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Turbulence is an emergent phenomenon found throughout nature and engineering,

alike. It plays a vital role in the aquatic locomotion of organisms, scalar mixing,

fluid transport, shipping and transportation, and even the flow of biological fluids

in the human body. Therefore, it is of utmost importance in both a practical and

engineering sense to better understand turbulence with the goal of better controlling

it. This dissertation focuses broadly on better understanding the underlying mech-

anisms behind wall-bounded turbulent flows, with an emphasis on exploiting those

mechanisms for turbulence flow control.

We developed a numerical simulation to study the effect of slip surfaces on the

dynamics of transitional and turbulent flows. Slip surfaces were found to promote the

return of a turbulent flow to the laminar state. They also impact the transition to

and from turbulence depending upon flow structure. The simulation was extended to

study composite drag reduction of slip surfaces and polymer additives. An additive

effect was observed due to the distinct drag reduction mechanisms of each individual

method.

Using simulations and experiments, intermittent dynamics of turbulent flows were

investigated which manifest in the form of low-drag events: events described by low

levels of skin friction and three-dimensionality. Because these events exhibit desirable

traits, they are targets for flow control techniques, and their characterization will



hopefully inform more efficient flow control methods.

The minimal flow unit (MFU) approach to simulating turbulent flows was first

popularized by the seminal 1991 work of Jiménez and Moin. Since then, the technique

has become a powerful tool in teasing out underlying mechanisms of turbulent flows

due to its ability to resolve the many scales in turbulence. While the technique

faithfully captures the dynamics of most flows, there are questions surrounding larger

Reynolds numbers. We investigate the efficacy of MFUs in promoting ”healthy”

turbulence and show that additional criteria should be put in place when simulating

higher Reynolds number flows with MFUs.
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Chapter 1

INTRODUCTION

1.1 Turbulence and the dynamical systems approach to fluid

dynamics

The application of dynamical systems theory has allowed for significant advancement

in turbulence, including the discovery of an underlying ordered structure [119]. While

typically analyzed in a statistical manner, turbulence viewed through the lens of dy-

namical systems theory offers a deterministic description. Specifically, this approach

has enabled the discovery of three-dimensional, fully nonlinear, exact solutions to the

Navier-Stokes equations that not only describe transition to turbulence but also fully

turbulent flow. These exact coherent solutions, specifically nonlinear traveling wave

solutions, typically arise in pairs at a saddle-node bifurcation at a critical Reynolds

number and consist of an upper branch solution and a lower branch solution. The

lower branch solution is a low drag state compared to its corresponding upper branch

solution. Dynamical systems theory implies that coherent structures can be consid-

ered low-dimensional invariant sets where the system spends a significant amount of

time. Spatiotemporally organized structures materialize when a turbulent trajectory

is in the neighborhood of these sets [102, 72, 229]. The significance of these invariant

solutions lies in their ability to effectively describe the near-wall regeneration cycle



2

Figure 1.1: State-space depiction of turbulence showing the edge state in relation to
the turbulent and laminar states [253].

[231, 259], capturing the dynamics and statistical features of turbulence [72, 233, 182].

Near-wall turbulence is known to oscillate periodically between high- and low-drag

states, and the dynamical systems approach to turbulence has offered instructive in-

sight into this behavior with the discovery of the lower- and upper-branch traveling

wave solutions [119, 25, 50, 32]. Upper-branch solutions are characterized by large

velocity fluctuations and chaotic structures while lower-branch solutions tend to re-

semble the laminar state more closely with small velocity fluctuations and gentler,

streamwise-oriented coherent structures. Thus, invariant solutions have been referred

to as the “building blocks” of turbulence [233, 234]. Typical turbulence trajectories

are found to closely orbit the upper-branch solution for most of the time, only making

infrequent excursions toward the lower-branch solution. While the upper-branch solu-

tion can capture the statistical nature of a typical turbulence trajectory, lower-branch

solutions lie very close to the laminar state.

There exist distinct lower-branch solutions that are embedded on the boundary
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between the laminar and turbulent basins of attraction [238], and are inherently

unstable. Exemplifying a separatrix, these solutions separate the two behaviors of a

fluid system, namely laminar and turbulent. Initial conditions on the turbulent “side”

of the boundary become turbulent, while those on the laminar “side” of the boundary

decay and become laminar. Lower-branch solutions on the boundary are significant

as they only have one or two unstable eigenvectors and many stable eigenvectors,

implying that there are many ways in which to approach these states, but only a few

way in which to leave [238]. A state-space schematic illustrating this idea is shown

in Figure 1.1 [253]. It is conceivable, then, to imagine control methods in which the

trajectory of the system is steered toward these states and, subsequently, not allowed

to leave by suppressing the most unstable directions. This has implications in fully

turbulent flow control where the idea, generally, is to force the system toward the

lower-branch solution, as well as in transition where the idea could be either to keep

the system at the lower-branch solution longer (delay transition) or force it to leave

sooner (promote transition).

1.2 Flow Control

Within turbulent flow there exist near-wall coherent structures responsible for the

production of turbulent kinetic energy production [125, 2]. Near-wall motions result

in the formation of structures known as streaks that are inherently unstable due to

the spanwise dependence of streamwise velocity. These structures are formed in the

laminar sublayer by streamwise vorticity and are slowly lifted upward, or ejected, away

from the wall. Once the streaks begin to interact with the buffer layer, they experience

more rapid oscillations and a sudden breakdown resulting in a burst of low-speed fluid

from the wall into the bulk of the flow. This process is known as a turbulent burst
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Figure 1.2: Schematic showing the ejection and sweep events associated with vortex
structures in the near-wall self-sustaining turbulent process.

and creates finer-scale motions that lead to the formation of new vortices which, in

turn, create more streaks. This process is self-sustaining and unaffected by the outer

region of the boundary layer at low Reynolds number [231, 234, 125, 107]. As low-

speed fluid is forced away from the wall via ejections, it creates areas of low wall

shear stress. Simultaneously, high-speed fluid is forced down into the wall via sweeps

creating areas of high wall shear stress. An illustration of the process is shown in

Figure 1.2.

Thus, the regions of local wall shear stress that are created are highly correlated

with these vortex structures – high shear stress under sweeps and low shear stress

under the ejections. It becomes apparent, then, that perhaps the most efficient way

to control turbulence in the near-wall region (which is responsible for most of the

turbulent kinetic energy production in a flow) is to suppress the sweep and ejection

events by manipulating the streamwise vortices responsible for their formation. To

interrupt the self-sustaining process of turbulence, a multitude of approaches have
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been taken in manipulating these structures.

Flow control is typically divided into passive and active control strategies, and

meaningful progress has been made both experimentally and numerically using these

techniques in furthering our understanding of turbulence. Passive flow control is

appealing in that it requires no additional energy input into the system as it does

not employ any sensing or actuation. Active control, however, allows for finer control

of the system as it employs sensors and actuators that offer time-varying forms of

control. As such, additional energy is required in active control. Actuation command

may be either pre-determined (open-loop) or dependent on flow state monitoring via

sensors (closed-loop). Closed-loop control typically makes the system very complex

due to the actuators and sensors. Open-loop has the advantage of being relatively

simple as it is predetermined (typically characterized by a harmonic function in space

and/or time). The following sections outline notable control strategies used in flow

control.

1.2.1 Passive Control

Because of their ease of implementation and lack of additional energy input, much re-

search has been done using passive control methods. It is postulated that their ability

to reduce drag in wall-bounded shear flows is due to an introduction of a transverse

flow [117] that disrupts the flow structures of equilibrium turbulent flows [112]. In

addition to the previously detailed use of superhydrophobic surfaces, a popular tech-

nique that has been widely adapted due to its success in drag reduction is directional

roughness at the wall. These so-called riblets are streamwise microgrooves with sizes

on the order of the viscous sublayer [66] and should be aligned with the local flow

direction to achieve maximum drag reduction [117]. Riblets of different geometries

have been tested in wind tunnels, achieving drag reductions of ≈ 10% for flow over
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Figure 1.3: Instantaneous wall-normal velocity fluctuations for permeable surfaces
with (a) low anisotropy and (b) high anisotropy [77]

.

a flat plate. While this value is smaller than those achieved with superhydrophobic

surfaces, riblets have the added advantage of being useful in land and air applica-

tions. Riblets have been found to hinder the spanwise movement of the streamwise

vortices which prevents their stretching during ejection events, weakening the sub-

sequent sweep events [35]. Much work has been done to identify optimal spacing of

riblets as this plays an important role in the drag reduction [66] but streamwise vary-

ing riblets, namely sinusoidally varying, have not been fully explored [67]. Kramer

et al. [126] studied this type of varying spacing but found that drag reduction was

much smaller than that of the wall-oscillation control that their study was based

on. This was a result of the inability of the riblet spacing to elicit large enough os-

cillations in the flow. However, their spacing was based on much larger spacing of

wall-oscillations, so sinusoidal riblets could be designed with shorter wavelength on

the order of Kelvin-Helmholtz instabilities, or rollers, to inhibit their formation [67].

Anisotropically permeable substrates have also been considered for turbulent flow

control. The general idea is to use surfaces which have high permeability in the

streamwise direction and low permeability in the spanwise and wall-normal directions.

This helps to minimize slip in the spanwise direction and transpiration in the wall-

normal direction which are responsible for the formation of Kelvin-Helmholtz rollers.
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If a control strategy can reduce the formation of the rollers, drag reduction can be

achieved. Gomez-de-Segura and Garcia-Mayoral [77] have done work showing drag

reduction of ≈ 25% with the use of anisotropically permeable surfaces for passive flow

control. Wall-normal velocity fluctuations using anisotropically permeable surfaces

are shown in Figure 1.3.

1.2.1.1 Slip surfaces and their effect on flow behavior

Much work has gone into the design of slip surfaces, with ideas often stemming from

a biomimetic point-of-view [48, 75, 147]. When designing slip surfaces, wettability is

an important factor that can affect the validity of the no-slip assumption in certain

flow systems. The no-slip condition is an assumption made that the velocity of a fluid

flowing past a stationary solid surface is so small that its value may be approximated

as zero [17]. While this assumption holds for most normal flow configurations, slip

surfaces are a class of surfaces that are an overt exception to the rule. These surfaces

are of great interest in a multitude of applications as they facilitate a non-zero velocity

at the wall that may be formulated as us = b(∂u/∂y)y=0, where the slip velocity us is

proportional to the shear rate the fluid experiences at the wall, and the proportionality

constant b is known as the slip length. The idea of a slip boundary was first introduced

by Navier in 1823 [171] and later quantified by Maxwell in 1879 in the flow of rarefied

gas [159].

Wettability Wettability is the propensity of a surface to promote liquid spreading,

and is characterized by the spreading coefficient, S = γSG−γLG−γLS, where γSG, γLG,

and γLS are the solid-gas, liquid-gas, and liquid-solid interfacial tensions, respectively

[190]. When S > 0, a liquid will spread on a surface. Conversely, for S < 0, the

liquid forms a droplet on top of the surface. Where the droplet meets the surface,
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there is a well-defined contact angle θ. Given by a force balance known as Young’s

equation [265], contact angle of an “ideal”, or smooth, surface may be calculated

as θ = cos− 1[(γSG − γLS)/γLG]. At equilibrium, surfaces with contact angle θ ≥

90 deg are considered hydrophobic, while surfaces with contact angle θ ≤ 90 deg are

considered hydrophilic.

Wettability is governed not only by the chemical composition of the surface but

also by the topography of the surface. Two important wettability states of “real”,

rough surfaces are the Wenzel [244] and Cassie [29] states. In the Wenzel state, a

liquid fully conforms to the roughness elements, while in the Cassie state, a liquid

will rest on top of the roughness elements. There can also exist intermediate wetting

states between these two modes. These states are shown in Figure 1.4 [60]. Transition

between these two modes is achievable and occurs at a threshold contact angle θT =

(fs−1)(r−fs), where fs is the area fraction of the solid and r is the surface roughness

factor. If the Young’s contact angle is less than the threshold, the system will assume

a fully wetting Wenzel state and if the Young’s contact angle is greater than the

threshold, the system will assume a non-wetting Cassie state. It is not hard to

conceive of methods to exploit this transition contact angle to control the wetting

state of the system.

Static contact angle, alone, is insufficient to fully characterize the wettability of a

surface. Due to surface roughness or other interfacial heterogeneities, a droplet can

exist over a range of contact angles, falling between the advancing contact angle, θA,

and the receding contact angle, θR [48]. The difference between the two is known as

contact angle hysteresis [65] and has implications in fluid mobility at the interface.

When the contact angle hysteresis is small, a droplet becomes unstable to small per-

turbations which allows for increased mobility, or less resistance [163]. Conversely,

large contact angle hysteresis allows a droplet to become pinned to the surface, in-
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Figure 1.4: Surface structure effects on wettability. A) Liquid on flat substrate
(Young’s Mode). B) Wenzel’s mode on rough surface. C) Cassie’s mode on rough
surface. D) Intermediate state. [60]

creasing the resistance to motion [190]. Thus, there is a so-called pinning force that

must be overcome to initiate droplet motion on a surface, and this force may be re-

lated to a system’s advancing and receding contact angles by F = γLG(cos θR−cos θA)

[190].

Certain stimuli-responsive materials can be manipulated using external excita-

tion to reversibly modulate their surface wettability. Exploiting the sensitivity of a

material’s interfacial energy or morphology to external stimuli, reversible switches be-

tween superhydrophobicity and superhydrophilicity may be achieved. Considerable

work has been done using micro-rod arrays that allow for directional wetting [40]

and reversible switching between superhydrophobicity and superhydrophilicity [210].

Further advancement has been made that allows for the controlled actuation of these

surfaces through pH, temperature, and electromagnetic stimuli [123, 89, 140, 88, 260]

[39–43]. Notably, complex surfaces have been fabricated that allow for the au-

tonomous reversible actuation of microstructures to maintain a user-defined variable,

such as temperature [90]. Particularly relevant in fluid flow systems is a surface that
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shows wettability response to applied stress [269].

Effect of slip surfaces on drag reduction In the last few decades, the allure

of or slip surfaces for use in a multitude of flow applications has grown [75]. One

large reason for the interest in slip surfaces is their demonstrated ability in reduc-

ing frictional resistance, or drag, in different flow configurations. Many studies have

achieved significant levels of drag reduction via slip by placing hydrophobic surfaces

at the walls in both laminar and turbulent flows. Ou et al. [176] were among the

first to show experimentally the drag reduction using patterned superhydrophobic

surfaces in laminar flow, and found a maximum drag reduction of 40% corresponding

to slip lengths on the order of ≈ 25µm. By precisely controlling the topography,

the fabricated surfaces were found to operate in the Cassie wetting state, and the

drag reduction was attributed to the increased shear-free area at the air-water in-

terface [175]. Lee et al. [132] were able to produce surfaces with giant slip lengths

approaching ≈ 200µm by deep reactive ion etching of silicon to obtain micro posts.

These experiments were performed at the limit of where a stable interface can be

maintained for a fluid in the Cassie state. As such, the practicality of such a surface

for use outside of an ideal system comes into question.

Although new challenges arise, slip surfaces applied in turbulent flows have shown

similar success. Absent in laminar flows, secondary flow structures are present in tur-

bulent flows which are responsible for most of the turbulent kinetic energy production

[125]. Therefore, possible nonlinear interaction between turbulent flow structures and

the texture elements of slip surfaces must be considered. Min & Kim [163] were among

the first to perform direct numerical simulations of a turbulent channel flow over slip

surfaces, and found that streamwise slip promoted drag reduction while spanwise

slip induced drag increase. These results were due to a weakening of the streamwise
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Figure 1.5: Schematic of drag decrease and increase mechanisms in turbulent flow for
(a) Streamwise slip velocity and (b) spanwise slip velocity. [163]

vortices from streamwise slip and enhanced strength of the streamwise vortices from

spanwise slip. These mechanisms are shown in Figure 1.5 [163]. In their computa-

tions, Martell et al. also found similar results in both drag reduction/increase and the

responsible mechanisms [157]. Using experimental particle image velocimetry (PIV)

methods, Jiang et al. found that the drag reduction in turbulent boundary layers over

superhydrophobic surfaces was due to a weakening and shifting of the streamwise vor-

tices away from the wall, resulting in a decrease in coherent structure bursting in the

near-wall region [220, 270]. With the spectrum of geometries and Reynolds numbers

used, drag behavior for turbulent flows over slip surfaces have ranged anywhere from

a 50% increase in drag to as much as 70% decrease in drag [75].

Hydrophilic and hybrid surfaces have also been studied to determine their ef-

fectiveness at drag reduction in turbulent flows. Results for a hydrophilic coating

for the hulls of marine vessels showed a reduction in friction, resulting in increased

fuel efficiency [68]. They attributed the drag reduction to the presence of a water-
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water shear area instead of water-surface shear area. A superhydrophilic surface with

porous structure was analyzed both experimentally and computationally to elucidate

the mechanisms associated with its drag reducing properties [218]. They found that

vortices formed in the pores of the surface reduced the frictional drag by lowering the

velocity gradient at the wall. However, the pores also introduced a pressure differen-

tial between the front and back wall of the pore based on its shape. Therefore, in order

to have drag reduction, the friction reduction associated with the spanwise vortices

must outweigh the drag introduced by the effect of increased pressure drop across the

pores. Similar results were noted by Wang et al. [236]. Additionally, researchers have

investigated hybrid surfaces with alternating superhydrophobic and hydrophilic areas

[51]. Particularly useful, these surfaces have the ability to pin a layer of air at the

boundary between hydrophobic and hydrophilic areas which increases the amount of

area water-air interface resulting in skin-friction reduction [95].

Effect of slip surfaces on transition Another classical problem (that is still

not fully understood) in wall-bounded shear flows is the transition to turbulence

[9, 13, 196]. The fundamental question of what causes a flow to undergo a change

from a highly ordered laminar state in space and time to a chaotic turbulent state

in space and time has puzzled the scientific community since its first observation by

Osborne Reynolds in 1883 [194]. Several approaches have been developed to study

the nature of transition. Directed percolation was proposed to conjecture the spatio-

temporal intermittency observed in transitional flow [186, 211, 6, 139] [66–69]. Exper-

imental studies have also been performed based on the observation of puffs and slugs

associated with transition in pipe flows [12, 14]. More recently, the dynamical sys-

tems theory has provided qualitative and quantitative information on the transition

to turbulence [92, 73].
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Figure 1.6: Spanwise vorticity at onset of transition for (a) no-slip, (b) streamwise
slip, (c) spanwise slip, and (d) combined slip. [164]
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While a large amount of effort has been put toward how slip surfaces affect tur-

bulent drag reduction, a much smaller number of studies have been carried out on

the effect of slip surfaces on the transition to turbulence. Additionally, most of these

studies have concerned themselves with the linear stability analysis of the linearized

Navier-Stokes equations. Min and Kim [164] first investigated temporal transition to

turbulence over slip surfaces, where the linear stability analysis was applied to the

linearized Navier-Stokes equations. They found an increased critical Reynolds num-

ber with streamwise slip, which was attributed to stabilizing the Tollmien-Schlichting

waves. However, when spanwise slip was applied the critical Reynolds number was de-

creased, and a combination of the two caused a critical Reynolds number somewhere

between the two limiting cases. This is shown in Figure 1.6. Other two-dimensional

[214, 266] and three-dimensional [163, 129, 264] analysis on the stability of slip flows

has been carried out. Global stability analysis was performed for flow around a su-

perhydrophobic cylinder [8]. While most of studies have shown a stabilizing effect of

the slip surfaces, still others have found these surfaces induce or amplify instabilities,

triggering an early transition [39, 31]. Furthermore, a recent study by Picella et al.

[184] showed that the effectiveness of slip surfaces in transition control may be depen-

dent upon the initial perturbation to the system. They found that slip surfaces are

effective at delaying transition initiated by near-wall perturbations but rendered in-

effectual for control of transition triggered by free-stream turbulence. As such, there

exists no strict consensus on the effects of slip on transition to turbulence, or in which

transition scenarios slip surfaces are considered effective.

1.2.2 Active Control

To suppress near-wall vortex structures in a turbulent flow, Choi et al. [36] applied

opposition control by using local blowing/suction at the wall. Using direct numerical
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simulations, they altered the wall-normal velocity at the wall to be equal and opposite

to the wall-normal velocity observed at y+ = 10 to prevent momentum transport

away from and toward the wall. This technique results in 30% reduction in drag at

a friction Reynolds number of Reτ = 180. Examining the resultant flow fields, they

found the near wall vortices to be weakened substantially. However, this method is

impractical as it requires knowledge of the velocity fields at all times. An important

result from this work, however, was that streamwise vortex structures could indeed

be manipulated, leading to drag reduction. Subsequent work has shown that both the

amplitude of blowing/suction and the wall-normal location of the detection plan play

a vital role in the efficacy of opposition control [41]. In order to overcome the issues

of opposition control, Lee et al. employed an artificial neural network to predict and

control actuation in order to achieve a desired behavior, i.e. drag reduction [130].

Wall actuation in this manner resulted in a drag reduction of 20% at lower Reynolds

numbers. The flow predicted flow fields from the neural network resembled those

observed in the opposition control.

In the opposition control, it was observed that the blowing and suction resulted in

an increased spanwise pressure gradient. This result informed Lee et al.’s next study

to maximize the spanwise pressure gradient near the wall [131]. Using suboptimal

methods, they sought to minimize the objective function over short time horizons

(T → 0). This method resulted in ≈ 20% drag reduction in turbulent channel flow at

Reτ = 110. This new control scheme gave almost identical results to their previous

study [130] but the two studies used completely different approaches. This method

was then implemented in pipe flow by Xu et al. [258] with similar results. Bewley et

al. [19] implemented a control scheme where the objective functions were minimized

over a finite time period in turbulent channel flow at Reτ = 100. They achieved flow

laminarization and drag reduction of over 50%. This work illustrated the need to
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optimize controls over sufficiently long time periods (T+ ≥ 25).

Local wall-deformation has been employed based on the success of opposition

control by Kang and Choi [116]. At Reτ = 140 a drag reduction of ≈ 15% was

achieved, which is less than that of the opposition control. The reduced efficiency

is attributed to the fact that the area of effect of this method was limited to ap-

proximately 5 wall units in the wall-normal direction. Opposition control in channel

flow was also implemented by Endo and Kasagi [58] in the form of wall-deformation

to attenuate the spanwise motion of low-speed streaks. Drag reduction of 10% was

achieved at Reτ = 150. Direct numerical simulations showed that channel flows with

opposition-like control result in nullified wall-normal velocity component and mo-

mentum transport due to the appearance of a virtual wall [87] from the interaction

between wall-normal velocity of the vortex and wall-normal velocity at the wall.

Pamiés et al. [178] have painfully pointed out that the gains associated with ideal

opposition control can be completely nullified when considering realistic sensor and

actuator placement. In their simulations, they used finite-sized actuators and found

that the form drag resulting from the actuators nullifies any gains from the control.

In ideal control, it is assumed that actuators and sensors are infinitely small, infinite

in number, and can, subsequently, oppose flow structures at every point. In realistic

settings, control is both confined and localized meaning that it can only act in a finite

area at finite time intervals.

Studies have explored the possibility of flow control utilizing open-loop control

schemes. Mito and Kasagi [166] studied drag reduction in turbulent channel flow with

oscillating compliant wall. The deformation, which was comparable to the thickness

of the viscous sublayer, is uniform in the streamwise direction and spatio-temporally

sinusoidal in the spanwise direction. The skin-friction change is reflected in the vor-

ticity fluctuations, and the receptivity of the induced flow structures changes with
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the fluctuating skin-friction.

Similarly, effects of a streamwise traveling wave of blowing/suction [165] and wall-

deformation [170] have been studied and found to reduce skin-friction, even leading

to complete laminarization under certain parameter sets. The drag reduction is at-

tributed to two factors when using traveling wave-like blowing and suction. The first

is called the streaming effect, which results in a net mass flux in the opposite direction

to the traveling wave even without a pressure gradient [91]. The control input assists

in forcing the flow downstream, thus reducing the required external pressure gradient

for a given flow rate. Therefore, properly design upstream traveling wave controls

achieved significant drag reduction, and even sub-laminar in turbulent channel flow

[165]. Mamori, Fukagata and Hoepffner [156] analyzed the phase relationship be-

tween the velocity fluctuations to find that the viscous effect induces near-wall phase

shift between the streamwise and wall-normal fluctuations, thus generating Reynolds

stresses that were responsible for the streaming effect. Additionally, the varicose

mode has been found to be more effect for this than the sinuous mode [250].

The second factor responsible for drag reduction in this control scheme is a stabi-

lizing effect that results from the interaction between the traveling wave-like control

and the underlying wall turbulence structures. Lee, Min, and Kim performed sta-

bility analysis when an upstream traveling wave control was implemented and found

that the resulting turbulent flow is destabilized, and, therefore, the drag reduction

by Min et al. was a result of the streaming effect. The stability analysis also showed

transient growth of streaks by amplification is significantly suppressed when using a

downstream traveling wave control. Significant drag reduction and even relaminariza-

tion can be achieved when using downstream traveling wave control when parameters

are based on the receptivity analysis. Mamori, Iwamoto, and Murata performed a

parametric studying using downstream traveling wave control and were able to re-
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Figure 1.7: Flow structures in turbulent channel flow at Reτ = 150 for (a) the
uncontrolled case and (b) the traveling wave-like control case [115].

laminarize a fully turbulent channel flow at Reτ = 110 and 300. Globally optimal

open-loop control input has been obtained for turbulent channel flow using travel-

ing wave-like blowing and suction to assess the dissimilarity in heat and momentum

transport. The effect of this control on the flow structures at Reτ = 150 is shown

in Figure 1.7. While open-loop control strategies are attractive in that they do not

require large numbers of sensors, actuation of these controls is still challenging.

1.2.2.1 Polymer Additives

By introducing a small amount of long-chain polymers into a turbulent flow, substan-

tial reduction of friction drag can be achieved, yielding a much higher flow rate at a

given pressure drop. Drag reduction percentage up to 80% has been experimentally

observed in straight pipe and channel geometries [226] [153] [80]. First discovered in

1940s [222, 223], this polymer-induced drag reduction phenomenon has persisted as

an active research field owing to its practical and theoretical significance. Applica-
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tions involve enhancing the energy efficiency in various fluid transportation sectors,

such as oil-transfer in pipelines, marine propulsion, fire hydrant operations, and heat-

ing/cooling systems. On the other hand, the theoretical work lies in two significant

research areas: turbulent flows and complex fluids. By understanding the mechanism

of polymer-flow interactions and the dynamics of viscoelastic turbulence, we gain

insight not only in polymeric fluids but also in turbulence itself, shedding light on

another practical area: developing drag reduction schemes without polymer additives

[144, 256, 257].

Although polymer drag reduction has been applied in the real world for decades,

the underlying mechanisms remain poorly-understood. One most intriguing problem

is that an upper limit of drag reduction, called maximum drag reduction (MDR),

exists in all drag-reducing polymer systems. For a given Reynolds number, the max-

imum amount of drag reduction achieved is invariant with changing polymer species,

molecular weight, concentration and the characteristic length scale in the flow geom-

etry (pipe diameter or channel height). The universality of MDR and the mechanism

whereby turbulence sustained at this regime are two essential questions that needs to

be answered.

1.2.2.2 External Applied Body Force

A significant amount of drag-reduction (up to 40%) can be obtained by subjecting

a wall flow to high frequency spanwise oscillations [112, 5]. Baron and Quadrio

[15] suggested that the disruption of the spatial coherence between the longitudinal

vortices and the low-speed streaks by oscillating a wall in the spanwise direction

causes the vortices to pump the high-speed fluid away from the wall and low- speed

fluid toward the wall, thus reducing the turbulent-energy production. The most

widely accepted mechanism is given by Choi [38, 37] who proposed that the log mean
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velocity profile is shifted upwards and mean velocity gradient is reduced at the wall

due to the creation of a spanwise vorticity near the wall.

Similar results are obtained when an external spanwise force in the form of oscilla-

tions or traveling-wave is made to act near the wall. This form of force can be achieved

by lining permanent magnets and electrodes alternately in the spanwise direction, and

the direction of the spanwise force can be altered periodically by switching the po-

larity of electric current [97]. Up to 30% drag-reduction can be obtained from the

wavy force [52], while the oscillatory form can result up to 40% drag-reduction [18].

However, the efficiency of this technique is usually very low [18, 96, 24] – the energy

required to impose the desired force on the flow is more than the energy saved from

drag-reduction, and the situation worsens at high Reynolds numbers [24].

1.3 Motivation and contributions

With the varied studies detailed herein, the main motivation behind this work is to

elucidate underlying mechanisms associated with wall-bounded laminar and turbulent

flows through the implementation of various flow control methods. The hope is that by

applying various flow control techniques, which work to alter flow dynamics in distinct

manners, the underlying mechanisms responsible for the transition to turbulence and

the self-sustaining process of turbulence become clearer and can be used to develop

reduced-order models and more informed flow control techniques for more efficient

systems in the future.

Along the way, various questions related the efficacy of simulations, data-driven

analysis techniques, and application of dynamical systems theory have arisen. These

questions have blossomed into their own studies, with the hope that they expand

the literature, help lead to answers of long-standing questions about the behavior of
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transitional and turbulent flows, and elicit new questions from future researchers.

The major contributions from this work are as follows: (1) the broadening of

understanding related to the mechanisms which cause the transition to turbulence via

statistical and (newly developed) deterministic methods, (2) new knowledge related

to the efficacy of certain simulation methods (i.e. Minimal Flow Units) used in

wall-bounded turbulent flows, (3) characterization of intermittent flow dynamics at

higher Reynolds number which may be useful in developing reduced-order models of

turbulent flows, (4) investigation of combined drag reduction techniques for use in

scaled systems, and (5) preliminary investigations into the application of data-driven

techniques and dynamical systems theory in the analysis of turbulent systems.
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Chapter 2

ON THE TRANSITION TO TURBULENCE AND SLIP

SURFACES

1

2.1 Dynamics of laminar and transitional

flows over slip surfaces

2.2 Introduction

In the last few decades, the allure of slip surfaces for use in a multitude of flow

applications has grown [74]. Of particular interest is the demonstrated ability of slip

surfaces in reducing frictional resistance, or drag, in many different configurations

for both laminar and turbulent flows. Many studies have achieved significant drag

reduction via slip by placing hydrophobic surfaces at the walls [152, 242, 163, 176, 224,

44, 21, 205]. However, a smaller number of studies have been performed on the effect

of slip surfaces on the transition to turbulence with most limited to linear stability

analysis of the linearized Navier-Stokes equations. Two-dimensional [214, 266] and

three-dimensional [164, 129, 264] analyses on the stability of flows have been carried

1A portion of this work was published as Davis, E.A. and Park, J.S., J. Fluid Mech., 894, A16
(2020)
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out. While most of these studies have shown a stabilizing effect of slip surfaces leading

to a delayed transition, others have found that these surfaces can induce or amplify

instabilities and, subsequently, trigger early transition [39, 31]. Studies on a bluff body

with a superhydrophobic coating have shown different results on the flow separation

– delayed separation [84] and promoted separation [30]. Furthermore, a recent study

by Picella et al. [184] found that slip surfaces may be effective at delaying transition

for near-wall perturbations similar to ones observed in H-/K-type transition scenarios

[124] but are rendered ineffectual for free-stream, or non-modal, perturbations similar

to ones observed in a bypass transition scenario [167]. As such, there exists no strict

consensus on the effects of slip surfaces on the transition to turbulence, or in which

particular transition scenarios slip surfaces may be considered effective.

Interestingly, there have been doubts on the validity of the no-slip boundary con-

ditions at the microscopic scale, showing that under certain circumstances, fluids can

slip against solid surfaces [83, 215]. Various factors including wettability, surface

roughness, presence of gaseous layers, and impurities can facilitate a non-zero fluid

velocity at solid surfaces [47, 189, 172]. The idea of slip was first introduced by Navier,

quantifying the slip velocity by the idea of a slip length [171]. The slip length relates

the velocity of the fluid at the wall to the wall shear rate as

us = b
∂u

∂y

∣∣∣∣
w

, (2.1)

where b is the slip length or Navier’s slip coefficient. The slip at the solid surface

tends to increase the velocity at the wall, leading to skin-friction reduction. [164]

investigated temporal transition to turbulence, where the linear stability analysis

was applied to the linearized Navier-Stokes equations for a two-dimensional case,

showing that the critical Reynolds number increases with the streamwise slip length
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and decreases with spanwise slip length. A combination of the two results in a critical

Reynolds number between the no-slip and limiting streamwise cases. More recently,

superhydrophobic surfaces, which are a combination of surface chemistry and surface

roughness at micro- and/or nano-scales, have been introduced for drag reduction [195].

These surfaces appear to lower the free energy of an air-water interface, producing

a very high contact angle at the surface. There have been, of course, many studies

on the effects of superhydrophobic surfaces on skin-friction reduction in laminar and

turbulent flows [181, 134, 111, 133, 146, 78, 205, 59]. Thorough reviews of the effect

of slip and superhydrophobic drag reduction on laminar and turbulent flows are given

by Rothstein [195], Abdulbari et al. [1], and Lee et al. [133]. It is worth noting

that there is a recent study that performs direct numerical simulations of a turbulent

channel flow to predict the effective slip length and drag reduction with a lubricated

micro-groove surface [33].

In addition to laminar and turbulent flows, a classical problem in wall-bounded

shear flows is the transition to turbulence [9, 13, 196]. The fundamental question of

what causes a flow to undergo a change from a highly ordered laminar state in space

and time to a highly disordered turbulent state in space and time has been puzzled

over since Osborne Reynolds in 1883 [194]. There have been several approaches

to explore the nature of transition. The directed percolation has been proposed to

conjecture the spatiotemporal intermittency observed in a transitional flow [186, 211,

6, 138]. The theoretical and experimental studies based on puffs and slugs have also

been explored to study the dynamics of transition to turbulence [252, 173, 12, 14,

208]. Recently, the dynamical systems idea has emerged, enabling computation of

non-trivial invariant solutions to the Navier-Stokes equations [119]. These solutions,

considered as the building blocks of turbulence, have advanced our understanding of

chaotic spatiotemporal flows [217, 221, 182, 183]. These spatially and temporally
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well-organized solutions have been observed in all turbulent shear flows, both in

experiments and simulations [92, 73], and have been used to help provide qualitative

and quantitative information about the transition to turbulence.

We focus here on the dynamical systems approach, which has greatly advanced the

understanding of the nature of the transition to turbulence [120, 56, 154]. Specifically,

the discovery of three-dimensional fully nonlinear traveling wave (TW) solutions to

the Navier-Stokes equations has enabled a priori study of the transition to turbulence.

These solutions are also denoted as exact coherent states (ECS) since they capture

the essential structural and statistical features of a turbulent flow, featuring the near-

wall self-sustaining process [233]. They primarily arise in pairs from a saddle-node

bifurcation at a particular Reynolds number, consisting of upper- and lower-branch

solutions – both of which are unstable. These lower- and upper-branch TW solutions

can, thus, be thought of as saddle points in the state-space and turbulent trajectory

moves dynamically between these saddle points [182]. More interestingly, the onset

Reynolds number for TW solutions to come into existence is quantitatively in good

agreement with the Reynolds number for transition to turbulence, corresponding

to a spanwise period of 100 wall units [27]. Interestingly, the subcritical nature of

these bifurcations of TW solutions has shed light on some features of subcritical

turbulent transition such as patterned turbulence [225]. Most of these ECSs have

been found in so-called minimal flow units —- they are spatially periodic in the

unbounded dimensions of the domain with periods that roughly correspond to the

smallest length scales at which turbulence can persist [105]. In addition, localized

ECSs in extended domains have also been found to show flow structures resembling

the observed spatiotemporal intermittency and the laminar-turbulent patterning that

are a common feature of turbulence near transition [11, 23]. [11] found a particular

family of localized ECSs for pipe flow that shows features similar to puffs, which
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resemble localized turbulent regions in a transitional pipe flow. [267] also found a

family of localized ECSs for a plane Poiseuille flow. However, their connections to

turbulence transition are still unclear.

Another important issue regarding ECSs is their connection to the

laminar-turbulent boundary, or separatrix. This boundary separates the basins of

attraction of laminar and turbulent flows [202, 53], and this boundary is inherently

unstable. Initial conditions on the turbulent side of the boundary become turbulent,

while those on the laminar side laminarize. Initial conditions on this boundary stay

on it – they neither become turbulent nor do they relaminarize.There are theoretical

arguments that the stable manifold of the lower-branch ECS forms a part of this

boundary [237, 118]. If an ECS on the basin boundary has a single unstable eigen-

value and many stable eigenvalues, there are many ways in which trajectories can

approach it, but there is only one way to leave. Such ECS has been called an edge

state [212]. Some of the lower-branch ECSs are also found to lie on the basin bound-

ary, but they have multiple unstable eigenvalues so are not edge states [182]. The

dynamics of trajectories on or near the basin boundary are intermediate between lam-

inar and turbulent flows and thus thought to play an important role in the dynamics

of transition to turbulence.

Because of the clear importance of the lower-branch ECSs for the transition to

turbulence and proximity to the basin boundary, the present work focuses on the

effects of slip surfaces on these ECSs embedded on the laminar-turbulence boundary.

It will provide an excellent simplified, yet still exact, model flow for studying the

nature of the transition to turbulence. The leading order effect of the slip surfaces

on the ECS is one important focus of the present study for identifying dynamics of

the transition. The connection between ECSs and slip surfaces has yet to be fully

explored and will be investigated in the present study. The nature of turbulence
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transition will be identified with respect to ECSs on the laminar-turbulent separatrix

found by [182].

We focus here on a channel flow of an incompressible Newtonian fluid with dy-

namic viscosity µ, density ρ and kinematic viscosity ν = µ/ρ in a channel of half-

height h. In this geometry, the critical Reynolds numbers are Re = Uch/ν ≈ 1000

and Reτ = uτh/ν ≈ 45 based on the laminar centerline velocity Uc and friction ve-

locity uτ , respectively [27, 187]. The laminar and transition flow regimes in a range

of 120 < Re < 1800 (8 < Reτ < 85) will be considered in the present study. Two

lower-branch ECSs (labelled P3 and P4 below) will be considered as they are on the

basin boundary – P3 is indeed an edge state as it has only one unstable eigenvalue.

It is worth noting that, to our knowledge, there have been only two modes of the

exact coherent solutions [233, 73, 229, 169, 70, 182], namely core mode and critical

layer mode. P3 and P4 solutions display characteristics of each mode, respectively.

Therefore, by examining the P3 and P4 solutions, it is believed that the essential

effects of slip surfaces on transition dynamics will be encapsulated.

This paper is organized as follows: Section 2.3 presents the problem formulation

for the current study. A validation of the current simulations is given in Section 2.4.1

by comparing drag reduction of laminar flows. To better understand the effect of

the slip on the transition, the effect of slip on turbulence lifetimes is presented in

Section 2.4.2. Additionally, the effect of slip surfaces on the transition to turbulence

is studied using traveling wave solutions to the Navier-Stokes equations in Section

2.4.3. Finally, a summary and implications of the present investigation are given in

Section 2.5.
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2.3 Problem Formulation

We consider an incompressible Newtonian fluid in the plane Poiseuille (channel) ge-

ometry, driven by a constant volumetric flux Q. The x, y, and z coordinates are

aligned with the streamwise, wall-normal, and spanwise directions, respectively. Pe-

riodic boundary conditions are imposed in the x and z directions with fundamental

periods Lx and Lz, and streamwise Navier slip conditions are imposed at the walls

y = ±h, where h = Ly/2 is the half-channel height. The laminar centerline velocity

for a given volumetric flux is given as Uc = (3/4)Q/h. Using the half-height h of

the channel and the laminar centerline velocity Uc as the characteristic length and

velocity scales, respectively, the nondimensionalized Navier-Stokes equations are then

given as

∇ · u = 0,
∂u

∂t
+ u · ∇u = −∇p+

1

Rec
∇2u. (2.2)

Here, we define the Reynolds number for the given laminar centerline velocity as

Rec = Uch/ν, where ν is the kinematic viscosity of the fluid. Characteristic inner

scales are the friction velocity uτ = (τ̄w/ρ)1/2 and the near-wall length scale or wall

unit δν = ν/uτ , where ρ is the fluid density and τ̄w is the time- and area-averaged

wall shear stress. As usual, quantities nondimensionalized by these inner scales are

denoted with a superscript “+”. The friction Reynolds number is then defined as

Reτ = uτh/ν = h/δν . Streamwise Navier slip conditions are prescribed as equation

(2.1) at both top and bottom walls by an effective homogeneous slip length, Ls = b/h.

To verify that the slip length can be realistically obtained by practical slip surfaces

with roughness features, the length scale L+ of the micro roughness can be calculated

using equation (2.4) of Picella et al. [184], enabling a direct comparison with ones

in the literature. Using the largest slip length studied (Ls = 0.02) and the solid

fraction φs = 0.25 used in Min and Kim [164], the largest texture size of the current
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study is L+ ≈ 7, which ensures that the homogeneous slip surface employed in the

present study would provide virtually the same outcomes resulting from employing a

heterogeneous microtextured slip surface [262, 206, 184].

Simulations are performed using the open source code ChannelFlow written and

maintained by [69]. In this study, we focus on the domains of Lx × Ly × Lz =

2π × 2 × π and Lx × Ly × Lz = π × 2 × π/2, which are the same box sizes as the

TW solution families dubbed P3 and P4, respectively [182]. A numerical grid system

is generated on Nx × Ny × Nz (in x, y, and z) meshes, where a Fourier-Chebyshev-

Fourier spectral spatial discretization is applied to all variables. A typical resolution

used is (Nx, Ny, Nz) = (48, 81, 48). The numerical grid spacing in the streamwise

and spanwise direction are ∆x+min ≈ 8.2(4.7), ∆z+min ≈ 4.1(2.3) for the P3 and (P4)

cases. The nonuniform Chebyshev spacing used in the wall-normal direction results

in ∆y+min ≈ 0.05 at the wall and ∆y+max ≈ 2.5 at the channel centre for both P3

and P4 cases. For simulations, a range of 120 < Re < 1800 (8 < Reτ < 85) is

considered to cover laminar and transition flow regimes. For exact coherent solution,

Reτ = 62.52 and 71.72 are considered for P3 and P4, respectively, as these are the

inherent Reynolds numbers at which the P3 and P4 solutions emerge.

2.4 Results and Discussion

2.4.1 Laminar drag reduction: a validation

For the sake of testing the code, the effect of the slip surfaces on laminar flows

was investigated. Drag reduction percentage (DR%) was calculated to compare to

previous studies and is given by:

DR% =
f0 − f
f0

× 100, (2.3)
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Figure 2.1: (a) Friction factor and (b) drag reduction percentage as a function of
Reynolds number for various Ls values. In (a), laminar flow (solid line) corresponds
to f = 9/Re [187]. In (b), the dashed lines are shown for readability.

where f is the friction factor for the slip surface and f0 is the friction factor for

the no-slip surface at the same Reynolds number: f = τ̄w/(1/2ρU
2
b ), where Ub is

the bulk velocity. Figures 2.1(a) and (b) show the friction factor and drag reduction

percentage as a function of Reynolds number for various slip lengths, respectively.

As seen in figure 2.1(a), the friction factor is shifted downward when slip length is

increased, while maintaining the same slope as laminar case. Therefore, the relative

change in wall shear stress or pressure drop with Reynolds number remains constant

and the drag reduction from equation (2.3) is constant for each slip length. Figure

2.1(b) confirms that DR% is almost constant at each slip length regardless of Reynolds

number. The same trend of constant drag reduction percentage in the laminar regime

has also been observed previously [176], where an increase in drag reduction resulted

from increasing slip length, alone, and was not a function of flow rate.

To further validate the present study, drag values (f/f0) were compared to those of

previous studies using superhydrophobic surfaces in laminar flows. Figure 2.2 shows
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Figure 2.2: Drag (f/f0) corresponding to the friction factor (f) normalized by that
of the no-slip surface (f0) as a function of slip length Ls normalized by the channel
half-height, h: � , present study; N , [34]; � , [160]; � ,[113]; • , [180]; − , theory for
superhydrophobic surfaces on both walls [34].

the results for the drag value observed in the laminar regime for previous studies

(closed symbols) and the current study (open symbols) along with a curve for the

theory for the superhydrophobic surfaces on both walls. As expected, the drag values

decrease with increasing slip length. Notably, the current study is in great agreement

with the theory proposed by Choi and Kim [34] for superhydrophobic surfaces on

both channel walls.
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2.4.2 Turbulence lifetimes: statistical insight into

transition to turbulence over slip surfaces

A common approach used in the study of flow control and its effect on the transition

to turbulence is to compute the turbulence lifetime of the flow. This lifetime gives

a more physical interpretation of the effects of the flow control on the flow and on

the modified distance between the turbulent state and the edge of turbulence in

phase space. Ibrahim et al. [100] showed that opposition control in both Couette and

Poiseuille flows plays a role in increasing the probability of escaping from the chaotic

saddle of turbulence in phase space. In this regard, the effect of slip surfaces on

altering turbulence lifetime statistics was investigated. Similar to the procedure used

by Ibrahim et al. [100], 100 different turbulent flow fields were created by running

simulations at an elevated Reynolds number. These 100 flow fields were then used

as the initial conditions for the turbulence lifetime study at the nominal Reynolds

number (i.e. flow fields created at Rec = 1900 were used as initial conditions for the

turbulence lifetime study at Rec = 1800). The temporal evolution of the wall shear

stress was tracked up to t = 5000 for four different slip lengths: Ls = 0.00, 0.008, 0.01,

and 0.02. Note that the slip length for the current study is already in dimensionless

form Ls = b/h, where h is the channel half-height. If a flow laminarizes, the time it

takes for the wall shear stress to reach its laminar value is considered the turbulence

lifetime. Probability of turbulence can then be computed as a function of time for

each value of Ls by defining it as the fraction of the 100 turbulent flow fields that

remain turbulent up to a given time t.

Figure 2.3 shows the probability of turbulence lifetimes for various Reynolds num-

bers at slip lengths of Ls = 0.00, 0.01, and 0.02. The probability is found to approxi-

mately follow an exponential distribution that is characteristic of turbulence lifetimes
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Figure 2.3: Probability of turbulence lifetime for slip lengths Ls = 0.00 (�), 0.008
(O), 0.01 (♦), and 0.02 (◦) at Rec = 1800 on semi-logarithmic axes. The dashed lines
are shown for readability to help illustrate the exponentially decaying trend. Inset:
Dependence of Reynolds number on turbulence lifetime at Rec = 1600 (�), 1800 (N),
and 2000 (•) at Ls = 0.02.
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[57]. It should be noted that the probability of turbulence does decrease for the no-

slip case in the transitional flow regime. Given sufficient time and domain size and

the nature of initial conditions, it has been shown that there is a tendency for turbu-

lence to decay as a result of a transient process in shear flows [200, 22, 93, 10, 201].

As intuition might suggest, the probability of sustained turbulence at a given time

decreases as slip length is increased, indicating a stabilizing effect on the flow. As

was investigated by Min and Kim [164], the addition of a streamwise slip velocity

stabilizes a flow by which it is likely that the probability of turbulence persisting de-

creases as streamwise slip length is further increased. While this trend holds for the

three Reynolds numbers studied here–Rec = 1600, 1800, and 2000–the effectiveness

of a given slip surface decreases with increasing Reynolds number. In other words, as

Reynolds number increases, larger slip lengths are needed to obtain the same effect.

Notably, the slip lengths studied here have little effect on the flow at Rec = 2000,

with a final reduced probability of sustained turbulence of ∼ 94% at the largest slip

length examined. Note that the effect of slip surfaces on turbulence lifetime may be

interpreted as a reduction of the Reynolds number, which was observed by Min and

Kim [163] and Fukagata et al. [64]. These results suggest that the phase space of

turbulence may be altered by slip surfaces in such a way to facilitate transition back

to the laminar state. This same trend in turbulence lifetime was also observed when

using increasing levels of opposition control in channel flow [100].

2.4.3 Exact coherent solutions: a deterministic analysis of the laminar-

turbulent separatrix over slip surfaces

We now discuss the effect of slip surfaces on the laminar-turbulent separatrix using

exact coherent solutions or travelling-wave solutions to the Navier-Stokes equations.

Two travelling-wave solution families, dubbed P3 and P4, were used as the lower-
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branch solutions for these two families are embedded in the laminar-turbulent sepa-

ratrix [182]. The P3 lower-branch solution is indeed an edge state as it has only one

unstable eigenvalue in the symmetric subspace, while the P4 lower-branch solution

has two unstable eigenvalues in its symmetric subspace (Details of the P3 and P4

solution methods are given in Appendix A.4). The edge state is particularly impor-

tant because as defined, it implies somehow the weakest, most marginal structure of

the basin boundary. In addition, these two solutions were chosen due to their dis-

tinct flow structures – the P3 and P4 families are denoted as core and critical layer

modes, respectively. This implies that the flow structures for the these solutions prop-

agate in either the core, or bulk, of the flow or centered about the critical layer. As

aforementioned, to our best knowledge, the exact coherent solutions that have been

found thus far have exhibited flow structures that belong to either the core or critical

mode. These modes are also analogous to the modal/non-modal perturbations that

have been examined in the classical transition scenarios [251, 184]. Recently, the

P4 solution is found to display hairpin-like vortex structures [207]. Additionally, a

recent study by Picella et al. [184] found that by using linear stability analysis, slip

surfaces have distinct effects on different transition scenarios defined by the initial

perturbations applied to the base flow, namely, modal, near-wall perturbations and

non-modal, free-stream perturbations. Thus, it is anticipated that the effect of slip

surfaces on these solution families exhibit distinct transition dynamics.

Here, we ran simulations using the P3 and P4 lower-branch solutions as initial

conditions to investigate the effects of slip surfaces on the separatrix and to elucidate

transition dynamics. Using an exact coherent solution (i.e., a traveling-wave solution),

a more deterministic approach can be taken in analyzing the effects of slip surfaces.

The P3 and P4 lower-branch solutions used are Rec = 1760 (Reτ = 62.52) and Rec =

1800 (Reτ = 71.72), respectively. These Reynolds numbers were chosen, in particular,
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because it is close to their bifurcation Reynolds numbers but far enough to ensure

that they are embedded within the laminar-turbulent boundary.

2.4.3.1 Skin-friction evolution

Figure 2.4 illustrates the temporal behaviours of the skin-friction coefficient Cf =

τ̄w/(1/2ρU
2
c ) normalized by initial values of each case using various Ls values. Despite

their distinct characteristics, the early-time behavior of the skin friction of the P3 and

P4 solutions is similar: (1) an initial stable period, (2) a sharp increase, or a strong

turbulent burst, following the stable period, and (3) transition to a fully turbulent

flow (for P4, a flow is relaminarized beyond Ls > 0.0105). This temporal behaviour

indeed resembles a typical scenario observed in transition to turbulence [199]. The

strong turbulent burst, as it shall be called presently [183], is the process of escape

out of the exact coherent solution along its most unstable manifold, comprising of the

so-called linearly unstable stage followed by the nonlinear evolution stage [101]. The

end of this strong turbulent burst is then defined as the time when the skin friction

reaches its maximum. It is evident that distinct transition scenarios are observed

between the P3 and P4 solutions by the evolution of the skin friction due to inclusion

of the slip surfaces.

Notably, as shown in figure 2.4, the duration of the initial stable period decreases

with slip length for the P3 solution, while the duration of this period increases with

slip length for the P4 solution. It suggests that the P3 and P4 solutions experience

early transition and delayed transition due to slip surfaces, respectively. For the

P3 solution, the slip length appears to have a negligible effect on the reduction in

maximum skin friction during the strong turbulent burst as the slip length is further

increased. However, the behavior of the strong turbulent burst for the P4 solution is

quite different. The maximum skin friction reached during the strong turbulent burst
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Figure 2.4: Early-time skin-friction coefficient profiles when using the (a) P3 and (b)
P4 lower-branch travelling-wave solutions as initial conditions. Profiles are normalized
by the initial skin-friction coefficient value for each case. The P3 and P4 lower-branch
solutions are on the laminar-turbulent separatrix.

following the initial stable period decreases with increasing slip length. This trend

continues until a critical slip length (Ls = 0.0105) after which there is no turbulent

burst and the flow starts to laminarize after an initial stable period. If slip length is

further increased, the initial stable period starts to reduce in duration and eventually

the flow immediately laminarizes with negligible initial stable period for very large

slip lengths. These observations for the P4 solution suggest that a slip surface appears

to stabilize a flow and promote a return to the stable laminar state beyond the critical

value (Ls = 0.0105). Thus, it is evident that the slip surfaces provide distinct effects

on the laminar-turbulent separatrix of the P3 and P4 solutions.

To further characterize the temporal dynamics observed in the behaviors of the

skin friction, figures 2.5(a) and (b) show the maximum skin-friction achieved during

the turbulent bursting period and the duration of the initial stable period, respec-

tively. Here, we define the bursting skin friction coefficient as Cf,b = Cf,max − Cf,0,

where Cf,max is the maximum skin-friction at the end of the bursting period and Cf,0
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is skin friction at initial time. The stable period, T , is defined as the duration for

which skin friction continues to stay between ±10% of the initial skin-friction value

depending on the direction of the trajectories: 10% for bursting direction and -10%

for laminarization direction. Both quantities are normalized by the associated values

of the no-slip case. For the P3 solution, the magnitude of the turbulent burst remains

relatively constant with slip length – the slip surface has a negligible effect on skin

friction reduction during the strong burst phase of the transition. The stable period

slightly decreases with slip length and for a very substantial slip length of Ls = 0.02,

the stable period is reduced by approximately 10% of the no-slip case. This observa-

tion indicates that slip surfaces cause the turbulent burst to occur sooner with almost

same magnitude, promoting an early transition to turbulence. For the P4 solution,

on the other hand, the magnitude of the turbulent burst decreases almost asymptot-

ically with slip length up to a critical value of Ls = 0.0105. After the critical slip

length, there are no turbulent burst events because the flow becomes laminarized.

Interestingly, the stable period of the P4 solution shows a non-trivial behaviour. It

increases until reaching a critical value at Ls = 0.0105 and starts to decrease because

laminarization occurs sooner with slip length. Before the critical slip length, the slip

length appears to play a role in delaying the transition to turbulence, as opposed to

the P3 solution. It is worth noting that the dependence of the Reynolds number was

tested by using different values of the Reynolds number in the transitional regime,

where almost identical trends were produced for the P3 and P4 solutions (not shown).

2.4.3.2 Linear growth rate in transition

We estimate the growth rate of the linearly stable stage along the turbulent burst

trajectories for the P3 and P4 solutions by introducing a time-dependent variable

s(t) = ||u(t)|| − ||u(t0)||, where ||u(t)|| and ||u(t0)|| are the L2-norm of the velocity
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Figure 2.5: (a) Maximum skin-friction coefficient Cf in turbulent burst and (b) du-
ration of initial stable period. The duration of stable period is defined by the time
for which Cf is between ±10% of Cf,0 and normalized by the duration of the initial
stable period for the no-slip case. Lower and upper error bars correspond to values
when using ±5% and ±15% of Cf,0, respectively.

field at time t and initial time t0, respectively. Given the definition of the turbulent

burst as an escape from the exact coherent solutions consisting of linearly unstable

and nonlinear unstable stages, the linear growth rate can be estimated by fitting the

linear portion of a bursting trajectory observed in s(t) to an exponential function

Aeσt, where A is a constant related to the magnitude of the unstable eigenvector and

σ is the associated growth rate [71].

Figure 2.6 shows the evolution of s(t) and the growth rate of the P3 and P4

solutions for various slip lengths. The growth rate for the P3 solution tends to increase

linearly with slip length, which is not all surprising given the trend seen in the skin

friction in figure 2.4(a). Conversely, the growth rate for the P4 solution decreases

almost asymptotically with slip length. This same trend was observed in the turbulent

burst value in figure 2.5(a). Again, the escape from the P3 solution occurs earlier

with increasing slip length, while the escape is delayed for the P4 solution. It should

also be noted that the values of the growth rate for the P3 solution are lower than
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Figure 2.6: Growth rates for the P3 (a, b) and P4 (c, d) solutions for various slip
lengths. The growth rate can be approximated for short time during which the
system behaves like exp(σt), where σ s the linear growth rate.

those for the P4 solution as the P3 is believed to be closer to laminar state [182]. In

addition, since the escape process from an exact coherent solution follows closely its

unstable manifold associated with the most unstable eigenvalue, those growth rate

values are comparable to the most unstable eigenvalues of these solutions [182, 183].

2.4.3.3 Phase-space dynamics with slip surfaces

Here, we investigate the phase-space dynamics for the P3 and P4 solutions over slip

surfaces by projecting the dynamics onto the I-D space, where I and D are the energy

input rate and energy dissipation rate, respectively. For the current study (Poiseuille
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flow), the energy input rate is given as

I =
1

2Lz

∫ Lz

0

∫ 1

−1
(pu|x=0 − pu|x=Lx)dydz (2.4)

and the energy dissipation rate is given as

D =
1

2LxLz

∫ Lz

0

∫ 1

−1

∫ Lx

0

(|∇u|2 + |∇v|2 + |∇w|2)dxdydz. (2.5)

The total energy of the flow is defined by

E =
1

2LxLz

∫ Lz

0

∫ 1

−1

∫ Lx

0

(u2 + v2 + w2)dxdydz (2.6)

and, thus, the rate of change in energy for the flow is equal to dE/dt = I −D. For

exact coherent solutions, D = I.

Figures 2.7(a) and (b) shows the I-D phase diagrams of transition and turbu-

lent trajectories starting from P3 and P4 lower-branch solutions, respectively, along

with their corresponding upper-branch solutions. A joint probability density function

(PDF) of turbulent trajectories for no-slip case is also plotted. In figure 2.7(a), all

trajectories from the P3 lower-branch solution with different slip lengths exhibit a

qualitatively similar trend. Starting from the lower-branch solution, they approach

the upper-branch solution, make a turn around the equilibrium line (D = I), and

move toward a core region of PDF. However, as slip length is increased, the trajec-

tory tends to approach the equilibrium line earlier and then move toward the core

region. Therefore, larger slip lengths allow a flow to approach a turbulent state faster,

promoting an earlier transition to turbulence, as seen in figure 2.4(a). Figure 2.7(b)
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Figure 2.7: The phase space projection of turbulent trajectories onto the energy input
rate (I) and energy dissipation rate (D) for various Ls at (a) Rec = 1760 and (b) Rec
= 1800. The black dashed line shows an equilibrium line (D = I). P3 lower (♦) and
upper (�) and P4 lower (/) and upper (J) solutions are also shown [182]. The contour
shows the probability density function (PDF) of the I −D state for the no-slip case
at (a) Rec = 1760 and (b) Rec = 1800. Inset: The mean states of long-time flows at
each respective Rec for Ls = 0.00 (�), Ls = 0.01 (4), and Ls = 0.02 (◦) overlaid on
the no-slip PDF.

shows the trajectories starting from the P4 lower-branch solution, exhibiting similar

trends to those seen in the P3 solution up to the critical slip length Ls = 0.0105 –

the trajectory gets closer to the equilibrium line as slip length is increased. Around

the critical slip length, however, trajectories are altered drastically, bypassing the P4

upper-branch solution and approaching the P3 upper-branch solution before laminar-

izing. Beyond Ls = 0.0105, the trajectories immediately approach the laminar state

with no bursting trajectories, as seen in figure 2.4(b).

It is evident that slip surfaces lead to modifications of the turbulent trajectories in

the I-D phase-space. The core region of the turbulent trajectories with slip surfaces

deviates from that of the no-slip case – it gets closer to the lower-branch solutions.

These observations suggest that the distance between the turbulent state and the

laminar-turbulent separatrix is reduced with the inclusion of slip surfaces. This is
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illustrated by the insets in figure 2.7(a) & (b) showing the mean state of the system

for Ls = 0.00, 0.01, and 0.02. As slip length is increased, the mean state of the system

shifts closer to the lower-branch solutions. This reduced distance indicates a greater

likelihood for the flow to approach the separatrix and, thus, a greater likelihood

that the flow will laminarize. Similar behavior has also been observed by applying

opposition control schemes to wall-bounded turbulent flows [100]. It should be noted

that Figure 2.7 shows the locations of the P3 an P4 solutions on the same plane.

However, these two solutions were computed using different box sizes and, thus,

different dimension. Therefore, the location of these solutions on the plot may differ

if a different box size is used to match the box size of the two solutions.

2.4.3.4 Flow structures

We investigate the effects of slip surfaces on flow structures for which the swirling

strength λci, the imaginary part of the complex conjugate eigenvalues of the velocity

gradient tensor [271], are calculated. Figures 2.8 and 2.9 show contours of the swirling

strength for the lower half of the channel for the P3 and P4 solutions, respectively,

at the end of the turbulent bursting trajectory. The contours represent isosurfaces of

50% of the maximum swirling strength for each solution, which is also given in the

figure. The wall-normal velocity is represented by the colour contours flooding the

isosurfaces. These colour contours provide insights into the effect of slip surface on

the vertical motion of these vortical structures.

As seen in [182], the P3 lower-branch solution displays large vortex cores near the

channel centre – this solution is called core mode. As the bursting process proceeds,

the large vortices appear to be broken into smaller ones, move toward the wall, and

spread across the span of the domain. Eventually, there is a large population of

small vortex cores across the channel, as shown in figure 2.8. It appears that the
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Figure 2.8: Vortical structures of the P3 lower branch solution at Rec = 1760 for slip
lengths (a) Ls = 0.00, (b) Ls = 0.008, (c) Ls = 0.01, and (d) Ls = 0.02. The maximum
swirling strength for each case is presented in parentheses. The multicolored tubes
are isosurfaces of 1/2 of maximum swirling strength. The contours flooding the
isosurfaces represent the wall-normal velocity. Minimum and maximum values of wall-
normal velocity represented by the contours correspond to -0.1 (blue) and 0.1 (red),
respectively. The gray isosurface represents the critical layer, where local streamwise
velocity is equal to the wave speed of the traveling wave solution.

general shape and position of the structures is mostly unchanged for all slip lengths

studied, while the maximum swirling strength is slightly reduced with slip length.

The majority of the wall-normal velocities associated with these vortex structures

are close to zero at this instant, while a very strong negative wall-normal velocity is

located around vortex structures during bursting trajectories.

In figure 2.9, the vortical structures of the P4 solution are presented. As shown

by [182], the P4 lower-branch solution displays vortices of Λ-like structures without

a head connecting the legs. The vortex cores are located near the critical layer

where the local streamwise velocity matches the wave speed – this solution is called

critical-layer mode. Recently, this solution family was continued at higher Reynolds
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Figure 2.9: Vortical structures of the P4 lower branch solution at Rec = 1800 for
slip lengths (a) Ls = 0.00, (b) Ls = 0.004, (c) Ls = 0.008, and (d) Ls = 0.0105.
The maximum swirling strength for each case is presented in parentheses. The mul-
ticolored tubes are isosurfaces of 1/2 of maximum swirling strength. The contours
flooding the isosurfaces represent the wall-normal velocity. Minimum and maximum
values of wall-normal velocity represented by the contours correspond to -0.1 and 0.1,
respectively. The gray isosurface represents the critical layer, where local streamwise
velocity is equal to the wave speed of the traveling wave solution.

numbers, showing hairpin-like vortex structures [207]. With slip surfaces, there still

appear to be leg structures with slightly upward side branches, which is also observed

in a trajectory along the most unstable manifold of the P4 lower-branch solution

[183]. Its structures are significantly longer than ones of the P3 solution and are

accompanied by a small number of smaller vortex cores around these long vortex

structures. Vortex cores of the P4 solution seem to not extend into the channel centre

but remain mostly streamwise-oriented. As slip length is increased, the maximum

swirling strength is drastically reduced (i.e. 50% at Ls = 0.0105). In particular,

from the colour contours of the wall-normal velocity associated with long vortex

structures, the vortex structures are shifted upward from the wall as slip length is
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increased, leaving a quiescent region near the wall.

To quantitatively investigate the effect of the slip surfaces on the vertical shift-

ing of vortical structures, the wall-normal location for the maximum value of the

area-averaged swirling strength is plotted in figures 2.10(a) and 2.10(c) for P3 and

P4 solutions, respectively. Bulk swirling strength is also shown for the P3 and P4

solutions in figure 2.10(b) and 2.10(d), respectively. The wall-normal location of the

maximum of the average swirling strength for the P3 solution is almost constant for

all slip lengths studied, as shown in figure 2.10(a). Figure 2.10(b) also shows that the

effect of slip length on the bulk swirling strength is minimal, suggesting the slip sur-

faces have a minimal effect on the vortex structures associated with the P3 solution.

However, vortex structure dynamics for the P4 solution are quite different than those

of the P3 solution. There are much larger deviations in height of maximum swirling

strength as slip length is increased. Beyond Ls = 0.004, the vortex structures are

significantly shifted upward away from the wall, moving toward the channel centre.

The bulk swirling strength is also significantly decreased as slip length increases as

seen in figure 2.10(d). The trend appears to be asymptotic with slip length. Slip sur-

faces seem to have a profound weakening effect on the P4 vortex structures. These

observations for the P4 solution are in good agreement with the experimental study

[270], where the mechanisms for drag reduction over superhydrophobic surfaces were

investigated for a turbulent boundary layer flow. They performed experiments to

show that the drag reduction is caused by a combination of slip at the surface and

modifications to the turbulent structures – vortices are weakened and lifted away

from the surfaces. The combination of these modifications to the vortical structures

(i.e. weakened and shifted vortices) of the P4 solution help to explain why, beyond

the critical slip length, there is no turbulent burst and flow laminarizes. It appears

that slip surfaces modify the turbulent structures such that the self-sustaining cycle
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Figure 2.10: (a, c) The wall-normal location corresponding to the maximum of the
area-averaged swirling strength for the P3 and P4 solutions, respectively. The dashed
line corresponds to the channel centre for the P3 and P4 solutions. (b, d) The bulk
swirling strength as a function of slip length for the P3 and P4 solutions, respectively.
All values are calculated at the time at which the maximum L2-norm of velocity is
reached.

of near-wall turbulence is disrupted and turbulence can no longer be sustained.

2.4.3.5 Spatiotemporal dynamics

We now attempt to illuminate the mechanisms behind early or delayed transition to

turbulence observed in the P3 and P4 solutions. It has been shown that at the onset

of turbulence, the spatiotemporal dynamics provides a coherent mechanistic basis

for the dynamics of transition to turbulence [9, 208, 14] – puffs and slugs or directed
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percolation have been explored in this regard. Similarly, the spatiotemporal dynamics

of the exact coherent solutions also appear to provide a coherent mechanistic basis

for effects of slip surfaces on the transition observed in the P3 and P4 solutions.

For spatiotemporal dynamics, we incorporate a Fourier decomposition of the ve-

locity field. Similar with [237], the velocity field of the traveling wave solutions can

be Fourier decomposed in the x direction as

u(x, y, z, t) = u0(y, z, t) +
∞∑
n=1

(
einθun(y, z) + c.c.

)
, (2.7)

where α is the fundamental wave number in the streamwise direction, θ = α(x− ct),

c is the constant wave speed, and c.c. denotes complex conjugates. For this study, we

define the 0-mode as u0(y, z, t) = (u0, v0, w0). The streamwise fluctuation u′ can then

be calculated by u0(y, z, t) − u(y), where u(y) is the time- and area-averaged mean

velocity. Note that the wall-normal velocity fluctuation v′(y, z, t) = v0(y, z, t) because

v(y) = 0. These 0-mode velocity fluctuations u′ and v′ provide information about

streaky flow and rolls, respectively [237]. Although u′ and v′ represent streamwise-

averaged fluctuations, these quantities still enable identifying the sweep and ejection

events based on the quadrant analysis [184].

Figures 2.11 and 2.12 show the spatiotemporal dynamics of streamwise and wall-

normal velocity fluctuations at a spanwise location (z+ = L+
z /4) for different slip

lengths, respectively, along with the dashed line corresponding to time of transition.

This spanwise location is chosen because it is the location where the core of vortex

structures is located – the other location (z+ = 3L+
z /4) where the core of vortex

structures is also located was studied, giving essentially identical results.

Both solutions exhibit similar behaviours on the streamwise fluctuations. For the

P3 solution, as shown in figures 2.11(a)-(c), the near-wall low-speed streak (negative
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u′) appears to be enhanced as slip length is increased (u′min decreases from -0.0981 to

-0.1223), while for the P4 solutions, the near-wall low-speed streak is slightly extended

upward but remains relatively quiescent (u′min ≈ −0.025 with slip surfaces) compared

to the P3, as seen in figures 2.11(d)-(f). Near the channel centre, there are positive

streamwise fluctuations for both solutions. In particular, a height of peak streamwise

fluctuations for the P3 solution corresponds to the region where the core of vortex

structures is localized.

Most interestingly, the wall-normal fluctuations show the opposite behaviours.

In figures 2.12(a)-(c), the wall-normal fluctuations of the P3 solution are all negative

across the channel height and become more negative in the buffer layer with increasing

slip length (v′min decreases from -0.0107 to -0.0158). The combination of increased

streamwise velocity near the channel centre and strong negative wall-normal velocity

in the buffer layer seems to promote an instability to the vortex structures at the

channel centre. Specifically, this instability causes the large vortex structures to

propagate toward the wall much sooner where they break up as the slip length is

increased. These effects seem to lead to an early transition for the P3 solution.

On the other hand, for the P4 solution, figures 2.12(d)-(f) show all positive wall-

normal fluctuations across the channel height and peak values are located around

y+ = 20 − 40, where the core of the vortex structures is localized. As slip length

increases, the peak value decreases as opposed to the P3 solution (from v′max = 0.0181

to 0.0147). The combination of the very quiescent flow and positive wall-normal

velocity around the vortex structures appears to allow the the vortex structures to

be more stable and persist for a longer time before transition to turbulence occurs.

Those effects appear to delay the transition. It is interesting to note that based on the

quadrant analysis, slip surfaces are likely to promote stronger wall-toward motions

(Q4-like) at the channel centre and inward interactions (Q3) in the buffer layer for the
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P3 solution, while for the P4 solution, the surfaces tend to promote longer ejection

events (Q2) near the critical layer and wall-away motion (Q1-like) at the channel

centre. This quadrant analysis may help to elucidate distinct transition dynamics for

the P3 and P4 solutions – the combination of the core mode and strong sweep events

seems to promote early transition, while the combination of the critical layer mode

and extended ejection events seems to delay the transition.

Finally, we can make the link between transition dynamics and flow structures,

as the latter can be thought of as different disturbances in a receptivity process of

transition [114]. Flow structures associated with the core mode (P3 solution) seem

to resemble those found in free-stream turbulence (i.e., more densely located at the

centre of the channel or the edge of the boundary layer) as seen in figure 2.8 – it

can be called external perturbations. On the other hand, the P4 solution (critical

layer mode) exhibits Λ-shaped vortical structures, confined near the wall, resem-

bling three-dimensional flow structures developed from Tollmien-Schlichting waves –

it can be called internal perturbations. Depending on different disturbances, transi-

tion scenarios appear to be very different. [198] compared the dynamics of different

transition scenarios, namely, H-type, K-type, and bypass transition. In the H- and

K-type transitions, characterized by Λ-shaped vortical structures, a large overshoot

in the skin-friction coefficient was observed when transition starts to occur. However,

for the bypass transition, this overshoot was absent, giving a smooth transition to

turbulence. This distinct overshoot is present in the skin-friction coefficient profile

for the P4 solution and absent in that for the P3 solution as shown in figure 2.4. It

is worth noting that, similar to the P3 solution, [251] introduced free-stream turbu-

lence to a boundary layer and showed that the bypass transition was triggered. They

showed that the typical near-wall Tollmien-Schlichting waves were not the initiating

mechanism for transition and in this case was attributed to a bypass route triggered
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from the free stream. The evolution of the P3 solution is similar in that the structures

originate in the centre of the channel (i.e. free-stream) and propagate downward to-

ward the near-wall region before breaking down, subsequently triggering transition.

In addition, the shape of the vortical structures for the P4 solution are similar to those

found in H- and K-type transitions. A similar observation for the effects of slip sur-

faces on the H- and K-type transition was also made by Picella et al. [184], where the

overshoot in skin-friction was present and transition was delayed by the slip surface

with the modal perturbation. However, they also showed that the non-modal pertur-

bation, similar to those perturbations that cause bypass transition, was unaffected by

the slip surfaces, contrary to the early transition behavior observed in the P3 solution

of the current study. Differences in the transition behavior of the non-modal pertur-

bation of Picella et al. [184] and the P3 solution of the current study could stem from

assumptions made in the linearization of the Navier-Stokes equations or, possibly,

differences between the non-modal perturbation and the P3 solution. The differences

in the skin-friction coefficient and vortical structures between the P3 and P4 solutions

may provide clear and plausible mechanisms responsible for early transition for P3

and delayed transition for P4 due to slip surfaces, for which further investigation is

yet needed.

2.5 Conclusion

Direct numerical simulations were performed to investigate the effect of slip surfaces

on transition in plane Poiseuille (channel) geometry. For the purpose of validations,

laminar drag reduction values were calculated and compared to the previous studies.

Levels of over 10% drag reduction were observed and in good agreement with previous

numerical and experimental studies. The drag reduction percentage remains almost
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constant regardless of the Reynolds number. In particular, our results are in great

agreement with the theory for drag reduction of superhydrophobic surfaces on both

walls in a laminar channel flow.

Turbulence lifetime analysis (i.e. the probability that turbulence will persist) was

investigated for transitional flows at Rec = 1600, 1800, and 2000 (Reτ = 77, 85, and

93). Flows with slip surfaces were significantly less likely to maintain turbulence com-

pared to the no-slip case. Additionally, the slip flows were more likely to laminarize

at earlier times as slip length is further increased. As Reynolds number is increased,

this trend still holds, while a larger slip length is needed to obtain the same likeli-

hood of laminarization found at lower Reynolds numbers. Phase-space projection of

transitional trajectories on the energy input and dissipation rates showed a reduced

distance between the laminar and turbulent states, which helps explain the increased

likelihood of laminarization due to slip surfaces.

Exact coherent solutions, specifically nonlinear travelling wave solutions, to the

Navier-Stokes equations were used to investigate the effects of slip surfaces on the

laminar-turbulent separatrix. The P3 and P4 solution families were chosen as their

lower-branch solutions are shown to lie on the basin boundary between laminar and

turbulent flow [182]. The skin-friction evolution and linear growth rate from the

lower-branch solutions were calculated. For slip flows, the strong turbulent burst

associated with the P3 lower-branch solution was induced at earlier times while the

bursting magnitude and growth rate were mostly unaffected. For the P4 solution,

however, the strong turbulent burst was delayed with the reduced magnitude and

growth rate for slip flows. Beyond a critical slip value, the turbulent burst was com-

pletely eliminated as a flow is immediately laminarized after a short stable period.

Effects of slip surfaces on vortex structures of the P3 and P4 solutions were exam-

ined to elucidate mechanisms responsible for the difference in transition behaviours



55

between the solutions. It appears that structures associated with the P3 solution

were largely unaffected by the slip surfaces. Overall structure and strength remained

relatively constant. However, the strength of P4 vortex structures was weakened by

∼ 50%, and they were shifted away from the wall.

Based on the quadrant analysis and spatiotemporal dynamics, it was suggested

that slip surfaces promote the prevalence of strong wall-toward motions (Q4-like

events) in the area of the P3 vortex cores close to the channel centre. This results

in instability, which promotes the propagation of the vortex structures down into the

wall where they break up and induce transition, similar to the bypass transition [197].

However, sustained ejection events (Q2) were present in the region of the P4 vortex

cores (which resemble the Λ-shaped structures in H- and K-type transitions) resulting

in a shift of the vortex structures away from the wall allowing them to remain intact

and propagate downstream for a longer time. It can be suggested that the slip sur-

faces tend to affect core-mode structures (P3 solution) or non-modal perturbations

via inward interactions (Q3) near the wall and wall-toward motions (Q4-like events)

near the channel centre, subsequently leading to bypass-type early transition. On the

other hand, the slip surfaces tend to affect critical-layer structures (P4 solution) or

modal perturbations via ejection events (Q2) near the wall and wall-away motions

(Q1-like events) near the channel centre, subsequently leading to H- and K-type de-

layed transition. These distinct transition dynamics of the P3 and P4 solutions due

to slip surfaces could suggest that different flow control techniques could be used to

delay or promote a transition to turbulence, which will be a subject of interesting

future work.
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Chapter 3

ON THE DECAY OF TURBULENCE AND SLIP

SURFACES

1

3.1 Decay of turbulent flows

There is much insight to be gained from the dynamics of a flow decaying from a

turbulent state to a laminar state. While the study of transition in fluid systems is

largely concerned with the transition from a laminar state to a turbulent state, pre-

vious studies have also analyzed the properties of turbulence by performing ’quench’

protocols in plane Poiseuille flow (PPF) [22, 179, 209, 49], where quenching involves

the the sudden reduction in Reynolds number at some time tq > t0. One motivation

for these studies was to find a threshold Reynolds numberReg where turbulence is

sustained. They found that below Reg ≈ 700, turbulence was not sustainable and

the system decayed to the laminar state. Another experimental study by Seki and

Matsubara [203] found Reg = 1050 by way of linear extrapolation of the intermittency

factor.

One advantage of the quenching protocol is that because the system is initialized

1This work is in preparation to be submitted to a scientific journal.
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from a turbulent state, it is much less sensitive to noise or perturbations in the

initial condition. Additionally, this type of study provides insight into mechanisms

responsible for the susceptibility of a turbulent flow to laminarization. Subsequently,

these mechanisms can be used to inform more efficient flow control techniques.

Recently, Liu et al. [148] visualized the decay of turbulence in a Couette-Poiseuille

(CPF) flow using particle image velocimetry (PIV). In this geometry, the flow is

driven by the shear due to a moving belt on one wall. The speed of the belt can

be adjusted such that the Reynolds number is quenched quickly. The time required

for the quenching process is less than 2 time units (h/Ubelt) They observed distinct

decay rates for the streaks and rolls during decay. The decay rates were quantified

by comparing the time evolution of turbulent energy in the streamwise and spanwise

directions, and the spanwise rolls decay approximately two times faster than the

streamwise streaks. These experimental findings provide support for the different

decay rates in the self-sustained model put forward by Waleffe [231].

In this section, we study the effect of non-zero wall slip on turbulent decay rates.

Taking a similar approach to Liu et al. [148], we analyze the time evolution of tur-

bulent energy associated with the streamwise and spanwise directions using a quench

protocol. In addition, we also consider the wall-normal component to further elu-

cidate possible mechanisms responsible for the self-sustaining process. This process

is repeated for various final quench Reynolds numbers Ref to gain insight into the

self-sustaining process [231] to contribute to the knowledge base for better-informed

flow control methods.
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3.2 Problem formulation

The details of the numerical problem formation are the same as those used in Section

2.3. The initial Reynolds number used in the current study is Rei = 1800 and the

flow is quenched to Ref = 1000, 800, 600 to study the effect of final Reynolds number

on decay characteristics. The initial Reynolds number is chosen such that it is above

the transitional Reynolds number Re ≈ 1000. The final quenched Reynolds numbers

are chosen such that they are at or below the critical Reynolds number. To achieve

this, a long-time, no-slip simulation (tUc/h = 10000) is run at Re = 1800 to obtain a

collection of turbulent fields. A random field is then chosen from these turbulent fields

to use as an initial condition for the quenched simulation at the Reynolds numbers

and slip lengths of interest. The slip lengths of interest are Ls = 0.00, 0.01, 0.02

to illustrate the effect of slip on decay characteristics, where Ls is defined above in

Section 2.3. The procedure for the P3 and P4 upper-branch traveling wave solutions

is the same, only using the solution velocity fields as the initial conditions. The

initial Reynolds numbers for the traveling wave solutions are the inherent Reynolds

numbers where the solutions emerge (i.e., Re = 1800 and Re = 1855 for P3 and P4,

respectively).

Simulations are performed in domains of Lx×Ly×Lz = 2π×2×π for random initial

conditions. Domain sizes for the P3 and P4 upper branch solutions are Lx×Ly×Lz =

2π × 2 × π and Lx × Ly × Lz = π × 2 × π/2, respectively. Typical numerical grid

spacing in the streamwise and spanwise directions are ∆x+ ≈ 6, ∆z+ ≈ 3. Non-

uniform Chebyshev spacing in the wall-normal direction results in ∆y+min ≈ 0.05 at

the wall and ∆y+max ≈ 3 at the channel center.
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3.3 Results: Decay of turbulence

Shown in 2.3 is the turbulent lifetime of transitional flow over slip surfaces. It can be

seen that wall slip decreases the likelihood that a given turbulent trajectory will be

sustained. Figure 2.3 inset also shows that a given slip length has less of an impact on

a turbulent trajectory as the Reynolds number increases. While there is meaningful

statistical information to be gleaned from these results, which were detailed in 2.4.2,

we also consider the decay of turbulent trajectories to elucidate possible mechanisms

responsible for the decrease in turbulence lifetime with wall slip. In this section, we

detail the decay of random turbulent initial conditions, as well as the decay of exact

coherent solutions (i.e. P3 and P4 upper-branch traveling wave solutions [182]), to

the laminar state.

3.3.1 Decay of random initial conditions

This section details a statistical study on the decay of random initial conditions

using a quench protocol. A random turbulent initial condition starting from Rei =

1800 is allowed to decay to various final Reynolds numbers, Ref = 600, 800, 1000,

with increasing slip length, Ls = 0.00, 0.01, 0.02. This procedure is performed for

10 different initial conditions with varying turbulence intensity. The Ls-norm of

disturbance velocity is calculated to observe the decay to the laminar state, where

disturbance velocity is defined as

u(x, y, z, t) = U(x, y, z, t)− Ubase(y) (3.1)

Analysis of the time-evolution of velocity magnitude, flow structures, streamwise

variance of velocity fields, and the time-evolution of wall shear rate are all detailed

below for the 10 random initial conditions.
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3.3.1.1 Time-evolution of L2-norm of velocity

Figure 3.1 shows the time evolution of the L2-norm of the disturbance velocity, The

decay rate for in all three directions increases for decreasing Ref . These results are

similar to observations made in previous studies [76, 148], and there is no rigorous

understanding of the mechanisms behind this behavior. The black diamond corre-

spond the the time when the spanwise perturbation velocity magnitude reaches 5%

of its initial value. Shortly after this time, decay rate for the spanwise velocity mag-

nitude reduces. At this point in the streamwise and wall-normal directions, there is

an increase in the decay rate, signaling a change in the decay behavior of the flow

structures in these directions. These results are consistent with those found previ-

ously by Liu et al. [148], where they found that the ”waviness”, or undulation, of the

streamwise streaks reduces initially allowing the rapid decay of the spanwise rolls.

Once the rolls have decayed, then the streaks begin to decay more rapidly. These

observations are consistent with the self-sustaining process put forward by Waleffe

[231], and the present results corroborate these previous findings.

The same procedure is also shown in Figure 3.3 for Ref = 1000 and varying

levels of slip at the boundaries to illustrate the effect of slip surfaces on the decay of

turbulence. The addition of wall slip appears to increase the decay rate, at least

initially, when compared the the no-slip case. After . It should be stated that

it is unclear whether the inclusion of slip surfaces has a significant effect on the

decay rate, or whether the slip surfaces simply cause the flow to begin the process of

laminarization sooner. The effect of wall slip on the decay process for final Reynolds

numbers Ref < 1000 studied here is negligible and shown in Figure 3.2. This may

be due to the fact that these final Reynolds numbers are close to and below the

critical Reynolds number Reg ≈ 700 where turbulence cannot persist [179, 209].
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Figure 3.1: Decay of a random initial condition at initial Reynolds number Rei = 1800
for quench Reynolds numbers, Ref = 600, 800, 1000. Black diamond corresponds to
the time when the spanwise magnitude reaches 5% of its initial value.
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Figure 3.2: Decay of a random initial condition at initial Reynolds number Rei = 1800
for quench Reynolds numbers, Ref = 600, and slip lengths, Ls = 0.00, 0.01, 0.02.
Black diamond corresponds to the time when the spanwise magnitude reaches 5% of
its initial value.

Therefore, the wall slip may have negligible effect on the decay as the system will

decay regardless.
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Figure 3.3: Decay of a random initial condition at initial Reynolds number Rei = 1800
for quench Reynolds number, Ref = 1000, and slip lengths, Ls = 0.00, 0.01, 0.02.
Black diamond corresponds to the time when the spanwise magnitude reaches 5% of
its initial value.
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3.3.1.2 Flow structures

The following figures show, via disturbance velocity u+, the flow structures present

at a wall-normal plane of y+ = 12 for all three spatial dimensions. This wall-normal

distance was chosen as the viscous stress and Reynolds shear stress are equal, resulting

in peak production P at that point [187]. The color axis is such that the absolute

values are less than the maximum value of the initial condition of the no-slip case

(i.e., |u| < max(uLs=0,t=0)).

Figure 3.4 shows the disturbance velocity in the three spatial directions for Ref =

600 and Ls = 00. The trend observed in the decay of structures matches that observed

in 3.1 showing faster decay of the structures in the wall-normal and spanwise directions

when compared to the streamwise direction. This, again, corroborates results seen in

[148]. The results for Ls = 0.01, 0.02 (not shown) show no significant difference from

the no-slip case and match the trend observed in 3.2 showing negligible effect of the

wall slip on the decay rates of velocity magnitude. The same trend was observed for

the Ref = 800 case which is not shown here.

Figures 3.5 - 3.7 show the disturbance velocities for each spatial dimension for the

Ref = 1000 case at each slip length, Ls = 0.00, 0.01, 0.02. Unlike the Ref = 600 case,

it appears that wall slip has an effect on the rate at which the disturbances decay.

The strength of the velocity disturbances is reduced with wall slip as evidenced by

the decrease in intensity of the color contours. Additionally, the ”waviness” of the

streamwise structures appears to be reduced earlier in the slip cases than the no-slip

case.

To quantify the decrease in the waviness of the structures, the mean variance of

the velocity fields in the streamwise direction was calculated. The time-evolution of

this value, normalized by the mean variance at time t = 0, is shown in Figures 3.9
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- 3.11. As Liu et al. [148] put forward, it appears that the streamwise variance, or

”waviness”, dies out first, indicating that the streamwise streaks first straighten out

before allowing the spanwise rolls to decay. After the quick decay of the spanwise

rolls, the streamwise streaks are then able to decay. Observed in Figures 3.9 - 3.11,

the initial rate at which the variance of the streamwise velocity field decays increases

with decreasing final Reynolds number, which would allow the spanwise rolls to decay

sooner. This is a possible mechanism for the increased decay rate as final Reynolds

number is decreased.

3.3.1.3 Streamwise variance

Liu et al. [148] discuss the process of decay as beginning with the reduction in ”wavi-

ness” of the streamwise structures before the spanwise rolls can decay. To quantify

this, we analyze the streamwise variance of the velocity disturbances in each direction.

Figure 3.8 shows the time-evolution of the average streamwise variance as a function

of final Reynolds number, where the values are normalized by the average stream-

wise variance of the initial condition. As the final Reynolds number is decreased,

the streamwise variance decreases more rapidly. According to Liu et al. [148], this

decrease in waviness allows the spanwise rolls to decay sooner in the evolution of the

system, and, ultimately, a faster decay to the laminar state. Figure 3.8 also shows the

average streamwise variance for the wall-normal and spanwise perturbation velocities.

While the rate at which the streamwise variance of the spanwise velocity appears to

remain constant with decreasing final Reynolds number, the time at which this decay

begins is earlier. This further corroborates the proposed process that the streamwise

streaks first straighten before the spanwise rolls begin to decay quickly, followed by

a second stage where the streamwise streaks decay. At lower final Reynolds num-

bers, this process appears to happen more quickly because the streamwise structures
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Figure 3.8: Normalized mean streamwise variance for all three velocity fields for the
no-slip case at y+ = 12 for Ref = 600, 800, 1000.

become streamwise oriented more quickly.

Figures 3.9 - 3.11 also show the effect of slip on the streamwise variance of the

three velocity fields. Similar to the trends observed before in the decay of velocity

magnitude, the slip has negligible impact as the final Reynolds number is decreased.

However, for Ref = 1000, the slip causes decreased streamwise variance, possibly

indicating the mechanism for the increased decay rate with wall slip. For Ref =

600, 800 there is a brief period at t = 5 ∼ 10 where the slip has a slight effect on the

streamwise variance.

3.3.1.4 Wall shear rate

We can compare these results with the decay in the wall shear rate. Figure 3.12 shows

the time evolution of a 10-run ensemble average of the area-averaged wall shear rate
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Figure 3.9: Normalized mean streamwise variance for all three velocity fields for the
slip and no-slip cases at y+ = 12 for Ref = 600.

for each final Reynolds number and slip length. The vertical dashed lines correspond

to the time at which the wall shear rate reaches 101% of the final value. Again,

we see that the rate at which the system decays to the laminar state increases with

decreasing final Reynolds number. We also see, again, that below Ref = 1000 the

slip surfaces have less impact on the decay rate. Slip appears to have no impact for

Ref = 600, but a counterintuitive effect for Ref = 800. For this Reynolds number,

Ls = 0.01 causes the system to decay faster, but Ls = 0.02 results in a time to reach

the laminar state that is longer than even the no-slip case.



72

Figure 3.10: Normalized mean streamwise variance for all three velocity fields for the
slip and no-slip cases at y+ = 12 for Ref = 800.

3.3.2 Decay of exact coherent solutions

In addition to the decay of random initial conditions, a more deterministic approach

can be taken by using exact coherent solutions to the Navier-Stokes equations as the

initial conditions. Specifically, the P3 and P4 upper-branch traveling wave solutions

to the Navier-Stokes equations are used as initial conditions. These solutions ex-

hibit characteristic short-time behavior. Therefore, any changes associated with this

behavior can be attributed to the changes in the system. The upper-branch (UB)

solutions are used as they exhibit dynamics similar to those observed in a turbulent

channel flows. In fact, a turbulent trajectory at the respective Reynolds number

spends most of its time in a region where the UB solution resides. More details of

the behavior and characteristics of these solutions can be found in Park and Graham
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Figure 3.11: Normalized mean streamwise variance for all three velocity fields for the
slip and no-slip cases at y+ = 12 for Ref = 1000.

[182].

Analysis of the decay of the P3UB and P4UB solutions via the time-evolution

of perturbation velocity magnitude, flow structures, streamwise variance of velocity

fields, and the time-evolution of wall shear rate are detailed below.

3.3.2.1 Time-evolution of L2-norm of velocity

First, the effect of final quench Reynolds number is considered. The time evolution of

the L2-norm of the disturbance velocity in each spatial dimension for the P3 and P4

solutions is shown in Figure 3.13 and Figure 3.14, respectively. The quench protocol

is performed for final Reynolds numbers Ref = 600, 800, 1000 for the no-slip case.

Unlike the trend observed for random initial conditions in Section 3.3.1 and by Liu
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Figure 3.12: Time-evolution of wall shear rate for Ls = 0.00, 0.01, 0.02 and for Ref =
600, 800, 1000. Arrow points in the direction of increasing slip length.

et al. [148], the P3 solution appears to have a similar decay rate in the streamwise

and spanwise direction during both an initial decay stage and a second decay stage

showing an increased rate of decay. This trend is the same for Ref = 800, 1000. For

all three Ref studied, the wall-normal disturbances decay faster than both streamwise

and spanwise disturbances. There is an increase in the decay rate as the final Reynolds

is decreased. Similar to the behavior observed in 3.3.1 and Liu et al. [148].

Interestingly, similar to the observed behavior in Section 2.4.3, there are distinct

decay behaviors between the P3 and P4 upper-branch solutions. The trend seen

in the P4 solution is similar to that observed by Gomé et al. [76], Liu et al. [148]:

the spanwise disturbances decay faster than the streamwise disturbances for all Ref

studied. The decay rate in all directions increases linearly with decreasing Ref . For
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Figure 3.13: Decay of the L2-norm of x, y, and z velocity disturbances for the P3
upper-branch traveling wave solution at initial Reynolds number Rei ≈ 1800 for
various quench Reynolds numbers, Ref = 600, 800, 1000, and slip length, Ls = 0.00.

the P4 soution, which is characterized by structures localized at the critical layer, the

spanwise and wall-normal disturbances are almost identical other than for Ref = 600

where the spanwise disturbances decay with a faster rate during an initial stage before

a second slower stage. While the decay rate for the spanwise and wall-normal energy is

larger than the streamwise direction, the disturbances in these directions take longer

than the streamwise disturbances to decay fully. These may be features associated

with the spatial structure of the ECSs.
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Figure 3.14: Decay of the L2-norm of x, y, and z velocity disturbances for the P4
upper-branch traveling wave solution at initial Reynolds number Rei ≈ 1800 for
various quench Reynolds numbers, Ref = 600, 800, 1000, and slip length, Ls = 0.00.

3.3.2.2 Flow structures

Figure 3.17 shows the flow structures at a wall-normal plane at y+ = 12 for the P3

solution at Ref = 600. As observed in the velocity magnitude, the spanwise structures

decay faster than the streamwise structures. This same trend is observed in the flow

structures for both slip lengths (not shown) studied for this final Reynolds number.

Figures 3.18 - 3.20 show the flow structures at a wall-normal plane at y+ = 12 for

the P3 solution at Ref = 800. Spanwise structures decay faster than the streamwise

structures. As seen in the velocity magnitude, the system takes longer to decay at

this higher final Reynolds number. However, unlike Ref = 600, the slip surfaces

have an effect on the dynamics as the P3 solution evolves. Interestingly, the slip
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Figure 3.15: Decay of the L2-norm of x, y, and z velocity disturbances for the P3
upper-branch traveling wave solution at initial Reynolds number Rei ≈ 1800 for
quench Reynolds number, Ref = 600, and various slip lengths, Ls = 0.00, 0.01, 0.02.

prolongs the decay time, with structures still around for twice as long with Ls = 0.02

compared with the no-slip case. The spanwise structures still decay more quickly

than the streamwise structures.

Figures 3.21 - 3.23 show the flow structures at a wall-normal plane at y+ = 12 for

the P3 solution at Ref = 1000. Spanwise structures decay faster than the streamwise

structures. As seen in the velocity magnitude, the system takes longer to decay at

this higher final Reynolds number. The slip surfaces have an effect on the dynamics

as the P3 solution evolves. Again, for this final Reynolds number, the Ls = 0.02

case has much stronger fluctuations still present for much longer compared with the

no-slip case. The Ls = 0.01 case causes the system to decay faster than Ls = 0.02



78

Figure 3.16: Decay of the L2-norm of x, y, and z velocity disturbances for the P4
upper-branch traveling wave solution at initial Reynolds number Rei ≈ 1800 for
quench Reynolds number, Ref = 600, and various slip lengths, Ls = 0.00, 0.01, 0.02.

but longer than the no-slip case. The slip surfaces appear to have some stabilizing

effect on the P3 flow structures.

Figures 3.24 - 3.26 show the flow structures at a wall-normal plane at y+ = 12

for the P3 solution at Ref = 600, 800, 1000, respectively. As observed in the velocity

magnitude, the spanwise structures decay faster than the streamwise structures. This

same trend is observed in the P4 flow structures for both slip lengths (not shown)

studied for this final Reynolds number and is negligible. The flow structures between

the three final Reynolds numbers are similar, but appear stronger and take longer to

decay in the streamwise direction for Ref = 1000.
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3.3.2.3 Streamwise variance

Figures 3.27 - 3.29 show the evolution of the average streamwise variance in the

perturbation velocity in each spatial dimension for Ref = 600, 800, 1000, respectively.

The variance is normalized by the streamwise variance of the initial condition. For

Ref = 600, the system decays immediately, so the variance in the streamwise direction

also decays immediately. There appear to be three distinct stages in the streamwise

and spanwise directions. Initially, the variance decays quickly, before leveling out in

the two ensuing stages. The streamwise variance does appear to decay more quickly

than the spanwise initially, corroborating observations by [148]. The variance in the

wall-normal velocity decays the fastest of the three components, possibly suggesting

that the decay first begins in the wall-normal direction before the streamwise streaks

straighten. There is a small effect of slip on the streamwise variance of the streamwise

perturbation velocity, where the variance is reduced for t ≈ 2.5 ∼ 10.

For the Ref = 800 and Ref = 1000 cases, the variance has more rich dynamics

because the system remains turbulent for some time. For Ref = 800, there appears

to be some sort of periodic behavior of the system when slip is present at the wall.

When the system finally decays, the streamwise variance of the streamwise velocity

decays before the streamwise variance of the spanwise velocity. For Ref = 1000, there

is no discernible trend in the average streamwise variance of the velocity components.

It does appear that the variance in the wall-normal velocity decays first, followed by

the spanwise, and then streamwise components.

The average streamwise variance of the perturbation velocity for the P4 solution

is shown in Figures 3.30 - 3.32. A similar trend to the P3 solution is observed, other

than the system begins to decay immediately compared to the P3 solution. For all

three final Reynolds numbers studied, the variance in the wall-normal velocity occurs
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Figure 3.27: Normalized mean streamwise variance of the P3 upper-branch solution
for all three velocity fields for the slip and no-slip cases at y+ = 12 for Ref = 600.

first, followed by the streamwise component, and then the spanwise component. Wall

slip has negligible effect on the average streamwise variance in the decay of the P4

solution.

3.3.2.4 Wall shear rate

The time-evolution of area-averaged wall shear rate for the P3UB solution is shown

in Figure 3.33. The vertical dashed lines correspond to the time at which the value

reaches 101% of the final value. There is a counterintuitive behavior of the P3 so-

lution as it decays to the various final Reynolds numbers. While the decay begins

immediately, the system takes the longest to decay for the lowest final Reynolds num-

ber, Ref = 600. There is no clear trend for the time to decay as a function of final
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Figure 3.28: Normalized mean streamwise variance of the P3 upper-branch solution
for all three velocity fields for the slip and no-slip cases at y+ = 12 for Ref = 800.

Reynolds number.

The effect of wall slip is interesting, as well. Increasing slip decreases the time

to decay for Ref = 600. However, for Ref = 800, the time that it takes the system

to decay to the laminar state increases for increasing slip length. This trend is not

followed for Ref = 1000, where Ls = 0.01 causes the system to decay the fastest,

followed by Ls = 0.02 and then Ls = 0.00. There appears to be some critical slip

length which causes the fastest decay before causing some interaction with the flow,

and increasing the time to reach the laminar state.

The time-evolution of area-averaged wall shear rate for the P4UB solution is shown

in Figure 3.34, where the vertical dashed lines correspond to the time at which the

value reaches 101% of the final value. Again, the final Reynolds number has a coun-
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Figure 3.29: Normalized mean streamwise variance of the P3 upper-branch solution
for all three velocity fields for the slip and no-slip cases at y+ = 12 for Ref = 1000.

terintuitive effect on the time required to decay to the laminar state. The system

takes longest to decay for Ref = 600, reaching the laminar state at t ≈ 875. The

time required to reach the laminar state is then reduced to t ≈ 150 for Ref = 800

and t ≈ 200 for Ref = 1000. Wall slip has a negligible effect on the decay time

for the P4UB solution. It is interesting to note that the wall shear rate for the P4

solution takes much longer to decay than the time it takes for structures observed at

y+ = 12 to decay. While this wall normal distance is away from the wall slightly, it

is still approximately the edge of the viscous sublayer. It may be that some structure

persists near to the wall that takes longer to decay via viscous dissipation.

The difference in behavior of the P3 and P4 upper-branch solutions most likely

stems from the difference in the structure of the solutions. As stated above, the P3 so-
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Figure 3.30: Normalized mean streamwise variance of the P4 upper-branch solution
for all three velocity fields for the slip and no-slip cases at y+ = 12 for Ref = 600.

lution is characterized by free-stream turbulence, with structures concentrated at the

core of the flow. The free-stream structures of the P3 solution may propagate down

toward the wall initially to a wall-normal location where the wall slip stabilizes the

structures somehow. The P4 solution is characterized by structures centered about

the critical layer, closer to the wall. Because these structures are centered about

the critical layer, closer to the wall, they may decay faster with the sudden disrup-

tion of the critical layer. Further analysis is necessary to elucidate the mechanisms

responsible.
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Figure 3.31: Normalized mean streamwise variance of the P4 upper-branch solution
for all three velocity fields for the slip and no-slip cases at y+ = 12 for Ref = 800.

3.3.3 Edge states as facilitators to transition

Our fundamental understanding of the transition to turbulence is incomplete. Though

there are countless studies on the transition to turbulence, we still have yet to form a

full understanding of what causes some perturbations to trigger turbulence and some

perturbations to decay due to viscous effects. This spurred a new perspective on the

laminar-turbulent transition through the lens of dynamical systems theory. Through

this lens, a manifold exists which separates the initial conditions that decay from

initial conditions that evolve into turbulence [101, 212, 202]. If a state resides on this

stable manifold, meaning that it neither decays nor becomes turbulent, it is attracted

to what are known as ’edge states’. The unstable manifold extends from the edge

state toward the laminar state and the turbulent attractor.
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Figure 3.32: Normalized mean streamwise variance of the P4 upper-branch solution
for all three velocity fields for the slip and no-slip cases at y+ = 12 for Ref = 1000.

Recently, Khapko et al. [121] investigated the possibility that edge states act as

mediators to transition in boundary-layer flows. They studied a set of simulations

initialized with non-localized noise and found that a sinuous low-speed streak is ob-

served immediately before transition which is both qualitatively and quantitatively

similar to the coherent structure associated with the edge state. What has yet to

be studied in depth, and is the goal of this section, is whether these edge states also

facilitate the decay to the laminar state. Figure 3.35 shows a schematic of the state

space layout for the laminar-turbulent transition with a possible trajectory of the

decay from the turbulent attractor, through the edge state, to the laminar state.

The P3 and P4 solution families are of special interest because their lower-branch

solutions are embedded in the basin boundary separating the basins of attraction for
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Figure 3.33: Time-evoution of wall shear rate for the P3 upper-branch traveling
wave solution at initial Reynolds number Rei ≈ 1800 for quench Reynolds numbers,
Ref = 600, 800, 1000, and various slip lengths, Ls = 0.00, 0.01, 0.02.

the laminar and turbulent states. The P3 lower-branch solution is an edge state as it

only has a single unstable direction, while the P4 lower-branch solution has two un-

stable directions [182]. With these solutions in hand, this section investigates whether

the P3 or P4 lower-branch solutions mediate the decay of turbulent trajectories to

the laminar state. The goal is to determine whether a turbulent trajectory, when de-

caying to the laminar state, visits either of these solutions or whether different decay

dynamics occur. We use the ensemble averaged values of the 10 decay trajectories

from random initial conditions, as well as trajectories from the decay of the P3 and

P4 upper-branch solutions. The same final Reynolds number and wall slip lengths

are investigated.

A number of state variables can be used to visualize the system in state-space.
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Figure 3.34: Time-evoution of wall shear rate for the P4 upper-branch traveling
wave solution at initial Reynolds number Rei ≈ 1800 for quench Reynolds numbers,
Ref = 600, 800, 1000, and various slip lengths, Ls = 0.00, 0.01, 0.02.

Here, we choose to project the infinite dimensional state of the system onto the two-

dimensional plane of energy input rate versus energy dissipation rate. Input and

dissipation, as they will be referred to, are defined as

I =
1

2Lz

∫ Lz

0

∫ 1

−1
(pu|x=0 − pu|x=Lx)dydz (3.2)

and the energy dissipation rate is given as

D =
1

2LxLz

∫ Lz

0

∫ 1

−1

∫ Lx

0

(|∇u|2 + |∇v|2 + |∇w|2)dxdydz. (3.3)
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Figure 3.35: State space representation of turbulence and the edge state. The bound-
ary between the the basins of attraction coincides with the stable manifold of the
edge state. The edge state’s unstable manifold point toward the turbulent attractor
or to the laminar state. Minimal seed is the closest point on the edge to the laminar
state and corresponds to the minimal energy norm to cause a change from laminar
to turbulence. Figure adapted from Khapko et al. [121]

While the total energy of the flow is defined by

E =
1

2LxLz

∫ Lz

0

∫ 1

−1

∫ Lx

0

(u2 + v2 + w2)dxdydz (3.4)

and, thus, the rate of change in energy for the flow is equal to dE/dt = I −D. For

exact coherent solutions, D = I. Input and dissipation are normalized such that the

laminar value corresponds to I = D = 1. The P3 and P4 solutions are shown on

the same Input-Dissipation plane in the following results. However, the two solutions
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were computed using different box sizes and, thus, different dimension. Therefore, it

should be noted that it is possible that the position of these solutions on the following

figures may be different if they are computed in the same computational domain.

3.3.3.1 Random initial conditions

Figures 3.36 - 3.38 show the ensemble average of the random trajectories in the energy

Input-Dissipation plane. The black star represents the mean state of the long-time

trajectory at Re = 1800, or the average starting point for the decaying trajectories.

The trajectories are quite interesting. As final Reynolds number is increased, the

system appears to be attracted to the P4 lower-branch solution, as evidenced by the

curve in the trajectory when the system nears the solution. It also appears to pass

through, or very near to, the P3 lower-branch solution for Ref = 1000. For the

Ref = 600 case, the trajectory decays much further away from the P4LB solution,

and does not seem to be attracted to it. However, when the system gets close to

the P3LB solution, there are large dissipation events, possibly indicating that the

system is having some interaction with the P3LB solution. More in-depth analysis is

required.

3.3.3.2 Exact coherent solutions

Figures 3.39 - 3.41 show the state-space representation of the decay of the P3 upper-

branch solution. Figure 3.39 shows a similar trend to that observed in Figure 3.38,

where the system is attracted to the P4 lower-branch solution as it decays, and

then goes through, or very near to, the P3 lower-branch solution before reaching

the laminar state. As final Reynolds number increases, the dynamics of the system

become more complicated. For Ref = 800 the system oscillates between the P4

lower-branch and P4 upper-branch before approaching the P3 lower-branch and then
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Figure 3.36: Input-Dissipation state space representation of decay of the ensemble
averaged random initial conditions at initial Reynolds number Rei = 1800 for quench
Reynolds number Ref = 600 and slip lengths Ls = 0.00, 0.01, 0.02. Magenta dia-
monds: P3 lower (open) and upper (closed) solutions. Cyan left triangles: P4 lower
(open) and upper (closed) solutions. Black star: long-time mean value for Rei = 1800.

decaying to the laminar state. In fact, this behavior is observed in Figure 3.33 where

the wall shear rate oscillates in a periodic fashion for an extended time before finally

decaying to the laminar value. This extended periodic behavior is only present for

Ls = 0.02. For Ref = 1000, there is similar behavior, as there is an interplay

between the P4 lower-branch and P4 upper-branch as the system decays. There are

much larger ’bursting’ trajectories as the Reynolds number is close to the transitional

Reynolds number. As the system decays, it orbits the P4 upper-branch solution before

approaching and orbiting the P4 lower-branch solution. After some time, the system

finally approaches the P3 lower-branch solution and decays to the laminar state. Slip

does have a significant effect on the dynamics of the decay of the P3 upper-branch
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Figure 3.37: Input-Dissipation state space representation of decay of the ensemble
averaged random initial conditions at initial Reynolds number Rei = 1800 for quench
Reynolds number Ref = 1000 and slip lengths Ls = 0.00, 0.01, 0.02. Magenta dia-
monds: P3 lower (open) and upper (closed) solutions. Cyan left triangles: P4 lower
(open) and upper (closed) solutions. Black star: long-time mean value for Rei = 1800.

solution, even stabilizing the system, as evidenced by the emergence of an unstable

periodic orbit.

Figures 3.42 - 3.44 show the state-space representation of the decay of the P4

upper-branch solution. The state-space dynamics associated with the P4 upper-

branch solution are much simpler. For all three final Reynolds numbers, the system

avoids any interaction with either the P4 lower-branch or the P3 lower-branch. It

simply approaches the laminar state. For Ref = 800, there is one large-dissipation

event for Ls = 0.00 as the system nears the P4 lower-branch. However, this is not

observed for the slip cases, and slip has negligible effect on the dynamics at any of

the final Reynolds numbers studied.
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Figure 3.38: Input-Dissipation state space representation of decay of the ensemble
averaged random initial conditions at initial Reynolds number Rei = 1800 for quench
Reynolds number Ref = 1000 and slip lengths Ls = 0.00, 0.01, 0.02. Magenta dia-
monds: P3 lower (open) and upper (closed) solutions. Cyan left triangles: P4 lower
(open) and upper (closed) solutions. Black star: long-time mean value for Rei = 1800.

3.4 Conclusions and future directions

The decay from turbulence to laminar was studied via the time-evolution of the mag-

nitude of the disturbance velocity in the streamwise, wall-normal, and spanwise di-

rections. Using a quench protocol, where the Reynolds number is suddenly decreased,

a turbulent state was allowed to decay to the laminar state. For random turbulent

initial conditions, the decay rates increased with decreasing final Reynolds number.

As observed in previous plane Poiseuille and Couette-Poiseuille flows [76, 148], the

energy in the spanwise direction was found to decay faster than the streamwise en-

ergy. This was attributed to differing decay characteristics of streamwise streaks and
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Figure 3.39: Input-Dissipation state space representation of decay of P3 upper-branch
solution at initial Reynolds number Rei ≈ 1800 for quench Reynolds number Ref =
600 and slip lengths Ls = 0.00, 0.01, 0.02. Magenta diamonds: P3 lower (open) and
upper (closed) solutions. Cyan left triangles: P4 lower (open) and upper (closed)
solutions.

spanwise rolls in the self-sustaining process [231]. Specifically, the waviness of the

streaks is reduced initially which causes fast decay of the spanwise rolls followed by

a slower decay of the straightened streaks [148]. The results here corroborate those

found in previous studies.

The effect of non-zero slip at the wall on the decay of random turbulent initial

conditions was also analyzed. The inclusion of slip at the boundaries causes the decay

rate to change depending upon the final Reynolds number. For Ref = 1000, the slip

surfaces appear to increase the initial decay rate in all three directions. After this

initial decay stage, the decay rates saturate and are similar among all slip lengths. For

final Reynolds number below Ref = 1000 studied here, the wall slip had no observable
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Figure 3.40: Input-Dissipation state space representation of decay of P3 upper-branch
solution at initial Reynolds number Rei ≈ 1800 for quench Reynolds number Ref =
800 and slip lengths Ls = 0.00, 0.01, 0.02. Magenta diamonds: P3 lower (open) and
upper (closed) solutions. Cyan left triangles: P4 lower (open) and upper (closed)
solutions.

effect on the decay rates. That wall slip is ineffectual at these final Reynolds numbers

may be related to the fact that these Reynolds numbers are close to and below the

critical Reynolds number Reg ≈ 700 where turbulence cannot persist [209, 179]. Flow

structures shown via disturbance velocity at a wall-normal plane of y+ = 12 showed

the same trends. The streamwise structures persisted for longer than either spanwise

or wall-normal directions. One indication as to the mechanism behind the increased

decay rate for the slip surfaces may be that, for the slip cases, the ”waviness” in

the streamwise streaks discussed by Liu et al. [148] appears to be reduced faster.

According to the process they put forward, this straightening of the streamwise streaks

would allow for an earlier decay of the spanwise rolls. A more detailed investigation
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Figure 3.41: Input-Dissipation state space representation of decay of P3 upper-branch
solution at initial Reynolds number Rei ≈ 1800 for quench Reynolds number Ref =
1000 and slip lengths Ls = 0.00, 0.01, 0.02. Magenta diamonds: P3 lower (open) and
upper (closed) solutions. Cyan left triangles: P4 lower (open) and upper (closed)
solutions.

into the flow structures should be performed.

Additionally, the decay of exact coherent solutions was analyzed. Similar to obser-

vations in Section 2.4.3, the P3 and P4 upper-branch solutions were found to display

distinct decay characteristics. Unlike the behavior observed in the decay of random

initial conditions, the P3 solution exhibited a similar initial decay rate of the stream-

wise and spanwise velocity perturbation magnitude before entering a second stage

where the spanwise decay rate was slower than the streamwise decay rate. This trend

held for quench Reynolds number Ref = 800, 1000 but not for Ref = 600. It is

interesting as Ref = 600 is below the critical Reynolds number where turbulent spots

were found to decay, Reg ≈ 700 [22, 179, 209, 49]. However, the decay of the spanwise
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Figure 3.42: Input-Dissipation state space representation of decay of P4 upper-branch
solution at initial Reynolds number Rei ≈ 1800 for quench Reynolds number Ref =
600 and slip lengths Ls = 0.00, 0.01, 0.02. Magenta diamonds: P3 lower (open) and
upper (closed) solutions. Cyan left triangles: P4 lower (open) and upper (closed)
solutions.

disturbances was faster than the streamwise disturbances for the P4 solution at early

time, O(10tUc/h). Decay rate increased with decreasing Ref . The addition of wall

slip had negligible effect on the decay behavior for both the P3 and P4 solutions.

The decay of the turbulent trajectories and the P3 and P4 solutions was also

analyzed using a dynamical systems approach. The dynamics of the high-dimensional

system were projected onto the energy input-dissipation plane. Through this lens, the

behavior observed in the evolution of these trajectories becomes more understandable.

For the random initial conditions, the system is attracted to lower-branch solutions

as it decays to the laminar state, even passing through the P3 lower-branch solution

in some cases. This is significant, as the P3 lower-branch solution is an edge state,
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Figure 3.43: Input-Dissipation state space representation of decay of P4 upper-branch
solution at initial Reynolds number Rei ≈ 1800 for quench Reynolds number Ref =
800 and slip lengths Ls = 0.00, 0.01, 0.02. Magenta diamonds: P3 lower (open) and
upper (closed) solutions. Cyan left triangles: P4 lower (open) and upper (closed)
solutions.

with only one unstable direction. There was also some interaction with the P4 lower-

branch solution. As Reynolds number decreases (i.e., Ref < Reg ≈ 700), the system

has almost no interaction with any of the exact coherent solutions, and instead does

directly to the laminar state, as it is the global attractor due to the linear instability

of other solutions. This behavior is consistent with previous studies done in the plane-

Couette and Taylor-Couette geometries [188]. Therefore, one possible explanation for

the increase in decay rate with the decrease in final Reynolds number may be that

the system has less significant interactions with other solutions, and instead directly

approaches the laminar attractor.

For the decay of the P3 and P4 solutions, there were rich and distinct dynamics,
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Figure 3.44: Input-Dissipation state space representation of decay of P4 upper-branch
solution at initial Reynolds number Rei ≈ 1800 for quench Reynolds number Ref =
1000 and slip lengths Ls = 0.00, 0.01, 0.02. Magenta diamonds: P3 lower (open) and
upper (closed) solutions. Cyan left triangles: P4 lower (open) and upper (closed)
solutions.

seemingly orchestrated by the other exact coherent solutions. For the P3 solution at

Ref = 800, periodic behavior emerged with the inclusion of wall slip, and the system

passed through the P3 lower-branch solution before laminarizing. The P4 solution

exhibited much simpler dynamics, mostly avoiding interaction with any of the other

exact coherent solutions and directly approaching the laminar state. The dynamical

systems perspective gives much insight into the dynamics of the turbulent-to-laminar

transition.

While the decay characteristics of the flow in [148] were unaffected by various

noise levels, spanwise rolls in the final state after transient decay were found to be

susceptible to noise. This type of analysis could be performed in the future using a
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more statistically significant amount of initial conditions, ranging in initial turbulence

intensity, to analyze the effect of initial condition (i.e. noise) on the decay charac-

teristics of the flow. From the 10 initial conditions studied here, initial turbulence

intensity seems to have an effect on the initial behavior of a trajectory, but the decay

rates after this transient period appear to be consistent. Additionally, fields from the

laminar state could be subjected to perturbations to assess the susceptibility of the

final state to noise, and whether the system returns to a transient turbulent state.

Future work should also include further analysis of the mechanisms responsible for

the difference in decay rate for varying final Reynolds number, possibly by analyzing

the time-evolution of the streamwise and spanwise flow structures during decay. This

work contributes to a framework for understanding the transition to and from tur-

bulence, as well as the self-sustaining process of wall-bounded turbulence flow which

can be used to inform more efficient future control techniques. Specifically, the use

of exact coherent solutions to the Navier-Stokes equations offers a more deterministic

view of control methods on the self-sustaining process and transition to turbulent.
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Chapter 4

COMPOSITE DRAG REDUCTION OF SLIP SURFACES

AND POLYMER ADDITIVES

1

4.1 Introduction

Turbulence is an emergent phenomena found throughout nature. It plays a vital

role in the aquatic locomotion of organisms, scalar mixing, the transport of fluid

solutions, the resistance experienced by naval watercraft, and the flow of biological

fluids in the human body. It is of practical concern, then, to understand and control

frictional losses that arise from turbulence to provide energy- and cost-savings. The

majority of energy usage in transportation is due to the skin friction drag, and it

has been estimated that with a modest reduction of 30% skin friction in ocean-faring

vessels, more that $70 billion can be saved annually [122, 162]. Therefore, it is vital

to societal sustainability to develop techniques which help mitigate the skin friction

drag in turbulent flows.

1This work is in preparation to be submitted to a scientific journal.
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4.1.1 Slip surfaces

Slip surfaces have garnered much attention in the past few decades, owing to their

drag reduction capabilities and the countless inspirations for their design found in

nature [48, 75, 147]. There is a demonstrated ability of slip surfaces in reducing

frictional resistance for both laminar and turbulent flows. Many studies have achieved

significant drag reduction via slip with hydrophobic surfaces at the walls [152, 242,

163, 176, 224, 44, 21, 205].

Superhydrophobic surfaces, which are a combination of surface chemistry and sur-

face roughness at micro- and/or nano-scales, have been introduced for drag reduction

[195]. These surfaces act to lower the free energy of an air-water interface, producing

a very high contact angle at the surface. There have been, of course, many studies

on the effects of superhydrophobic surfaces on skin-friction reduction in laminar and

turbulent flows [181, 134, 111, 133, 146, 78, 205, 59]. Recently, turbulent drag re-

ductions have been observed of up to 50% on micropattern-arrayed surfaces and up

to 30% on randomly textured surfaces, akin to those found in nature [181, 75, 193].

Thorough reviews of the effect of slip and superhydrophobic drag reduction on lam-

inar and turbulent flows are given by Rothstein [195], Abdulbari et al. [1], and Lee

et al. [133].

The idea of slip was first introduced by Navier, proposing the existence of a slip

velocity at the interface, which is characterized by a virtual distance into the wall,

called the slip length [171]. It was later quantified by Maxwell in 1879 in the flow of

rarefied gas [159]. The slip length relates the velocity of the fluid at the fluid-solid

interface to the shear rate at the interface by

us = bγ̇w, (4.1)
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Here, b is the average, or effective, slip length which characterizes the degree of slip

at the interface and γ̇w = ∂u
∂y
|w is the average wall shear rate.

4.1.2 Polymer additives

Dating back to the 1940s[222, 223], it has been understood that the addition of a small

amount of long-chain polymer to a liquid results in drastic changes in the behavior

of its flow. Of great interest in an engineering and practical sense is the reduction in

skin friction at the wall when polymer additives are added to a turbulent flow. By

decreasing the strength of streamwise vortices, streaks, and three-dimensionality, the

stretching and coiling of the polymer molecules interrupts the self-sustaining process

(SSP)[231]. The interruption to the SSP results in drag reductions above 50% by

adding a small amount (as little as 10 ppm) of polymer to a fluid [79, 256, 257, 80, 254].

This is especially alluring because frictional resistance in turbulent flows can account

for a majority of the energy loss of a system. For instance, a typical ship uses 60%

of the propulsive power just to overcome the drag induced by the boundary layer

[155]. Others have estimated that if a modest reduction of 30% in skin friction can be

achieved for ocean-faring vessels, more than $70 billion can be saved annually [122].

4.1.3 Combined flow control methods

While most studies focus on a single flow control method, energy demands and the

ever-increasing scale of engineered systems is beginning to necessitate the possible use

of a combination of various distinct flow control methods. Recently, Yao et al. [261]

studied a composite drag control (CDC) scheme which combined opposition control

(OC) and spanwise opposed wall-jet forcing (SOJF) in a turbulent channel. The

maximum drag reduction of the CDC was 33%, compared with the individual drag

reduction levels of 19% and 23% for the SOJF and OC, respectively. This composite
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scheme resulted in 32% net power savings. Each individual method targets different

scales of the turbulent flow which results in the effective synergistic drag reduction.

While Yao et al. [261], studied active flow control techniques, there is also evidence

to support the efficacy of composite drag control using more passive techniques. In a

tandem of papers published recently, Rajappan and McKinley used slip-inducing sur-

faces along with dilute polymer solutions to study drag reduction in a fully turbulent

Taylor-Couette flow [192, 191]. They found that the two distinct drag reduction tech-

niques act with synergy, yielding a net drag reduction up to 50% greater than that

obtained by either individual method. Again, the synergy comes from the different

mechanisms behind the observed drag reduction of each method. While they offer

an additive friction law to predict the combined drag reduction, the law overpredicts

the total amount of drag reduction compared with the empirical observations. The

authors posit that the law provides the maximum theoretical limit of drag reduction,

and attribute the difference between the two values to ’non-linear’, counteractive in-

teractions between the two drag reduction mechanisms. The experimental study by

Rajappan and McKinley and the current numerical work were started in parallel,

without the knowledge of either group.

4.1.4 Modeling apparent slip in the turbulent flow of polymer solutions

In recent years, the validity of the no-slip condition has been called into question for

the flow of complex fluids [42, 16, 142, 85]. These fluids can create a depletion layer,

devoid of polymers, at the wall, resulting in a mismatch in viscosity which facilitates

an apparent slip. While the concentration of these complex fluids exhibiting slip is

relatively large (typically in the semidilute regime) compared with the concentrations

used in turbulent drag reduction, little attention has been paid to the possible effect

of slip in the modeling of the flow of dilute polymer solutions.
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4.1.5 Goal and motivation of this study

The goal of the current study is to analyze the efficacy of using combined drag re-

duction methods. The main advantage of using multiple drag reduction methods is

the possible synergistic effect between methods that act to change flow dynamics in

distinct manners. The motivation behind this work lies in this cost savings associated

with moderate mitigation of skin friction drag. A possible synergistic effect between

two distinct flow control methods is alluring, as it could help in the difficult task of

scaling drag reduction methods for industrial-scale applications. From analyzing the

present data of controlled turbulent flows, it has become apparent that, while the

global effect is a reduction in the mean skin friction, there are significant changes to

the dynamics of the system compared to the uncontrolled case. A secondary goal of

this study, then, is to characterize secondary (possibly adverse) effects of using drag

reduction methods in turbulent wall-bounded flows.

This chapter is organized as follows: section 4.2 outlines the numerical procedure

used to model combined slip and polymer drag reduction methods, sections 4.3.1.1

and 4.3.1.2 provide results of drag reduction via wall slip and polymer additives,

respectively, and section 4.3.2 provides results from the combined drag reduction of

wall slip and polymer additives. Finally, section 4.4 gives a brief conclusion and future

directions for using combined flow control methods.

4.2 Problem formulation

We consider an incompressible Newtonian fluid in the plane Poiseuille (channel) ge-

ometry, driven by a constant volumetric flux Q. The x, y, and z coordinates are

aligned with the streamwise, wall-normal, and spanwise directions, respectively. Pe-

riodic boundary conditions are imposed in the x and z directions with fundamental



115

periods Lx and Lz, and streamwise Navier slip conditions are imposed at the walls

y = ±h, where h = Ly/2 is the half-channel height. The laminar centerline velocity

for a given volumetric flux is given as Uc = (3/4)Q/h. Using the half-height h of the

channel and the laminar centerline velocity Uc as the characteristic length and veloc-

ity scales, respectively, the governing equations for mass and momentum conservation

are:

∇ · u = 0;
∂u

∂t
+ u · ∇u = −∇p+

β

Rec
∇2u+

2(1− β)

ReWi
(∇ · τp) (4.2)

Here, we define the Reynolds number for the given laminar centerline velocity as

Rec = ρUch/ (ηs + ηp), where ρ is the fluid density and ηs and ηp are the dynamic

viscosities for the solvent and polymer, respectively. Characteristic inner scales are

the friction velocity uτ = (τ̄w/ρ)1/2 and the near-wall length scale or wall unit δν =

(ηs + ηp) /ρuτ , where τ̄w is the time- and area-averaged wall shear stress. As usual,

quantities nondimensionalized by these inner scales are denoted with a superscript

“+”. The friction Reynolds number is then defined as Reτ = ρuτh/ (ηs + ηp) =

h/δν . Streamwise Navier slip conditions are prescribed as equation (4.1) at both top

and bottom walls by an effective homogeneous slip length, Ls = b/h. The polymer

stress tensor τ p is governed by a Finitely Extensible Nonlinear Elastic (FENE-P)

constitutive model [20, 81]:

α

1− tr(α)
b

+
Wi

2

(
∂α

∂t
+ u · ∇α−α · ∇u− (α · ∇u)T

)
=

(
b

b+ 2

)
δ (4.3)

τ p =
b+ 5

b

[
α

1− tr(α
b

−
(

b

b+ 2

)
δ

]
(4.4)

The FENE-P model approximates the polymer molecules as a bead-spring dumb-

ell, where the variable α is the nondimensional polymer conformation tensor α ≡
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〈qq〉, and q is the nondimensional end-to-end vector of the dumbbells. The maxi-

mum extensibility parameter b limits the maximum amount that the polymers are

allowed to stretch (i.e., max(tr(α)) < b). The Weissenberg number Wi = λγ̇ is the

degree of polymer stretching in the flow field. The parameter λ is the relaxation time

of the polymer species and γ̇ is the characteristic shear rate of the system. In wall-

bounded turbulent flows, the characteristic shear rate is the shear rate at the wall γ̇w,

so the Weissenberg number becomes Wi = λγ̇w = λ∂u/∂y|w. Because the current

study employs a constant mass flux driving condition and various slip lengths, there

is a change in wall shear rate as a function of slip length. Therefore, Weissenberg

numbers differ slightly for each slip length.

The viscosity ratio β = ηs/ (ηs + ηp) determines the fraction of total shear viscosity

that is contributed by the solvent. In most drag reduction applications, a small

amount of polymers is necessary to observe significant effects, such that 1− β � 1 is

proportional to the polymer concentration and the total viscosity is negligibly affected

by the polymers.

Using the FENE-P model, the extensibility number, Ex = 2b(1 − β)/3β, is the

maximum value of the ratio between extensional stress due to the polymer and that

of the solvent. For the current study, β = 0.97 and b = 5000, thus, Ex = 103 � 1,

implying that the polymers exert a significant amount of stress on the fluid. Simula-

tions for the current study are performed at Re = 4200 such that Reτ = 180 for the

Newtonian, no-slip case. The friction Reynolds number will vary depending upon the

change in wall shear rate with the inclusion of the flow control methods. To improve

numerical stability, an artificial diffusivity term 1/(ScRe)∇2α with Sc = 0.5 is added

to the FENE-P equation. This value has been shown to be sufficient in previous stud-

ies [80]. The numerical algorithm used here was developed by Xi [253] and detailed,

therein. The code is developed using spectral Navier-Stokes solver ChannelFlow,
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Figure 4.1: A cartoon encapsulating a high-level overview of the current work. The
schematic shows the nonzero slip velocity at the wall facilitated by the surface, and
the long-chain polymers are shown as two beads attached at either end of a nonlinear
spring.

written and maintained by Gibson [69].

Figure 4.1 shows a high-level overview of the current study. The nonzero velocity

at the wall is facilitated by the slip surface, where the degree of slip is quantified by the

slip length Ls. This slip velocity at the wall is linearly proportional to the shear rate

at the wall, and the proportionality constant is the slip length Ls. The polymers are

modeled by a bead-spring system with nonlinear elastic behavior. Equilibrium length

of the polymer molecules is given by the end-to-end vector of an unstrained molecule,

Q0. Given the maximum extensibility b of the polymer species, the maximum stretch-

ing of a polymer is given by Qmax = (b/3)1/2Q0. When the polymer molecules are

stretched, they exert a retraction force FR on the fluid, which is proportional to the

degree of stretching experienced by the polymer.
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A minimal flow unit (MFU)[103, 106] approach was taken in choosing the do-

main size. The domain size in outer units (Lx = 2π × Lz = π) was chosen such that

turbulence could persist even with the combination of largest slip length and largest

Weissenberg number. Box size was based off this particular simulation, as this com-

bination of the two parameters is most likely to lead to laminarization if the box size

is too small. This is known from Chapter 1, which showed a higher propensity of the

flow to laminarize with increasing slip length due to a weakening of the streamwise

vortices. The same trend is observed in viscoelastic flows as Weissenberg number is

increased [239, 80], which again has to do with the weakening of streamwise vortices,

streaks, and three-dimensionality. Since the box size in inner units scales with τw

4.3 Results

We report numerical results for the drag reduction observed in turbulent flow of di-

lute polymer solutions with and without slip present at the boundaries. The results

have been organized into the three sections: Section 4.3.1.1 details the drag reduction

observed from slip, Section 4.3.1.2 details the drag reduction resulting from the inclu-

sion of polymer additives, and Section 4.3.2 details the drag reduction observed from

the composite drag reduction method, with both slip and polymer additives. For

individual and composite drag reduction methods, the drag reduction is computed by

DR(%) = 100×
(

1− Retau

Retau,0

)
(4.5)

where Reτ,0 corresponds to the friction Reynolds number of the Newtonian, no-slip

case (i.e., no slip surface and no polymers). In other words, Reτ,0 is the global

reference value for all slip, polymer, and composite drag reduction methods.
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4.3.1 Drag reduction of individual methods

Before investigating the effect of the composite drag reduction, it is worth detailing the

effect of each individual drag reduction technique. We first detail the drag reduction

using slip surfaces, followed by the drag reduction using polymer additives.

4.3.1.1 Slip surfaces

Figure 4.2 shows the friction Reynolds number and drag reduction percentage for the

three slip lengths studied. There is a linear decrease in the friction Reynolds number,

which results in the linear increase in drag reduction. The maximum drag reduction

with the inclusion of slip is ≈ 10%. This drag reduction percentage is in agreement

with previous studies whose surfaces are similar to those modeled here [74]. While the

complete understanding of the mechanism behind slip drag reduction still eludes us,

there is evidence to suggest that the surfaces weaken and lift the streamwise vortices,

responsible for shear-producing sweeps and ejections, away from the wall [270].

The maximum slip length studied here is within the realm of physical realiza-

tion. Min and Kim [163] first studied the effect of slip surfaces on drag reduction

numerically and used similar slip lengths. To further verify that the slip length can

be realistically obtained by practical slip surfaces and is not so large as to introduce

nonlinear interactions between the surfaces roughness and the flow, the length scale

L+ of the micro roughness can be calculated using Equation (2.4) of Picella et al.

[184]:

L+ =
L+
s

√
φs

0.325− 0.44
√
φs

+ 0.328
(
L+
s

√
φs

)3
(4.6)

where L+ = ReτL and L+
s = ReτLs. This enables a direct comparison of the current

surfaces with surfaces found in the literature. Using the largest slip length studied

(Ls = 0.02) and the solid fraction φs = 0.25 used in Min and Kim [164], the largest
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Figure 4.2: Friction Reynolds number and drag reduction resulting from the inclusion
of wall slip at the boundaries.

texture size of the current study is L+ ≈ 19, which ensures that the homogeneous

slip surface employed in the present study would provide virtually the same outcomes

resulting from employing a heterogeneous microtextured slip surface [262, 204, 206,

184]. This is also small enough (i.e., L+ < 25) that there would be no nonlinear

interactions between the flow and the surface roughness elements [59]. Because L+
s =

ReτLs, this length scale only decreases in magnitude with a reduction in skin friction.

4.3.1.2 Polymer additives

Friction Reynolds number and drag reduction for the case of only polymer additives

are shown in Figure 4.3. We see that the friction Reynolds number decreases, seem-

ingly approaching an asymptote. The inverse trend is observed in the drag reduction,

where a value of 33% is reached for Wi ≈ 76. The asymptote described here likely

corresponds to the Maximum Drag Reduction asymptote (MDR) [226], after which,

the addition of more polymers or changes in Wi have no additional effect on the flow.

Simulations with larger Wi would need to be performed for this to be concluded defi-
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Figure 4.3: Drag reduction resulting from the addition of long-chain polymers.

nitely. The mechanism responsible for the drag reduction observed in dilute polymer

solutions is a weakening of near-wall coherent structures by the stretching and coiling

of the polymers. The polymers are stretched in the low-speed streaks and relax as

they are pulled into the streamwise vortices, which acts to weaken the vortices and

suppress turbulence production [80].

The initial behavior observed in the drag reduction is also consistent with previous

studies where there is some critical Weissenberg number (Wi ≈ 10) where the onset

of drag reduction occurs [256, 257, 80, 239, 241]. While it does appear that this is

the case in the current study, it cannot be confirmed as numerical stability issues

prevented the simulation of smaller Wi flows.

4.3.2 Combined drag reduction in turbulent flow of dilute polymer solu-

tions over slip surfaces

We now turn our attention to the drag reduction using the composite approach,

incorporating the individual methods of slip surfaces and polymer additives. This
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Figure 4.4: Drag reduction resulting from slip and the addition of long-chain poly-
mers.

section first presents the drag reduction observed with the composite drag reduction

(CDR) method. Then, average flow variables are investigated to attempt to elucidate

the possible mechanisms responsible for any change in behavior.

4.3.2.1 Drag reduction

Shown in Figures 4.4 and 4.5 are the friction Reynolds number and drag reduction

as a function of slip length and Weissenberg number, respectively. For Figure 4.4, we

again observe a linear decrease in friction Reynolds number which corresponds to a

linear increase in drag reduction. The rate at which the drag reduction increases for

a given Wi appears to remain relatively constant for the range of Wi studied here,

indicating that the two methods work cooperatively via distinct mechanisms.

Figure 4.5 shows the asymptotic reduction in friction Reynolds number, like that

observed in Figure 4.3. Again, the curse appear to be shifted down by a constant

amount for increasing slip length. These results show a cooperative drag reduction
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Figure 4.5: Drag reduction resulting from slip and the addition of long-chain poly-
mers.

when these two independent methods are combined, which appears to be somewhat

additive. For all slip lengths, it still appears possible that there is constant drag

reduction before some critical Weissenberg number. One could deduce, then, that

this phenomenon is attributed to the flexibility of the polymers alone. Where that

critical Weissenberg number occurs is yet unknown. It may be that increases in

Reynolds number reduce the minimal Weissenberg number where there is an onset

of drag reduction, but that remains to be seen. The differences in Wi observed in

Figure 4.5 are due to the differences in wall shear rate that were mentioned in 4.2.

While there are apparent differences, the values are still close to one another.

4.3.2.2 Mean velocity profiles

One common variable that is considered when investigating drag reduction methods

is the mean velocity profile [226, 79, 80]. In Figures 4.6 and 4.7 we show the mean

velocity profiles for various combinations of slip length and Weissenberg number.
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From Figure 4.6(a), we see the effect that Weissenberg number plays on the mean

flow for the three slip lengths studied. As typically observed in a polymer drag-

reduced flow, there is a characteristic shifting upward of the velocity profile in the

low-law region [226]. Otherwise, there is minimal effect on the mean velocity profile

in the viscous sublayer and buffer layer. As slip length is increase, this same trend is

observed. However, there is a shifting upward of the profile in the viscous sublayer

and buffer layer, now, that was not present in the no-slip case. This is to be expected

as the effect of a slip surface is to induce non-zero velocity at the wall.

Figure 4.7(a), the effect of slip surfaces on mean velocity profile is illustrated.

The degree to which the profile is shifted upward near the wall increases with slip

length. In the bulk of the slow, the profile is shifted upward slightly, as well. In Figure

4.7(b) & (c), this trend continues. However, the profile in the log-law region has been

significant shifted upward due to the action of the polymers. It does not appear that

the slip surfaces have a significant effect in the bulk of the flow, and mainly act at

the wall.

4.3.2.3 Reynolds shear stress

Reynolds shear stress
(
RSS = −u′v′

)
is another important flow variable to investi-

gate. This is a measure of turbulence intensity in the flow and typically has a peak

value around y+ ≈ 12 [187]. Figures 4.8 and 4.9 show the RSS for various combina-

tions of slip length and Weissenberg number.

Figure 4.8(a) illustrates the well-known effect that polymers have on the RSS.

For increasing Weissenberg number, the peak value is reduced, owing to the polymers

weakening of streamwise vortices. The peak is also shifted away from the wall. Figure

4.8(b) & (c) show the effect of slip surfaces in combination with polymers. The trend

remains the same as the no-slip case, with negligible effect of the slip surfaces. This
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is further illustrated in Figure 4.9 which shows the effect of slip surfaces for a given

Weissenberg number. We see that there is negligible change in the RSS profile with

the inclusion of the slip surfaces, indicating that the polymers work, individually, to

decrease the RSS.

4.3.2.4 Energy analysis

The time-averaged turbulent kinetic energy (TKE), or the kinetic energy produced

by the turbulent velocity fluctuations, is shown as a function of Weissenberg number

for the various slip length in Figure 4.10. TKE is defined as

TKE =
1

2LxLz

∫ Lx

0

∫ 1

−1

∫ Lz

0

u2 + v2 + w2 dz dy dx (4.7)

where u, v, w are the velocity fluctuations in the streamwise, wall-normal, and span-

wise directions.

For the no-slip case, the TKE increases slightly through Wi ≈ 15 before the rate

increases and TKE reaches a peak value at Wi ≈ 30. After this peak value, the TKE

decreases monotonically with Wi. This same trend holds for the two slip cases, but

the initial rate of increase seems to be lower. This is an interesting trend, as the peak

value in TKE corresponds to the point in the drag reduction curves where the value

begins to level out and approach the asymptote as seen in Figure 4.5. If this is the

case, then it appears that the addition of slip causes this peak to occur sooner, and

possibly causing the system to reach MDR at a lower Weissenberg number. There is

no doubt, however, that the addition of slip surfaces causes a decrease in the amount

of TKE for all Weissenberg numbers compared with the no-slip case.

Figure 4.11 shows the average rate at which the kinetic energy is converted to
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Figure 4.10: Turbulent kinetic energy as a function of Weissenberg number for various
slip lengths

elastic energy. This is defined as

E =
−1

LxLz

∫ Lx

0

∫ 1

−1

∫ Lz

0

(∇ · τ p) dz dy dx (4.8)

The kinetic energy converted to elastic energy for the no-slip case follows a

quadratic trend with increasing Weissenberg number. The rate of increase of con-

version is large at low Weissenberg number, where the polymers are more rigid and

unable to deform to siphon energy from the flow. After Wi ≈ 30, the value begins to

level out, which is where we see the drag reduction begin to approach the asymptote.

This is also the same Weissenberg number where the TKE reaches its peak value.

Slip surfaces cause this leveling out to occur at lower Weissenberg number, as well

as a reduction in the asymptotic value. Therefore, with the inclusion of slip surfaces,

the rate at which kinetic energy is converted to elastic energy is lower than that of

the no-slip case. There is undoubtedly a connection between the trends observed in

the drag reduction, TKE, and elastic energy conversion rate. Further analysis into
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Figure 4.11: Elastic energy of the polymers as a function of Weissenberg number for
various slip lengths.

the polymer dynamics is necessary to truly understand the relationship between the

observed trends.

4.3.2.5 State-space visualization

The dynamical systems approach to turbulence often has much insight into the be-

havior of the system. Figure 4.12 shows the mean state of the system projected onto

the energy Input-Dissipation plane to help visualize differences in behavior with the

composite control method. Energy input rate is defined as

I =
1

2Lz

∫ Lz

0

∫ 1

−1
(pu|x=0 − pu|x=Lx)dydz (4.9)

and the energy dissipation rate is given as

D =
1

2LxLz

∫ Lz

0

∫ 1

−1

∫ Lx

0

(|∇u|2 + |∇v|2 + |∇w|2)dxdydz. (4.10)
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While the total energy of the flow is defined by

E =
1

2LxLz

∫ Lz

0

∫ 1

−1

∫ Lx

0

(u2 + v2 + w2)dxdydz (4.11)

and, thus, the rate of change in energy for the flow is equal to dE/dt = I −D. For

exact coherent solutions, D = I. Input and dissipation are normalized such that the

laminar value corresponds to I = D = 1.

The plot is quite dense, so it is best to go through each detail. The mean state

of each Weissenberg number is depicted as a marker shape. The arrow points in the

direction of increasing slip length for each marker shape. The magenta and cyan

triangles are the P4 upper- and lower-branch exact coherent solutions, which repre-

sent high and low drag states in the system, respectively [182]. The contour shows

the probability density function for a long-time trajectory of a no-slip, Newtonian

simulation. The point (1,1) corresponds to the laminar state.

From this figure, we see that both the polymer additive and the slip surfaces have

the effect of forcing the mean state of the flow toward the laminar state at (1,1).

Slip surfaces seem to have a more significant effect at lower Weissenberg number,

evidenced by the larger distance between the mean states for the Wi = 0 case. So,

the effect of slip on changing the mean state of the flow is lessened relative to the

effect of the polymers at larger Weissenberg number.

The distance between the mean state of the system and the laminar state at (1,1)

can be quantified by the norm of the distance between the two points. Here, we define

S to be the mean state of the system given by the input-dissipation coordinates, S0 to

be the state of the system for the Newtonian, no-slip case, and Slam to be the laminar
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Figure 4.12: State-space visualization of the mean state of the system as a function
of Weissenberg number and slip length.

state (i.e., (1,1)). Then we can define the relative distance to the laminar state by

dS =
||S − Slam||2
||S0 − Slam||2

(4.12)

Figure 4.13 shows the distance to the laminar state relative to the distance of the

no control case (i.e., Newtonian and no-slip). Under the effect of polymers alone, the

relative distance of the system is reduced as Weissenberg number increases. However,

it appears to level off and approach an asymptote. This leveling off begins after

Wi ≈ 30. This same trend holds for the slip cases, but the slip surfaces reduce the

distance further, relative to the no-slip case. The fact that the distance to the laminar

state levels off suggests that the maximum drag reduction asymptote may manifest

in state-space as some surface which prevents the state of the system from moving

further with the effect of polymers, alone. Though, it seems that slip surfaces affect
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Figure 4.13: State-space visualization of the mean state of the system as a function
of Weissenberg number and slip length.

this hypothetical topology in some way to allow the system to become closer to the

laminar state. This is corroborates the results found in Chapter 1 and Chapter 2,

which showed that slip surfaces facilitate the more frequent return to the laminar

state. A ”good” choice of state variable to describe the state of the system may

provide more insight into the hypothetical MDR surface.

4.4 Conclusions and future directions

We performed direct numerical simulations of channel flows to investigate the com-

posite drag reduction of slip surfaces and dilute polymer solutions. The two individual

methods worked in tandem to provide a synergistic, or additive, drag reduction ef-

fect. By investigating the mean velocity profiles and Reynolds shear stress profiles,

it was determined that the mechanisms responsible for the success of each individual

method are distinct and have minimal interaction with each other. While the slip

surfaces work to shift the velocity profile upward near the wall, the polymers work
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to reduce the Reynolds shear stress in the bulk of the flow. Quadrant analysis [249]

should be performed to gain further insight into possible mechanisms responsible for

the altered mean behavior of the flow. These control methods undoubtedly have an

impact on the self-sustaining process, which would manifest itself as reduced sweep

and ejection events that could be observed in quadrant analysis.

An analysis of the the turbulent kinetic energy (TKE) and the rate at which

kinetic energy converted to elastic energy (E) was performed. For all slip lengths, the

TKE reaches a peak for Wi ≈ 30 before monotonically decreasing. This Weissenberg

number coincides with the Weissenberg number where the drag reduction begins to

level off and approach the maximum drag reduction (MDR). The rate at which kinetic

energy is converted to elastic energy increases sharply at low Weissenberg numbers,

corresponding the increase in flexibility of the polymers. After Wi ≈ 30 this value

levels off and appears to approach some asymptote. Again, this trend and value of

Weissenberg number corresponds to that observed in the drag reduction and TKE. A

more thorough investigation into the energy budget of the composite drag reduction

is necessary. The turbulent kinetic energy in each spatial direction should be analyzed

to determine where the reduction in turbulence energy is occurring. Additionally, a

similar investigation into the elastic energy associated with with the polymers should

be performed. It is believed that further investigation of the polymer dynamics,

afforded by the conformation tensor α, would contribute considerable insight into the

mechanisms responsible for the observed behavior.

Finally, the mean state of the system was projected onto the energy Input-

Dissipation plane. This showed that the control methods reduce the distance between

the mean state of the flow and the laminar state. It also showed that this distance

appears to reach some asymptote which coincides with the asymptotic approach ob-

served in the drag reduction and rate of conversion into elastic energy. It is possible
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that the MDR manifests as some surface in state space which prevents the mean state

of the system from being altered any further by the action of polymers, alone. A good

choice of state variables may offer a better description of this hypothetical surface.

A limitation of the current study is that only one polymer concentration was

considered. Further work should be performed to investigate the effect of polymer

concentration on the achievable drag reduction, as it may offer further insights into

the mechanisms responsible for the drag reduction and the differences observed by

Rajappan and Mckinley [192] between empirically observed and empirically derived

drag reduction values. Rajappan and Mckinley [192] also observed that the drag

reduction decreased after a critical polymer concentration, resulting from increased

shear viscosity and, subsequently, increased viscous dissipation.

An vital study moving forward would be to look into the conditionally sampled

flow fields, where the condition admits periods in the turbulent trajectory which are

characterized by low wall shear rate. Previous work in this area [80] has gained

great insight into the mechanisms behind drag reduction when performing temporal

analysis on the turbulent trajectories of polymer drag-reduced turbulent flows.

Future work should also consider the effect of non-ideal slip. The current study

considers only a homogeneous, streamwise slip. A more realistic natural surface

would, indeed, have slip in both the streamwise and spanwise directions. With ad-

vancements in surface fabrication techniques, a multitude of functionalized surfaces

can be manufactured which take advantage of various material properties to control

surface wetting phenomena [216, 269, 60, 143, 63, 141]. Therefore, modeling of sur-

faces which display time-varying slip is of much interest for the control of turbulent

flows. This is the focus of ongoing and future work.
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Chapter 5

CHARACTERIZING LOW-DRAG EVENTS IN

WALL-BOUNDED TURBULENT FLOWS AT

MODERATE REYNOLDS NUMBERS

1

5.1 Introduction

5.1.1 Underlying structure of turbulence

It is human nature to attempt to extract some level of order from chaos; to find pat-

terns in randomness. This human tendency is no different with turbulence, the seem-

ingly chaotic process which is emergent throughout nature. In the past few decades,

however, the stochastic shroud surrounding turbulence has slowly been lifted, reveal-

ing a more deterministic underlying structure [168, 233, 145, 71, 73, 182, 256, 257,

92, 120, 54]. This structure is made up of fully-nonlinear solutions to the Navier-

Stokes equations called ”exact coherent states” (ECSs) [233]. With the application

of dynamical systems theory to the study of turbulent flows [119], three-dimensional

traveling wave solutions (TWSs), have been discovered. These solutions often mani-

fest in the form of streamwise-oriented, counter-rotating vortices which propagate in a

1This work is in preparation to be submitted to a scientific journal.
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coherent manner [182]. Furthermore, these solutions are inherently unstable, emerg-

ing in pairs via a saddle-node bifurcation at a finite Reynolds number. Each branch

of the solution is referred to as ”upper” or ”lower”, with the lower-branch solutions

characterized by lower drag and reduced streamwise variance [233, 71, 256, 182].

A number of studies have successfully identified solutions in the ”minimal flow

unit” (MFU) [103, 105] in the plane channel geometry, where the temporal behavior

qualitatively matches spatio-temporal behavior of near-wall turbulence in extended

domains [61, 182, 127]. As Re → 0, there is evidence to suggest that turbulence is

closely organized around the ECSs [119, 71, 182]. While the state space of turbu-

lence is well-mapped at lower (transitional) Reynolds numbers, the landscape is still

relatively unknown at high Reynolds numbers due to the existence of an infinitude of

solutions that the system can meander between as Re→∞ [43, 119].

5.1.2 Low-drag events and their connections

to exact coherent solutions

5.1.2.1 Definition of Low-Drag Event

During a typical trajectory of wall-bounded turbulence, the system spends the major-

ity of its time near the upper-branch solution, making infrequent excursions toward

the lower-branch solution [182]. When these excursions take place, the wall shear and

the streamwise variation of the flow are reduced [230, 107, 256, 182]. This intermit-

tent behavior of alternating between ”active” and ”hibernating” turbulence (terms

coined by Xi and Graham [256]) has been of great interest, in the last two decades

[82]. Initially, these events were found in viscoelastic flows in MFU [256]. Later, Xi

and Graham [257] showed that these events still occur in the Newtonian limit, and

are actually Newtonian structures, simply ”unmasked” by the effect of polymers.
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Previous studies have shown interesting characteristics of periods of hibernating

turbulence, which will herein be referred to as low-drag events (LDEs) [257, 127, 246,

247, 3]. Most notably, these events have been characterized by reduced turbulent

fluctuations and quasi-streamwise-invariant structures. Additionally, the conditional

mean velocity profiles during hibernating turbulence are shifted upward[256, 257, 80],

away from the Newtonian profile [187], and towards the maximum drag reduction

asymptote (MDR) [227]. The defining signature of these events, and the signature

typically used to detect them, is an uncharacteristically low level of wall shear stress

for an extended period of time [256, 257, 80, 182, 127, 246, 247, 3].

5.1.2.2 Identifying low-drag events in turbulence

Previous studies have identified LDEs is various manners but most involve search-

ing for extended periods of uncharacteristically low wall shear behavior in the flow.

Initially, in MFUs, Xi and Graham [256] used the criteria that area-averaged wall

shear stress must fall below 90% of the time-averaged value for longer than a given

number of eddy turnover times, ∆t∗ = ∆tuτ/h > 1.18, to identify LDEs. They, later,

went on to find that the average duration for these events was ∆t∗ ≈ 5 for similar

Reynolds numbers [257]. Both studies were performed within the transitional regime

at Reτ = 85 and used the mixed time unit duration criterion for conditional event de-

tection. A similar approach has been used by others to identify LDEs in transitional

flows.

Kushwaha et al. [127] used mixed time units ∆t∗ = ∆tuτ/h to detect hibernating

turbulence in an extended channel geometry. Using point-wise wall shear stress mea-

surements, they detected hibernation at various uncorrelated points in the channel.

The definition of hibernation used was that wall shear stress fall below 90% of the

mean value for ∆t∗ > 3. Using conditional sampling of wall shear stress fields, they
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found the spatial patterns around hibernation. Immediately preceding hibernation,

there is a large spike in wall shear stress, followed by a low value during hibernation,

and a spike again, immediately following. The spatial structure of hibernation found

by Kushwaha et al. [127] was consistent with a low-speed streak of approximately

1500 and 50 viscous units in the streamwise and spanwise directions, respectively.

This streaky structure was found to result from a pair of counter-rotating vortices,

causing the transfer of fluid away from the wall.

Kushwaha et al. [127] also suggest that the temporal intermittency of LDEs in

MFUs corresponds to spatio-temporal intermittency observed in extended domains.

This lends credence to the idea that LDEs emerge in extended domains, but are

both spatially and temporally localized. Therefore, the detection of these events in

an extended domain can be difficult when utilizing an area averaged approach. The

area which is averaged over may need to correspond to the MFU for that particular

Reynolds number.

Whalley et al. [246] studied the intermittency of low-drag events using experimen-

tal pointwise measurements in a channel geometry for Reτ = 70 − 130. They found

that the mean velocity profile during these conditional events was shifted away from

the Newtonian profile in the log-law region, much like that seen in Xi and Graham

[256, 257], Graham [80]. They also found similarities between temporal intermittency

in small domains and spatio-temporal intermittency in extended domains, in agree-

ment with [127]. Whalley et al. [247] extended this analysis to further characterize

low-drag events in experimental channel flows for Reτ = 70 − 100. Spatial patterns

associated with low-drag events consisted of a low-speed streak flanked by a pair of

counter-rotating vortices. In both studies, the criteria used to detect low-drag events

was wall shear stress falling below 90% of the mean value for three eddy turnover

times, ∆t∗ > 3.
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Looking to extend the previous analysis to larger Reynolds numbers, Agrawal

et al. [3] characterized LDEs for 70 ≤ Reτ ≤ 250. Using both DNS and experi-

ments, they detected LDEs using conditional sampling of the wall shear stress based

on a threshold magnitude criterion and a duration criterion in extended domains.

Unlike previous studies, however, they considered three different time scalings for

the duration criterion (i.e., outer, inner, and mixed units). Compared with the

Reynolds number dependence of LDE frequency found previously when using mixed

units [246, 247], Agrawal et al. [3] found invariance in the frequency of LDEs with

increasing Reynolds number if the duration criterion is kept constant in inner time

units (i.e., ∆t+ = ∆tu2τ/ν = constant). They also found that the mean velocity

profile during these conditional events approached the Virk MDR asymptote for the

range of Reynolds number studied.

The previous studies have shown that wall shear stress is useful in identifying

LDEs, or hibernating turbulence. As Reynolds number increases, however, wall shear

stress can become unreliable for identifying conditional events in experiments. Often,

wall shear stress measurements become too noisy, or the accuracy not high enough,

to identify these events at high Reynolds number [158]. However, with common flow

visualization techniques, other state variables may be viable options for detecting

LDEs. Particularly, as observed in previous studies [246, 247, 3], there is a distinct

reduction in streamwise velocity that corresponds to the detected LDEs via wall

shear stress. Therefore, streamwise velocity may be a more viable option for LDE

detection at higher Reynolds number. Additionally, [80] found reduced bulk Reynolds

shear stress and increased instantaneous log-law slope during LDEs.
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5.1.2.3 Connection between low-drag events and exact coherent

solutions

Low-drag events offer an interesting perspective when comparing the characteristics

of these conditional events to that observed in ECSs. Given the low levels of drag

and the predominantly streamwise nature of LDEs, a stark comparison can be drawn

between these events and the behavior seen in TWSs. This is particularly important,

as it suggests that during a typical turbulent trajectory, the flow makes infrequent

excursions near lower-branch solutions, where the behavior is characterized by reduced

turbulent fluctuations and uncharacteristically low drag [80]. Xi and Graham [256]

observed this type of behavior in minimal channel flow geometries and later proposed

this connection between LDEs and ECSs [257].

Park and Graham [182] found several new families of traveling wave solutions in

minimal channel flow and analyzed their connections to flow dynamics in a fully tur-

bulent flow. The state-space dynamics of the fully turbulent flow were found to be

closely organized around one of the solution families. While the flow spent most of its

time around the upper-branch solution (i.e., ”active” turbulence), it would make in-

frequent excursions toward the lower-branch solution (i.e., ”hibernating” turbulence).

This temporal intermittency in minimal channels corroborates the observations made

in previous studies [256, 257, 80]. Furthermore, mean velocity profiles for the upper-

branch and lower-branch solutions resembled the Newtonian log-law profile and Virk

MDR asymptote, respectively.

Kushwaha et al. [127] further investigated the relationship between extended do-

main DNS and ECSs found by Park and Graham [182]. By using wall shear stress

values locally averaged over an area corresponding to the size of the minimal channel

used for the ECS, they found good agreement between the average bulk velocity of
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the ECS and the value found for the ensemble-averaged LDEs. They also found excel-

lent agreement between the mean velocity profiles for the ECSs and the conditionally

averaged profiles during LDEs.

5.1.3 Importance of low-drag events

The future of real-time turbulent flow control lies in the synthesis of low-order repre-

sentations which are robust and parsimonious. The ability to synthesize these models

is reliant upon the extraction, and subsequent understanding, of important flow struc-

tures and events which emerge in turbulence. In other words, to know which direction

to go (i.e. to control the system), we must first know where we are relative to ma-

jor landmarks (i.e., exact coherent solutions) and become familiar with the roads to

travel to get to them (i.e. trajectories). In addition to finding new ECSs, new work

on the latter is being done to better understand the ”principal” trajectories that are

fundamental in a nonlinear system [55].

An image comes to mind of a cartographer filling in the world map as she explores

previously unseen territory. In much the same way as traveling in a foreign land

without a map, it is easy to get lost in the state space of turbulence without knowing

the landscape. However, as we continue to map exact coherent solutions and the flow

structures or characteristic events that emerge when the system is near to them, we

can begin to form novel flow control methods to force trajectories toward (or away

from) these landmarks. The advancements and application of machine learning in

fluid dynamics is promising for helping to further reveal the state space of turbulence

[177].

Characterization of the temporal and spatial aspects of low-drag events is the

first step toward more informed flow control techniques. A better understanding of

these events, including when and how they arise, invites the future possibility of their
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in situ prediction. Subsequently, an informed flow control method would allow the

replacement of ”always on” control with ”on-off” control, which promotes decreased

energy expenditure, as the control is only on when the system is in a more controllable

state (e.g., close to an ECS) [43]. Furthermore, low-drag events offer a prudent target

for drag reduction. By tailoring techniques to increase the overall frequency of low-

drag events or increase the duration of individual events, enhanced drag reduction

may be achieved at a lower cost.

Recently, work by Davis and Park [45] showed that the addition of homogeneous

slip at the boundaries has a stabilizing effect on certain ECSs, extending the time

spent in the quiescent solution state. Conversely, ECSs that manifest different flow

structures were coerced to leave the solution state early with the inclusion of slip at

the boundaries. It is reasonable to believe, then, that this may be extended to active

feedback control to guide the system to a desired state. These advancements in control

are preceded, first, by garnering a better understanding of the events themselves and

their connections to ECSs.

Given the previous work to characterize LDEs at lower Reynolds numbers, the

question naturally arises: what happens as Re → ∞? Whalley et al. [247] showed

that the frequency and fraction of time spent in hibernating turbulence decreases with

increasing Reynolds number up to Reτ = 100 when using mixed units for the time

duration criterion (∆t∗ = ∆tuτ/h). However, Agrawal et al. [3] recently found that

the fraction of time spent in these low-drag states is constant when using inner units

for the time duration for Reτ ≤ 250. Therefore, the goal of this work is to extend

the analysis of these previous studies to characterize the intermittent low-drag events

at moderate Reynolds numbers (i.e., 200 < Reτ < 700) using temporal and spatial

sampling techniques. With insight into the characteristics of these low-frequency

events, we can better understand the dynamics of turbulent flows, and exploit these
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dynamics to offer more efficient control methods in the future.

Below, we detail the characterization of low-drag events at moderate Reynolds

numbers using combined numerical and experimental techniques. This article is orga-

nized as follows: Section 5.2 presents the problem formulation and provides numerical

details. Section 5.3 provides details on the experimental setup and methods used for

data capture of the turbulent boundary layer velocity fields. Comparison of numerical

data with experimental data, as well as resulting low-drag event identification and

characterization is detailed in 5.4. Finally, a summary and implications of the present

investigation are given in Section 5.5.

5.2 Numerical Formulation

We consider an incompressible Newtonian fluid in the plane Poiseuille (channel) ge-

ometry, driven by a constant volume flux Q̇. The x, y, and z coordinates are aligned

with the streamwise, wall-normal, and spanwise directions, respectively. Periodic

boundary conditions are imposed in the x and z directions with fundamental periods

Lx and Lz, and no-slip conditions are imposed at the walls y = ±h, where h = Ly/2

is the channel half-height. Using the half-height h of the channel and the laminar

centerline velocity Uc as the characteristic length and velocity scales, respectively, the

nondimensionalized Navier-Stokes equations are then given as

∇ · u = 0, (5.1)

∂u

∂t
+ u · ∇u = −∇p+

1

Rec
∇2u. (5.2)

Here, we define the Reynolds number for the given laminar centerline velocity as

Rec = Uch/ν, where ν is the kinematic viscosity of the fluid. Characteristic inner
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scales are the friction velocity uτ = (τ̄w/ρ)1/2 and the near-wall length scale or wall

unit δν = ν/uτ , where ρ is the fluid density and τ̄w is the time- and area-averaged

wall shear stress. As usual, quantities nondimensionalized by these inner scales are

denoted with a superscript “+”. The friction Reynolds number is then defined as

Reτ = uτh/ν = h/δν .

Simulations are performed using the open source code ChannelFlow written and

maintained by Gibson [69]. In this study, we focus on the domains of L+
x ×L+

y ×L+
z =

1000 × 1400 × 600 to match the SPIV field-of-view. A numerical grid system is

generated on Nx×Ny×Nz meshes, where a Fourier-Chebyshev-Fourier spectral spatial

discretization is applied to all variables. The spatial resolution used is (Nx, Ny, Nz) =

(82, 81, 104), resulting in the numerical grid spacing in the streamwise and spanwise

direction: ∆x+ ≈ 12.2 and ∆z+ ≈ 5.8. The non-uniform Chebyshev spacing used in

the wall-normal direction results in ∆y+min ≈ 0.54 at the wall and ∆y+max ≈ 27.5 at

the channel center. The DNS spatial resolution is greater than that of the SPIV to

ensure the simulations accurately capture the dynamics of the flow.

5.3 Details of the Experiments

The experiments were conducted in a recirculating water channel facility in the De-

partment of Aerospace Engineering and Mechanics at the University of Minnesota.

The channel test section is 8 m long and 1.12 m wide. In order to trigger the de-

velopment of a turbulent boundary layer, a 3 mm diameter cylindrical trip-wire was

located at the entrance of the test section. The experiments were performed at an

approximate streamwise location of 4 m from the trip wire location. The water depth

in the channel was maintained at 0.394 m. The boundary layer thickness was esti-

mated as δ = 73 mm (based on the the location where the mean streamwise velocity



147

Figure 5.1: Schematic of the Stereoscopic Particle Image Velocimetry setup for the
current experiments. x, y and z represent the streamwise, wall-normal, and spanwise
directions, respectively.

reaches 99% of the free stream value). The free stream velocity was 0.215 m s−1,

and the corresponding frictional Reynolds number was Reτ = uτδ/ν = 680. Here,

the frictional velocity, uτ , was estimated by fitting the logarithmic law of the wall to

the boundary layer profile obtained experimentally.

In order to characterise hibernation events close to the wall, Stereoscopic Particle

Image Velocimetry (SPIV) was employed at a distance of y+ = 28 from the wall. The

flow was seeded with silver-coated hollow glass spheres from Potters Industries LLC

with an average diameter and density of 13 µm and 1600 kgm−3, respectively. a New

Wave Solo II Nd:Yag 532 nm double-pulsed laser system with a pulse energy of 30

mJ was employed to illuminate a 1 mm thick plane parallel to the wall at a location

of y+ = 28. Two Phantom Miro high-speed cameras with a resolution of 1280 × 800

pixels2 were arranged in a Stereoscopic configuration, giving a field of view of 951.4 ×

613.4 wall units (1.4δ× 0.8δ) in the streamwise and spanwise directions, respectively.
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Figure 5.2: (a) Mean streamwise fluid velocity profile (shown as circles) and (b)
r.m.s of the streamwise velocity fluctuations (shown as triangles) for the current
experiments at Reτ = 680, compared to the DNS data from [109] (shown in dashed
lines) for Reτ = 690.

The cameras were fitted with Scheimpflug mounts and 105 mm Nikon Micro-Nikkor

lenses, giving a magnification factor of 11.76 pixels/mm. The Scheimpflug mounts

were added to achieve a uniform focus across the field of view. The system was

calibrated by imaging a 3D calibration plate with a high precision dot pattern (Type

22) from LaVision. The mapping function for the calibration was generated in DaVis

8.4 (LaVision) by fitting a third order polynomial function onto the marked planes.

The r.m.s error in the estimated dot position varied from 0.05 to 0.1 pixels indicating

an optimal fit. The schematic for the SPIV setup for the current experiments is shown

in figure 5.1.

Velocity fields were deduced using DaVis 8.4, with an overlap of 50% over initial

interrogation window sizes of 64 by 64 pixels followed by three passes of 32 by 32

pixels. The spatial resolutions of the computed velocity vectors was 25 wall units.

The obtained velocity fields were post-processed with the universal outlier detection

criterion [245] to remove spurious vectors. In order to obtain time-resolved velocity

fields, 20 data sets containing 4117 images from each camera were acquired at 200
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Reτ U∞ [m s−1] uτ [m s−1] δ [mm]

680 ± 20 0.215 0.0092± 0.0001 73 ± 2

Table 5.1: Boundary layer properties in the current study.

Hz. For time-averaged statistics, 2 data sets containing 4117 images from each camera

were acquired at 2 Hz.

The mean flow statistics of the turbulent boundary layer was determined from

planar PIV measurements. A streamwise wall-normal plane of thickness 1 mm was

illuminated using the same laser system as mentioned above for the SPIV. A high

speed camera (TSI Powerview Plus 4MP 16-bit) with an image resolution of 2048 by

2048 pixels was used to acquire 2000 image pairs at a sampling frequency of 1.81 Hz.

The boundary layer properties are summarised in table 5.1. Further details can be

found in Tee et al. [219]. In figure 5.2, the flow statistics from the current experiments

are compared with the DNS results reported by Jiménez et al. [109]. The streamwise

velocity statistics from PIV shows very good agreement with the DNS results.

5.4 Results and Discussion

5.4.1 Comparison of DNS and SPIV data

It is important to compare the DNS data to the SPIV data to ensure good statistical

agreement before moving forward. The three plots in Figure 5.3 show the probability

density functions for the streamwise, wall-normal, and spanwise velocity fluctuations

normalized by the friction velocity. The streamwise velocity fluctuation distribution

for both the DNS and SPIV data are negatively skewed, but match quite well. How-

ever, the peak of the wall-normal velocity fluctuation distribution is slightly negative,

possibly due to insufficient resolution in the y-direction. There appear to be larger
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Table 5.2: Time-averaged statistics

y+ ≈ 28 Reτ uτ 〈U〉/uτ 〈urms〉/uτ 〈vrms〉/uτ 〈wrms〉/uτ
DNS 700 0.0355 12.960 2.571 0.791 1.310
SPIV 700 0.0093 14.920 2.100 1.020 1.203

Database 690 0.0422 13.020 2.531 0.866 1.440

spanwise velocity fluctuations in the DNS as evidenced by the slightly wider distri-

bution and smaller peak. Overall, there good agreement between the numerical and

experimental data.

Additionally, both DNS and SPIV statistics were found to be in good agreement

with values from a database of turbulent boundary layer DNS data at a Reynolds

number of Reτ = 690 [110]. A comparison of time-averaged statistics is shown in

Table 5.2.

5.4.2 Correlation of wall shear and streamwise velocity

Previously, low-drag events have been identified using observed trends in the wall

shear stress or wall shear rate [256, 247]. Due to limitations in the current experi-

mental setup, there is no access to experimental wall shear information, so low-drag

events cannot be identified in this manner. However, Whalley et al. [247] also showed

a characteristic reduction of streamwise velocity during the low-drag events that were

identified using wall shear stress. While the coherence between wall shear stress and

streamwise velocity is lost as wall-normal distance is increased, they show the signif-

icant deviation from the mean streamwise velocity behavior during low-drag events

persists up to a wall-normal distance of y+ ≈ 30. However, this result is only for

Reτ ≈ 100. With Reτ = 700 and wall-normal location of the SPIV plane at y+ ≈ 28,

we now verify whether the wall shear and streamwise velocity are correlated for the

current study.
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We consider the correlation coefficient, which is the linear relationship between

the two area-averaged signals, and is given by

r(τw, u) =
1

N − 1

N∑
i=1

(
τw,i − 〈τw〉

στw

)(
ui − 〈u〉
σu

)
(5.3)

and can be more compactly written using the covariance of the two signals.

r(τw, u) =
cov (τw, u)

στwσu
(5.4)

The correlation coefficient ranges from 1 for positively correlated entities to -

1 for negatively correlated entities. A correlation close to zero signifies negligible

correlation and the two entities are incoherent. If two signals trend in the same

direction, they are positively correlated, if they trend in opposite directions, they are

negatively correlated, and if the relationship between two signals is incoherent, they

are said to be uncorrelated.

Figure 5.4 shows the correlation coefficient as a function of wall-normal distance

during ”nominal” turbulence, as well as during conditionally sampled data from de-

tected LDEs. As expected, very near the wall, the two values are almost perfectly

correlated, and become less correlated as wall-normal distance is increased. However,

the correlation between the two signals remains significant up to y+ ≈ 28, corre-

sponding to the location of the SPIV plane. Additionally, the two signals are more

correlated during the LDEs than during nominal turbulence. Therefore, it appears

that the streamwise velocity at y+ ≈ 28 may be used as a proxy for wall shear to

detect low-drag events.
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Figure 5.4: Correlation coefficient between the two DNS signals of area-averaged
wall shear stress and area-averaged streamwise velocity as a function of wall-normal
distance. The vertical red line corresponds to y+ = 28

5.4.3 Detection of low-drag events

We now consider the detection of low-drag events for the DNS and SPIV data and

compare their characteristics. We utilize the time series of the area-averaged the wall

shear and the streamwise velocity at y+ ≈ 28 for the DNS fields and time series of

the area-averaged streamwise velocity at y+ ≈ 28 for the SPIV fields. For the current

study, the quantities are averaged over the entire field of view (i.e., Lx = 1000×Lz =

600).

5.4.3.1 DNS

We now consider the distribution of the duration of LDEs found via wall shear in-

formation from DNS. We use the detection criterion that the wall shear must fall

below 95% of the mean value for any amount of time. From this, the probability

density function for the duration of these events can be found. A duration criterion
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Figure 5.5: Probability density function for the duration of low-drag events using τw
and u(y+ ≈ 28).

can, then, be determined based on the average duration plus some value to take into

account only significant events. The same analysis is done to find the distribution of

detected events using streamwise velocity at y+ ≈ 28. However, the criterion is now

that the area-averaged streamwise velocity must fall below 98% of the mean value for

any amount of time. These probability density function are shown in Figure 5.5.

While there is good agreement between the distribution of LDE duration using

the two quantities, the question remains whether the events detected via streamwise

velocity away from the wall are the same events detected via wall shear. Furthermore,

if the events detected are the same between the two cases, what is the relationship

between them? Namely, do the events coincide with one another or does the event

detected with one signal lag the same event detected with the other signal? Is it

possible that some events are detected in one signal that go undetected in the other?

To investigate this relationship, area-averaged time series data for a detected LDE

are shown in Figure 5.6.
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Figure 5.6: Time series data for a detected LDE using wall shear and the same event
detected using streamwise velocity at y+ ≈ 28. Solid horizontal lines correspond to a
signal’s mean value. Dashed horizontal lines correspond to a signal’s event detection
criterion. Vertical lines are visual guides to highlight the low-drag event.

As shown in the figure, the two signals display similar behavior during a significant

LDE detected via wall shear rate. The solid horizontal lines correspond to the mean

value of each signal and the dashed lines correspond to the detection threshold value

for each signal. Detection thresholds shown correspond to 0.95τ̄w and 0.98 ¯U(y ≈ 28)

for each respective signal. Overall, the two signals agree with one another during an

LDE.

We now consider the joint probability density function of wall shear and velocity

fluctuations for the nominal, or unsampled, data and the conditionally sampled data

for the DNS, with the condition being τw < 0.95〈τw〉 for ∆t+ > 300. As shown in

Figure 5.7, the fluctuations in all three directions are reduced during the detected

LDEs relative to the unsampled turbulence, and is quantified by the reduction in

the standard deviations for each component. This is in agreement with the calm,
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quasi-streamwise-invariant behavior seen in traveling wave solutions [182]. While

both positive and negative fluctuations for the wall-normal and spanwise directions

are reduced, only the positive fluctuations are reduced for the streamwise direction.

This further suggests that streamwise velocity may be a good candidate for LDE

detection where wall shear data is not available.

The same procedure is performed as before for LDEs detected via wall shear,

except now we attempt to detect events via streamwise velocity at y+ ≈ 28. The

condition for LDE now is u < 0.98〈u〉 for ∆t+ > 300. The joint probability functions

for wall shear and streamwise velocity at y+ ≈ 28 are shown in Figure 5.8. Once again,

there is a reduction in the velocity fluctuations during LDEs detected via streamwise

velocity which is quantified by the reduction in standard deviation of the fluctuations.

While the extent to which they are reduced is less than that seen when using wall

shear to detect LDEs, the trend is qualitatively the same. If a stricter criterion were

set for the threshold value of streamwise velocity, these fluctuations may be reduced

further. More importantly, however, is the trend see in the wall shear distribution for

the conditionally sampled case. The wall shear is reduced during these events when

they are detected using streamwise velocity. This suggests that streamwise velocity

may be a good proxy for wall shear when attempting to detect LDEs. Therefore, we

propose it is reasonable to apply the same methodology to the velocity planes from

the SPIV data to detect LDEs.

5.4.3.2 SPIV

Now that streamwise velocity at y+ ≈ 28 has been shown to provide qualitatively

similar results to those found using wall shear information, we consider the SPIV

data. Shown in Figure 5.9 is the probability density function for the duration of

detected LDEs using U < 0.98Ū for any amount of time. From this distribution, a
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Figure 5.9: Probability density function for the duration of low-drag events detected
via streamwise velocity at y+ ≈ 28 from turbulent boundary layer SPIV data com-
pared with the probability density functions from DNS data.

critical duration criterion can be deduced to only take into account significant events.

Overall, there is still good agreement between the distribution of LDE durations for

the SPIV and DNS data. The shape and trend are qualitatively the same as that

seen in the distribution of LDE duration of the DNS data. However, the number of

significant LDEs detected is lower than that seen in the DNS data. This is illustrated

by the rate at which the PDF decays with increasing LDE duration. This is most

likely because the number of independent fields for the SPIV data is much less than

that of the DNS data (i.e., there are fewer significant events because there are fewer

SPIV fields to sample from). Therefore, the majority of the events detected in the

SPIV data are short in duration causing the PDF to be much greater close to ∆t+ = 0.

The duration of the longest event detected in the SPIV data is ∆t+ ≈ 275 while the

duration of the longest event detected in the DNS data is approximately an order of

magnitude larger.

The distribution of velocity fluctuations for the unsampled and conditionally sam-
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Table 5.3: Maximum LDE duration for each Reynolds number

Reτ max
(
∆t+LDE

)
200 371.8 ±4.3
500 978.0 ±9.4
700 1983.3 ±12.4
1000 4790.4 ±17.1

pled data are shown in Figure 5.10. The LDE detection criteria in this case is

u < 0.98〈U〉 for ∆t+ > 100. Similar to the behavior seen in the DNS data, the

fluctuations during the detected events are reduced compared to the unsampled case.

Again, only the positive streamwise fluctuations are reduced during these events while

both the positive and negative wall-normal fluctuations are reduced slightly. These

reductions in the cross-flow fluctuations are, again, similar to the quasi-streamwise-

invariant behavior seen in traveling wave solutions of Park and Graham [182]. The

qualitative agreement between the DNS and SPIV data is promising for using stream-

wise, or possibly spanwise or wall-normal, velocity to detect LDEs.

5.4.4 Reynolds number dependence of low-drag events

A brief analysis of the effect of Reynolds number on the characteristics of LDEs has

been performed. LDEs were detected using criteria that area-averaged wall shear

τw must fall below 95% of the time-averaged value for any amount of time, i.e.,

∆t+ > 0. The window size that the values are averaged over is L+
x = 1000×L+

z = 600.

Probability density functions for the duration of these events are shown in Figure

5.11. Interestingly, the probability density functions are reduced at ∆t+ = 0 as

Reynolds number is increased, suggesting more long-duration events are present at

higher Reynolds numbers. This is observed in the non-zero PDF at larger duration.

The largest LDE for each Reynolds number is shown below in Table 5.3. Interestingly,

the duration of the longest LDE increases with Reynolds number.
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Figure 5.11: Probability density function of low-drag event duration for various
Reynolds numbers.

The fraction of time spent in LDE for τw < 0.95〈τw〉 and ∆t+ > 100, 200, and 300

is shown in Figure 5.12. Unlike the trend observe in Agrawal et al. [3], the fraction

of time spent in LDE increases with Reynolds number. Previously, they observed

that the fraction of time spent in these events remained constant with Reynolds

number when inner units were used in the duration criterion to detect events. Similar

to previous results, the fraction decreases with stricter duration criteria. This is

due to the lower number of events with longer duration. The trend in the LDE

fraction appears to be approaching an asymptote above Reτ = 1000, but more work

is necessary to determine if this is the case.

Similarly, the fraction of time spent in LDE when using mixed scaling (∆tuτ/h)

for the duration criterion is shown in Figure 5.13. The trend is different from that

seen in Figure 5.12. The fraction seems to stay relatively constant until Reτ = 500

before increasing for the rest of the Reynolds numbers studied here. Again, the

fraction of time spent in LDEs is reduced for stricter duration criteria owing to the
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Figure 5.12: Fraction of time spent in low-drag state as a function of Reynolds num-

ber. Inner scaling used for LDE detection duration criterion (∆t+ = ∆tu
2
τ

ν
).

Figure 5.13: Fraction of time spent in low-drag state as a function of Reynolds num-
ber. Mixed scaling used for LDE detection duration criterion (∆t∗ = ∆tuτ

h
).

decreased number of longer events. This, again, is different from the trend observed

by both Whalley et al. [247] and Agrawal et al. [3], where the fraction of time spent

in LDEs decreased with increasing Reynolds number when using mixed units for the

duration criteria. While the difference is possible because the current study extends

the Reynolds number quite considerably (the previous studies only investigated up

to Reτ = 250), more work is necessary to determine if this is accurate.
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5.5 Conclusion

This work sought to characterize the intermittent phenomena known as low-drag

events (LDEs) for moderate Reynolds number. While this has been studied for tran-

sitional Reynolds numbers, Reτ < 250, the analysis has not been extended to higher

Reynolds number flows. Using both direct numerical simulations (DNS) and stereo-

scopic particle image velocimetry (SPIV), we compared the temporal characteristics

of LDEs at Reτ = 700.

Because wall shear stress measurements were unavailable with the current experi-

mental setup, a relationship between the wall shear stress and streamwise velocity at

some wall-normal distance had to be probed. It was found that the signals of area-

averaged streamwise velocity at y+ ≈ 28 and area-average wall shear rate from the

DNS data are highly correlated, with a correlation coefficient of ∼ 0.8. Exploiting this

relationship, the characteristics of LDEs were compared for those events found via

wall shear rate and those found via streamwise velocity. Overall, the distributions of

the LDE duration were in good agreement. The velocity-wall shear relationship was

also compared by conditionally sampling the two fields using LDE detection criteria.

Joint probability density functions for the wall shear rate and streamwise velocity of

the DNS data show the reduction in streamwise velocity during LDEs detected using

wall shear rate. The reciprocal behavior is observed when LDEs are detected using

streamwise velocity. Velocity fluctuations in all three directions are reduced slightly

during LDEs.

The distribution of LDE duration was compared for the DNS and SPIV data.

While the DNS data admitted much longer events, as evidenced by the probability

density function, the trend between the DNS and SPIV data was still consistent.

Overall, there is good agreement between the two data sets when considering dis-
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tribution of LDE duration. The discrepancy between the two data sets most likely

manifests due to the much smaller sample size for the SPIV data. The longest event

detected in the SPIV data is ∆t+ ≈ 275 while the longest event detected for the

streamwise velocity DNS data is an order of magnitude larger, ∆t+ ≈ 2900. If a

larger sample size were obtained for the SPIV data, it is believed that the two dis-

tributions would match more closely. It is also possible that the lower resolution and

accuracy of the SPIV data plays some role in the lower detection rate.

Preliminary results on Reynolds number scaling of the duration of LDEs show

that the fraction of time spent in LDEs increases with respect to Reynolds number

using both inner units and mixed units. This result is reflected in the probability

density function of the duration of LDEs for the various Reynolds numbers studied

here. These results disagree with those observed by Whalley et al. [247] and Agrawal

et al. [3], previously. The current results would suggest that there are more frequent

LDEs and longer LDEs as Reynolds number is increased. There is also the possibility,

evidenced by Figure 5.12, that the fraction of time spent in LDEs approaches some

asymptote with increasing Reynolds number. These trends must be verified, and the

Reynolds number scaling on the temporal characteristics of low-drag events is the

focus of ongoing research.

The spatial locality of these events requires further investigation, as well. The

interrogation window for the current study in inner units was 1000 × 600 for the

streamwise and spanwise directions, respectively. The size of this area affects the

ability to detect LDEs, as the detection method uses area-averaged wall shear rate,

based on the assumption from previous studies that the entire domain should be

experiencing the event. However, as domain sizes are extended, these events become

spatially-localized. Therefore, area-averaged values mix information from areas of

the domain that may be experiencing distinct spatially-localized dynamics. Future
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work aims to more accurately describe the spatial characteristics of these events by

identifying individual events in extended flow fields and investigating the efficacy

minimal flow units at moderate Reynolds numbers. Chapter 3 suggests that certain

constraints must be placed on the smallest domain size to ensure valid dynamics.

Reynolds number scaling on the spatial characteristic of these events is also ongoing.

In turbulent flow control, a challenge lies in finding descriptive state variables for

the system. This study shows that other variables (i.e., streamwise velocity) may be

used as proxies for wall shear stress, which is a commonly used state variable in wall-

bounded turbulent flows. These proxies may then be used for state estimation and

control. This has important implications for high Reynolds number, industrial-scale

flows where wall shear stress measurements are inaccurate or altogether unavailable.
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Chapter 6

THE EFFICACY OF THE MINIMAL FLOW UNIT FOR

HEALTHY TURBULENCE

1

6.1 Introduction

Embedded in a turbulent flow is inherent intermittency. The dynamics of wall-

bounded turbulence fluctuate between high, intermediate, and low-drag states in

a stochastic fashion, which illuminates the self-sustaining process in shear flows

[256, 86, 232, 4]. The most straightforward simulation approach to identify the in-

termittency and self-sustaining structures is the so-called minimal flow unit (MFU)

approach [106]. A minimal flow unit is the smallest simulation domain for a given

set of parameters, such as Reynolds numbers, containing the essential self-sustaining

elements for which turbulence persists. In MFUs, turbulent statistics are spatially

correlated, indicating that the entire domain completely experiences the same dy-

namics. Accordingly, temporally intermittent phenomena can be readily identified by

spatial averaging. Thus, the MFU dynamics allow one to concentrate only on the tem-

poral intermittency of turbulence. However, it should be noted that an MFU should

1This work was published as Davis, E.A., Mirfendereski, S. and Park, J.S., Fluids, 6, 5 (2021)
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at least maintain ”healthy” near-wall turbulence that reproduces the self-sustaining

process and statistical characteristics of full turbulence [62, 158, 98, 99]. In partic-

ular, an MFU should be able to contain a single ejection and sweep event by which

streamwise streaks and vortices are sustained [161].

In an extended domain, turbulent statistics become less correlated in space and

the intermittency becomes both spatial and temporal in nature. In this situation,

spatially-averaged statistics could mix information together from different regions,

which makes identification of spatiotemporal intermittency difficult to recognize.

Moreover, the effects of the computational domain size on turbulent dynamics could

be profound [149]. In addition, as the Reynolds number increases, the spatiotem-

poral intermittency becomes more noticeable [94, 135, 136]. A natural question is

how closely the MFU dynamics are related to the spatiotemporal intermittency in

a spatially extended domain. This extended domain can be thought of as a more

experimentally realizable flow for which no artificial periodicities are imposed [128].

There have been studies to draw the links between minimal-domain temporal in-

termittency and extended-domain spatiotemporal intermittency for the transitional

Reynolds number regime [128, 241], but it has yet to be explored for higher Reynolds

numbers until now, which is a focus of the present work.

Prior to proceeding to the present work, we aim to provide a brief description of

the minimal flow unit and its potential connection to William W. Willmarth’s legacy

in turbulent flows. Direct numerical simulations (DNSs) based on minimum flow units

have been extensively performed for a variety of purposes, including understanding

near-wall turbulent dynamics [185, 174, 182, 263] and flow control [28, 257, 46]. A

minimum flow unit involves the periodic computational domain, which has the mini-

mum spanwise length of approximately 100 wall units and the minimum streamwise

length of approximately 250–350 wall units [106]. Interestingly, an MFU with the
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minimum lengths could capture the turbulence intensity at the near-wall in a turbu-

lent channel experiment performed by Wei and Willmarth [243]. However, lengths

too small to accommodate the large-scale structure are likely to result in a statistical

abnormality and minimal log layer in a mean velocity [106]. Although the outer por-

tion of the boundary layer might not significantly influence the inner-layer statistics

to some extent [108], the influence of the outer layer flow on near-wall flow structures

becomes important when there is a significant cancellation in the logarithmic layer.

Thus, it is worth noting that the deterioration of near-wall turbulence with narrow

MFU domains for higher Reynold numbers could result in the disappearance of the

logarithmic region in the mean velocity profile. This situation can be referred to as

”unhealthy” turbulence. As mentioned above, ejection and sweep events should be

accommodated for valid MFU dynamics. These events could be related to Reynolds

stress and coherent structures by means of the so-called quadrant analysis. This

approach was advanced by Willmarth and Lu [249, 150, 151, 248]. This quadrant

analysis will be employed in the current study to draw connections between MFU

dynamics and extended-domain dynamics.

This paper is organized as follows. Section 6.2 presents the problem formulation

and numerical details for the current study. In Section 6.3, we present the size of

minimal flow units and compare MFU statistics and dynamics to ones for a sub-

domain of the same size embedded in an extended domain, for which quadrant analysis

was employed. Finally, a summary and implications of the present investigation are

given in Section 6.4.
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6.2 Problem Formulation

We consider a direct numerical simulation (DNS) of an incompressible Newtonian

fluid in the plane Poiseuille (channel) geometry, driven by constant volumetric flux

Q. The domain was aligned such that the x, y, and z coordinates corresponded to the

streamwise, wall-normal, and spanwise directions, respectively. For all DNSs, periodic

boundary conditions were imposed in the x and z directions with the maximum

wavelengths of Lx and Lz, and a no-slip boundary condition was imposed at the top

and bottom walls y = ±h, where h = Ly/2 is the channel half-height. However, data

analyzed from the extended domain DNS were taken from a sub-domain (SD) which

matches the fundamental periods of the MFU, namely, Lx and Lz. An SD was located

in the middle of the extended domain to minimize any potential artificial effects of

periodic boundaries. The laminar centerline velocity for a given volumetric flux is

given by Ucl = (3/4)Q/h. Using the channel half-height h and the laminar centerline

velocity Ucl as the characteristic length and velocity scales, the non-dimensionalized

continuity and Navier-Stokes equations are given as

∇ · u = 0, (6.1)

∂u

∂t
+ u · ∇u = −∇p+

1

Rec
∇2u. (6.2)

The Reynolds number for the given centerline velocity is defined as Rec = Uclh/ν,

where ν is the kinematic viscosity of the fluid. Inner scales used to non-dimensionalize

quantities are the friction velocity uτ =
√
τw/ρ and the wall unit δν = ν/uτ , where ρ

is the fluid density and τw is the time- and area-averaged wall shear stress. Quantities

non-dimensionalized by the inner scales are denoted with the usual superscript ”+”.

The friction Reynolds number is then defined by Reτ = uτh/ν = h/δν . For the
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current simulations, friction Reynolds numbers of Reτ ≈ 200, 500, 700, and 1000 were

considered. For this range of Reynolds numbers, the size of MFUs was Lx ≈ h and

Lz ≈ 0.75h, whereas for a typical extended domain, Lx = 5h and Lz = 3h were used.

Simulations were performed using the opensource code Channelflow [69].

A numerical grid system was generated on Nx×Ny ×Nz (in x, y, and z) meshes,

where a Fourier–Chebyshev–Fourier spectral discretization was applied to all field

variables. The domain sizes used varied depending on the friction Reynolds number,

but typical grid spacings used in the streamwise and spanwise directions were ∆x+ ≈

7. 5 and ∆z+ ≈ 5, respectively, for the range of Reynolds numbers studied in the

MFUs. The nonuniform Chebyshev spacing used in the wall-normal direction of

MFUs resulted in ∆y+min ≈ 0.25 at the wall and ∆y+max ≈ 12 at the channel center

for the various Reynolds numbers studied. For the extended domains, streamwise

and spanwise grid spacings were close to ones in MFUs. Grid system and resolution

parameters are provided in Table 6.1. Note that the wall-normal spacing in the

extended domains seems coarser, but it is still the same order as that used in the MFUs

and other studies found in high-Reynolds-number literature [149, 135]. A convergence

check was also done—spatial resolution was increased and all the quantities reported

in the current study were recalculated, yielding negligible changes from the results

reported here. Each simulation run is sufficiently long (more than 20,000 h/Ucl time

units) to ensure meaningful spatiotemporal averages.

The present study provides statistical information about the flow at increasing

Reynolds numbers, with the goal of offering insights into the effect of periodic bound-

ary conditions used in minimal flow units on MFU statistics and their connections

to statistics of a sub-domain embedded within an extended domain. The sizes of the

MFU domain were selected such that ”healthy” turbulence was sustained. Healthy

turbulence refers to the notion that the statistical properties of a flow are maintained
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Table 6.1: A summary of grid systems and resolutions for extended domain and
minimal flow unit (MFU) simulations.

Reτ Nx Ny Nz ∆x+ ∆y+
min ∆y+

max ∆z+

200 (MFU) 256 (64) 81 (121) 256 (84) 7.8 (6.2) 0.33 (0.13) 7.8 (6.4) 4.7 (2.2)

500 (MFU) 256 (86) 125 (161) 256 (84) 7.8 (5.2) 0.32 (0.17) 12.6 (8.8) 4.7 (4.0)

700 (MFU) 256 (86) 151 (181) 256 (102) 7.8 (6.9) 0.15 (0.24) 14.7 (12.0) 4.7 (4.7)

1000 (MFU) 256 (96) 191 (181) 256 (140) 7.8 (7.5) 0.14 (0.33) 16.5 (16.9) 6.3 (4.8)

and well represented by fundamental turbulent characteristics, even when using an

MFU. Specifically, besides Jiménez and Moin [106], we also refer to healthy turbu-

lence as when the friction Reynolds number saturates to its empirically predicted value

and when flow statistics such as mean and fluctuating characteristics agree with those

from extended domain simulations and experiments. Overly small domains can cause

loss of fidelity in velocity fluctuations that may cause significant differences in flow

structures, and subsequently, the statistical behavior of a flow, leading to unhealthy

turbulence (see Section 6.3.2 for unhealthy cases).

6.3 Results

6.3.1 Minimal Flow Units up to Reτ = 1000

In adopting a similar approach to the MFU methodology [255, 240], we fixed the

domain length Lx and found the minimal domain width Lz that could sustain the

turbulence. However, a larger Lx was sometimes needed if the flow relaminarized

even with increasing Lz. As reported in the previous works [106, 149], the minimum

spanwise length that sustains turbulence may be associated with an abnormality or

unhealthy characteristics in mean velocity profiles, especially for higher Reynolds

numbers (see Section 6.3.2 for details). To produce healthy turbulence in an MFU,

the minimum domain size, especially in the spanwise direction, is chosen to ensure
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that the mean velocity profile collapses reasonably well with the logarithmic pro-

file and that the wall shear stress agrees well with that of the extended domain.

Figure 6.1 shows the MFU sizes for each Reynolds number studied. Figure 6.1a

shows the maximum streamwise and spanwise wavelengths for each Reynolds num-

ber. The wavelengths in both streamwise and spanwise directions appear to increase

linearly with Reynolds number. While these values are close to minimal values for

sustaining healthy turbulence at these Reynolds numbers, it is possible to use smaller

domains. For instance, while not explicitly enforced, the streamwise wavelength for

all Reynolds numbers was larger than the spanwise wavelength for all cases. For a

range of Reynolds numbers studied, smaller streamwise wavelengths could still allow

for sustained healthy turbulence. Moreover, unlike the spanwise wavelength, chang-

ing the streamwise wavelength with the spanwise wavelength fixed seems to barely

affect the healthiness of the turbulence. However, it should be noted that when the

spanwise length L+
z < 0.75Reτ , it caused MFU dynamics to become unhealthy for

the Reynolds numbers studied (see Section 6.3.2 for details). Figure 6.1b shows the

resultant area of the domain for each Reynolds number. Since both streamwise and

spanwise wavelengths increase approximately linearly with Reynolds number, it is

readily seen that the area increases in an approximately quadratic manner.

To ensure the healthiness of turbulent dynamics in MFU and sub-domain (SD) in

an extended domain, Figure 6.2 shows a time series of area-averaged wall shear rates

for both MFU and SD at each Reynolds number. It is clearly observed that there is

good agreement between the two simulations for all Reynolds numbers, as the time

series for the MFU and SD are nearly indistinguishable. As such, both mean and

fluctuation characteristics agree quite well. To quantify this, the percent difference

of the root-mean-square wall shear rates between MFU and SD was calculated. It is

shown on the right of Figure 6.2 that for all Reynolds numbers, the percent difference
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Figure 6.1: (a) The maximum streamwise and spanwise wavelengths for minimal
flow units as functions of Reynolds number. Lines correspond to a linear fit. (b)
Corresponding area A+ = L+

x ×L+
z for each MFU as a function of Reynolds number.

As expected, the solid line corresponds to a quadratic fit.

Figure 6.2: Time series of area-averaged wall shear rates for MFU (solid lines) and
SD (dashed lines) in an extended domain at Reτ = 200, 500, 700, 1000. Both time se-
ries are nearly indistinguishable, indicating that mean and fluctuation characteristics
agree quite well. Note that r is the percent difference of the root-mean-square wall
shear rates between MFU and SD.

(r) is less than 2%. It is also shown by power spectral density (not shown) that the

most dominant frequencies of the wall shear stress are in good agreement between

the MFUs and SDs.
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Figure 6.3: Healthy and unhealthy streamwise mean-velocity profiles for MFUs with
various values of L+

x and L+
z at (a) Rec = 12,000, (b) Rec = 19,800, and (c) Rec =

28,800. For these Reynolds numbers, when L+
z < 0.75Reτ , the mean velocity profiles

appear to become unhealthy in regard to the logarithmic law.

6.3.2 Healthiness of Minimal Flow Units

For the current MFU simulations, we used the minimum domain size that would sus-

tain healthy turbulence. Figure 6.3 shows the effects of the streamwise and spanwise

lengths on mean velocity profiles at Rec = 12,000, Rec = 19,800, and Rec = 28,800.

As seen in the figure, the streamwise length did not have a noticeable effect on the

mean velocity profile at each Reynolds number. However, the spanwise length did

have a significant effect when L+
z < 0.75Reτ . For L+

z ≈ 0.75Reτ at each Reynolds

number, the mean velocity profile follows the Prandtl-von Kármán log law and shows

a small deviation from the logarithmic profile around the channel center. Thus, it can

still refer to healthy turbulence for this spanwise length. Note that for L+
z > 0.75Reτ ,

a slightly healthier mean velocity is visible around the channel center. It appears to

suggest that it is reasonable to choose L+
z ≈ 0.75Reτ as an MFU spanwise length for

the Reynolds numbers shown in Figure 6.3 when focusing on near-wall turbulence.

For a decrease in the spanwise length from L+
z ≈ 0.75Reτ , however, the MFU

turbulence becomes unhealthy, as evidenced by a significant deviation of mean veloc-

ity profiles from the log law starting at y+ ∼ O(100). As the spanwise length gets
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smaller, a deviation from the logarithmic law gets more severe. This unhealthy tur-

bulence might stem from the fact that the small domain, particularly in the spanwise

direction, fails to represent the large-scale coherent structures [149], which results in

deteriorated turbulent characteristics despite no sign of relaminarization. However, it

is worth mentioning that for Reynolds numbers as small as Rec = 6000 (Reτ ≈ 245),

reducing the domain size, particularly in the spanwise direction, is more likely to

cause relaminarization [106]. In addition, a smaller domain size also causes an unre-

alistic reduction of wall shear stress and thus a smaller value of Reτ for a fixed value

of Rec, as seen in Figure 6.3. By increasing the domain size, especially in the span-

wise direction, the unrealistic reduction of wall shear stress can be avoided, which in

turn increases Reτ . Note that a further increase in a domain size from MFU size at

a fixed Rec does not lead to any noticeable change in Reτ , which confirms the capa-

bility of the current MFU domain sizes to produce healthy turbulence. Nevertheless,

unhealthy turbulence might be still observed for such small Reynolds numbers within

tiny ranges of the spanwise length even with a saturated or correct Reτ .

6.3.3 Mean Flow Properties

Figure 6.4 compares the mean streamwise velocity profiles for MFUs and SDs from

different simulations at various Reynolds numbers. Regardless of Reynolds number or

domain size, the profiles collapse agreeably onto the viscous sublayer and logarithmic

profiles. Slight bumps are shown at the channel center for all simulations, which are

reasonable [149]. One observation to note is the profile for the MFU at Reτ = 200

within the buffer region (y+ ≈ 10–30). It is slightly elevated not only compared to

its SD counterpart, but also compared with all larger Reynolds number simulations.

While the MFU profile for the rest of the channel agrees reasonably well with its SD

counterpart and the log-law profile, similar anomalous behavior has been observed
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before in MFUs. It was found that for too small a domain size at Reτ = 950, a bump

in a mean velocity profile was present near the channel center [104], and statistics

above y ≈ Lz/3 ≈ 0.25h were incorrect [62]. This resulted in an accelerated flow

near the core of the flow. As the weak anomalous behavior in the present study was

observed in the buffer layer at Reτ = 200, it may suggest that the domain size was

too small to capture dynamics reliably. Additionally, the observed anomaly in the

previous study was at a significantly larger Reynolds number [149]. To further test

the log-law behavior, the inset in Figure 6.4 shows the diagnostic function of Ξ+:

Ξ+ = y+
∂U+

m

∂y+
, (6.3)

which becomes constant and equal to the inverse of the von Kármán constant κ if the

mean velocity profile displays a logarithmic layer. Aside from the obvious Reτ = 200

case, there are plateaus over a range within the log-law region, exhibiting logarithmic

behavior. While the MFU diagnostic function near the core deviates from the SD

values, there is good agreement between the two in the logarithmic region of the flow,

suggesting MFU captures the mean behavior of the flow reasonably well. It should

also be noted that despite a slight discrepancy in the log-law slope of 1/κ, the von

Kármán constant values are still within the reported range of 0.38–0.41 [213, 149, 135].

Figure 6.5 presents the mean-squared velocity fluctuations at the channel center.

This quantity gives statistical information on the strength of velocity fluctuations

at the core of the flow, which can also be used to compare differences in behavior

between MFU and SD. The fluctuations at the centerline for MFU and SD are in

good agreement for all Reynolds numbers. These values are also in good agreement

with values shown by Lozano-Durán and Jiménez [149]. However, differences between

MFU and SD are seen at low Reynolds numbers again, perhaps because the smaller
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Figure 6.4: Mean velocity profiles for minimal flow units (MFU) and sub-domains
(SD) for various Reynolds numbers along with the viscous sublayer and logarithmic
law. Inset: Log-law diagnostic function Ξ+. The dashed horizontal line is 1/κ, where
κ is the von Kármán constant and κ = 0.384.

domain size is too small to capture dynamics reliably. In addition, differences between

the current study and Lozano-Durán and Jiménez (2014) could result from the same

reason.

6.3.4 Quadrant Analysis

Willmarth and Lu pioneered the use of Reynolds shear stress to describe the structure

of turbulence in wall-bounded flows [249]. They utilized the so-called u′-v′ plane to

shed light on the notion of turbulent bursts, or short, infrequent spikes in turbulent

kinetic energy observed in turbulent flows. This same style of analysis was applied

here using joint probability density functions (JPDF) of the distributions of stream-

wise and wall-normal velocity fluctuations. Shown in Figure 6.6 are the JPDFs for

the MFU and SD at each Reynolds number. These values were taken at a wall-normal
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Figure 6.5: Mean-squared velocity fluctuations of minimal flow units (MFU) and
sub-domains (SD) at the channel center for various Reynolds numbers. 4 are values
obtained from Lozano-Durán and Jiménez [149] for larger domain simulations (L-D
2014).

plane at y+ ≈ 30.

Overall, the shapes and levels of the distributions are in good agreement among

the MFUs and SDs for all Reynolds numbers, showing almost no differences. This

strongly suggests that MFU near-wall dynamics capture SD near-wall dynamics quite

well. The majority of events occurred in quadrants Q2 and Q4, corresponding to

ejections and sweeps, respectively, as was to be expected [7, 235]. As the Reynolds

number was increased, the distribution spread outward, and larger fluctuations were

observed, which was also to be expected. For lower Reynolds numbers, it appears that

the flow experienced more frequent and larger fluctuations along the negative u′-axis

for MFU simulations. This is especially apparent for the MFU case at Reτ = 200,

as there is a ”tail” that formed in the Q2 quadrant corresponding to large negative

u′ fluctuations and small positive v′ fluctuations. This same structure is not present

in the JPDF in the SD data at Reτ = 200. This is in agreement with the trend

seen in Figure 6.4 for the MFU at Reτ = 200, which resulted in a larger mean

velocity. This discrepancy at Reτ = 200 could be explained by the fact that as

the length scale of small-scale motions was found to be about 1000 wall units, an
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Figure 6.6: Contours of joint probability density functions for streamwise and wall-
normal velocity fluctuations in a wall-normal plane at y+ ≈ 30 for MFUs (solid lines)
and SDs (dashed lines) in an extended domain. Values were normalized by their
respective friction velocities. Reτ = (a) 200, (b) 500, (c) 700, and (d) 1000.

MFU domain was not sufficiently large to capture these small-scale motions at this

Reynolds number [137]. For Reτ = 700 and 1000, however, the difference between

the distributions of MFUs and SDs is negligible, as seen in Figure 6.6c,d, suggesting

that MFU dynamics represent large-domain dynamics well up to Reτ = 1000.

6.4 Discussion

In this study, the effect of domain size on statistical behavior in a minimal flow unit

(MFU) with periodic boundary conditions was investigated by direct numerical sim-

ulations up to Reτ = 1000. To accomplish this, the statistics from the MFU were
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compared with statistics from a sub-domain (SD) of the same dimensions as the

MFU in an extended domain simulation. MFU dimensions were found by increasing

the streamwise and spanwise dimensions until turbulence was maintained and Reτ

saturated to its empirically predicted value. As one might expect, the minimal do-

main size necessary to meet these conditions increases with Reynolds number. Both

streamwise and spanwise dimensions increase linearly with Reynolds number, and

thus, the planar area increases in a quadratic manner. It was also found that when

the spanwise length L+
z < 0.75Reτ , MFU dynamics tended to become unhealthy for

Reynolds numbers studied (see Figure 6.3).

Overall, there was good agreement between the wall shear rate dynamics and

mean velocity profiles of MFU and SD simulations. Both MFU and SD profiles col-

lapsed well onto the viscous sublayer and log-law profiles. These findings suggest

that healthy MFU dynamics could represent more realistic extended-domain dynam-

ics. The mean-squared streamwise velocity fluctuations at the centerline were also in

good agreement, with MFU values slightly lower than their SD counterparts at lower

Reynolds numbers. The values are slightly lower than those observed in previous

extended domain simulations but are still agreeable [149].

A non-trivial finding was an observation that despite meeting these criteria for

MFU (i.e., sustained turbulence and saturation of Reτ ), a simulation may still offer

incorrect statistics in the bulk of the flow. While the behavior of the area-averaged

wall shear rate was in great agreement for both MFU and SD, the mean velocity

profile could still be incorrect. At Reτ = 200, this could be observed by the increase

in the mean velocity profile in the buffer region of the MFU compared with all other

simulations. There was also a distinct ”tail” in the Q2 quadrant of the u′-v′ JPDF,

which was absent in the SD of extended domain simulations. This suggests that some

additional criteria should be put in place to ensure healthy flow statistics when using
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MFUs. A detailed analysis should be a subject of future work.

Another future direction of the current work should consider the effect of turbu-

lent flow control methods on the allowable MFU. These methods are known to reduce

the wall shear stress, and increase the probability of laminarization. Therefore, it is

most likely that the MFU for these simulations would be larger than that of uncon-

trolled simulations. Different criteria may be needed to ensure healthy turbulence is

achieved.
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Chapter 7

CONCLUDING REMARKS AND FUTURE DIRECTIONS

7.1 Concluding remarks

This dissertation focused broadly on understanding underlying mechanisms behind

wall-bounded turbulent flows, with an emphasis on exploiting those mechanisms for

turbulence flow control. This chapter recapitulates the main findings and future

directions from each research chapter.

7.1.1 On the transition to turbulence and slip surfaces

Via direct numerical simulations, the effect of slip surfaces (i.e., surfaces facilitating

a nonzero velocity at the fluid-surface interface) on the laminar-turbulent transition

was investigated. Turbulence lifetime analysis (i.e. the probability that turbulence

will persist) was investigated for transitional flows at Rec = 1600, 1800, and 2000

(Reτ = 77, 85, and 93). Flows with slip surfaces were significantly less likely to

maintain turbulence compared to the no-slip case. Additionally, the slip flows were

more likely to laminarize at earlier times as slip length is further increased. As

Reynolds number is increased, this trend still holds, while a larger slip length is needed

to obtain the same likelihood of laminarization found at lower Reynolds numbers.

Phase-space projection of transitional trajectories on the energy input and dissipation



184

rates showed a reduced distance between the laminar and turbulent states, which helps

explain the increased likelihood of laminarization due to slip surfaces.

Exact coherent solutions, specifically nonlinear travelling wave solutions, to the

Navier-Stokes equations were used to investigate the effects of slip surfaces on the

laminar-turbulent separatrix. The P3 and P4 solution families were chosen as their

lower-branch solutions are shown to lie on the basin boundary between laminar and

turbulent flow [182]. The skin-friction evolution and linear growth rate from the

lower-branch solutions were calculated. For slip flows, the strong turbulent burst

associated with the P3 lower-branch solution was induced at earlier times while the

bursting magnitude and growth rate were mostly unaffected. For the P4 solution,

however, the strong turbulent burst was delayed with the reduced magnitude and

growth rate for slip flows. Beyond a critical slip value, the turbulent burst was com-

pletely eliminated as a flow is immediately laminarized after a short stable period.

Effects of slip surfaces on vortex structures of the P3 and P4 solutions were exam-

ined to elucidate mechanisms responsible for the difference in transition behaviours

between the solutions. It appears that structures associated with the P3 solution

were largely unaffected by the slip surfaces. Overall structure and strength remained

relatively constant. However, the strength of P4 vortex structures was weakened by

∼ 50%, and they were shifted away from the wall.

Based on the quadrant analysis and spatiotemporal dynamics, it was suggested

that slip surfaces promote the prevalence of strong wall-toward motions (Q4-like

events) in the area of the P3 vortex cores close to the channel centre. This results

in instability, which promotes the propagation of the vortex structures down into the

wall where they break up and induce transition, similar to the bypass transition [197].

However, sustained ejection events (Q2) were present in the region of the P4 vortex

cores (which resemble the Λ-shaped structures in H- and K-type transitions) resulting



185

in a shift of the vortex structures away from the wall allowing them to remain intact

and propagate downstream for a longer time. It can be suggested that the slip sur-

faces tend to affect core-mode structures (P3 solution) or non-modal perturbations

via inward interactions (Q3) near the wall and wall-toward motions (Q4-like events)

near the channel centre, subsequently leading to bypass-type early transition. On the

other hand, the slip surfaces tend to affect critical-layer structures (P4 solution) or

modal perturbations via ejection events (Q2) near the wall and wall-away motions

(Q1-like events) near the channel centre, subsequently leading to H- and K-type de-

layed transition. These distinct transition dynamics of the P3 and P4 solutions due

to slip surfaces could suggest that different flow control techniques could be used to

delay or promote a transition to turbulence, which will be a subject of interesting

future work.

7.1.2 On the decay of turbulence and slip surfaces

The decay from turbulence to laminar was studied via the time-evolution of the mag-

nitude of the disturbance velocity in the streamwise, wall-normal, and spanwise di-

rections. Using a quench protocol, where the Reynolds number is suddenly decreased,

a turbulent state was allowed to decay to the laminar state. For random turbulent

initial conditions, the decay rates increased with decreasing final Reynolds number.

As observed in previous plane Poiseuille and Couette-Poiseuille flows [76, 148], the

energy in the spanwise direction was found to decay faster than the streamwise en-

ergy. This was attributed to differing decay characteristics of streamwise streaks and

spanwise rolls in the self-sustaining process [231]. Specifically, the waviness of the

streaks is reduced initially which causes fast decay of the spanwise rolls followed by

a slower decay of the straightened streaks [148]. The results here corroborate those

found in previous studies.
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The effect of non-zero slip at the wall on the decay of random turbulent initial

conditions was also analyzed. The inclusion of slip at the boundaries causes the decay

rate to change depending upon the final Reynolds number. For Ref = 1000, the slip

surfaces appear to increase the initial decay rate in all three directions. After this

initial decay stage, the decay rates saturate and are similar among all slip lengths. For

final Reynolds number below Ref = 1000 studied here, the wall slip had no observable

effect on the decay rates. That wall slip is ineffectual at these final Reynolds numbers

may be related to the fact that these Reynolds numbers are close to and below the

critical Reynolds number Reg ≈ 700 where turbulence cannot persist [209, 179]. Flow

structures shown via disturbance velocity at a wall-normal plane of y+ = 12 showed

the same trends. The streamwise structures persisted for longer than either spanwise

or wall-normal directions. One indication as to the mechanism behind the increased

decay rate for the slip surfaces may be that, for the slip cases, the ”waviness” in

the streamwise streaks discussed by Liu et al. [148] appears to be reduced faster.

According to the process they put forward, this straightening of the streamwise streaks

would allow for an earlier decay of the spanwise rolls. A more detailed investigation

into the flow structures should be performed.

Additionally, the decay of exact coherent solutions was analyzed. Similar to obser-

vations in Section 2.4.3, the P3 and P4 upper-branch solutions were found to display

distinct decay characteristics. Unlike the behavior observed in the decay of random

initial conditions, the P3 solution exhibited a similar initial decay rate of the stream-

wise and spanwise velocity perturbation magnitude before entering a second stage

where the spanwise decay rate was slower than the streamwise decay rate. This trend

held for quench Reynolds number Ref = 800, 1000 but not for Ref = 600. It is

interesting as Ref = 600 is below the critical Reynolds number where turbulent spots

were found to decay, Reg ≈ 700 [22, 179, 209, 49]. However, the decay of the spanwise
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disturbances was faster than the streamwise disturbances for the P4 solution at early

time, O(10tUc/h). Decay rate increased with decreasing Ref . The addition of wall

slip had negligible effect on the decay behavior for both the P3 and P4 solutions.

The decay of the turbulent trajectories and the P3 and P4 solutions was also

analyzed using a dynamical systems approach. The dynamics of the high-dimensional

system were projected onto the energy input-dissipation plane. Through this lens, the

behavior observed in the evolution of these trajectories becomes more understandable.

For the random initial conditions, the system is attracted to lower-branch solutions

as it decays to the laminar state, even passing through the P3 lower-branch solution

in some cases. This is significant, as the P3 lower-branch solution is an edge state,

with only one unstable direction. There was also some interaction with the P4 lower-

branch solution. As Reynolds number decreases (i.e., Ref < Reg ≈ 700), the system

has almost no interaction with any of the exact coherent solutions, and instead does

directly to the laminar state, as it is the global attractor due to the linear instability

of other solutions. This behavior is consistent with previous studies done in the plane-

Couette and Taylor-Couette geometries [188]. Therefore, one possible explanation for

the increase in decay rate with the decrease in final Reynolds number may be that

the system has less significant interactions with other solutions, and instead directly

approaches the laminar attractor.

For the decay of the P3 and P4 solutions, there were rich and distinct dynamics,

seemingly orchestrated by the other exact coherent solutions. For the P3 solution at

Ref = 800, periodic behavior emerged with the inclusion of wall slip, and the system

passed through the P3 lower-branch solution before laminarizing. The P4 solution

exhibited much simpler dynamics, mostly avoiding interaction with any of the other

exact coherent solutions and directly approaching the laminar state. The dynamical

systems perspective gives much insight into the dynamics of the turbulent-to-laminar
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transition.

While the decay characteristics of the flow in [148] were unaffected by various

noise levels, spanwise rolls in the final state after transient decay were found to be

susceptible to noise. This type of analysis could be performed in the future using a

more statistically significant amount of initial conditions, ranging in initial turbulence

intensity, to analyze the effect of initial condition (i.e. noise) on the decay charac-

teristics of the flow. From the 10 initial conditions studied here, initial turbulence

intensity seems to have an effect on the initial behavior of a trajectory, but the decay

rates after this transient period appear to be consistent. Additionally, fields from the

laminar state could be subjected to perturbations to assess the susceptibility of the

final state to noise, and whether the system returns to a transient turbulent state.

Future work should also include further analysis of the mechanisms responsible for

the difference in decay rate for varying final Reynolds number, possibly by analyzing

the time-evolution of the streamwise and spanwise flow structures during decay. This

work contributes to a framework for understanding the transition to and from tur-

bulence, as well as the self-sustaining process of wall-bounded turbulence flow which

can be used to inform more efficient future control techniques. Specifically, the use

of exact coherent solutions to the Navier-Stokes equations offers a more deterministic

view of control methods on the self-sustaining process and transition to turbulent.

7.1.3 Composite drag reduction of slip surfaces and polymer additives

We performed direct numerical simulations of channel flows to investigate the com-

posite drag reduction of slip surfaces and dilute polymer solutions. The two individual

methods worked in tandem to provide a synergistic, or additive, drag reduction ef-

fect. By investigating the mean velocity profiles and Reynolds shear stress profiles,

it was determined that the mechanisms responsible for the success of each individual
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method are distinct and have minimal interaction with each other. While the slip

surfaces work to shift the velocity profile upward near the wall, the polymers work

to reduce the Reynolds shear stress in the bulk of the flow. Quadrant analysis [249]

should be performed to gain further insight into possible mechanisms responsible for

the altered mean behavior of the flow. These control methods undoubtedly have an

impact on the self-sustaining process, which would manifest itself as reduced sweep

and ejection events that could be observed in quadrant analysis.

An analysis of the the turbulent kinetic energy (TKE) and the rate at which

kinetic energy converted to elastic energy (E) was performed. For all slip lengths, the

TKE reaches a peak for Wi ≈ 30 before monotonically decreasing. This Weissenberg

number coincides with the Weissenberg number where the drag reduction begins to

level off and approach the maximum drag reduction (MDR). The rate at which kinetic

energy is converted to elastic energy increases sharply at low Weissenberg numbers,

corresponding the increase in flexibility of the polymers. After Wi ≈ 30 this value

levels off and appears to approach some asymptote. Again, this trend and value of

Weissenberg number corresponds to that observed in the drag reduction and TKE. A

more thorough investigation into the energy budget of the composite drag reduction

is necessary. The turbulent kinetic energy in each spatial direction should be analyzed

to determine where the reduction in turbulence energy is occurring. Additionally, a

similar investigation into the elastic energy associated with with the polymers should

be performed. It is believed that further investigation of the polymer dynamics,

afforded by the conformation tensor α, would contribute considerable insight into the

mechanisms responsible for the observed behavior.

Finally, the mean state of the system was projected onto the energy Input-

Dissipation plane. This showed that the control methods reduce the distance between

the mean state of the flow and the laminar state. It also showed that this distance
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appears to reach some asymptote which coincides with the asymptotic approach ob-

served in the drag reduction and rate of conversion into elastic energy. It is possible

that the MDR manifests as some surface in state space which prevents the mean state

of the system from being altered any further by the action of polymers, alone. A good

choice of state variables may offer a better description of this hypothetical surface.

A limitation of the current study is that only one polymer concentration was

considered. Further work should be performed to investigate the effect of polymer

concentration on the achievable drag reduction, as it may offer further insights into

the mechanisms responsible for the drag reduction and the differences observed by

Rajappan and Mckinley [192] between empirically observed and empirically derived

drag reduction values. Rajappan and Mckinley [192] also observed that the drag

reduction decreased after a critical polymer concentration, resulting from increased

shear viscosity and, subsequently, increased viscous dissipation.

An vital study moving forward would be to look into the conditionally sampled

flow fields, where the condition admits periods in the turbulent trajectory which are

characterized by low wall shear rate. Previous work in this area [80] has gained

great insight into the mechanisms behind drag reduction when performing temporal

analysis on the turbulent trajectories of polymer drag-reduced turbulent flows.

Future work should also consider the effect of non-ideal slip. The current study

considers only a homogeneous, streamwise slip. A more realistic natural surface

would, indeed, have slip in both the streamwise and spanwise directions. With ad-

vancements in surface fabrication techniques, a multitude of functionalized surfaces

can be manufactured which take advantage of various material properties to control

surface wetting phenomena [216, 269, 60, 143, 63, 141]. Therefore, modeling of sur-

faces which display time-varying slip is of much interest for the control of turbulent

flows. This is the focus of ongoing and future work.
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7.1.4 Characterizing low-drag events in wall-bounded turbulent flows

This work sought to characterize the intermittent phenomena known as low-drag

events (LDEs) for moderate Reynolds number. While this has been studied for tran-

sitional Reynolds numbers, Reτ < 250, the analysis has not been extended to higher

Reynolds number flows. Using both direct numerical simulations (DNS) and stereo-

scopic particle image velocimetry (SPIV), we compared the temporal characteristics

of LDEs at Reτ = 700.

Because wall shear stress measurements were unavailable with the current experi-

mental setup, a relationship between the wall shear stress and streamwise velocity at

some wall-normal distance had to be probed. It was found that the signals of area-

averaged streamwise velocity at y+ ≈ 28 and area-average wall shear rate from the

DNS data are highly correlated, with a correlation coefficient of ∼ 0.8. Exploiting this

relationship, the characteristics of LDEs were compared for those events found via

wall shear rate and those found via streamwise velocity. Overall, the distributions of

the LDE duration were in good agreement. The velocity-wall shear relationship was

also compared by conditionally sampling the two fields using LDE detection criteria.

Joint probability density functions for the wall shear rate and streamwise velocity of

the DNS data show the reduction in streamwise velocity during LDEs detected using

wall shear rate. The reciprocal behavior is observed when LDEs are detected using

streamwise velocity. Velocity fluctuations in all three directions are reduced slightly

during LDEs.

The distribution of LDE duration was compared for the DNS and SPIV data.

While the DNS data admitted much longer events, as evidenced by the probability

density function, the trend between the DNS and SPIV data was still consistent.

Overall, there is good agreement between the two data sets when considering dis-
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tribution of LDE duration. The discrepancy between the two data sets most likely

manifests due to the much smaller sample size for the SPIV data. The longest event

detected in the SPIV data is ∆t+ ≈ 275 while the longest event detected for the

streamwise velocity DNS data is an order of magnitude larger, ∆t+ ≈ 2900. If a

larger sample size were obtained for the SPIV data, it is believed that the two dis-

tributions would match more closely. It is also possible that the lower resolution and

accuracy of the SPIV data plays some role in the lower detection rate.

Preliminary results on Reynolds number scaling of the duration of LDEs show

that the fraction of time spent in LDEs increases with respect to Reynolds number

using both inner units and mixed units. This result is reflected in the probability

density function of the duration of LDEs for the various Reynolds numbers studied

here. These results disagree with those observed by Whalley et al. [247] and Agrawal

et al. [3], previously. The current results would suggest that there are more frequent

LDEs and longer LDEs as Reynolds number is increased. There is also the possibility,

evidenced by Figure 5.12, that the fraction of time spent in LDEs approaches some

asymptote with increasing Reynolds number. These trends must be verified, and the

Reynolds number scaling on the temporal characteristics of low-drag events is the

focus of ongoing research.

The spatial locality of these events requires further investigation, as well. The

interrogation window for the current study in inner units was 1000 × 600 for the

streamwise and spanwise directions, respectively. The size of this area affects the

ability to detect LDEs, as the detection method uses area-averaged wall shear rate,

based on the assumption from previous studies that the entire domain should be

experiencing the event. However, as domain sizes are extended, these events become

spatially-localized. Therefore, area-averaged values mix information from areas of

the domain that may be experiencing distinct spatially-localized dynamics. Future
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work aims to more accurately describe the spatial characteristics of these events by

identifying individual events in extended flow fields and investigating the efficacy

minimal flow units at moderate Reynolds numbers. Chapter 3 suggests that certain

constraints must be placed on the smallest domain size to ensure valid dynamics.

Reynolds number scaling on the spatial characteristic of these events is also ongoing.

In turbulent flow control, a challenge lies in finding descriptive state variables for

the system. This study shows that other variables (i.e., streamwise velocity) may be

used as proxies for wall shear stress, which is a commonly used state variable in wall-

bounded turbulent flows. These proxies may then be used for state estimation and

control. This has important implications for high Reynolds number, industrial-scale

flows where wall shear stress measurements are inaccurate or altogether unavailable.

7.1.5 The efficacy of minimal flow units for ”healthy” turbulence

In this study, the effect of domain size on statistical behavior in a minimal flow unit

(MFU) with periodic boundary conditions was investigated by direct numerical sim-

ulations up to Reτ = 1000. To accomplish this, the statistics from the MFU were

compared with statistics from a sub-domain (SD) of the same dimensions as the

MFU in an extended domain simulation. MFU dimensions were found by increasing

the streamwise and spanwise dimensions until turbulence was maintained and Reτ

saturated to its empirically predicted value. As one might expect, the minimal do-

main size necessary to meet these conditions increases with Reynolds number. Both

streamwise and spanwise dimensions increase linearly with Reynolds number, and

thus, the planar area increases in a quadratic manner. It was also found that when

the spanwise length L+
z < 0.75Reτ , MFU dynamics tended to become unhealthy for

Reynolds numbers studied (see Figure 6.3).

Overall, there was good agreement between the wall shear rate dynamics and
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mean velocity profiles of MFU and SD simulations. Both MFU and SD profiles col-

lapsed well onto the viscous sublayer and log-law profiles. These findings suggest

that healthy MFU dynamics could represent more realistic extended-domain dynam-

ics. The mean-squared streamwise velocity fluctuations at the centerline were also in

good agreement, with MFU values slightly lower than their SD counterparts at lower

Reynolds numbers. The values are slightly lower than those observed in previous

extended domain simulations but are still agreeable [149].

A non-trivial finding was an observation that despite meeting these criteria for

MFU (i.e., sustained turbulence and saturation of Reτ ), a simulation may still offer

incorrect statistics in the bulk of the flow. While the behavior of the area-averaged

wall shear rate was in great agreement for both MFU and SD, the mean velocity

profile could still be incorrect. At Reτ = 200, this could be observed by the increase

in the mean velocity profile in the buffer region of the MFU compared with all other

simulations. There was also a distinct ”tail” in the Q2 quadrant of the u′-v′ JPDF,

which was absent in the SD of extended domain simulations. This suggests that some

additional criteria should be put in place to ensure healthy flow statistics when using

MFUs. A detailed analysis should be a subject of future work.

Another future direction of the current work should consider the effect of turbulent

flow control methods on the allowable MFU. These methods are known to reduce the

wall shear stress, and increase the probability of laminarization. Therefore, it is most

likely that the MFU for these simulations would be larger than that of uncontrolled

simulations. Different criteria may be needed to ensure healthy turbulence is achieved.
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7.2 Significance of the dissertation

With the varied studies detailed herein, the main motivation behind this work was to

better understand the underlying mechanisms of wall-bounded transitional and tur-

bulent flows through the implementation of various flow control methods. The hope

is that by applying various flow control techniques, which work to alter flow dynam-

ics in distinct manners, the underlying mechanisms responsible for the transition to

turbulence and the self-sustaining process of turbulence become clearer and can be

used to develop reduced-order models and more informed flow control techniques for

more efficient systems in the future.

Along the way, various questions related the efficacy of simulations, data-driven

analysis techniques, and application of dynamical systems theory arose. These ques-

tions have blossomed into their own studies, with the hope that they expand the

literature, help lead to answers of long-standing questions about the behavior of

transitional and turbulent flows, and elicit new questions from future researchers.

The major contributions from this work are as follows: (1) the broadening of

understanding related to the mechanisms which cause the transition to and decay

from turbulence via statistical and (newly developed) deterministic methods, (2)

new knowledge related to the efficacy of certain simulation methods (i.e. Minimal

Flow Units) used in wall-bounded turbulent flows, (3) characterization of intermit-

tent flow dynamics at higher Reynolds number which may be useful in developing

better-informed drag reduction methods and reduced-order models of turbulent flows,

and (4) the efficacy of composite drag reduction techniques to overcome the difficult

task of drag reduction in large-scale systems.
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Appendix A

Details of the numerical procedure

This appendix provides details of the direct numerical simulation (DNS) of flow

over slip surfaces and viscoelastic flows using the ChanneFlow package, developed

and maintained by Gibson [69]. This C++ code uses spectral spatial discretization

(Fourier × Chebyshev × Fourier), finite-differencing in time, and primitive variables

(i.e., velocity and pressure) to integrate the incompressible Navier-Stokes equations

forward in time. This is performed in periodic, rectangular, wall-bounded domain

(i.e., channel geometry). The mathematics are derived from the Section 7.3 of Spec-

tral Methods in Fluid Dynamics [26]. For complete details and a guide, see Gibson

[69].

A.1 Incompressible Navier-Stokes equations

The governing equations for mass and momentum conservation are restated below:

∇ · u = 0, (A.1)

∂u

∂t
+ u · ∇u = −∇p+ ν∇2u. (A.2)

Here, the numerical algorithm used to solve the Navier-Stokes equations A.1 &
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A.2 is discussed. The primitive variables, velocity and pressure, can be decomposed

into the sum of a base and fluctuating component:

u(x, t) = U(y)ex + u′(x, t) (A.3)

p(x, t) = Πx(t)x+ p′(x, t) (A.4)

∇p(x, t) = Πx(t)ex +∇p(x, t) (A.5)

where the base velocity profile U = U(y) is chosen as that of the laminar plane

Poiseuille flow – U(y) = 1− y2 – and the walls are located at y = ±1. Equations A.3

and A.5 can then be substituted into A.2 to yield

∂u

∂t
+∇p = ν∇2u.− u · ∇u +

[
ν
∂2U

∂y2
− Πx

]
ex (A.6)

ChannelFlow has the option to implement the nonlinear term u·∇u using the convec-

tion form, divergence form, skew-symmetric form, rotational form, and alternating

form. The current work used the alternating form, which alternates between the

convection form u · ∇u and divergence form ∇ · (uu) on successive timesteps. This

acts to simulate the skew-symmetric form, which is more robust against errors in the

high spatial frequencies. Alternating form is as well-behaved at the skew-symmetric

and almost as fast as the rotational form, the least expensive of the forms. For more

details on the form of the nonlinear term, see [268].

We can simplify Equation A.6 by defining new notation:

N ≡ u · ∇u (A.7)

Lu ≡ ν∇2u (A.8)
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C ≡
[
ν
∂2U

∂y2
− Πx

]
ex (A.9)

Then, Equation A.6 becomes

∂u

∂t
+∇p = Lu−N + C (A.10)

This equation is then Fourier-transformed. The Fourier-transformed operators are

∇̃kxkz , 2πi
kx
Lx

ex +
∂

∂y
ey + 2πi

kz
Lz

ez, (A.11)

∇̃2
kxkz ,

∂2

∂y2
− 4π2

(
k2x
L2
x

+
k2z
L2
z

)
(A.12)

L̃kxkz , ν∇̃2
kxkz (A.13)

resulting in the Fourier-transform of Equation A.6

∂ũ

∂t
+ ∇̃p̃ = L̃ũ− Ñ + C̃ (A.14)

where ∼ denotes variables in Fourier space in the x and z directions, and in physical

space in the y direction.

A 3rd-order semi-implicit Adams-Bashforth/backward-differentiation scheme is

used for temporal discretization. Linear terms, L̃ũ and ∇̃p̃, are discretized using the

implicit backward-differentiation method, while the nonlinear term, −Ñ is discretized

with the explicit Adams-Bashforth method. The discretized time-stepping equation

is given by:

1

∆t

(
ηũ′,n+1 +

k−1∑
j=0

ajũ
′n−j

)
=

k−1∑
j=0

bj

(
−Ñ

n−j)
+ L̃ũ′,n+1 + C̃− ∇̃p̃′,n+1 (A.15)
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Table A.1: Coefficients for the Adams-Bashforth/Backward-differentiation temporal
discretization scheme for various orders-of-accuracy.

Order η a0 a1 a2 a3 b0 b1 b2 b3

1 1 -1 1
2 3/2 -2 1/2 2 -1
3 11/6 -3 3/2 -1/3 3 -3 1
4 25/12 -4 3 -4/3 1/4 4 -6 4 -1

where n is the index of the current time step and n+ 1 is the index of the next time

step to be solved. For the k-th order accuracy algorithm in time, the previous k time

step are necessary at each time step. The coefficients for the k-th order algorithm are

given in Table A.1.

A.2 Flow over slip surfaces

The DNS of flow over slip surfaces is an extension of the ChannelFlow code and the

numerical schemes presented for the incompressible Navier-Stokes equations given

above in Section A.1. The previous section used the no-slip boundary equations at

the top and bottom walls (i.e., u|y=±1 = 0) and the base profile to be U(y) = 1− y2.

Slip surfaces, however, facilitate a non-zero velocity at the wall which can be modeled

by the Navier slip condition [171]

u|y=±1 = Ls
∂u

∂y
|y=±1 (A.16)

where Ls is the slip length, a measure of the amount of slip at the wall. If we assume

the shape of the base profile to be parabolic, U(y) = ay2 + by+ c, we can solve for the

new base profile, given our assumption of the boundary condition in Equation A.16.

We also know the bulk velocity, or the integral of the velocity profile, should be equal
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to 2/3.

ub =
1

2

∫ 1

−1
udy

=
1

2

[
a

3
y3 +

b

2
y2 + cy

]1
−1

=
1

2

(
2

3
a+ 2c

)
=
a

3
+ c =

2

3

(A.17)

The y-derivative of the velocity profile is given by:

∂u

∂y
= 2ay + b. (A.18)

Substituting Equation A.18 into Equation A.16 for y = ±1, we obtain equations for

the velocity at the top and bottom walls in terms of the velocity profile:

us|y=−1 = Ls (2a(−1) + b)

= a− b+ c = Ls (−2a+ b)

(A.19)

us|y=1 = −Ls (2a(1) + b)

= a+ b+ c = −Ls (2a+ b)

(A.20)

If we then add Equations A.19 and A.20, we obtain

2a+ 2c = −4aLs ⇒ a+ c = −2aLs. (A.21)

Then, subtracting Equation A.18 from Equation A.19, we obtain

2

3
a = −2aLs −

2

3
⇒ a

3
(1 + 3Ls) = −1

3
(A.22)
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and, therefore,

a =
−1

3Ls + 1
(A.23)

Then, plugging the constant a into Equation A.21, we obtain

a+ c = −2aLs

⇒ c = a (1 + 2Ls)

∴ c =
2Ls + 1

3Ls + 1
; b = 0

(A.24)

Finally, we obtain the new base profile as a function of the slip length, Ls:

U(y) =
−y2

3Ls + 1
+

2Ls + 1

3Ls + 1
. (A.25)

Therefore, given a slip length, Ls, the base profile can be calculated and used to

decompose the streamwise velocity into the base and fluctuating components, as

discussed in Section A.1.

A.3 Viscoelastic flows

General details of the numerical methods used to solve the flow of dilute polymer

solutions using the FENE-P model are given below. Overall, the procedure is similar

to that given above for the incompressible Navier-Stokes equations, with the added

complexity of considering the effect of the polymer additives on the flow. The variables

and parameters are discussed in Chapter 3. The system of equations to be solved for

the flow of dilute polymer solutions is listed below:

∂u

∂t
+ u · ∇u = −∇p+

β

Re
∇2u+

2 (1− β)

ReWi
∇ · τp, (A.26)
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∇ · u = 0, (A.27)

α

1− tr (α) /b
+
Wi

2

(
∂α

∂t
+ u · ∇α− α · ∇u− (α · ∇u)T

)
=

(
b

b+ 2

)
δ, (A.28)

τp =
b+ 5

b

(
α

1− tr (α) /b
−
(

1− 2

b+ 2

)
δ

)
. (A.29)

The pressure and velocity are again decomposed into the sum of a base profile and

fluctuating component. The decomposed variables are substituted and the simplifying

notation is then given by:

N ≡ u · ∇u, (A.30)

Lu′ ≡ β

Re
∇2u′, (A.31)

C ≡
(
β

Re

∂2U

∂y2
− Π

)
ex, (A.32)

S ≡ 2 (1− β)

ReWi
∇ · τp. (A.33)

where N is the nonlinear inertia term, Lu′ is the linear viscosity term, C is the

constant term, and S is the nonlinear contribution of the divergence of polymer stress.

Equation A.26 can then be rewritten as

∂u′

∂t
= −N−∇p′ + Lu′ + C + S (A.34)

and Fourier-transformed in the x and z directions to obtain

∂ũ′

∂t
= −Ñ−∇p̃′ + L̃ũ′ + C̃ + S̃ (A.35)

where ∼ signifies variable in the Fourier space in the x and z directions, and in

physical space in the y direction. The Fourier-transformed differential operators in
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the x and z directions are

∇̃ ≡ 2πi
kx
Lx

ex +
∂

∂y
ey + 2πi

kz
Lz

ez, (A.36)

∇̃2 ≡ ∂2

∂y2
− 4π2

(
k2x
L2
x

+
k2z
L2
z

)
, (A.37)

L̃ ≡ β

Re
∇̃2 (A.38)

Again, the 3rd order Adams-Bashforth scheme is used for temporal discretization,

with the linear terms discretized implicitly and nonlinear terms discretized explicitly.

The time-stepping equation is given by:

1

∆t

(
ηũ′,n+1 +

k−1∑
j=0

ajũ
′,n−j

)
=

k−1∑
j=0

bj

(
−Ñ

n−j
+ S̃

n−j)
+ L̃ũ′,n+1 + C̃− ∇̃p̃′,n+1

(A.39)

We can rearrange A.39 to have the current time step values on the LHS and the n+1

time step on the RHS:

η

∆t
ũ′,n+1 − L̃ũ′,n+1 + ∇̃p̃′,n+1 =

k−1∑
j=0

(
− aj

∆t
ũ′,n−j − bj

(
Ñ
n−j − S̃

n−j))
+ C̃

≡ R̃
n

(A.40)

where n is the index for the current time step and n+ 1 is the index of the following

time step to be solved. The previous k time steps are necessary to iterate the equation

to the n+1 time step. The above equation can be expanded using the linear operator

L̃ to get a function of wave number with a wave number pair (kx, kz). For each pair,

A.40 is a differential equation with y-derivatives, only. It may be further simplified to

what is known as a tau-equation and, along with the Fourier-transformed continuity
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equation and boundary condition, is given by:

ν
∂2ũ′

∂y2
− λũ′ − ∇̃p̃′ = −R̃, (A.41)

∇̃ · ũ′ = 0, (A.42)

ũ′|y±1 = 0. (A.43)

The parameters ν and λ are constants given by:

ν ≡ β

<
(A.44)

λ ≡ 4π2ν

(
k2x
L2
x

+
k2z
L2
z

)
+

η

∆t
. (A.45)

The tau-equation is solved for wavenumber pair at each time step, where ũ′ and

p̃′ are unknown and R̃ is known from previous time steps. Using what is known as

the influence matrix, the tau-equation can be solved with both divergence-free and

boundary conditions satisfied [26]. The tau-equation is split into two sub-problems:

the A-problem and the B-problem. The A-problem cannot be solved directly because

there are no boundary conditions for the pressure term p̃′. To obtain these boundary

conditions, the B-problem is constructed by assuming the boundary conditions for

velocity are replaced by Dirichlet boundary conditions for pressure. The B-problem

is solved by constructing the B’-problem which is solved for a particular solution from

the inhomogeneous version of the B-problem with homogeneous boundary conditions

and basis solutions from two corresponding homogeneous problems: the B+−problem

and the B−− problem. These two problems need only be solved once per simulation,

as they do not vary with time. These problems are readily solvable with standard

numerical schemes, like the Chebyshev-tau method [26], which is included in Chan-
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nelFlow.

The FENE-P equation for polymer conformation tensor is easier to solve than

the modified Navier-Stokes equations. By including an artificial diffusivity term,

1/(ScRe)∇2α, for increased stability, the FENE-P constitutive model is given by:

∂α

∂t
= −u·∇α+α·∇u+(α · ∇u)T− 2

Wi

α

1− tr(α)/b
+

2

Wi

b

b+ 2
δ+

1

ScRe
∇2α. (A.46)

Terms on the RHS are again grouped into nonlinear, linear, and constant terms to

simplify the system:

Np ≡ −u · ∇α + α · ∇u + (α · ∇u)T − 2

Wi

α

1− tr(α)/b
, (A.47)

Cp ≡
2

Wi

b

b+ 2
δ, (A.48)

Lpα ≡
1

ScRe
∇2α. (A.49)

Substituting the new notation and taking the Fourier transform in the x and z direc-

tions, a simplified convection-diffusion equation is given by:

∂α̃

∂t
= Ñp + C̃p + L̃pα̃. (A.50)

This equation is solved using the semi-implicit temporal discretization scheme,

with the nonlinear terms discretized explicitly with 3rd order Adams-Bashforth and

linear terms discretized implicitly with backward-differentiation. The time-stepping

equation is given by:

1

∆t

(
ηα̃n+1 +

k−1∑
j=0

)
=

k−1∑
j=0

bjÑ
n−j
p + L̃pα̃

n+1 + C̃p (A.51)
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which becomes

η

∆t
α̃n+1 − L̃pα̃

n+1 =
k−1∑
j=0

(
− aj

∆t
α̃n−j + bjÑ

n−j
p

)
+ C̃p

= R̃
n

p

(A.52)

when rearranged. Again, R̃p corresponds to the terms that are calculated with infor-

mation from previous time steps. The coefficients for the numerical scheme are the

same given in Table A.1. Boundary conditions for α̃n+1 are obtained by updating

Equation A.52 without the linear term, which gives the equation

α̃n+1 =
∆t

η

(
k−1∑
j=0

(
− aj

∆t
α̃n−j + bjÑ

n−j
p

)
+ C̃p

)
(A.53)

which can be solved explicitly.

The pseudo-algorithm is given here. At each time step, the inverse Fourier trans-

form is performed on all fields, and nonlinear terms N, S, and Np are computed on

the grid directly. As before, the alternating form of the nonlinear term N is used,

which alternates between divergence for and convection form at each successive time

step. Fourier transforms are then performed on all fields, including the resulting

nonlinear terms that were computed directly. A loop over every wavenumber pair

(kx, kz) is performed. During each step, R̃
n
, R̃

n

p , and the boundary conditions for

α̃n+1 are computed and used to solve the tau-equation for velocity and pressure, and

the Helmholtz equations for the polymer conformation tensor. For each wavenumber

pair at each time step, 10 complex Helmholtz equations are solved, including four for

the velocity and pressure and six for the FENE-P equation. Due to the symmetry

of the conformation tensor, only three of the six off-diagonal components are solved

for. For complete details of the methods used here in simulating viscoelastic flows,
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readers are directed to the work of Xi [253].

A.4 Computation of nonlinear traveling wave solutions

The computation of the nonlinear traveling wave solutions is performed using a

Newton-Krylov-hookstep algorithm developed by Viswanath [228], and is included

in the ChannelFlow package [69]. A grid system is generated on Nx ×Ny ×Nz using

Fourier-Chebyshev-Fourier spectral spatial discretization. Traveling wave solutions

of the Navier-Stokes equations are of the form:

u(x, y, z, t) = u(x− cxt, y, z), (A.54)

where cx is a constant streamwise wave speed. ChannelFlow, however, looks to solve

a more general case using a symmetric subspace, or a subspace of the state space

which is invariant under imposed symmetries:

σf t1 (u)− u = 0, (A.55)

where f t1 is the time-t1 forward integration in time of the Navier-Stokes equations,

computed by direct numerical simulation. The symbol σ is a symmetry operator

acting on the flow field, such that

σ [u, v, w] (x, y, z) = [sxu, syv, szw] (sxx+ axLx, syy, szz + azLz) . (A.56)

The present notation for flow symmetries is taken from [71]. The symmetry operator

σ used here consists of two sets of parameters that describe the rotation-reflection

symmetries, sx, sy, sz, and the streamwise and spanwise translations, ax, az. From
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Equation A.56, the symmetry operator σ corresponds to the translation symmetry of

the traveling wave solution after time t1. Computing these solutions as they propagate

in the streamwise direction requires solving for the unknown symmetry parameter

corresponding to the streamwise shift, ax = cxt1/Lx. The spanwise shift, az, is set to

zero for the current study, and the other symmetry parameters are inherent to the

solution. The time shift, t1, is chosen a priori. Streamwise shift parameter is then

determined as part of the solution.

The Navier-Stokes equations, along with the imposed periodic boundary condi-

tions, are equivalent under certain reflections and translations in the streamwise and

spanwise directions. With the symmetries imposed on the system, the flow and

its evolution in time, and subsequent solutions, are then confined to this symmet-

ric subspace. These symmetries of the resulting flow states can be expressed using

Equation A.56 – u = σu – for certain values of σ. This symmetry parameter can

then be expressed using distinct parameters for the various imposed symmetries: τ

represents the spatial phase shifts, σ represents the reflections, and s represents the

shift-reflection or shift-rotation. The four symmetries present for the P3 and P4

traveling wave solutions are those found in Park and Graham [182]:

σy [u, v, w] (x, y, z) = [u,−v, w] (x,−y, z) , (A.57)

σz [u, v, w] (x, y, z) = [u, v,−w] (x, y,−z) , (A.58)

τxz [u, v, w] (x, y, z) = [u, v, w] (x+ Lx/2, y, z + Lz/2) , (A.59)

s1 [u, v, w] (x, y, z) = [u, v,−w] (x+ Lx/2, y,−z) . (A.60)

Symmetries associated with reflections about the midplanes in the y and z directions

are denoted by σy and σz, respectively. The τxz and s1 parameters corresponds to
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half-domain translations in the x and z directions and a shift-reflection symmetry,

respectively. The s1 symmetry is particularly relevant and corresponds to sinusoidal

instability of the streamwise streaks of the self-sustaining process [231]. Pertinent

symmetries help to reduce the complexity of the flow while preserving the character-

istics of turbulence.
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[189] D. Quéré. Non-sticking drops. Rep. Prog. in Phys., 68(11):2495, 2005.
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