let C =

(
B A

)
be the coefficient matrix

where the entry of B in row (i, j) and column l is
1 if l = j or l = i

0 otherwise

and the entry of A in row (i, j) and column l is
ai if l = j

aj if l = i

0 otherwise

We claim the rank of C is 2m− 1. Consider R = k[x1, . . . , xm]/(x21, . . . , x
2
m) and let

`1 =
m∑
i=1

xi

`2 =
m∑
i=1

aixi

Then B represents the map given by multiplication on R by `1 and A represents the

map given by multiplication on R by `2 with respect to the monomial basis of R.

Moreover since ai 6= 0 and dimk R2 =
(
m
2

)
≥ m = dimk R1 because m ≥ 6 then

by [10, Corollary 3.28] these maps are injective. Therefore

rank(C) = dimk(`1R1 + `2R1)

= dimk(`1R1) + dimk(`2R1)− dimk(`1R1 ∩ `2R1).
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Since dimk(`iR1) = m,

rank(C) = m+m− dimk(`1R1 ∩ `2R1). (4.2.8)

Note `1`2 ∈ `1R1∩ `2R1, so the dimension of `1R1∩ `2R1 is at least one. We will show

the dimension is exactly one by proving `1R1 ∩ `2R1 = spank(`1`2).

Consider S = R/`1 then S ∼= k[x1, . . . xm−1]/(x
2
1, . . . , x

2
m−1, L

2) where L = x1 +

x2 + . . .+ xm−1. Let K = ker(S1
`2−→ S2) and consider the complex

0→ K(−1)→ S(−2)
`2−→ S → S/(`2)→ 0

which is exact. The Socle Lemma [12, Corollary 3.11] says α(K(−1)) > α(soc(S/`2))

where, for a graded module M , α(M) = min{d | Md 6= 0} is the initial degree of M

and soc(M) = {w ∈M | xiw = 0 for all i}.

Suppose α(K) = 1. Then α(K(−1)) = 2 which implies α(soc(S/`2)) = 1, so there

exists ` ∈ S1 such that `xi = 0 for all i in S/`2. Note

S/`2 ∼= k[x1, . . . , xm−2]/(x
2
1, . . . , x

2
m−2, L

2, L̃2)

for some linear forms L, L̃ ∈ k[x1, . . . , xm−2]. Thus

`xi ∈ (x21, . . . , x
2
m−2, L

2, L̃2)

for all 1 ≤ i ≤ m−2. Since {`x1, . . . , `xm−2} is linearly independent in k[x1, . . . , xm−2],

we extend it to a minimal generating set {`x1, . . . , `xm−2, f, g} of (x21, . . . , x
2
m−2, L

2, L̃2).

Thus

(x21, . . . , x
2
m−2, L

2, L̃2) = (`x1, . . . , `xm−2, f, g) ⊆ (`, f, g).

However ht(x21, . . . , x
2
m−2, L

2, L̃2) = m − 2 because x21, . . . , x
2
m−2 is a regular se-

quence and ht(`x1, . . . , `xm−2, f, g) ≤ ht(`, f, g) ≤ 3. Therefore when m ≥ 6 we have
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reached a contradiction. Thus we must have α(K) > 1 which implies ker(S1
`2−→

S2) = 0. Note if ` ∈ R1 such that ``2 ∈ `1R1, then ¯̀∈ ker(S1
`2−→ S2) = 0. Therefore

` ∈ span(`1) which implies `1R1 ∩ `2R1 = span(`1`2).

Thus the dimension of `1R1 ∩ `2R1 is exactly one, so by (4.2.8) the rank of C is

2m − 1. This implies the solution set of the linear system of equations (4.2.7) has

dimension 1. In particular the only solutions correspond to when q3 = −λq2 and

q4 = λq1 for some constant λ.
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Chapter 5

ASYMPTOTIC BEHAVIOR OF HOMOLOGICAL

GROWTH FACTORS OF FAMILIES OF COMPLEXES

Recall both the Koszul complex of one quadric (see Corollary 3.7) and the Koszul

complex of two quadrics (see Proposition 3.32) have a homological growth factor

that is asymptotically at least 2. In this chapter, we will continue to investigate

the asymptotic behavior of Koszul complexes of quadrics over the exterior algebra

utilizing a different technique. In Section 5.1, we outline the general ideas of this

technique. Then in Sections 5.2 and 5.3 we use this technique to argue that various

families of Koszul complexes of quadrics have a homological growth factor that is

asymptotically at least 2.

Koszul complexes are not the only complexes that have this asymptotic behavior.

In Sections 5.2 and 5.3, we also discuss some conditions under which a family of

complexes over the exterior algebra has homological growth factor asymptotically at

least 2. However, not every family of complexes has this asymptotic behavior and we

give an example that illustrates a different behavior in Section 5.4.
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5.1 Lower bound on total homology via Hilbert series and

complex norm

In order to discuss the behavior of the homological growth factor of certain complexes,

we will consider a lower bound of the total homology of a complex via the complex

norm of its Hilbert series. The Hilbert series of a complex is defined in Definition

2.11.

Suppose F is a finite free graded complex over En. We relate the Hilbert series of

F to the Hilbert series of its homology in the following way.

Lemma 5.1. Given a finite free graded complex F over En (or more generally a

bounded complex of finite dimensional k-vector spaces), we have the following equality

hF(t) =
∑
i

(−1)ihHi(F)(t).

Proof. Let F be a finite free graded complex so F is of the form

F : 0→ Fr
dm−→ Fr−1

dr−1−−→ . . .
ds+1−−→ Fs+1

ds+1−−→ Fs → 0

for some r ≥ s. For all s ≤ i ≤ r, let Zi = ker(di) and Bi = image(di+1), so

Hi(F) = Zi/Bi (see Definition 2.7). Consider the following short exact sequences

0→ Bi ↪→ Zi � Hi(F)→ 0

and

0→ Zi ↪→ Fi
di−→ Bi−1 → 0.

By Proposition 2.9, Hilbert series is additive on short exact sequences. Thus

hZi(t) = hBi(t) + hHi(F)(t)
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and

hFi(t) = hZi(t) + hBi−1
(t).

This implies

hFi(t) = hBi(t) + hBi−1
(t) + hHi(F)(t). (5.1.1)

Then by Definition 2.11 and (5.1.1), we conclude

hF(t) =
∑
i

(−1)ihFi(t)

=
∑
i

(−1)i
(
hBi(t) + hBi−1

(t) + hHi(F)(t)
)

=
∑
i

(−1)ihHi(F)(t).

The previous lemma yields a lower bound on the total homology of a finite free

graded complex. In the following, ‖·‖ : C → R≥0 denotes the norm of a complex

number.

Lemma 5.2. Let F be a finite free graded complex over En then

dimkH(F) ≥
∥∥hF(z)

∥∥
for all z ∈ S1 = {z ∈ C :‖z‖ = 1}.

Proof. For f(t) =
∑m

i=0 ait
i ∈ Q[t], let L(f(t)) :=

∑m
i=0|ai|. The triangle inequality

gives ∥∥f(z)
∥∥ ≤ m∑

i=0

∥∥∥aizi∥∥∥ =
m∑
i=0

|ai|‖z‖i =
m∑
i=0

|ai| = L(f(t)) (5.1.2)

for any z ∈ S1.

Now suppose F is a finite free graded complex over En. Then Lemma 5.2 and the
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Triangle Inequality yield

∥∥hF(z)
∥∥ =

∥∥∥∥∥∥
∑
i

(−1)ihHi(F)(z)

∥∥∥∥∥∥ ≤
∑
i

∥∥∥(−1)ihHi(F)(z)
∥∥∥ .

By (5.1.2), there is an inequality∥∥∥(−1)ihHi(F)(z)
∥∥∥ ≤ L(hHi(F)(t)) = dimkHi(F)

so we conclude ∥∥hF(z)
∥∥ ≤∑

i

dimkHi(F) = dimkH(F).

Example 5.3. Consider the Koszul complex of one quadric w ∈ En

Kosn(w) : 0→ En(−2)→ En → 0.

Since hEn(t) = (1 + t)n, then

hKosn(w)(t) = hEn(t)− hEn(t)t2 = (1− t2)(1 + t)n.

Therefore Lemma 5.2 gives

dimkH(Kosn(w)) ≥
∥∥hKosn(w)(z)

∥∥ =
∥∥1− z2

∥∥‖1 + z‖n

for all z ∈ S1.

Example 5.4. Consider the Koszul complex of two quadrics w1, w2 ∈ En

Kosn(w1, w2) : 0→ En(−4)→ En(−2)2 → En → 0.

Since hEn(t) = (1 + t)n, then

hKosn(w1,w2)(t) = hEn(t)− 2hEn(t)t2 + hEn(t)t4 = (1− 2t2 + t4)(1 + t)n.
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Therefore Lemma 5.2 gives

dimkH(Kosn(w1, w2)) ≥
∥∥hKosn(w1,w2)(z)

∥∥ =
∥∥1− 2z2 + z4

∥∥‖1 + z‖n

for all z ∈ S1.

In the above examples, we explicitly state the lower bound on the total homology.

Notice the lower bounds have similarities because the Hilbert series of both have a

factor of (1 + t)n and the other factor is a polynomial that records the ranks and the

degrees of the generators of the free modules in the complex. In other words, the

second factor is the graded Poincaré series (see Definition 2.12) evaluated at s = −1.

This remains true for all bounded graded free complexes over En which gives a more

explicit lower bound on the total homology.

Definition 5.5. Let F be a bounded graded finite free complex over En, and define

gF(t) := PF(−1, t)

where PF(s, t) is the graded Poincaré series of F (see Definition 2.12).

Proposition 5.6. Given a finite free graded complex F over En,

dimkH(F) ≥
∥∥gF(z)

∥∥‖1 + z‖n

for all z ∈ S1.

Proof. Let F be a finite free graded complex over En

F : 0→ Fm → . . .→ F1 → F0 → 0.

Each Fi is free, so Fi =
⊕

p∈NE
ci,p
n (−p) where ci,p = 0 for all but finitely many p ∈ N.
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Since hEn = (1 + t)n,

hFi(t) =
∑
p∈N

h
E
ci,p
n

(t)tp = (1 + t)n
∑
p∈N

ci,pt
p

which implies

hF(t) =
m∑
i=0

(−1)ihFi(t) = (1 + t)n
m∑
i=0

∑
p∈N

(−1)ici,pt
p = gF(t)(1 + t)n.

Then Lemma 5.2 gives

dimkH(F) ≥
∥∥hF(z)

∥∥ =
∥∥gF(z)

∥∥‖1 + z‖n

for all z ∈ S1.

5.2 Koszul complex of a fixed number of quadrics

Let Kosn(w1, . . . , wc) be the Koszul complex of c quadrics w1, . . . , wc ∈ En. First let

us analyze families of Koszul complexes where the number of quadrics remains fixed,

while the number of generators, n, of the exterior algebra En varies.

Lemma 5.7. Let c be an integer. Then

gKosn(w1,...,wc)(t) = (1− t2)c.

Proof. The ith module of Kosn(w1, . . . , wc) is Fi = (E(−2i))(
`n
i ). Thus

gKosn(w1,...,wc)(z) =
∑
i

(−1)i
(
c

i

)
t2i =

∑
i

(
c

i

)
(−t2)i = (1− t2)c.

Note since c is a fixed integer and independent of n, then gKosn(w1,...,wc)(t) is the

same for any value of n. Using this fact, we argue the asymptotic behavior of the
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homological growth factor of Kosn(w1, . . . , wc) is consistent with the cases c = 1 (see

Corollary 3.7) and c = 2 (see Proposition 3.32).

Proposition 5.8. Let c be a fixed integer and for all n, let Kn = Kosn(w1, . . . , wc)

for any list of quadrics w1, . . . , wc ∈ En. Then

lim inf
n→∞

HGF (Kn) ≥ 2

Proof. Recall

HGF (Kn) =
(
dimkH(Kn)

)1/n
.

Then Proposition 5.6 and Lemma 5.7 yield

HGF (Kn) ≥
(∥∥1− z2

∥∥c‖1 + z‖n
)1/n

=
∥∥1− z2

∥∥c/n‖1 + z‖

=‖1− z‖c/n‖1 + z‖(c/n)+1

for all z ∈ S1. Thus

lim inf
n→∞

HGF (Kn) ≥ lim
n→∞
‖1− z‖c/n‖1 + z‖(c/n)+1 =‖1 + z‖

for all z ∈ S1. Since the maximum value of ‖1 + z‖ is 2 for z ∈ S1, we conclude

lim inf
n→∞

HGF (Kn) ≥ 2.

The key fact in the above argument is that gKosn(w1,...,wc)(t) does not depend on

n. Therefore, we can generalize Proposition 5.8 to any family of complexes such that

gF(t) is the same for any F in the family and, in particular, it does not depend on n.
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Theorem 5.9. Suppose for each n that Fn is a finite free graded complex over En,

and for all n that hFn(t) = g(t)(1 + t)n for some fixed non-zero g(t). Then

lim inf
n→∞

HGF (Fn) ≥ 2.

Proof. Since hFn(t) = g(t)(1 + t)n then gFn(t) = g(t) for all n. By Proposition 5.6,

dimkH(Fn) ≥
∥∥g(z)

∥∥‖1 + z‖n

for all z ∈ S1. This gives a bound on the homological growth factor of Fn

HGF (Fn) = (dimkH(Fn))1/n ≥
∥∥g(z)

∥∥1/n‖1 + z‖

for all z ∈ S1. Since g(t) 6= 0, for all ε > 0 there exists z ∈ S1 sufficiently close to

1 such that ‖1 + z‖ > 2 − ε and g(z) 6= 0. Thus
∥∥g(z)

∥∥1/n > 1 − ε for n sufficiently

large which implies

HGF (Fn) > (1− ε)(2− ε)

for n sufficiently large. Since this holds for all ε > 0, we conclude

lim inf
n→∞

HGF (Fn) ≥ 2.

In addition to analyzing the asymptotic behavior of the homological growth factor

of Kosn(w1, . . . , wc), we determine when the homological growth factor could be less

than 2 and thus possibly produce a counterexample to Conjecture 1.4. We also find

a lower bound on the homological growth factor of Kosn(w1, . . . , wc).
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Proposition 5.10. Let c and n be fixed integers, let w1, . . . , wc ∈ En be quadrics,

and let ` = c/n. If ` > .22763, then

HGF (Kosn(w1, . . . , wc)) ≥ 2

and for all ` > 0,

HGF (Kosn(w1, . . . , wc)) ≥ 1.93185.

Proof. Let z ∈ S1 then Proposition 5.6 and Lemma 5.7 gives the following lower

bound

HGF (Kosn(w1, . . . , wc)) ≥
(∥∥1− z2

∥∥c‖1 + z‖n
)1/n

=
∥∥1− z2

∥∥`‖1 + z‖

=‖1− z‖`‖1 + z‖`+1

Let s =‖1− z‖ and r =‖1 + z‖. Since z ∈ C, then z = a + bi for some a, b ∈ R. In

addition, a2 + b2 = 1 because z ∈ S1. Thus

r2 =‖1 + a+ bi‖2 = (1 + a)2 + b2 = 1 + 2a+ a2 + b2 = 2 + 2a

and similarly

s2 =‖1− a+ bi‖2 = (1− a)2 + b2 = 1− 2a+ a2 + b2 = 2− 2a.

Then r2 = 4− s2 which implies

HGF (Kosn(w1, . . . , wc)) ≥ s`(4− s2)(`+1)/2.

Let f(s) = s`(4− s2)(`+1)/2 where s ∈ [0, 2] because z ∈ S1. Therefore

HGF (Kosn(w1, . . . , wc)) ≥ f(s) (5.2.1)
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for all s ∈ [0, 2]. We are interested in finding the maximum value of f(s) on s ∈ [0, 2],

so we find the critical points of f(s). Note

f ′(s) = `s`−1(4− s2)(`+1)/2 − (`+ 1)s`+1(4− s2)(`−1)/2

= s`−1(4− s2)(`−1)/2(`(4− s2)− (`+ 1)s2)

= s`−1(4− s2)(`−1)/2(4`− (2`+ 1)s2)

Thus the critical points are 0, 2, 2
√

`
2`+1

. Since f(s) ≥ 0 on [0, 2] and f(0) = f(2) = 0,

f has a global maximum at 2
√

`
2`+1

, and hence the maximum value of f is f(2
√

`
2`+1

).

Let g(`) = f(2
√

`
2`+1

) − 2 then using Mathematica [18], we graph g and find g

has a root at ` ≈ 0.227627. Moreover, from the graph below we determine g(`) < 0 if

` ∈ (0, 0.22762) and g(`) > 0 if ` ∈ (0.22763, 2).

Figure 5.1: Graph of g(`) = f(2
√

`
2`+1)− 2
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Thus f(2
√

`
2`+1

) ≥ 2 if ` ∈ (0.22763, 2), so it remains to show f

(
2
√

`
2`+1

)
≥ 2 for

` ≥ 2. Notice

f

(
2

√
`

2`+ 1

)
= 22`+1

(
`

2`+ 1

)`/2( `+ 1

2`+ 1

)(`+1)/2

= 22`+1

(
`

2`+ 1

`+ 1

2`+ 1

)`/2( `+ 1

2`+ 1

)1/2

≥ 22`+1

(
`2

(2`+ 2)2

)`/2(
`+ 1

2(`+ 1)

)1/2

= 22`+1

(
`

2`+ 2

)`(1

2

)1/2

=
√
2

(
2`

`+ 1

)`
.

Since
(

2`
`+1

)`
is increasing and ` ≥ 2, we conclude

f

(
2

√
`

2`+ 1

)
≥
√

2

(
2`

`+ 1

)`
≥
√

2

(
2 · 2

3

)2

≥ 2.

Therefore (5.2.1) implies

HGF (Kosn(w1, . . . , wc)) ≥ f

(
2

√
`

2`+ 1

)
≥ 2

for ` > .22763.

Now let us consider when ` ≤ .22763. Using the Mathematica [18] FindMinimum

function, we find the minimum value of f(2
√

`
2`+1

) occurs when ` = 1√
3
− 1

2
≈ 0.07735.

In addition, f(2
√

`
2`+1

) ≥ 1.93185 when ` = 1√
3
− 1

2
. Thus (5.2.1) implies

HGF (Kosn(w1, . . . , wc)) ≥ f

(
2

√
`

2`+ 1

)
≥ 1.93185.

for all ` > 0.
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5.3 Koszul complex of a varying number of quadrics

Let Kosn(w1, . . . , wcn) be the Koszul complex of cn quadrics w1, . . . , wcn ∈ En. Now

let us analyze families of Koszul complexes where the number of quadrics is dependent

on the number of variables of the exterior algebra. We divide our analysis into three

cases: the number of quadrics grows super-linearly (see Proposition 5.11), sub-linearly

(see Corollary 5.13), or linearly (see Remark 5.14) with respect to the number of

variables of the exterior algebra.

First consider the case when the number of quadrics grows super-linearly, that is

there exists some fixed ` > 0 and r > 1 such that cn ≥ `nr for all n.

Proposition 5.11. Let ` > 0 and r > 1 be fixed. For all n, let Kn = Kosn(w1, . . . , wcn)

for any list of quadrics w1, . . . , wcn ∈ En where cn ≥ `nr. Then

lim inf
n→∞

HGF (Kn) =∞.

Proof. Recall

HGF (Kn) =
(
dimkH(Kn)

)1/n
.

By Proposition 5.6 and Lemma 5.7 we have the lower bound

HGF (Kn) ≥
(∥∥1− z2

∥∥cn‖1 + z‖n
)1/n

for all z ∈ S1. In particular this is true when z = i, and, in this case, we have

HGF (Kn) ≥
(∥∥1− i2

∥∥cn‖1 + i‖n
)1/n

= 2cn/n
√

2

Since cn ≥ `nr then

HGF (Kn) ≥ 2`n
r−1√

2 ≥ 2`n
r−1

.
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Note r > 1, so r − 1 > 0 which implies

lim inf
n→∞

HGF (Kn) ≥ lim inf
n→∞

2`n
r−1

=∞.

Next consider the case when the number of quadrics grows sub-linearly, that is

cn ≤ `nr for some ` > 0 and 0 < r < 1. This case can be considered more generally

and is addressed in the following result.

Proposition 5.12. Suppose Fn is a finite free graded complex over En with

hFn(t) = (1− t)u(n)gn(t)(1 + t)n

where u : N→ N is a function. Assume

1. coefficients of gn(t) are positive and

2. lim infn→∞
u(n)
n1−ε <∞ for some ε > 0.

Then

lim inf
n→∞

HGF (Fn) ≥ 2.

Proof. Suppose gn(t) = a0 + a1t + . . . + adt
d. Note if z ∈ S1 is such that −π/2d <

arg(z) < π/2d then Re(zi) ≥ 0 for all 0 ≤ i ≤ d, and

∥∥gn(z)
∥∥ ≥ Re(gn(z)) ≥ a0 ≥ 1. (5.3.1)

By assumption there exists ε > 0 such that lim infn→∞
u(n)
n1−ε < ∞. Fix zn ∈ S1 such

that Re(zn) = 1 − 2−n
ε/2

. Then limn→∞Re(zn) = 1, so −π/2d < arg(zn) < π/2d

for large enough n. Since arg(zin) = i arg(zn), then −π/2 < arg(zin) < π/2 for large

enough n and for all 0 ≤ i ≤ d. Therefore Re(zin) > 0 for large enough n and for all
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0 ≤ i ≤ d, so Proposition 5.6 and (5.3.1) gives

HGF (Fn) ≥‖1− zn‖u(n)/n
∥∥g(zn)

∥∥1/n‖1 + zn‖ ≥‖1− zn‖u(n)/n‖1 + zn‖

for large enough n. Then

log2HGF (Fn) ≥ u(n) log2‖1− zn‖
n

+
n log2‖1 + zn‖

n
(5.3.2)

for large enough n. Thus (5.3.2) implies

log2HGF (Fn) ≥ u(n) log2‖1− zn‖
n

+
n log2‖1 + zn‖

n

≥ u(n) log2(1−Re(zn))

n
+
n log2(1 +Re(zn))

n

=
u(n)(−nε/2)

n
+ log2(2− 2−n

ε/2

)

=
−u(n)

n1−ε/2 + log2(2− 2−n
ε/2

)

for large enough n. Then

lim inf
n→∞

log2HGF (Fn) ≥ lim inf
n→∞

(
−u(n)

n1−ε/2 + log2(2− 2−n
ε/2

)

)
= lim inf

n→∞

(
−u(n)

n1−ε
1

nε/2
+ log2(2− 2−n

ε/2

)

)
.

Since lim infn→∞
u(n)
n1−ε <∞ and lim infn→∞

1
nε/2

= 0 we conclude

lim inf
n→∞

−u(n)

n1−ε
1

nε/2
= 0.

Also

lim inf
n→∞

log2(2− 2−n
ε/2

) = 1

so we conclude

lim inf
n→∞

log2HGF (Fn) ≥ 1
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which implies

lim inf
n→∞

HGF (Fn) ≥ 2.

Corollary 5.13. Let ` > 0 and 0 < r < 1 be fixed. For all n, let Kn = Kosn(w1, . . . , wcn)

for any list of quadrics w1, . . . , wcn ∈ En where cn ≤ `nr. Then

lim inf
n→∞

HGF (Kn) ≥ 2.

Proof. Proposition 3.14 and Lemma 5.7 gives

hKn(t) = (1− t2)cn(1 + t)n = (1− t)cn(1 + t)cn(1 + t)n.

Let u : N→ N be given by u(n) = cn and let gn(t) = (1 + t)cn . Since 0 < r < 1, there

exists ε > 0 such that 1− ε > r. Thus

lim inf
n→∞

u(n)

n1−ε = lim inf
n→∞

cn
n1−ε ≤ lim

n→∞

`nr

n1−ε = 0.

Then apply Proposition 5.12 to attain the desired result.

Finally consider when the number of quadrics grows linearly, that is cn = `n for

some ` > 0.

Remark 5.14. Let ` > .22763 be fixed. For all n, let Kn = Kosn(w1, . . . , wcn) for

any list of quadrics w1, . . . , wcn ∈ En where cn = `n. By Proposition 5.10, we know

HGF (Kn) ≥ 2.

which implies

lim
n→∞

HGF (Kn) ≥ 2.

The case when cn = `n for some 0 < ` ≤ .22763 is still open.
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5.4 Family where the homological growth factor is asymp-

totically strictly less than 2

As seen in the previous sections, there are many families of graded complexes over

En where the homological growth factor is asymptotically at least 2. However this is

not true for every family of graded complexes over En. Before discussing an example

to demonstrate this fact, we first prove a couple results.

Lemma 5.15. For all 0 ≤ i ≤ c, let Ci be a finite free graded complex over the

exterior algebra Ei,n = k〈ei,1, . . . , ei,n〉. Then C1 ⊗k . . . ⊗k Cc is a finite free graded

complex over the exterior algebra E1,n ⊗k . . .⊗k Ec,n with cn variables.

Proof. By induction we just need to show this is true for c = 2.

First note E1,n ⊗k E2,n
∼= k〈e1,1, . . . , e1,n, e2,1, . . . , e2,n〉 is an exterior algebra with

2n variables.

Claim 1: Suppose F1 is a graded free E1,n-module and F2 is a graded free E2,n-

module then F1 ⊗k F2 is a graded free module over E1,b ⊗k E2,n.

We have F1 =
⊕

a∈ZE1,n(−a)ca for some ca ∈ N and F2 =
⊕

b∈ZE2,n(−b)db for

some db ∈ N. Therefore

F1 ⊗k F2 =

⊕
a∈Z

E1,n(−a)ca

⊗k
⊕

b∈Z

E2,n(−b)db


∼=
⊕
a,b∈Z

(
E1,n(−a)ca ⊗k E2,n(−b)db

)
∼=
⊕
a,b∈Z

(
E1,n(−a)⊗k E2,n(−b)

)cadb
∼=
⊕
p∈Z

⊕
a+b=p

(
E1,n ⊗k E2,n

)
(−p)cadb
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Since
(
E1,n ⊗k E2,n

)
(−p)cadb is a graded free module over E1,n⊗k E2,n and the direct

sum of graded free modules is a graded free module then we conclude F1 ⊗k F2 is a

graded free module over E1,b ⊗k E2,n. Thus we have proven Claim 1.

Now suppose F1,i is the ith free module of C1 and F2,j is the jth free module of C2.

By definition of tensor product of complexes, the ith module of the complex C1⊗kC2

is ⊕
`+m=i

F1,` ⊗k F2,m.

Claim 1 gives F1,` ⊗k F2,m is a graded free module over E1,n ⊗k E2,n which implies

⊕
`+m=i

F1,` ⊗k F2,m

is a graded free module over E1,n ⊗k E2,n.

Now let dC1 and dC2 be the differentials of C1 and C2 respectively. By definition

of the tensor product of complexes the differential of C1 ⊗C2 is given by

dC1⊗C2(x, y) = (dC1(x), y) + (−1)deg(x)(x, dC2(y).

Since dC1 and dC2 both have degree 0, then dC1⊗C2 also has degree 0. Finally since C1

and C2 are finite complexes then C1⊗kC2 will clearly be a finite complex. Therefore

C1 ⊗k C2 is a finite free graded complex over E1,n ⊗k E2,n.

Lemma 5.16. In the setting of the previous lemma, the following equality holds

dimkH(C1 ⊗k C2 ⊗k . . .⊗k Cc) = dimkH(C1) dimkH(C2) · · · dimkH(Cc).
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Proof. By induction we just need to show this is true for c = 2.

Recall the Künneth Theorem gives

Hj(C1 ⊗k C2) ∼=
⊕
i

(Hi(C1)⊗k Hj−i(C2))

of k-vector spaces. Thus

dimkH(C1 ⊗k C2) =
∑
j

dimkHj(C1 ⊗k C2)

=
∑
j

∑
i

dimkHi(C1) dimkHj−i(C2)

=
∑
i

dimkHi(C1)

∑
j

dimkHj−i(C2)


= dimkH(C1) dimkH(C2).

Proposition 5.17. Let F be a bounded finite free graded complex over the exterior

algebra En. Then for any integer c

HGF (F⊗c) = HGF (F).

Proof. By Lemma 5.15

F⊗c = F⊗k F⊗k . . .⊗k F︸ ︷︷ ︸
c times

is a graded complex over the exterior algebra with cn variables and Lemma 5.16 yields

dimkH(F⊗c) =
c∏
i=0

dimkH(F) = (dimkH(F))c.
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Therefore

HGF (F⊗c) =
(
dimkH(F⊗c)

)1/cn
=
(
(dimkH(F))c

)1/cn
=
(
dimkH(F)

)1/n
= HGF (F).

Finally let us consider an example of a family of complexes whose homological

growth factor is less than 2.

Example 5.18. Let K = Kos24(w) for any general quadric w ∈ En (see Definition

3.4). By (3.1.2) in Section 3.1, HGF (K) is at most 1.97. Then by Proposition 5.17,

HGF (K⊗c) is also at most 1.97 for all c. Therefore

lim inf
c→∞

HGF (K⊗c) ≤ 1.97 < 2.
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Chapter 6

OPEN PROBLEMS

Recall one of the main goals of this thesis is to analyze examples of finite free graded

complexes that correspond to counterexamples of the Generalized Total Rank Con-

jecture (see Conjecture 1.4). In particular, we are interested in being able to answer

the following open question.

Question 6.1. Is there a real number a > 1 such that each non-exact perfect complex

F over En satisfies

dimkH(F) ≥ an

or equivalently

HGF (F) ≥ a?

This thesis focuses mostly on the analysis of Koszul complexes of quadrics over

the exterior algebra, and there are still many open questions about these complexes.

As discussed in Section 3.2, one can find bounds on the Hilbert series of En/(w1, w2)

which give bounds on the homological growth factor of the Koszul complex of two

generic quadrics.

Conjecture 6.2 ( [6, Conjecture 1]). Let w1, w2 ∈ En be generic quadrics. The upper

bound on the Hilbert series of En/(w1, w2) given in Theorem 3.22 is an equality.
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In addition, computations of the bounds of the homological grwoth factor of the

Koszul complex of two generic quadrics suggests the following conjecture is true, but

the validity is still not known.

Conjecture 6.3. Let k = C and let w1, w2 ∈ En be generic quadrics. Then

HGF (Kosn(w1, w2)) < 2

when n ≥ 15 and

HGF (Kosn(w1, w2)) > 1.951

for all n.

However by Proposition 5.10, we can use the lower bound via Hilbert series and

the complex norm discussed in Section 5.1 to determine that if w1, . . . , wc ∈ En are

quadrics then

HGF (Kosn(w1, . . . , wc)) ≥ 1.93185.

Therefore, a = 1.93185 answers Question 6.1, but only for Koszul complexes of

quadrics. It is possible that this lower bound could be improved which leads to

the following question.

Question 6.4. Let w1, . . . , wc ∈ En be quadrics. Is the lower bound

HGF (Kosn(w1, . . . , wc)) ≥ 1.93185

given in Proposition 5.10 tight or can one find a better lower bound?

In order to further investigate Question 6.1, one could first further investigate the

minimal homology of Koszul complexes. By results in Section 4.1 and 4.2, we know

the Koszul complex of one general quadric and the Koszul complex of two general
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quadrics has minimal homology, but Koszul complexes of a larger number of quadrics

have not yet been considered.

Question 6.5. Let w1, . . . , wc ∈ En be quadrics. Is there a generality condition on

w1, . . . , wc such that Kosn(w1, . . . , wc) will have minimal homology?

If Kosn(w1, . . . , wc) has minimal homology, then a = 1.93185 would answer Ques-

tion 6.1, but only for any finite free graded complex that has the same graded Poincare

series as a Koszul complex of quadrics.

Finally, this thesis contains analysis of the asymptotic behavior of the homological

growth factor of families of Koszul complexes. Section 5.2 focuses on families of the

Koszul complexes where the number of quadrics is independent of the number of

variables, and Proposition 5.8 gives

lim inf
n→∞

HGF (Kn) ≥ 2

where c is fixed and Kn = Kosn(w1, . . . , wc) for any list of quadrics w1, . . . , wc ∈ En.

Then Section 5.3 contains analysis of families of Koszul complexes where the number

of quadrics is dependent on the number of variables, and in most cases we show these

families have similar asymptotic behavior. However, there is one case still open.

Question 6.6. Let 0 < ` ≤ .22763 be fixed. For all n, let Kn = Kosn(w1, . . . , w`n)

for any list of quadrics w1, . . . , w`n ∈ En. Does the following lower bound hold

lim inf
n→∞

HGF (Kn) ≥ 2?
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