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Monarch butterfly (Danaus plexippus L.) population declines have caught the attention of 

the country and prompted nationwide conservation initiatives. The United States Fish and 

Wildlife Service has identified insecticide exposure and loss of milkweed (Asclepias 

spp.) reproductive habitat as primary threats to the monarch. In the Midwestern US, 

milkweed largely occurs around cropland borders where there may be a spatial and 

temporal overlap of monarch larvae, insecticide usage, and fertilizer applications. In this 

study, the acute toxicity and sub-lethal effects on growth and diet consumption of two 

commonly used pyrethroid insecticides, bifenthrin and beta-cyfluthrin, were 

characterized in fifth instar monarch larvae. While beta-cyfluthrin was more toxic than 

bifenthrin, foliar applications of formulated products, Baythroid (beta-cyfluthrin) and 

Brigade 2-EC (bifenthrin), would result in sub-lethal and lethal effects at similar 

distances from a treated field edge according to the United States Environmental 

Protection Agency AgDrift model. As monarch larvae consume milkweed leaves they 

also ingest insecticidal cardenolides, which are antagonized by potassium.  We examined 

the effects of ouabain, a hydrophilic cardenolide, and potassium chloride (KCl), a 

commonly used potassium fertilizer, in monarch caterpillars following chronic oral 

exposure. Once effect thresholds of ouabain and KCl were determined, bifenthrin toxicity 



 

was compared between different combinations of ouabain and KCl diets. Elevated 

concentrations of ouabain increased caterpillar growth and decreased development time 

whereas elevated concentrations of KCl decreased caterpillar growth and diet 

consumption. There was no difference in bifenthrin toxicity on different diet 

combinations. Milkweed species contain a variety of cardenolides that vary in 

concentration and polarity. Toxicity of bifenthrin and effects on detoxification enzymes 

were characterized in monarchs feeding on tropical milkweed (A. curassavica), a high 

cardenolide species, and swamp milkweed (A. incarnata), a low cardenolide species. 

Detoxification gene expression and enzyme activity significantly differed between 

milkweed species and between solvent control and bifenthrin treated caterpillars on each 

species. Understanding physiological differences in monarchs developing on different 

milkweed species is important for maximizing the benefits of habitat restorations among 

agricultural landscapes. 
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PREFACE  

CHAPTER 2 has been published in Journal of Insect Science (Krueger, A.J., Hanford, 

K., Weissling, T.J., Vélez, A.M. and Anderson, T.D., 2021. Pyrethroid Exposure Reduces 

Growth and Development of Monarch Butterfly (Lepidoptera: Nymphalidae) 

Caterpillars. Journal of Insect Science, 21(2), p.2.) 

CHAPTER 3 has been submitted for publication in Economic Entomology (A. J. Krueger, 

E.A. Robinson, T. J. Weissling, A. M. Vélez, and T. D. Anderson “Cardenolide, 

potassium, and pyrethroid insecticide combinations reduce growth and survival of 

monarch butterfly caterpillars [Lepidoptera: Nymphalidae]” (submitted for publication 
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CHAPTER 4 is currently under preparation for publication in Pesticide Biochemistry and 
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CHAPTER 1 : LITERATURE REVIEW 

 

Monarch biology 

Distribution and migration 

The monarch butterfly (Danaus plexippus L.) is a globally distributed species. It 

has become an icon due to its extensive migration across North America. There are three 

subpopulations in North America including the migratory population west of the Rocky 

Mountains, the migratory population east of the Rocky Mountains, and the residential 

(i.e., non-migratory) population in Florida. The migratory monarch butterflies residing 

east of the Rocky Mountains overwinter in vast numbers in Mexico.  In the spring, these 

monarchs travel north into Texas and Oklahoma where the migrating females begin 

depositing eggs1. Each subsequent generation advances farther north, mating, laying 

eggs, and spreading throughout the Midwestern and Eastern United States. By August, 

the fourth generation from the initial spring migrants begin their southern migration and 

return to the oyamel firs in Mexico for overwintering2.  

Growth and development 

Monarch butterflies are holometabolous insects that develop through five larval 

instars3. Mated females deposit eggs on milkweed that hatch within 3-4 d. Development 

time from egg to adult eclosion is highly correlated with temperature and growing degree 

day (GDD) models can account for this interaction with temperature, representing the 

accumulated “daily total of degrees (Cº) that occur between minimum and maximum 

temperature thresholds” 4.  Monarchs require 186 degree-days to develop from eggs to 

pupae, and 307 degree-days to develop from eggs to adult eclosion5. At a constant 19.5 
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ºC, first-instar caterpillars took 561 hours to reach pupation and 1084 hours to eclose 

whereas caterpillars maintained at 31.0 ºC pupated within 218 hours and eclosed in 361 

hours6.  Development time can vary further based on solar radiation7,8. Caterpillars can 

behaviorally thermoregulate and increase body temperature to 3-8 ºC above ambient 

temperature to reduce development time by 10-50%6. This behavior is largely facilitated 

by the caterpillars’ aposematic coloration that allows individuals to remain exposed to 

predators throughout the day6. The general survival of caterpillars is quite low, with only 

around 5% of caterpillars developing to the last larval instar9. Predation, parasitism, and 

infection with Ophyryocystis elektroschirra (OE) contribute to the observed high 

mortality rate of monarch caterpillars10,11. There is a significant correlation between the 

development time and survival of caterpillars.  For example, caterpillars that develop 

more quickly have higher pupation success and survival compared to individuals that take 

longer to develop11. In addition to development time, caterpillar body mass is an 

important predictor for adult longevity12.  

Cardenolide insensitivity 

Caterpillars are obligate feeders on milkweed (Asclepias spp.), plants protected by 

toxic compounds known as cardenolides. Caterpillars require the equivalent of an entire 

milkweed stem to sustain their development from first through fifth instar stages 13. 

Monarchs have co-evolved with milkweeds developing both target-site insensitivity to 

cardenolides and the ability to sequester these compounds14. Cardenolide-insensitive 

butterfly species (e.g., Danaus gilippus) possess a single mutation of glutamine (Q) to 

valine (V) at the 111 position in the ouabain binding site of the Na+/K+-ATPase15. 

Monarchs have the additional mutations of alanine (A) to serine (S) and asparagine (N) to 
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histidine (H) at the 119 and 122 positions, respectively15,16. These mutations confer 

cardenolide resistance and sequestration in genetically modified Drosophila 

melanogaster16. Cardenolide sequestration was only observed when all three mutations 

were present, which suggests modifications at the ouabain-binding site of the Na+/K+-

ATPase are related to sequestration17. The mechanism of sequestration in monarchs and 

the environmental factors affecting sequestration, however, are still largely unknown18,19.  

Milkweed biology 

Cardenolide structure and function 

Cardenolides are secondary plant metabolites within a sub-class of cardiac 

glycosides derived from triterpenoids with broad-spectrum insecticidal activity 18. The 

basic chemical structure (Figure 1.1a) contains a 23-carbon unit with 1) a steroid 

backbone structure of four fused C rings, 2)  a five-membered lactone ring group in the β-

position at C17, and 3) a carbohydrate or sugar moiety attached to C-3 of the first carbon 

ring 18. These compounds act on the nervous system, specifically targeting the Na+/K+-

ATPase and reversibly binding to the α-subunit to lock it in its phosphorylated E2-P 

conformation and disrupt ion translocation and nerve function 20,21. The steroid nucleus 

5β,14β-androstane-3β14-diol plays a critical role in binding at the target site and receptor 

recognition. There are over 500 identified cardenolide derivatives with a wide range in 

structural modifications 18,22.  

Species differences  

 Cardenolides have been documented in 60 genera of 12 families of plants, 

although the re-classification of plants in recent years may have changed these estimates 

18,23. Within the former Asclepiadaceae family, now part of the Apocynaceae family, 
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there are 20 cardenolide-bearing genera23. Cardenolides produced in Apocynaceae differ 

structurally from Digitalis spp. (Plantaginaceae), containing the trans-conformation of A 

and B steroid rings (Figure 1.1b) instead of the cis-conformation (Figure 1.1c), resulting 

in decreased toxicity18,23. Plants in Apocynaceae also tend to have either highly polar or 

highly non-polar cardenolides, and Asclepias species that produce higher cardenolide 

concentrations tend to invest more in highly polar cardenolides 23,24. 

Nearly all of the 108 Asclepias species of milkweed produce cardenolides albeit at 

different concentrations 25,26. It is a challenge to compare cardenolide concentrations 

across studies due to different analytical techniques and reported units of concentration 

(e.g., µg equivalent of digitoxin/0.1 g dry weight, mg total cardenolide/g dry weight, mg 

total cardenolide/g fresh weight, µmol cardenolide/g dry weight). Despite these 

differences, North American Asclepias sp., including the twiggy shrub-like A. masonii, A. 

albicans, A. subulata, A. subaphylla, and A.linaria of the southwest and the leafy shrub 

species A. curassavica, A. asperula, A. humistrata, and A. viridis in the east, are reported 

to have the highest cardenolide concentrations 23,25. Pocius et al. (2017) used cardenolide 

values reported in Rasmann and Agrawal (2011) and ranked 8 Asclepias spp. in the 

Midwest by decreasing order of cardenolide production as follows: A. hirtella, A. 

sullivantii, A. syriaca, A. speciosa, A. exaltata, A. incarnata, A. tuberosa, A. verticillate 

with reported cardenolide values at 3.289, 2.149, 1.573, 1.112, 0.735, 0.511, 0.070, 0.031 

µg/mg dry weight, respectively 27,28. 

Cardenolide distribution within plants 

 Cardenolide content is highly variable across an individual plant and can change 

throughout the growing season and/or with increased herbivory. In a California milkweed 
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species, A. eriocarpa, the plant latex contained significantly greater quantities (i.e., 16 

mg/g fresh weight in latex) than other parts of the plant such as the stems (i.e., 1.46 mg/g 

fresh weight)29. The distribution of polar and nonpolar cardenolides also varies across the 

plant, with more nonpolar cardenolides found in the plant latex29. Manson et al. (2012) 

compared cardenolide concentrations in leaves, flowers and nectar across 12 Asclepias 

spp. and determined cardenolide concentrations in nectar were significantly lower than in 

leaves and flowers, except for A. pumilla, which had relatively higher cardenolide 

concentrations in nectar30. In this same study, tropical milkweed, A. curassavica, had 

significantly higher cardenolide concentrations in flowers compared to leaves and no 

detectable cardenolides in nectar. The roots of Asclepias spp. are reported to have 

significantly lower amount of constitutive and inducible cardenolides compared to 

aboveground biomass31.  

Abiotic factors affect cardenolide production  

 In addition to varying across species and plant parts, cardenolide concentrations 

are modulated by soil nutrient concentrations and fertilizer applications. In A. 

curassavica 32 and A. syriaca 33, fertilizer applications containing higher phosphorous 

levels decreased total cardenolide levels however, nitrogen fertilizer could negate this 

effect on cardenolide concentration . In Digitalis obscura, Roca-Perez et al. (2005) 

observed a significant positive relationship between soil and leaf magnesium 

concentrations and higher leaf magnesium concentrations correlated with higher total 

cardenolide concentrations34. Furthermore, Roca-Perez and colleagues (2002) also found 

that cardenolide concentrations were significantly reduced with higher levels of copper in 

soil and phosphorous in leaf tissue 35. This negative relationship with phosphorous 
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suggested a trade-off between primary and secondary metabolism in the plant, with 

higher phosphorous levels favoring primary metabolism and plant growth over the 

production of cardenolides 36.  

 The effects of elevated carbon dioxide (CO2) levels on cardenolide production can 

vary between milkweed species. Decker et al. (2018) compared the effects of elevated 

CO2 levels on cardenolide production in four Asclepias spp. and report cardenolide 

production was only affected by elevated CO2 levels in one of the four species tested (A. 

curassavica, A. speciosa, A. syriaca, A. incarnata)37. The high cardenolide-producing 

milkweed species A. curassavica was shown to have a significantly lower concentration 

of total cardenolides (~ 2 mg/g fresh weight) when grown in 760 ppm CO2 conditions 

compared to the concentration of total cardenolides (~ 3 mg/g fresh weight) in plants 

grown in ambient CO2 levels of 400 ppm and this reduction of total cardenolides was 

specifically related to a decrease in the concentration of lipophilic cardenolides37. In A. 

syriaca, Vannette and Hunter (2011) found a significant 2-fold reduction in cardenolide 

concentration in 2 of 5 genotypes grown under elevated  CO2 conditions (775 ppm CO2) 

and this decline was related to a decrease in polar cardenolide concentrations38. 

 Water stress has also been shown to affect cardenolide concentrations. For A. 

syriaca, Couture and colleagues (2015) reported water stress to increase cardenolide 

production when combined with temperature stress39. This observed response was 

variable across milkweed populations and correlated with changes in plant biomass. 

Similarly, Agrawal and colleagues (2014) documented a 2-fold increase of cardenolide 

production in A. syriaca under drought conditions 40. Ultimately, drought conditions 
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reduced plant biomass which in turn, increased cardenolide concentrations on a dry 

weight basis (i.e., ng/g dry weight).  

 When evaluating effects of cardenolides or milkweed species on monarch 

physiology, it is important to understand abiotic factors affecting cardenolide production 

and how these effects might differ between milkweed species. Elevated CO2 levels and 

water stress are known to affect cardenolide concentrations37-40. As both of these abiotic 

factors are changing due to land use and climate change, it is critical that we understand 

the impact these factors will have on milkweed and the insect species that rely on 

milkweed as a host plant.  

Biotic factors affecting cardenolide production  

 There are differential responses from insect herbivory depending on the insect and 

the milkweed species. Malcolm and Zalucki (1996) demonstrated the mechanical 

wounding of A. syriaca induced cardenolide defenses within 1 h41.  Under more natural 

conditions, a variety of insect herbivores with different feeding behaviors feed on 

milkweed. Insect herbivory induces differential responses in cardenolide production 

among milkweed species depending on the species of insect causing feeding damage. 

The oleander aphid, Aphis nerii, and monarch caterpillars have evolved as milkweed 

specialists feeding on and sequestering high concentrations of cardenolides42. However, 

the differences in sucking versus chewing feeding behaviors between these two 

specialists yield different effects on plant cardenolide induction. Oleander aphid-

mediated cardenolide induction also differs across milkweed species. Zehnder and Hunter 

(2007) found Aphis nerii feeding on Asclepias viridis resulted in a significant decrease in 

total cardenolide production although there were no significant changes in cardenolide 
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production for three other milkweed species tested in the study 43. Similarly, Meier and 

Hunter (2019) observed Aphis nerii feeding on Asclepias curassiva to decrease 

cardenolide production, but not Asclepias incarnata44. Further, Mooney et al. (2008) 

reported Aphis nerii feeding did not change cardenolide production in Asclepias syriaca 

45.  Based on these studies, the suppression of cardenolide defenses by Aphis nerii 

appears to be highly dependent on milkweed species and may be more clearly quantified 

in species with higher constitutive cardenolide production.  

 Monarch caterpillar feeding, in contrast to that of Aphis nerii, had only been 

observed to increase cardenolide production in milkweed. Mechanistically, the chewing 

of milkweed by monarch caterpillars has been shown to induce the jasmonic acid 

pathway46. An induction of the jasmonic acid pathway is reported to significantly 

increase cardenolide production in milkweed. Mooney et al. (2019) found exogenous 

applications of jasmonic acid that mimic a chewing-induced response increased total 

cardenolide content by 33% in A. syriaca after 13 d 45.  Bingham and Agrawal (2010) 

found cardenolide levels were 26% higher in A. syriaca plants after monarch feeding 

relative to control plants47 and Vannette and Hunter (2011) measured a 31% increase in 

total cardenolide concentrations in A. syriaca under after monarch caterpillar herbivory, 

with a 50% increase in a highly polar cardenolide38.  

 For other milkweed herbivores, Fordyce and Macolm (2000) showed an overall 

decrease of cardenolide concentration in A. syriaca following oviposition of the stem 

weevil, Rhyssomatus lineaticollis 48. However, while total cardenolide concentration 

decreased, there was an increase of nonpolar cardenolide concentrations following 



9 

oviposition chemical cues. Mooney et al. (2008) found feeding by the beetle Tetraopes 

tetraophthalmus did not elicit a change in cardenolide content relative to plants without 

herbivory45. However, Rasmann et al. (2011) report T. tetraopthalmus larvae feeding on 

roots of high cardenolide-producing A. syriaca genotypes induced cardenolide production 

by 40% in root tissue 4 d after feeding49.   

 Cardenolide exposure for monarch caterpillars will vary depending on abiotic 

factors as well as the presence and feeding of other milkweed arthropods. Milkweed 

communities consist of a diversity of arthropod species across several different insect 

orders. While monarch feeding will induce cardenolide defenses, feeding or oviposition 

by other arthropods may further alter the concentration and composition of cardenolides 

monarchs are exposed to. Cardenolide exposure is highly dynamic and interactions in 

milkweed communities may further complicate studies exploring effect of cardenolides 

on monarch physiology. 

Decline of milkweed and current distributions 

Over the past 70 years, the abundance of milkweed has been vastly reduced from 

the landscape, with the majority of remaining milkweed occurring near agricultural 

landscapes50.  Across the monarch breeding habitats in the Eastern and Midwestern U.S., 

the increased use of the herbicide glyphosate couples with the expansion of farmland 

over the past two decades have greatly diminished the presence of milkweed50–52. 

Museum records demonstrate a significant decline in milkweed abundance since 1950, 

although the decline is variable among milkweed species53. For example, the abundance 

of A. syriaca has largely remained steady for the last 50 years, while over the same time 
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period the abundances of A. incarnata, A. tuberosa, and A. verticillata have greatly 

declined.  

Monarch population decline and implicated stressors  

USFWS assessment of decline 

The reduction of overwintering monarchs in Mexico54 and California55 parallels 

the decline in milkweed abundance over the past 20 years. In 2014, the Center for 

Biological Diversity, Center for Food Safety, Xerces Society, and Dr. Lincoln Brower 

petitioned the U.S. Fish and Wildlife Service (USFWS) to consider the monarch butterfly 

as a threatened species to be listed under the Endangered Species Act of 197256. The 

USFWS concluded the listing was warranted and initiated a range-wide status review to 

assess the global population of the monarch butterfly and to identify key influences 

contributing to the species’ current condition57. The USFWS identified “loss and 

degradation of habitat (i.e., conversion of grasslands to agriculture, widespread use of 

herbicides, logging/thinning at overwintering sites in Mexico, senescence and 

incompatible management of overwintering sites in California, urban development, and 

drought), continued exposure to insecticides and effects of climate change” as the 

primary drivers affecting the health of North American monarch populations. Below, I 

will briefly review the key influences affecting the eastern migratory population. 

Stressor: loss of overwintering habitat 

The loss of habitat for the eastern monarch population includes both a loss of 

overwintering habitat (i.e., oyamel firs) in Mexico as well as breeding habitat (i.e., 

milkweed). Illegal logging has changed the microclimate in the Biosphere Reserve and, 

in combination with increased winter storms due to climate change, overwintering 
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monarchs are more exposed to the elements58. For example, a 2002 winter storm in the 

Biosphere killed more than 80% of the overwintering adults when storms produced 

prolonged cold and wet conditions that effectively froze adult butterflies59. Beyond 

winter storms, climate change will also produce lethal temperatures for the oyamel firs, 

reducing the forest by 69.2% by 2030, 87.6% by 2060 and 96.5% by 209060.  

Stressor: loss of breeding habitat 

The loss of breeding habitat throughout the U.S. has further challenged 

overwintering monarchs. Adult female monarchs lay one egg per milkweed stem and, 

thus, the monarch population is reliant on the number of milkweed stems present in a 

landscape9. The loss of milkweed stems is largely attributed to conversion of grassland to 

agriculture and the increased use of glyphosate, which in turn limits available oviposition 

substrates for monarchs 50. Boyle et al. (2018) has shown that before the use of 

glyphosate, the abundance of several different milkweed species was already declining, 

however this decline was immediately followed by an increase in A. syriaca abundance53. 

The authors hypothesize the earlier decline in milkweed species is in part due to the 

consolidation of small farms and the loss of uncultivated land between farms, where 

many of these milkweed species flourished.   

Stressor: insecticide usage  

The monarch breeding season overlaps spatially and temporally with row crop 

production across the Eastern and Midwestern United States. Adult monarchs first arrive 

in the North Central U.S. from Mexico toward the end of May1,61. During this time, early 

season insecticides are applied to reduce true armyworm infestations exceeding economic 

thresholds62. These insecticide applications continue later in the season to manage 
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increasing insect pest populations, such as the soybean aphid63,64, western bean 

cutworm65, and western corn rootworm66  

Given the nationwide distribution of monarchs during their breeding season, using 

2018 NASS insecticide usage statistics67,68, monarchs were potentially exposed to 

insecticides across 25 million acres of crop land and surrounding field margins, if 

individuals were present at the time of application. Direct exposure to adult monarchs is 

not likely a major route of exposure. However, spray drift following foliar applications 

may be deposited in milkweed in adjacent field margins, posing a chronic threat to 

monarchs on the downwind field edge63. Several studies in Europe have shown decreased 

butterfly abundance in margins of treated fields 69–71, suggesting milkweed bordering 

treated fields may expose monarch caterpillars to lethal levels of insecticide exposure.   

Pyrethroids and agriculture 

Mode of action 

Pyrethroid insecticides are neurotoxic compounds that target the voltage-gated 

Na+ channel to disrupt neurological function72. Pyrethroids fall in to two main classes, 

type I and type II, differing in both structure and symptomology: type I lack a cyano 

moiety, type II possess a cyano moiety at the α-positions73.  Type I pyrethroids reversibly 

bind to the voltage-gated Na+-channel which leads to type I poisoning syndrome (T 

syndrome), characterized by hyperexcitation, whole body tremors, and progressive 

paralysis in rats74. Examples of type I pyrethroids include allethrin, bifenthrin, 

resmethrin, and permethrin75.  Type  II pyrethroids cause prolonged interference with the 

gating kinetics of the voltage-gated Na+-channel leading to increased toxicity as well as 

type II poisoning syndrome (CS-syndrome) characterized by hypersensitivity, 
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choreoathetosis and profuse salivation in rats74–76. Examples of type II pyrethroids 

include deltamethrin, cypermethrin, cyhalothrin, λ-cyhalothrin, cyfluthrin, and β-

cyfluthrin75.  

Pyrethroids in agriculture pest management 

Pyrethroids are broad-spectrum insecticides used to control insect pests in 

agriculture crops, such as corn and soybean66,77,78, and in the control of disease vectors 

and structural pests in urban environments79. In 2018, 16% of corn acreage in Nebraska 

and 18% of corn acreage in Iowa were treated with foliar insecticides and 12% of acreage 

in both Nebraska and Iowa were treated specifically with bifenthrin in 201867,68. In terms 

of acreage, 9.6 million acres were planted with corn in Nebraska, 1.5 million acres of 

corn were treated with foliar insecticides and 1.2 million acres of treated corn were 

treated with bifenthrin.  In Iowa, 13.2 million acres were planted with corn, 2.4 million 

acres of corn were treated with foliar insecticides, and 1.6 million acres were specifically 

treated with bifenthrin.  

For corn, pyrethroids have been commonly used to control western corn 

rootworm, western bean cutworm, and two-spotted spider mite66. For soybeans, 

pyrethroids have been used to control bean leaf beetle and soybean aphid80,81.  Below, I 

will use the introduction of soybean aphid to the U.S. in 2000 as an example to examine 

the relatively recent increased insecticide usage occurring during the monarch breeding 

season. 

Soybean aphid management 

In 2000, soybean aphids were first reported in the North Central U.S. 82 and just 

nine years later, 30 states reported soybean aphid outbreaks 64. Soybean aphids 
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overwinter as eggs on buckthorn, Rhamnus cathartica L.,  that hatch in the spring 83. 

Populations build up for several wingless generations in buckthorn until soybean emerges 

and winged adults move into soybean. Once in soybean, aphids continue to reproduce for 

upwards of 15 generations producing all females 84. During this time, female aphids can 

disperse to other soybean fields with assistance from the wind 64. Under ideal laboratory 

conditions, without any natural control factors, soybean aphids are able to double their 

numbers in 1.5 d 85.  

Soybean aphid feeding stunts plant growth and reduces yield by disrupting 

photosynthetic processes necessary for seed set 86,87. Additional injury can occur from 

secondary infections caused by aphid feeding. Honeydew secretions create a medium for 

black sooty mold to develop and feeding wounds on the plant create entryways for 

pathogens 64. The economic impact of soybean aphid can vary but if no treatment is 

applied, soybean aphid would cost producers $1.2 billion USD and consumers $546 

million USD over 5 years 88. And result in annual yield losses as high as 40%64.   

Prior to the arrival of soybean aphid, few growers applied insecticides and defoliating 

insect populations were naturally kept in check 83. Since the arrival of soybean aphid, 

insecticide usage has increased 130-fold 80. It is generally recommended to apply foliar 

insecticides (i.e., organophosphates and pyrethroids) 3-7 d after exceedance of the 

economic threshold or sooner due to rapidly increasing aphid populations 80. The 

exceedance of economic thresholds and subsequent insecticide applications can often 

occur in late summer.  
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Soybean aphids are just one example of an insect pest that has increased usage of 

foliar insecticides. New emerging pests, such as soybean gall midge, may also increase 

insecticide usage in the Midwest when monarchs are present on the landscape89. 

However, insecticide applications particularly for controlling soybean aphids, may affect 

the fourth generation of monarchs that will migrate to the overwintering grounds in 

Mexico62.  

Potassium exposure and relevance 

Milkweed habitat bordering crop fields can intercept agricultural inputs via spray 

drift, run-off or systemic uptake. When evaluating chemical exposure in habitat bordering 

agricultural fields, additional chemical inputs such as chemical fertilizers are often 

overlooked despite the massive quantities of nitrogen, phosphorous, and potassium 

fertilizers applied each year90. 

Potassium as a nutrient and fertilizer in plant health 

Potassium is an essential nutrient in plant growth and stress physiology91, 

however it is deficient in soils across several midwestern states92. Potassium fertilization 

can help increase drought tolerance and immune defense in agricultural crops and may be 

an important tool in combatting effects of climate change93. Currently, millions of tons of 

potassium fertilizer are applied in the Midwest and nationally, with 63% of corn acreage, 

43% of soybean acreage, and 45% of cotton acreage receiving applications of potash 

fertilizer90. In states with potassium deficient soils such as Missouri, Alabama and North 

Carolina92 that also support the eastern monarch butterfly migration, the percentage of 

cotton acreage receiving applications of potash fertilizer can be 80-96%90. With heavy 

rains in the spring, the timing of pre-plant fertilization is becoming more difficult and in 
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corn, studies have shown fertilizer applications at the V6 growth stage can be used when 

pre-planting fertilization is not possible94.  Applications at this time would coincide with 

the timing of the monarch breeding season62 and could increase potassium levels in 

milkweed. While foliar applications of potash are not widely used, there is evidence in 

soybean cropping systems for increased yield and protective benefits from fungal 

infections following foliar applications95,96. Spray drift from these applications may be 

deposited onto milkweed leaves or on developing monarchs near agriculture.  

Role in insect physiology 

Potassium ion regulation plays a key role in many physiological processes in 

insects. As in mammals, potassium ion balance across neurons dictates nerve function 

and signal transduction97. In addition to nerve function, potassium levels are highly 

regulated in hemolymph and play a critical role in molting98,99. Studies examining 

potassium regulation in Lepidoptera have quantified K+ levels in larval tissues several 

days after feeding on KCl-spiked diets and demonstrated elevated levels of potassium in 

the hemolymph as well as tight regulation of ion balance100–102.  However, increased 

levels of K+ may impose an increased energetic cost of maintaining proper ion balance.  

Pharmacology 

Studies exploring pharmaceutical applications of cardenolides have identified 

potassium as an antidote for cardenolide poisoning in mammals, showing a reversal of 

effects and recovery of Na+/K+-ATPase function with increasing K+ serum levels103,104. 

This reversal has been attributed to competitive binding and potassium antagonism at the 

target site105. Studies on monarchs and other Lepidoptera have also demonstrated this 

antagonism exists in insects, even with the structural modifications in the monarch 
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Na+/K+-ATPase106. Despite this evidence, the implications of potassium exposure for 

monarch physiology and sequestration have remained unexplored. In an agricultural 

setting, influxes of potassium through applications of potassium fertilizers have the 

potential to affect the sequestration and protective benefits of cardenolides for developing 

monarchs. While potassium is highly regulated in plants and insects, potassium fertilizers 

may expose monarchs to levels of K+ above regulated biological limits that could alter 

monarch physiology or add additional energy requirements to maintain proper ion 

balance.  

Detoxification 

Cross resistance 

The ability of the monarch butterfly to cope with milkweed cardenolides has been 

well characterized. However, implications of this evolved resistance on detoxification 

have largely remained unexplored. Insects with chemically defended host plants often 

have developed metabolic resistance to cope with phytotoxins107. Overproduction of 

esterase enzymes or cytochrome P450 monooxygenases have been documented in a 

number of species108. This phenomenon has prompted exploration of cross-resistance 

between plant allelochemicals and synthetic insecticides. Swallowtail butterflies, Papilio 

glaucus canadensis, evolved resistance to phenolic glycosides in the leaves of their host 

plants of the Salicaceae family through elevated esterase activity but when challenged 

with two different pyrethroids, this elevated activity had no effect on pyrethroid 

toxicity109. In insect pest species, there are several documented examples of cross-

resistance. Corn earworm (Helicoverpa zea) larvae feeding on a diet containing the 

allelochemical xanthotoxin showed a higher tolerance to the pyrethroid α-cypermethrin, 
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and increased tolerance was observed in the offspring of xanthotoxin-exposed 

individuals110. In beet armyworm (Spodoptera exigua), larvae exposed to the flavonoid 

quercetin were more resistant to the pyrethroid λ-cyhalothrin with a more than 2-fold 

increase in the LD50
111.  

In monarchs, little is known about detoxification enzyme activity and the potential 

for cross-resistance or impact of cardenolide resistance on detoxification enzymes. 

Recent work has shown changes in expression of some detoxification genes in monarch 

caterpillars after feeding on different milkweed species112. Further, Krishnan et al. (2020) 

documented a significantly higher LD50 for imidacloprid when caterpillars fed on tropical 

milkweed, a high cardenolide milkweed species, compared to common milkweed63. 

These recent discoveries provide further reason to explore the potential for cross-

resistance in monarchs.  

Overview of research 

Understanding the risk of habitat bordering agricultural landscapes to monarch 

caterpillars is critical for informing conservation efforts in the US Midwest. Monarchs 

are exposed to cardenolides as they feed on milkweed however cardenolide exposure will 

vary significantly depending on what milkweed species they feed on, where on the plant 

they feed, what other arthropods are feeding on the plant, and what environmental 

conditions the plant is growing under. Milkweed bordering agricultural fields may expose 

monarchs to agricultural inputs such as pyrethroid insecticides and potassium fertilizers. 

Pyrethroids like bifenthrin are used across millions of acres of corn and soybean 

production across the country and foliar applications may adversely affect monarch 

caterpillars developing in treated field margins.  Additionally, potassium fertilizer 
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applications may also adversely affect monarchs through increased energic costs of 

osmoregulation or by altering cardenolide sequestration through antagonism of 

cardenolides at the Na+/K+-ATPase. Ultimately, understanding the role of milkweed 

species selection in habitat restoration near agriculture and how milkweed species could 

alter pyrethroid sensitivity will help inform conservation practices.  

The second chapter of this dissertation investigates the acute contact toxicity of 

two pyrethroid insecticides to monarch growth and development.  Using the USEPA 

AgDrift model, effect thresholds for both pyrethroids could be put into context on the 

landscape by predicting spray drift exposure in habitat bordering a treated field.  

The third chapter of this dissertation explores how additional chemical 

interactions of potassium fertilizers and milkweed cardenolides in habitat bordering 

agriculture might affect bifenthrin toxicity. Monarch caterpillars were exposed to the 

cardenolide, ouabain, or the potassium fertilizer, potassium chloride (KCl), and effects on 

growth and development were assessed for each individual compound. Caterpillars were 

then exposed to combinations of ouabain and KCl to assess effects of dietary exposure on 

bifenthrin toxicity.  

The fourth chapter of this dissertation explores the potential for cross resistance in 

monarch caterpillars by comparing bifenthrin toxicity and effects on detoxification 

enzymes when caterpillars feed on different milkweed species. Caterpillars developed on 

either a high cardenolide milkweed species, tropical milkweed (A. curassavica), or a low 

cardenolide milkweed species, swamp milkweed (A. incarnata) prior to bifenthrin 

exposure. Detoxification gene expression, enzyme activity, and survival were quantified.  
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The fifth chapter of this dissertation summarizes conclusions of each research 

chapter and provides an overview of future research directions.  
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Figure 1.1 Generalized cardenolide structure (a) and specific conformation differences 

between Digitalis (b) and Asclepias (c) cardenolides. Figure adapted from Malcolm 1991, 

used with permission.  
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CHAPTER 2 : PYRETHROID EXPOSURE REDUCES GROWTH AND 

DEVELOPMENT OF MONARCH BUTTERFLY (Lepidoptera:Nymphalidae) 

CATERPILLARS 

 

This chapter is published in the Journal of Insect Science: Krueger, A. J., Hanford, K., 

Weissling, T. J., Vélez, A. M., & Anderson, T. D. (2021). Pyrethroid Exposure Reduces 

Growth and Development of Monarch Butterfly (Lepidoptera: Nymphalidae) 

Caterpillars. Journal of Insect Science, 21(2), 2.Used with permission. 

 

1.  INTRODUCTION 

The monarch butterfly Danaus plexippus L. (Lepidoptera: Nymphalidae) is a 

globally distributed species, primarily in the Americas and Oceania.  In North America, it 

has become an icon for extensive migration across the continent. Monarchs east of the 

Rocky Mountains overwinter in vast numbers in Mexico and travel north in the spring, 

covering most of the Midwest and east coast, advancing farther north with every 

generation (Oberhauser and Solensky 2004). By the fourth generation, the adults make 

the thousand-kilometer flight to return to overwintering grounds in Mexico (Alonso-

Mejia et al. 1997). This unique life history has made the North American population 

more susceptible to multiple stressors, both in their overwintering grounds and breeding 

habitat. The monarch is a charismatic flagship for invertebrate conservation more broadly 

(Oberhauser and Guiney 2009) and the conservation of the monarch butterfly has been 

valued upwards of $4 billion according to a survey of U.S. households (Diffendorfer et 

al. 2014). An understanding of the threats to and conservation opportunities for the 

monarch butterfly is critical for securing further public engagement for invertebrate 

conservation.  

In the U.S., the increased use of glyphosate and expansion of farmland over the 

past 40 years has greatly diminished the presence of milkweed in the breeding grounds 
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and removed it almost entirely within fields (Pleasants and Oberhauser 2013, Pleasants 

2017, Thogmartin et al. 2017).  Pleasants and Oberhauser (2013) documented a ca. 4-fold 

difference between egg densities on milkweed in agricultural fields compared to 

milkweed on roadsides or in pastureland. To make up for this loss of preferred 

oviposition habitat, researchers have set a 1.8 billion milkweed stem goal to restore and 

stabilize the overwintering monarch population (Thogmartin et al. 2017).  While the 

number of milkweed stems on the landscape has been the focus of conservation efforts, 

the location of these stems and their proximity to commercial agriculture has raised 

concerns over the risk of agrochemicals to monarchs. In Europe, several studies have 

shown decreased butterfly abundance in margins of fields treated with foliar applied 

insecticides (Çilgi and Jepson 1995, Longley et al. 1997, Rundlöf et al. 2008). In the 

1990’s, Bacillus thuringiensis (Bt) crops and pollen expressing Bt Cry1 proteins targeting 

lepidopteran pests were heavily investigated for the risk to developing monarchs, 

however, the risk of most varieties on the market was considered negligible (Sears et al. 

2001). Although the risk of Bt crops was heavily studied, toxicity data detailing the risk 

of other insecticide products to monarchs is limited. Braak et al. 2018 report insecticide 

data for a number of lepidopteran species and found only three available toxicity studies 

for monarchs using permethrin (Oberhauser et al. 2006), imidacloprid (Krischik et al. 

2015), and clothianidin (Pecenka and Lundgren 2015). While more exhaustive toxicity 

(Krishnan et al. 2020) and exposure data (Olaya-Arenas and Kaplan 2019) are becoming 

available for different life stages and classes of insecticides, data are lacking on the sub-

lethal effects of insecticide exposures to monarchs.  
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Pyrethroid insecticides are commonly used to control insect pests of corn and 

soybean across the U.S. (Ragsdale et al. 2011). These broad-spectrum insecticides are 

acutely neurotoxic, targeting the voltage-gated Na+ channel and disrupting neurological 

function (Clements and May 1977). Pyrethroids are classified as type I or type II based 

on their chemical structure, effects on the central nervous system and subsequent 

symptomology (Gammon et al. 1981).  Pyrethroid studies in butterfly species have 

focused on compounds largely used for mosquito management, including permethrin and 

deltamethrin (Braak et al. 2018). However, in agriculture, pyrethroids like bifenthrin and 

β-cyfluthrin are used in much larger quantities but toxicity data has only recently become 

available for β-cyfluthrin (Krishnan et al. 2020). Because of their acute toxicity, 

pyrethroids have been used to control a variety of insect outbreaks. For example, soybean 

aphid Aphis glycines Matsumura (Hemiptera: Aphididae) outbreaks and subsequent foliar 

applications of pyrethroids often occur in mid-July and again in mid-September when 

monarch caterpillars are present on the landscape (Nail et al. 2015, Bradbury et al. 2017). 

In Iowa, true armyworm populations Mythimna unipuncta Haworth (Lepidoptera: 

Noctuidae) can exceed economic thresholds in mid-May and late-June, prompting foliar 

insecticide applications at a time when monarchs are first beginning to colonize the 

Midwest US (Dunbar et al. 2016). AgDRIFT® is a model for estimating near-field spray 

drift from aerial applications and has been used as a modeling tool for risk assessment 

when residue data is unavailable (Teske et al. 2002). This model can be used as a 

screening tool at the Tier 1 level to provide a conservative assessment of off-field 

pesticide risk and has been used for non-target plant assessments (Brain et al. 2019). 
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Krishnan et al. 2020 reported the application of AgDRIFT® for the evaluation of pesticide 

risk to non-target insect communities, including monarch caterpillars.  

The fifth larval instar is the longest larval development stage of monarch 

caterpillars that allows for changes in consumption and growth to be observed without 

confounding effects of molting (Zalucki 1982). The natural mortality rates of early instar 

monarch caterpillars, in the field, are significantly higher than that of fifth instar 

caterpillars surviving to adulthood (Nail et al. 2015). Therefore, this study was conducted 

to estimate the lethal and sub-lethal endpoints for fifth instar monarch caterpillars 

exposed to the type I and type II pyrethroids bifenthrin and β-cyfluthrin, respectively, and 

the potential effect of these insecticide on the biological fitness of monarch caterpillars. 

The AgDRIFT® model was used to predict spray deposition and to provide a landscape 

perspective for toxicity endpoints. 

2.  MATERIALS AND METHODS 

2.1 Insects 

Fifth instar caterpillars of the monarch butterfly were used for all laboratory 

experiments. A laboratory colony was established in the Department of Entomology at 

the University of Nebraska-Lincoln using eggs received from Iowa State University 

(Ames, IA). The monarch adults were maintained at 24 °C on a 12 h:12 h light:dark 

cycle, with an artificial nectar diet. For experiments, eggs were collected daily and stored 

at 16 °C for up to 14 d. The eggs were moved to room temperature and hatched within 2-

3 d. Neonates were then placed on artificial diet within 24 h of hatching. 
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2.2 Artificial diet 

The monarch caterpillar diet was prepared using Southland multi-species 

Lepidoptera diet (Southland Products Inc., Lake Village, AR, USA) with the addition of 

15% (w/w) lyophilized tropical milkweed, Asclepias curassavica leaf powder. The leaves 

were collected from plants grown in a greenhouse throughout the year, washed in a 10% 

(v/v) bleach solution, rinsed thoroughly with water and soaked in a 10% (v/v) Sonne’s 

No. 7 clay (Sonne’s Organic Foods Inc., Liberty, MO USA) solution. After washing, the 

leaves were air-dried and stored at -80 °C before lyophilized and ground into a fine 

powder. 

2.3 Chemicals 

Bifenthrin (CAS# 82657-04-3, 99.5%) and β-cyfluthrin (CAS# 1820573-27-0, 

98.0%) were purchased from Chem Service Inc. (West Chester, PA USA) and stored at 

room temperature. All stock solutions and dilutions were prepared in acetone (Sigma-

Aldrich, St. Louis, MO USA).  

2.4 Toxicity assays 

One-day-old fifth instar monarch caterpillars were used to ensure individuals had 

fully finished their molt from the fourth instar and that insecticide residues on the cuticle 

remained for a 72-h observation period. A total of 50-60 individual 1-d-old fifth instar 

monarch caterpillars were weighed into pre-weighed diet cups. The caterpillars were 

stratified by weight and randomly assigned to treatment groups, 10 individuals per 

treatment group, to ensure an equal size distribution across all treatments. A 1 µl aliquot 

of acetone (solvent control) or each insecticide at 0.025, 0.05, 0.1, 0.2, 0.4 µg/µl 

bifenthrin or 0.0125, 0.025, 0.05, 0.1 µg/µL β-cyfluthrin prepared in acetone was applied 
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to the dorsal prothorax, between the anterior tentacles of each caterpillar. The mortality 

and behavior (i.e., normal, lethargic, immobile, loss of hemolymph) of the caterpillars 

was observed daily over a 72-h exposure period. Bifenthrin and β-cyfluthrin experiments 

were repeated in triplicate using caterpillars from two different generations for a total of 

30 caterpillars per treatment.  

2.5 Diet consumption and growth assays 

The diet and frass of each caterpillar were weighed at 24, 48, and 72 h. To correct 

for evaporative loss of diet, additional diet cups were prepared and weighed at the same 

time points. The individual monarch caterpillars were weighed daily, with no adverse 

effects observed after handling caterpillars this frequently. The experiments were 

repeated in triplicate for a total of 30 caterpillars per treatment. The daily weight was not 

recorded for the 0.05 µg/µl bifenthrin treatment, but the initial and final weight was 

recorded for each caterpillar. There were no behavioral changes observed at this 

treatment level and daily weights at 24 h and 48 h were estimated using a generalized 

linear mixed model.  

2.6 AgDRIFT® aerial and ground spray drift assessment 

The AgDRIFT® Tier 1 aerial and ground spray drift assessment (AgDRIFT® ver. 

2.1.1, US Environmental Protection Agency, 2003) was used as a conservative drift 

model to predict the spray deposition (mg/cm2) for agricultural applications of bifenthrin 

and β-cyfluthrin formulations (Teske et al. 2002).  The point deposition (µg/cm2) of each 

insecticide estimated with AgDRIFT® was multiplied by the total surface area of a 

caterpillar (ca. 7.1 cm2), as reported by Krishnan et al. (2020), to estimate the direct 

contact exposure of the insecticides to fifth instar monarch caterpillars. The label rates 
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from the common use pyrethroid formulations Brigade® 2-EC (0.1 lb/ac bifenthrin) and 

Baythroid® XL (0.022 lb/ac β-cyfluthrin) were used for the AgDRIFT® assessment. The 

spray deposition was modeled for low boom ground, high boom ground, and aerial 

applications at 0, 1, 3, 6, 12, 24 m from the edge of a field. In accordance of the 

manufacturer’s label instructions for each insecticide formulation, the Tier 1 ground 

application assessment was calculated using an ASAE fine to medium-coarse droplet size 

and an ASAE medium to coarse droplet size was used for the Tier 1 aerial application 

assessment. The distances were selected to predict insecticide deposition on milkweed in 

ditches and field margins where milkweed is commonly found in the U.S. Midwest 

(Pleasants and Oberhauser 2013, Pleasants 2017).   

2.7 Data analysis 

The dose-response calculations and associated statistical analyses were conducted 

using SAS 9.4 PROC PROBIT (SAS, Cary, NC). The caterpillar weight and diet 

consumption were analyzed using SAS 9.4 PROC GLIMMIX (SAS, Cary, NC). A 

Gaussian distribution was assumed for both outcomes. A repeated measures analysis was 

conducted for weight and diet consumption on individual monarch caterpillars over time. 

The treatments were analyzed as a continuous effect. The initial model included fixed 

linear, quadratic, and cubic treatment dose effects, time effect, interaction between linear, 

quadratic, and cubic treatment dose with time, and initial monarch caterpillar weight as a 

covariate. Experiment was used as a significant blocking factor in all analyses. A first 

order Antedependence pattern was chosen to model the covariance structure. The non-

significant terms (p > .05) were dropped from the initial model for the final analysis. 

Total diet consumption was analyzed with an initial model that included fixed linear, 
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quadratic, and cubic treatment dose effects, and initial caterpillar weight as a covariate. 

The assessment estimates for each treatment level were compared to the control group at 

each time point using Scheffe’s multiple comparison procedure (Scheffé 1953). 

3. RESULTS 

3.1 Toxicity assays 

The results of the toxicity assays for bifenthrin and β-cyfluthrin are presented in 

Table 1.   The toxicity of bifenthrin (LD50 = 0.44 µg/µl (0.32-0.65), slope = 1.86 (1.34-

2.37)) was significantly less for the monarch caterpillars compared to β-cyfluthrin (LD50 

= 0.14 µg/µl (0.12-0.19), slope = 3.59 (2.39-4.80)) 72 h after application of the 

insecticides based on non-overlapping 95% confidence intervals. There were symptoms 

of intoxication, including hemolymph bleeding and spasming, observed for the monarch 

caterpillars treated with > 0.2 µg/µL bifenthrin and > 0.025 µg/µL β-cyfluthrin at 0-1 h 

post-treatment.  Monarch caterpillars treated with 0.2 µg/µl and 0.4 µg/µl bifenthrin 

exhibit 27% and 36% mortality, respectively. There was no mortality observed for 

monarch caterpillars treated with β-cyfluthrin at 0.025 µg/µl although there was 7% 

mortality observed for caterpillars treated with 0.05 µg/µl β-cyfluthrin, despite 

hemolymph bleeding and an upright posturing observed for these individuals. 

3.2 Diet consumption and growth assays 

The results of the daily diet consumed by monarch caterpillars after treatment 

with bifenthrin and β-cyfluthrin are presented in Figure 2.1. The final model for the effect 

of bifenthrin and β-cyfluthrin on daily diet consumption, included the covariate of 

starting weight for individual monarch caterpillars (p < 0.001) in addition to significant 

linear (p < 0.001) and quadratic (p < 0.005) treatment by time interaction terms. 
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Experiment was a significant (p < 0.0001) blocking factor for bifenthrin diet 

consumption, but not for β-cyfluthrin (p = 0.22). A significant 9%, 33%, 58%, and 87% 

reduction in diet consumption was observed for monarch caterpillars treated with 0.025, 

0.1, 0.2 and 0.4 µg/µl β-cyfluthrin (p < 0.005), respectively, at 24 h post-treatment 

compared to the solvent-treated individuals. Monarch caterpillars treated with 0.4 µg/µl 

bifenthrin also consumed significantly less diet after 48 h (91%, p < 0.0001) and 72 h 

(75%, p = 0.0016) compared to the solvent-treated individuals. The daily diet 

consumption was not significantly different than that of the untreated monarch 

caterpillars for any other concentration or time-point.  A significant 33%, 59%, 94%, and 

92% reduction in diet consumption was observed for monarch caterpillars treated with 

0.0125, 0.025, 0.05, and 0.1 µg/µl β-cyfluthrin (p < 0.0001), respectively, at 24 h post-

treatment compared to the solvent-treated individuals. A significant reduction in diet 

consumption for monarch caterpillars in all treatment groups was observed at 48 h post-

treatment (p < 0.0001) compared to the solvent-treated individuals. However, at 72-h 

post-treatment, a significant decrease in diet consumption was observed for monarch 

caterpillars treated with 0.1 µg/µl β-cyfluthrin (59%, p = 0.0034) compared to the 

solvent-treated individuals.  

A model including a linear treatment effect (p < 0.0001) and the individual 

starting weight covariate (p < 0.0001) was used to predict total diet consumption for 

bifenthrin.  A model including both a linear (p < 0.0001) and quadratic (p = 0.0004) 

treatment effect and the individual starting weight covariate (p = 0.0021) was fit for β-

cyfluthrin. Again, experiment was a significant (p < 0.005) blocking factor for bifenthrin 
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total diet consumption, but not for β-cyfluthrin total diet consumption (p = 0.88) and was 

removed from the β-cyfluthrin diet models.  The reduction in total diet consumed by 

monarch caterpillars was 5%, 20%, 39% and 79% for caterpillars treated with bifenthrin 

at 0.025, 0.1, 0.2 and 0.4 µg/µl, respectively, compared to the solvent-treated caterpillars 

(Fig. 2.1C). The total diet consumption was significantly reduced (p < 0.0001) by 18%, 

34%, 60%, and 86% for monarch caterpillars treated with β-cyfluthrin at 0.0125, 0.025, 

0.05, 0.1 µg/µl, respectively, compared to the solvent-treated caterpillars (Fig. 2.1D). The 

total diet consumed between monarch caterpillars was variable for each experiment, but 

part of the variability was accounted for using the initial weight of each caterpillar.  

The results of the monarch caterpillar body weights after treatment with bifenthrin 

and β-cyfluthrin are shown in Figure 2.2. The final model for the effect of bifenthrin and 

β-cyfluthrin on monarch caterpillar weight included the covariate of individual starting 

weight (p < 0.0001), blocking factor of experiment (p < 0.005) and significant linear (p < 

0.005) and quadratic (p < 0.005) treatment by time interaction. There was a significant 

reduction in body weight for monarch caterpillars treated with 0.2 µg/µl (13%, p = 

0.0085) and 0.4 µg/µl bifenthrin (22%, p < 0.0001) for 24 h, but only a significant 

reduction for caterpillars treated with 0.4 µg/µl bifenthrin for 48 h (24%, p < 0.0001) and 

72 h (24%, p = 0.0003) compared to the solvent-treated individuals (Fig. 2.2A).  A 

significant decrease (p < 0.0001) in body weight was observed for monarch caterpillars 

treated with 0.0125, 0.025, 0.05, and 0.1 µg/µl β-cyfluthrin, respectively, after 24 h and 

48 h as compared to the solvent control individuals (Fig. 2.2B).  At 72 h post-treatment, 

there was a significant 15% (p = 0.047) and 45% (p < 0.0001) reduction in body weight 
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for monarch caterpillars that were treated with, and survived, 0.05 and 0.1 µg/µl β-

cyfluthrin, respectively, compared to the solvent-treated caterpillars.  

3.3 AgDRIFT® aerial and ground spray drift assessment 

The results of the AgDRIFT® Tier 1 aerial and ground spray drift assessment are 

presented in Figure 3. The aerial assessment predicted bifenthrin deposition could exceed 

0.44 µg/caterpillar, the estimated LD50, for fifth instar monarch caterpillars on milkweed 

up to 28 m from the treated edge of a field (Fig. 2.3A).  Additionally, the aerial 

assessment predicted β-cyfluthrin deposition could exceed 014 µg/caterpillar, the 

estimated LD50, for fifth instar monarch caterpillars on milkweed up to 23 m from the 

treated edge of a field (Fig. 2.3B). These exposure distances are reduced in the ground 

assessment with the high boom deposition of bifenthrin and β-cyfluthrin predicted to be 

lethal at 3 m and 2 m, respectively, from the treated edge of a field. For the low boom 

deposition of bifenthrin and β-cyfluthrin, these distances are reduced to 2 m from the 

treated edge of a field. 

The most sensitive endpoint for bifenthrin was monarch caterpillar survival and, 

thus, the NOED (0.10 µg/caterpillar) and LOED (0.20 µg/caterpillar) were estimated 

based on survival 72 h after insecticide treatment.  However, the most sensitive endpoint 

for β-cyfluthrin was monarch caterpillar weight and, thus, the NOED (0.025 

µg/caterpillar) and LOED (0.05 µg/caterpillar) were estimated based on weight following 

72 h of insecticide treatment. The aerial assessment predicts the deposition of bifenthrin 

on milkweeds at distances up to 60 m from the treated edge of a field to be lethal to 

monarch caterpillars, but the insecticide would not be lethal at distances > 105 m from 

the treated edge of a field. For β-cyfluthrin, the aerial assessment predicts deposition on 
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milkweeds at distances up to 55 m from the treated edge of a field to affect monarch 

caterpillar growth, but the insecticide would not affect growth at distances > 94 m from 

the treated edge of a field. The low and high boom ground assessment predicts the 

deposition of bifenthrin to milkweeds at distances up to 4 m and 6 m, respectively, from 

the treated edge of a field to be lethal to monarch caterpillars. Bifenthrin would not be 

lethal at distances beyond 8 m for low boom and 15 m of for high boom applications.  

The low and high boom ground assessment predicts the deposition of β-cyfluthrin to 

milkweeds at distances up to 3 m and 6 m, respectively, from the treated edge of a field to 

reduce monarch caterpillar growth. β-cyfluthrin deposition would not affect growth if 

deposition was > 7 m and 13 m from the edge of a treated field for high boom and low 

boom applications, respectively. However, if the only dorsal side of the monarch 

caterpillar is exposed to the insecticides, there would be a substantial decrease in these 

predicted distances.  

4. DISCUSSION 

This study not only provides the first report of bifenthrin toxicity to monarch 

caterpillars, but it also confirmed that pyrethroid insecticides affect the growth and 

development of monarch caterpillars as reported by Oberhauser et al. (2006) and 

Krishnan et al. (2020).  Bifenthrin was found to be less toxic than β-cyfluthrin to fifth 

instar caterpillars as documented in other insect species (Clements and May 1977, 

Gammon et al. 1981). There were observations of monarch caterpillar mortality 12 h after 

bifenthrin treatment, whereas monarch caterpillar mortality was observed within 6 h of β-

cyfluthrin treatment.  Type II pyrethroids, such as β-cyfluthrin, can cause prolonged 

interference with the gating kinetics of the voltage-gated Na+-channel leading to a greater 
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influx of Na+ and more prolonged convulsions. Furthermore, alternative neuronal target 

sites have been identified with type II pyrethroids which leads to the CS-syndrome 

observed with β-cyfluthrin and may explain the increased toxicity observed with the 

caterpillars (Soderlund et al. 2002, Davies et al. 2007).  

Bifenthrin and β-cyfluthrin were observed to significantly affect monarch 

caterpillar growth and development throughout the 72-h exposure period. A reduction in 

body size and diet consumption can affect pupation success (Rhainds et al. 1999), adult 

lifespan (McKay et al. 2016) and immune function (Adamo et al. 2016). Since reduced 

body size and diet consumption were observed at the final larval instar stage, it is likely 

the surviving individuals could have challenges with pupation success and, in turn, lead 

to higher mortality. While our study did not focus on pyrethroid effects to caterpillars 

infected with the protozoan Ophryocystis elektroscirrha (OE), a challenged immune 

system in response to infection may affect the susceptibility of caterpillars to insecticide 

exposures.  It should be noted that our adult monarchs are routinely checked for the OE, 

which has never been observed in the colony, and that field-collected adults are not 

introduced to the colony.  However, further studies would be important for determining if 

the reduced weight resulting from pyrethroid exposure affects pupation, adult emergence, 

and fitness as well as OE infection affecting pyrethroid susceptibility. 

The performance of a monarch butterfly colony can fluctuate throughout the year, 

and growth rates can be influenced by changes in humidity and ambient temperatures 

(Kingsolver 2007). Growth rates in solvent-treated monarch caterpillars differed between 

the bifenthrin and β-cyfluthrin experiments. For the bifenthrin experiments, the solvent-
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treated monarch caterpillars were 1.3-fold higher than their original starting weight at the 

end of the experiment. However, the solvent-treated monarch caterpillars exposed to β-

cyfluthrin were 2.1-fold higher than their original starting weight at the end of the 

experiment. The bifenthrin experiments were conducted prior to the β-cyfluthrin 

experiments and, thus, the natural variability in the caterpillar growth rate may explain 

the differences observed with each experiment. Despite this variability, there were 

statistically significant differences observed between the solvent and bifenthrin 

treatments for the three cohorts of monarch caterpillars used in this study.   

In this study, the 72 h LD50 for β-cyfluthrin (0.15 µg/caterpillar or 0.21 µg/g) was 

found to be significantly higher than the 96 h LD50 (0.048 µg/g caterpillar) reported by 

Krishnan et al. (2020). However, there cannot be a direct comparison between the two 

studies due to differences between the experimental approach. Our study was designed to 

exclude post-pupation observations due to the high pupation mortality observed within 

the monarch colony. There is ca. 20% pupation mortality observed with the monarch 

colony,  which is often attributed to caterpillars in the J-state falling mid-pupation from 

the top of the test chamber (Greiner et al. 2019).  Thus, in our study, the mortality of 

monarch caterpillars that would have failed to initiate pupation (i.e., laggers) or would die 

during pupation is not captured in our 72-h mortality observations and, instead, these 

individuals are recorded as alive. In contrast, Krishnan et al. (2020) recorded mortality 

for fifth instar monarch caterpillars after pupation, which includes this additional source 

of mortality.  Similar to the study of Krishnan et al. (2020), the monarch caterpillars 

treated with the highest three concentrations of β-cyfluthrin were observed to bleed (i.e., 



46 

loosing hemolymph) less than 1 h after treatment, which contributes to the weight loss 

recorded at 24 h. Monarch caterpillars exposed to the LOED of β-cyfluthrin did recover 

from this loss of hemolymph and were observed to gain weight. Hemolymph is critical 

for molting, immunity, thermal regulation, maintaining turgor pressure, and a number of 

other physiological processes (Klowden 2008, Kanost 2009). A loss of hemolymph, and 

possibly turgor pressure, could significantly impact the molting and pupation success of 

the caterpillars. While it is unclear how hemolymph loss might affect pupation, McKay et 

al. (2016) reported monarch caterpillar hemolymph loss to reduce pupal mass and 

increase infection of OE. Additionally, a delay in development could increase the risk of 

predation or parasitism of monarch caterpillars in the field (Geest 2017). 

The AgDRIFT® Tier 1 aerial spray drift assessment predicts the aerial application 

of bifenthrin and β-cyfluthrin to be a potential risk for monarch caterpillar development 

on the leaf surface of milkweeds that border pyrethroid-treated crops. This prediction is 

based on a worst-case scenario for the whole-body surface area of the monarch caterpillar 

to be exposed to bifenthrin or β-cyfluthrin either by direct deposition or with the 

caterpillar walking across the pyrethroid-treated surface of a milkweed leaf. If a less 

conservative exposure scenario is considered for the deposition of the insecticides on the 

dorsal half of the monarch caterpillar following a low ground boom application, the risk 

of lethal exposure is predicted to be within 2 m for a bifenthrin- or β-cyfluthrin treated 

crop.  If the risk of exposure is based on the β-cyfluthrin LOED of 0.05 µg/µl, then the 

deposition affecting monarch caterpillar growth after a ground application is predicted to 

be 3 m for low boom and 6 m for high boom from the edge of the insecticide-treated 
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field. The AgDRIFT® Tier 1 aerial and ground deposition assessments are conservative 

assessments and other studies have found deposition estimates from this model to be 20-

40 times higher than what is detected in spray drift residue trials (Brain et al. 2019).  

While the buffer distances calculated in this study would not be applicable for every field 

scenario, these distances provide a worst-case estimate for the risk of pyrethroid exposure 

and provide an opportunity to test laboratory toxicity data in an agricultural landscape. 

Krishnan et al. (2020) documented larger buffer distances and greater risk down-wind to 

fifth instar monarch caterpillars near a β-cyfluthrin treated field. However, the different 

estimates are due to the lower toxicity values determined in the earlier study (Krishnan et 

al. 2020).  Aside from these two models, there is minimal pyrethroid residue data and 

minimal toxicity data for monarch butterflies, which provides a challenge for determining 

the actual risk of exposure to caterpillars. Additionally, application timing, frequency and 

resistance management programs further complicate exposure predictions for monarch 

caterpillars and determining temporal and spatial overlap near agriculture. A recent study 

reports the residue levels of deltamethrin on milkweeds that border agricultural crops 

(Olaya-Arenas and Kaplan 2019), but there are no data collected for other pyrethroids, 

including bifenthrin and β-cyfluthrin. Additional studies are needed to examine the 

persistence and stability of these pyrethroids to determine the duration of exposure to 

monarch caterpillars following the application of these insecticides. Previously, 

(Oberhauser et al. 2006) found the pyrethroid permethrin, used for mosquito control, to 

persist on milkweed leaves for 21 d following application. Terrestrial field dissipation 

studies have reported the half-life of bifenthrin and β-cyfluthrin to be 78-325 d and 4-24 
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d, respectively (US EPA 2016). The dissipation half-life for β-cyfluthrin is less than that 

for bifenthrin and, according to the Baythroid XL® label, there can be multiple 

applications of the insecticide to pest-infested soybean fields at 7-d intervals. 

Additionally, the deposition assessment with AgDRIFT® and the field deposition 

reported in the “EPA Environmental Fate and Ecological Effect Assessment” (US EPA 

2016) raises concerns for the risk of bifenthrin and β-cyfluthrin to monarch caterpillars 

on milkweeds that border agricultural crops. Future work should focus on testing these 

drift assessments and the application of drift reduction technologies to reduce pyrethroid 

exposures to monarch caterpillars.  

Here, we report the significant effects that the pyrethroids bifenthrin and β-

cyfluthrin, at field-relevant concentrations, have on the growth and survival of fifth instar 

monarch caterpillars. These data are important for the ecological risk characterization of 

foliar-applied insecticides in agriculture-dominated landscapes. Our findings provide 

evidence that pyrethroids are a potential risk to monarch caterpillars in these landscapes. 

However, this risk can be mitigated if prevailing wind direction is considered when 

establishing milkweed near conventional agricultural fields and, when possible, 

pyrethroids should be applied using low boom ground applications. The conservation 

efforts to restore monarch butterfly populations require ca. 1.8 bill new milkweed stems 

on the landscape, a goal that can only be reached with the cooperation of agricultural land 

managers (Thogmartin et al. 2017). 



49 

5. ACKNOWLEDGEMENTS 

The authors would like to thank Terence Spencer and Matthew Greiner for 

assistance maintaining the UNL monarch colony. Additional thanks to Niranjana 

Krishnan and Steve Bradbury for technical guidance and sharing of toxicity data. The 

authors appreciate the assistance provided by Richard Hellmich and Keith Bidne from 

USDA-ARS, Corn Insects and Crop Genetics Unit, as well as Chip Taylor at Monarch 

Watch in establishing the UNL monarch colony and optimizing the artificial diet.  

6. REFERENCES 

Adamo, S. A., G. Davies, R. Easy, I. Kovalko, and K. F. Turnbull. 2016. 

Reconfiguration of the immune system network during food limitation in the caterpillar 

Manduca sexta. J. Exp. Biol. 219: 706-718. 

Alonso-Mejia, A., E. Rendon-Salinas, E. Montesinos-Patino, and L. P. Brower. 1997. 

Use of lipid reserves by monarch butterflies overwintering in Mexico: implications for 

conservation. Ecol. Appl. 7: 934–947. 

Braak, N., R. Neve, A. K. Jones, M. Gibbs, and C. J. Breuker. 2018. The effects of 

insecticides on butterflies: a review. Environ. Pollut. 242: 507–518. 

Bradbury, S., T. Grant, and N. Krishnan. 2017. Iowa monarch conservation, pest 

management and crop production. Proc. Integr. Crop Manag. Conf. 

Brain, R., G. Goodwin, F. Abi-Akar, B. Lee, C. Rodgers, B. Flatt, A. Lynn, G. 

Kruger, and D. Perkins. 2019. Winds of change, developing a non-target plant bioassay 

employing field-based pesticide drift exposure: a case study with atrazine. Sci. Total 

Environ. 678: 239–252. 

Çilgi, T., and P. C. Jepson. 1995. The risks posed by deltamethrin drift to hedgerow 

butterflies. Environ. Pollut. 87: 1–9. 

Clements, A. N., and T. E. May. 1977. The actions of pyrethroids upon the peripheral 

nervous system and associated organs in the locust. Pestic. Sci. 8: 661–680. 

Davies, T. G. E., L. M. Field, P. N. R. Usherwood, and M. S. Williamson. 2007. DDT, 

pyrethrins, pyrethroids and insect sodium channels. IUBMB Life. 59: 151–162. 

Diffendorfer, J. E., J. B. Loomis, L. Ries, K. Oberhauser, L. Lopez‐Hoffman, D. 

Semmens, B. Semmens, B. Butterfield, K. Bagstad, J. Goldstein, R. Wiederholt, B. 

Mattsson, and W. E. Thogmartin. 2014. National valuation of monarch butterflies 



50 

indicates an untapped potential for incentive-based conservation. Conserv. Lett. 7: 253–

262. 

Dunbar, M. W., M. E. O’Neal, and A. J. Gassmann. 2016. Increased risk of insect 

injury to corn following rye cover crop. J. Econ. Entomol. 109: 1691–1697. 

Gammon, D. W., M. A. Brown, and J. E. Casida. 1981. Two classes of pyrethroid 

action in the cockroach. Pestic. Biochem. Physiol. 15: 181–191. 

Geest, E. A., L. L. Wolfenbarger, and J P. McCarty 2019. Recruitment, survival, and 

parasitism of monarch butterflies (Danaus plexippus) in milkweed gardens and 

conservation areas. J. Insect Conserv. 23: 211-224. 

Greiner, M., A. Krueger, T. A. Spencer, T. D. Anderson, T. Weissling, and A. M. 

Velez. 2019. Evaluation of artificial diet on monarchs (Danaus plexippus L.) population 

growth parameters for pesticide bioassays. National of the Entomological Society of 

America, 17-20 November, St. Louis, MO. Entomological Society of America, Lanham, 

MD.  

Kanost, M. R. 2009. Hemolymph, pp. 446–449. In Resh, V.H., Cardé, R.T. (eds.), 

Encyclopedia of Insects Second Ed. Academic Press, San Diego, CA. 

Kingsolver, J. G. 2007. Variation in growth and instar number in field and laboratory 

Manduca sexta. Proc. R. Soc. B Biol. Sci. 274: 977–981. 

Klowden, M. J. 2008. Circulatory Systems, pp. 357–401. In Klowden, M.J. (ed.), 

Physiological Systems in Insects Second Ed. Academic Press, San Diego, CA. 

Krischik, V., M. Rogers, G. Gupta, and A. Varshney. 2015. Soil-applied imidacloprid 

translocates to ornamental flowers and reduces survival of adult Coleomegilla maculata, 

Harmonia axyridis, and Hippodamia convergens lady beetles, and larval Danaus 

plexippus and Vanessa cardui butterflies. PLOS ONE. 10: e0119133. 

Krishnan, N., Y. Zhang, K. G. Bidne, R. L. Hellmich, J. R. Coats, and S. P. 

Bradbury. 2020. Assessing field-scale risks of foliar insecticide applications to monarch 

butterfly (Danaus plexippus) larvae. Environ. Toxicol. Chem. 39: 923–941. 

Longley, M., T. Čilgi, P. C. Jepson, and N. W. Sotherton. 1997. Measurements of 

pesticide spray drift deposition into field boundaries and hedgerows: 1. Summer 

applications. Environ. Toxicol. Chem. 16: 165–172. 

McKay, A. F., V. O. Ezenwa, and S. Altizer. 2016. Consequences of food restriction 

for immune defense, parasite infection, and fitness in monarch butterflies. Physiol. 

Biochem. Zool. 89: 389–401. 

Nail, K. R., C. Stenoien, and K. S. Oberhauser. 2015. Immature monarch survival: 

effects of site characteristics, density, and time. Ann. Entomol. Soc. Am. 108: 680–690. 



51 

Oberhauser, K., and M. Guiney. 2009. Insects as flagship conservation species. Terr. 

Arthropod Rev. 1: 111–123. 

Oberhauser, K. S., and M. J. Solensky. 2004. The Monarch Butterfly: Biology & 

Conservation. Cornell University Press. 

Oberhauser, K. S., S. J. Brinda, S. Weaver, R. D. Moon, S. A. Manweiler, and N. 

Read. 2006. Growth and survival of monarch butterflies (Lepidoptera: Daniadae) after 

exposure to permethrin barrier treatments. Environ. Entomol. 35: 1626–1634. 

Olaya-Arenas, P., and I. Kaplan. 2019. Quantifying pesticide exposure risk for 

monarch caterpillars on milkweeds bordering agricultural land. Front. Ecol. Evol. 7. 

Pecenka, J. R., and J. G. Lundgren. 2015. Non-target effects of clothianidin on 

monarch butterflies. Sci. Nat. 102: 19. 

Pleasants, J. 2017. Milkweed restoration in the Midwest for monarch butterfly recovery: 

estimates of milkweeds lost, milkweeds remaining and milkweeds that must be added to 

increase the monarch population. Insect Conserv. Divers. 10: 42–53. 

Pleasants, J. M., and K. S. Oberhauser. 2013. Milkweed loss in agricultural fields 

because of herbicide use: effect on the monarch butterfly population. Insect Conserv. 

Divers. 6: 135–144. 

Ragsdale, D. W., D. A. Landis, J. Brodeur, G. E. Heimpel, and N. Desneux. 2011. 

Ecology and management of the soybean aphid in North America. Annu. Rev. Entomol. 

56: 375–399. 

Rhainds, M., G. Gries, and M. M. Min. 1999. Size- and density-dependent 

reproductive success of bagworms, Metisa plana. Entomol. Exp. Appl. 91: 375–383. 

Rundlöf, M., J. Bengtsson, and H. G. Smith. 2008. Local and landscape effects of 

organic farming on butterfly species richness and abundance. J. Appl. Ecol. 45: 813–820. 

Scheffé, H. 1953. A method for judging all contrasts in the analysis of variance. 

Biometrika. 40: 87–110. 

Sears, M. K., R. L. Hellmich, D. E. Stanley-Horn, K. S. Oberhauser, J. M. Pleasants, 

H. R. Mattila, B. D. Siegfried, and G. P. Dively. 2001. Impact of Bt corn pollen on 

monarch butterfly populations: a risk assessment. Proc. Natl. Acad. Sci. 98: 11937–

11942. 

Soderlund, D. M., J. M. Clark, L. P. Sheets, L. S. Mullin, V. J. Piccirillo, D. Sargent, 

J. T. Stevens, and M. L. Weiner. 2002. Mechanisms of pyrethroid neurotoxicity: 

implications for cumulative risk assessment. Toxicology. 171: 3–59. 



52 

Teske, M. E., S. L. Bird, D. M. Esterly, T. B. Curbishley, S. L. Ray, and S. G. Perry. 

2002. AgDRIFT: a model for estimating near-field spray drift from aerial applications. 

Environ. Toxicol. Chem. 21: 659–671. 

Thogmartin, W. E., L. López-Hoffman, J. Rohweder, J. Diffendorfer, R. Drum, D. 

Semmens, S. Black, I. Caldwell, D. Cotter, P. Drobney, and others. 2017. Restoring 

monarch butterfly habitat in the Midwestern US:‘all hands on deck.’ Environ. Res. Lett. 

12: 074005. 

(UASEPA) U.S. Environmental Protection Agency. 2016. Preliminary comparative 

environmental fate and ecological risk assessment for the registration review of eight 

synthetic pyrethroids and the pyrethrins (No. EPA-HQ-OPP-2010-0384-0045). USEPA, 

Washington, DC. 

Zalucki, M. P. 1982. Temperature and rate of development in Danaus plexippus L. and 

D. Chrysippus L. (Lepidoptera: Nymphalidae). Aust. J. Entomol. 21: 241–246. 

 



53 

 

 Table 2.1 Contact toxicity of bifenthrin and β-cyfluthrin to fifth-instar monarch 

caterpillarsa. 
LD10 LD25 LD50 LD75 LD90 Slope Chi-Square (b)

Insecticide N 95% CI 95% CI 95% CI 95% CI 95% CI 95% CI Pr  > Chi-Square

Bifentrhin 200 0.08 0.19 0.44 1 2.10 1.86 50.42

0.05 - 0.12 0.14 -  0.25 0.32 - 0.65 0.67 - 1.90 1.20 -  5.30 1.34-2.37 < 0.0001

β-Cyfluthrin 170 0.06 0.09 0.14 0.22 0.32 3.59 34.38

0.05 - 0.08 0.07 - 0.11 0.12 - 0.19 0.17 - 0.35 0.23 - 0.61 2.39-4.80 < 0.0001

 

a Pyrethroid toxicity data are presented as LD10, LD25, LD50, LD75, and LD90 and their 

95% confidence intervals (95% CI) in micrograms per microliter (µg/µl). 

b Pearson’s chi-square and the probability of chi-square.  The probability of > 0.05 

indicates that the observed regression model is not significantly different from the 

expected model. 
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Figure 2.1 Daily and total diet consumption of fifth instar monarch caterpillars after 

topical exposure to bifenthrin (A, C) and β-cyfluthrin (B, D). Vertical bars represent 

the mean  standard error (n = 20) and asterisks indicate significant differences between 

the solvent control (SC) and treatment means (SAS PROC GLIMMIX, P < .05). 
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Figure 2.2 Weight of fifth instar monarch caterpillars after topical exposure to 

bifenthrin (A) and β-cyfluthrin (B). Symbols represent the mean  standard error (n = 

20) and when absent the error bars are within the size of the symbol.  Asterisks indicate 

significant differences between the solvent control (SC) and treatment means (SAS 

PROC GLIMMIX, P < .05). 
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Figure 2.3. Spray-drift exposure estimates of bifenthrin and β-cyfluthrin for fifth 

instar monarch caterpillars using the AgDRIFT® model. Deposition (µg/cm2) was 

multiplied by either the full caterpillar surface area (7.10 cm2) or one-half caterpillar 

surface area (3.55 cm2).  Exposure values were log transformed to account for orders of 

magnitude differences in deposition estimates.  Effect thresholds, LD50 (red line), LOED 

(orange line) and NOED (green line), are overlaid for each insecticide. 
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CHAPTER 3 : CARDENOLIDE, POTASSIUM, AND PYRETHROID 

INSECTICIDE COMBINATIONS REDUCE GROWTH AND SURVIVAL OF 

MONARCH BUTTERFLY CATERPILLARS [Lepidoptera: Nymphalidae] 
 

This chapter is in review at Economic Entomology: Krueger, A. J., Robinson, E. A., 

Weissling, T. J., Vélez, A. M., & Anderson, T. D. (2021). Cardenolide, potassium, and 

pyrethroid insecticide combinations reduce growth and survival of monarch butterfly 

caterpillars [Lepidoptera: Nymphalidae]. Economic Entomology. Used with permission. 

 

Introduction 

The monarch butterfly (Danaus plexippus) is a well-known specialist of milkweed 

(Asclepias sp.) [Gentianales: Apocynaceae].  The reduction of milkweed stems 

throughout the US are implicated in the decline of the monarch butterfly population 

(Pleasants and Oberhauser 2013). Throughout the US Corn Belt landscape, the remaining 

milkweed species are primarily confined to field margins forcing monarchs to 

concentrate near row-crop production (Thogmartin et al. 2017). Because of this proximity 

to agricultural landscapes, the USFWS has identified agrochemicals to be one of five 

main stressors contributing to the decline of monarchs (USFWS 2017). The monarch is a 

well-known flagship for insect conservation and raising public awareness about the 

decline of insect populations (Oberhauser and Guiney 2009). A public survey found that 

US households valued the conservation of the monarch butterfly at $4-6 billion USD 

(Diffendorfer et al. 2014). The cost of monarch butterfly conservation and habitat 

restoration will require substantial funding from government programs to support these 

actions on public and private lands (Pindilli and Casey 2015). An understanding of the 

potential stressors and their interactions within habitat restoration sites is critical for 

maximizing the benefits of this economic investment. 
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Monarch caterpillars and other herbivorous insects feeding on milkweed are 

exposed to the cardenolide defenses of milkweeds. Cardenolides are secondary plant 

metabolites within a sub-class of cardiac glycosides derived from triterpenoids with 

broad-spectrum insecticidal activity (Agrawal et al. 2012). These compounds act on the 

nervous system targeting Na+/K+-ATPase, where they reversibly bind to the α-subunit 

locking it in a phosphorylated conformation and disrupting ion translocation and nerve 

function (Horisberger 2004, Dobler et al. 2011). This active site for cardenolide toxicity 

has been identified with ouabain, a foxglove (Digitalis sp.) [Lamiales: Plantaginaceae] 

cardenolide which selectively binds to Na+/K+-ATPase (Lingrel 2010). There are ca. 500 

identified cardenolide derivatives with diverse structural conformations (Schönfeld et al. 

1985, Agrawal et al. 2012). Of the 73 native milkweed species in North America, nearly 

all Asclepias species produce cardenolides albeit at different compositions and 

concentrations depending on the milkweed species (Brower et al. 1982, Seiber et al. 

1983, Frick and Wink 1995, Agrawal et al. 2012). The monarch is insensitive to 

cardenolides, resulting from their co-evolution with milkweeds, and have the capacity to 

sequester these compounds (Holzinger and Wink 1996).  

Pyrethroid insecticides are commonly used to control insect pests in corn and 

soybean across the Midwestern US (Ragsdale et al. 2011). These broad-spectrum 

insecticides are neurotoxic and target the voltage-gated Na+ channel to disrupt 

neurological function (Clements and May 1977). Because of their acute toxicity, 

pyrethroids have been used to control a variety of insect pests (Kogan and Turnipseed 

1987, Meinke et al. 2021). For example, the timing of soybean aphid infestations and 
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subsequent foliar applications of pyrethroids can occur when monarch caterpillars are 

present on the landscape (Bradbury et al. 2017). Pyrethroid field residue and exposure 

modeling data show monarchs developing in field margins 0-10 m from the field may be 

adversely affected by foliar applications during the breeding season (Olaya-Arenas and 

Kaplan 2019, Krishnan et al. 2020).  Krueger et al. (2021) have shown the pyrethroid 

insecticides bifenthrin and β-cyfluthrin, at field realistic concentrations, to significantly 

affect the survival, growth, and development of fifth-instar monarchs.  

Potassium is an essential nutrient for plant growth and stress physiology 

(Pettigrew 2008). However, potassium is deficient in soils across several Midwestern 

states (Woodruff et al. 2015). Potassium fertilization can help increase drought tolerance 

and immune defense in agricultural crops and may be an important tool for mitigating the 

effects of climate change on crops (Wang et al. 2013). Millions of tons of potassium 

fertilizer are applied across the US, with potash fertilizer applied to 63% corn, 43% 

soybean, and 45% cotton acreage annually (USDA ERS 2019). Pharmacological studies 

have shown potassium antagonism of cardenolides at the target site in several mammalian 

systems and, in turn, decrease cardenolide toxicity and inhibition of Na+/K+-ATPase by 

orders of magnitude (Glynn 1957, Baker and Willis 1970).  These studies have shown 

increasing K+ serum concentrations administered after cardenolide exposure to reverse 

cardenolide inhibition and recover the function of Na+/K+-ATPase (Glynn 1957, Baker 

and Willis 1970). These results demonstrate the competitive binding of potassium and 

antagonism of cardenolides at the Na+/K+-ATPase (Songu-Mize et al. 1989). Previous 

studies documented cardenolide-binding site modifications for Na+/K+-ATPase in 
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monarchs (Vaughan and Jungreis 1977).  These modifications of Na+/K+-ATPase are 

reported to decrease the toxicity of the cardenolide ouabain, and as observed in 

mammals, the inhibition of Na+/K+-ATPase by ouabain can be reversed with increasing 

concentrations of K+ (Vaughan and Jungreis 1977).  There are 4.6 bill. lbs. and 3.2 bill. 

lbs. of potassium fertilizer applied annually to corn and soybean crops, respectively, in 18 

states along the monarch flyway (USDA ERS 2019).  However, there are no studies 

focusing on the effects of potassium on cardenolide toxicity to monarchs in agricultural 

landscapes.  Previous studies show that other lepidopterans can cope with increased 

concentrations dietary K+ (Jungreis et al. 1973, Harvey et al. 1975, Dow and Harvey 

1988) albeit with an energetic cost for the maintenance and regulation of osmolarity.  The 

influx of potassium fertilizer applications in agricultural landscapes may affect the 

sequestration and protective benefits of cardenolides in developing monarchs. 

This study evaluated the effects of cardenolide ouabain and potassium chloride 

(KCl) combinations on the sensitivity of monarch caterpillars to the pyrethroid 

insecticide bifenthrin.  Bifenthrin was chosen as a representative pyrethroid not only due 

to its relevance as a crop-protection insecticide in Nebraska and Midwest agricultural 

landscapes, but also a continuation of our previous studies on the sub-lethal toxicity of 

bifenthrin to caterpillars (Krueger et al. 2021). First, we examined the weight and diet 

consumption of caterpillars exposed to ouabain, KCl, and bifenthrin.  Second, we 

examined the weight, diet consumption, and survival of caterpillars exposed 

combinations of KCl and bifenthrin.  Third, we examined the weight, diet consumption, 
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and survival of caterpillars pre-exposed to ouabain followed by treatment to 

combinations of KCl and bifenthrin.  

Materials and Methods 

Chemicals 

Bifenthrin (CAS# 82657-04-3, 99.5%) was purchased from Chem Service Inc. 

(West Chester, PA) and stored at room temperature. Ouabain (CAS# 11018-89-6) and 

potassium chloride (KCl) (CAS#7447-40-7, 99.0%) were purchased from Sigma-Aldrich 

(St. Louis, MO) and stored at room temperature. Stock solutions of bifenthrin were 

prepared in acetone. Ouabain and KCl solutions were dissolved in deionized water for 

incorporation into the diet. Deionized water was used as a solvent control for ouabain and 

KCl treatments and acetone was used as a solvent control for bifenthrin treatments. 

 

Insects and Artificial Diet 

Monarch caterpillars were sourced from a laboratory colony in the Department of 

Entomology at the University of Nebraska-Lincoln and maintained as described in 

Krueger et al. (2021). Briefly, eggs were collected daily and stored at 16 °C for up to 14 

d. The eggs were moved to room temperature and hatched within 2-3 d. Neonates were 

then placed on artificial diet within 24 h of eclosion and maintained on the diet through 

the third- and fifth-instar stages for the experiments. The number of caterpillars per 

treatment and replications were different for each experiment due to asynchrony of 

development in the third- to fifth-instar stages. The number of caterpillars tested per 

treatment and replications are shown in Appendix 1.  
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The monarch caterpillar diet was prepared following methods outlined in Krueger 

et al. (2021) with the following modifications. Diet was prepared using Southland multi-

species Lepidoptera diet (Southland Products Incorporated, Lake Village, AR) with the 

addition of 15% (w/w) lyophilized common milkweed (Asclepias syrica) leaf powder. .  

Milkweed leaves were collected from garden spaces or field sites receiving no insecticide 

application, washed in a 10% (v:v) bleach solution, and stored at -80 ºC. Leaves were 

freeze dried, ground to a powder, and stored at -20 ºC.  

 Monarch caterpillars on artificial diet have been shown to develop significantly 

slower than caterpillars feeding on milkweed leaves (Greiner et al. 2019). Newly hatched 

caterpillars take approximately 4-5 days to develop and molt to a third-instar caterpillar, 

8-10 days to develop and molt to a fifth-instar stage caterpillar, and 15-17 days to 

pupation. All experiments used caterpillars that had molted approximately 24 h prior to 

the start of the experiment to avoid confounding effects from molting. 

Single and Combination Chemical Treatments 

Single bifenthrin treatments were reported in Krueger et al. (2021). Briefly, stock 

solutions were prepared in acetone at 0.025, 0.05, 0.1, 0.2, and 0.4 µg/µl and 1 µl was 

applied topically with a pipette to the dorsal prothorax of each fifth-instar caterpillar to 

determine effect thresholds. Stock solutions of ouabain were prepared in deionized water 

and mixed with the diet to achieve concentrations of 0.03, 0.1, 0.3, 1, and 3 mg ouabain/g 

diet. Concentrations were selected to mimic a range of total cardenolide concentrations 

documented across Asclepias sp. (Rasmann and Agrawal 2011). Artificial diet was 

prepared in a single batch and cooled to 15-17 °C before aliquots of diet were removed to 
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prepare individual diet treatments.  Individual diet treatments were dispensed using a 60 

ml syringe (BD Biosciences, San Jose, CA) in 2.5 ml aliquots into 1 oz. condiment cups 

(Dart, Mason, MI). Diet was either fully consumed or beginning to dry out. after 6 days. 

If the diets were observed to dry out, then the diet was prepared again on day 6. Treated 

diet that was prepared again on day 6 was prepared following the same methods as 

described for day 0; however, diet was dispensed in 4 ml aliquots into 2 oz. condiment 

cups (Dart, Mason, MI) to provision caterpillars through the conclusion of the study. KCl 

was dissolved in deionized water at 0.4, 2, 10, and 50 mg KCl/g diet and treated diets 

were prepared in separate batches. Since the effects of KCl on caterpillar growth and diet 

consumption were unknown, KCl concentrations were selected to span a wide range, with 

the highest concentration approaching limits of solubility in water.  KCl was weighed for 

each treatment, dissolved into deionized water, and boiled before the addition of artificial 

diet mix and milkweed powder.  Diets were dispensed in 4 ml aliquots into 2 oz. 

condiment cups (Dart, Mason, MI) using a 60 ml syringe (BD Biosciences, San Jose, 

CA). The number of caterpillars tested per treatment and replications are shown in 

Appendix 1.  

Fifth-instar caterpillars were exposed to either 0 or 10 mg/g KCl and 0, 0.1, 0.2, 

or 0.4 µg/µl bifenthrin to yield 8 treatment groups. KCl concentration was selected to 

mimic a realistic, environmental exposure, and to be the threshold for significant effects 

on caterpillar growth and diet consumption. Bifenthrin concentrations were selected 

based on effects documented in Krueger et al. (2021), which are shown to affect the 

growth, development, and survivorship of fifth-instar caterpillars. KCl-treated diet was 
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prepared as previously described for the single compound treatments. Bifenthrin was 

dissolved in acetone at 0.1, 0.2, and 0.4 µg/µl and topically applied to the dorsal 

prothorax as described in Krueger et al. (2021). The number of caterpillars tested per 

treatment and replications are shown in Appendix 1. 

On day 0, 100-120 third-instar caterpillars were weighed, and 50-60 individuals 

were placed on 2.5 ml of untreated diet. Another 50-60 individuals were placed on 2.5 ml 

diet treated with 1 mg ouabain/g diet. Ouabain diets were prepared following the same 

method previously described for single ouabain treatment. On day 6 of the experiment, 

KCl and bifenthrin treatments were started when caterpillars reached the fifth-instar 

stage.  For each untreated and ouabain-treated group, caterpillars were randomly assigned 

to 1 of 4 different KCl-bifenthrin treatment groups: 1) no KCl + no bifenthrin, 2) no KCl 

+ 0.1 µg/µl bifenthrin, 3) 10 mg/g KCl + no bifenthrin, or 4) 10 mg/g KCl + 0.1 µg/µl 

bifenthrin. There was a total of 8 different treatment combinations of ouabain, KCl, and 

bifenthrin.  Ouabain concentration was selected to mimic a high cardenolide exposure 

found in native milkweed species. KCl concentration was selected based on results from 

the KCl + bifenthrin experiments, and bifenthrin concentration was selected as a more 

field realistic exposure that consistently produced effects on caterpillar growth and diet 

consumption with minimal effects on survival. KCl and bifenthrin were prepared on day 

6 as previously described for the single compound treatments. The number of caterpillars 

tested per treatment and replications are shown in Appendix 1. 

Diet Consumption and Growth Experiments 

Third-instar caterpillars were used to mimic a sub-chronic ouabain exposure and 

fifth-instar caterpillars were used for KCl and bifenthrin treatments as reported in 
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Krueger et al. (2021).  First-instar caterpillars were reared in a 128-well bioassay tray 

(Frontier Agricultural Sciences, Newark, DE) to the second-instar stage on 0.5 g 

untreated artificial diet. For ouabain treatments, third-instar caterpillars were stratified by 

weight on day 0 and 10 individuals were randomly assigned to each treatment group after 

molting to the third-instar stage to ensure equal size distribution across treatments.  For 

KCl + bifenthrin treatments, third-instar caterpillars were placed on 2.5 g untreated diet 

in 32-well bioassay trays (Frontier Agricultural Sciences, Newark, DE) to continue 

developing to the fifth-instar stage. After molting, fifth-instar caterpillars were stratified 

by weight and individuals were randomly assigned to the treatment groups.  For ouabain 

+ KCl + bifenthrin, caterpillars were randomly assigned to ouabain treatment groups on 

day 0 and stratified by weight on day 6 for KCl and bifenthrin treatment groups. 

Caterpillars, diet, and frass were weighed daily for single compound treatments with 

ouabain and KCl, and 72-h KCl + bifenthrin treatments.  Caterpillars, diet and frass were 

weighed every other day on days 0-6 for ouabain + KCl + bifenthrin experiments and 

weighed every day from day 6-10 after KCl and bifenthrin treatments were administered. 

Mortality was recorded daily for each experiment. To quantify diet consumption, three 

evaporative control containers were setup for each experiment to quantify weight loss 

from evaporation. Diet consumption is reported as the difference in diet weight minus the 

difference in evaporative controls over the same time frame. Ouabain, KCl + bifenthrin, 

and ouabain + KCl + bifenthrin experiments were repeated in triplicate and KCl 

experiments were repeated in quadruplicate using caterpillars from three different 
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generations. The number of caterpillars tested per treatment and replications are shown in 

Appendix 1. 

Data Analysis  

Caterpillar weight, diet consumption, and survival for each treatment were 

analyzed in R 4.0.1 (R Core Team 2020). For each treatment, a repeated measures 

analysis was conducted for weight and diet consumption on individual caterpillars over 

time, assuming a Gaussian distribution with an AR-1 covariance structure to account for 

correlation between days. The linear mixed model repeated measures analyses were 

conducted using the nlme package (Pinheiro et al. 2021) with the lme function. 

Proportion survival was analyzed for both the KCl + bifenthrin and ouabain + KCl + 

bifenthrin treatments using a generalized linear mixed model assuming a binomial 

distribution with a PROBIT link function using the glmer function in the lme4 package 

(Bates et al. 2015). There was no mortality observed in solvent control treatments (i.e., 

standard deviation = 0) so survival was only analyzed for treatment groups exposed to 

bifenthrin for KCl + bifenthrin and ouabain + KCl + bifenthrin experiments. Each 

treatment was replicated on three or four separate occasions, with experimental replicate 

treated as a fixed block across all analyses. Baseline caterpillar weight (i.e., weight on 

day 0) was used as a covariate for all analyses. For both ouabain and the ouabain + KCl + 

bifenthrin treatments, caterpillar growth was exponential over the 9-10-d treatment period 

and, thus, the caterpillar weight response variable and the baseline caterpillar weight 

covariate were both log-transformed to satisfy assumptions of normality. For the ouabain-

only and KCl-only treatments, respective concentrations were log-transformed in the 

analysis for equal spacing of treatment levels. The AIC was then used as model selection 
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criteria to fit the best polynomial regression. Final reduced model fit for each analysis is 

provided in Appendices 2-5. The assessment estimates for each treatment level were 

compared to the control group at each time point using Dunnett’s multiple comparison 

procedure and reported at the α = 0.05 significance level. Caterpillar weight and diet 

consumption analyses for ouabain-only and KCl-only concentrations were log 

transformed and treated as quantitative treatment variables since at least 5 concentrations 

were used in these experiments. In addition to the treatment comparisons, a threshold 

concentration was determined for each analysis as the lowest predicted concentration 

where caterpillar weight or diet consumption significantly differed (p < 0.05) from the 

control. For KCl + bifenthrin and ouabain + KCl + bifenthrin treatments, KCl, ouabain, 

and bifenthrin treatment variables were treated as qualitative since both experiments had 

fewer than 5 concentrations. Therefore, treatment comparisons were tested between the 

treatments and the control. Conditional residual plots were used to assess model fit. All 

figures were generated using the estimates obtained using the estimated marginal means 

(emmeans) package (Lenth 2020) from the model outputs at the average base caterpillar 

weight for that treatment experiment and the ggplot2 package (Wickham 2016) for 

plotting. 

Results 

The results of caterpillar weights after receiving an ouabain diet are shown in Fig. 3.1A.  

There was no significant caterpillar mortality observed after each treatment for the 

duration of the experiment. There was a significant increase in body weight (36-57%) for 

caterpillars feeding on the 3 mg ouabain/g diet for 3-10 d compared to the individuals 

receiving the untreated diet (p < 0.05) (Fig. 3.1A). Similarly, the caterpillars feeding on 
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the 1 mg ouabain/g diet for 4-10 d had significantly higher body weight (25-30%) 

compared to the individuals receiving the untreated diet (p < 0.05) (Fig. 3.1A). The final 

generalized linear mixed model showed a significant linear relationship between 

log(ouabain) and caterpillar weight (F = 13.29; df = 1, 174; p < 0.001) as well as 

log(ouabain) x day and caterpillar weight (F = 3.92; df = 9, 1580; p < 0.0001). Day, 

experimental replicate, and starting caterpillar weight also had a significant effect on 

caterpillar weight (p < 0.0001). The quadratic log(ouabain) (F = 0.47; df = 1, 174; p 

=0.45) and quadratic log(ouabain) x day (F = 1.76; df = 9, 1580; p = 0.072) terms were 

kept in the model based on AIC. Using the model to estimate caterpillar weight across 

ouabain concentrations, after 3-d of feeding on an ouabain diet, the model estimated 

concentrations above 1.25 mg ouabain/g diet will significantly (p < 0.05) increase 

caterpillar weight over the course of the 10-d exposure period. The exact concentration 

threshold for significance varies from 1.26 to 2.50 mg ouabain/g diet between 3-10 d and 

is shown as the dotted vertical line each day in Fig. 3.1A. 

The results of daily diet consumed by caterpillars after receiving an ouabain-

treated diet are presented in Fig. 3.1B.  A significant 37% (t = 2.88; df = 173; p = 0.020) 

and 47% (t = 3.08; df = 173; p = 0.011) increase in diet consumption was observed for 

caterpillars exposed to a 1 and 3 mg ouabain/g diet, respectively, after 8 d compared to 

the individuals receiving an untreated diet (Fig. 3.1B).  However, the caterpillars exposed 

to a 0.1 mg ouabain/g diet exhibited a significant 46% reduction (t = -2.70; df = 173; p = 

0.034) in diet consumption after 6 d compared to the caterpillars receiving an untreated 

diet (Fig. 3.1B). After 7 d, the caterpillars exposed to 0.03, 0.10, and 0.30 mg ouabain/g 
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diet were observed to exhibit a significant 45% (t = -4.85; df = 173; p < 0.0001), 49% (t = 

-460; df = 173; p < 0.0001), and 41% (t = -2.89; df = 173; p = 0.019) reduction in diet 

consumption, respectively, compared to the individuals receiving an untreated diet (Fig. 

3.1B). The final generalized linear mixed model used a significant quadratic log(ouabain) 

(F = 5.09; df = 1, 173; p = 0.025) term as well as linear (F = 3.96; df = 9, 1572; p < 

0.0001), quadratic (F = 2.72; df = 9, 1572; p = 0.0032) and cubic log(ouabain) x day (F = 

1.99; df = 9, 1572; p = 0.037) interaction terms. Day and starting caterpillar weight also 

had a significant effect on diet consumption in the model (p < 0.01). Given the 

significance of the cubic and quadratic interaction terms and limited significant 

comparisons, model predictions were not determined.  

The results of caterpillar weights after receiving a KCl diet are shown in Fig. 

3.2A.  A significant 39% (t = -8.16; df = 143; p < 0.0001), 51% (t = -13.2; df = 143; p < 

0.0001), and 55% (t = -14.5; df = 143; p < 0.0001) decrease in body weight was observed 

for caterpillars exposed to a 50 mg KCl/g diet at 24, 48 and 72 h, respectively, relative to 

the untreated individuals. The final generalized linear mixed model used significant 

linear, quadratic, cubic, and quartic log(KCl) and log(KCl) x day interaction terms (p < 

0.05). Day, experimental replicate, and starting caterpillar weight also had a significant 

effect on caterpillar weight (p < 0.01). Using the model to estimate caterpillar weight 

across KCl concentrations, the model estimated concentrations between 21 and 26 mg 

KCl/g diet will decrease caterpillar weight relative to controls over the 72-h exposure 

period. 
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The results of daily diet consumed by caterpillars after receiving a KCl-treated 

diet are presented in Fig. 3.2B.  A significant 88% (t = -8.00; df = 143; p < 0.0001), 90% 

(t = -9.38; df = 143; p < 0.0001), and 91% (t = -6.79; df = 143; p < 0.0001) decrease in 

diet consumption was observed at 24, 48, and 72 h, respectively, for caterpillars exposed 

to 50 mg KCl/g diet compared to individuals receiving the untreated diet. The final 

generalized linear mixed model used significant linear, quadratic, cubic and quartic 

log(KCl) terms (p < 0.05). Day, experiment, and starting caterpillar weight also had a 

significant effect on caterpillar weight (p < 0.01). Using the model to estimate diet 

consumption across KCl concentrations, the model estimated concentrations between 22 

and 30 mg KCl/g diet will decrease diet consumption relative to untreated individuals.  

The results of caterpillar weight after receiving a KCl-treated diet and bifenthrin 

treatment are presented in Fig. 3.3A.  There were no significant differences in weight 

between caterpillars that received a KCl-treated diet relative to caterpillars receiving an 

untreated diet at any time point during the 72-h experiment. The results of daily diet 

consumed by caterpillars receiving a KCl-treated diet and treated with bifenthrin are 

presented in Fig. 3.3B.   A significant 41% (t = -1.99; df = 146; p = 0.048) and 52% (t = -

2.77; df = 146; p = 0.0063) decrease in daily diet consumption was observed at 48 h and 

72 h, respectively, for caterpillars on a KCl-treated diet and exposed to 0.2 µg/µl 

bifenthrin compared to caterpillars receiving an untreated diet and treated with 0.2 µg/µl 

bifenthrin. Caterpillars exposed to KCl only and not treated with bifenthrin exhibited a 

significant 43% (t = -5.08; df = 146; p < 0.0001) reduction in diet consumption after 48 h 

compared to caterpillars receiving an untreated diet. The results of survival for 
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caterpillars receiving a KCl-treated diet and treated with bifenthrin are presented in Fig. 

3.4. There were no significant differences in survival between untreated caterpillars and 

caterpillars exposed to KCl at 0.1 (z = 0.85; p = 0.39), 0.2 (z = 1.55; p = 0.12), and 0.4 (z 

= -1.71; p = 0.088) µg/µl bifenthrin.  On the untreated diet, the binomial model predicts 

75%, 72%, and 25% of caterpillars will survive 0.1, 0.2, and 0.4 µg/µl bifenthrin, 

respectively, 72 h after topical treatment. On the KCl-treated diet, the model predicts 

86%, 91% and 4% of caterpillars will survive 0.1, 0.2, and 0.4 µg/µl bifenthrin, 

respectively, 72 h after topical treatment.  

The results of caterpillar weight after receiving a KCl- and ouabain-treated diet 

and treated with bifenthrin are presented in Fig. 3.5A.  There were no significant (p > 

0.05) differences in growth between any treatments on day 2, 4, or 6 prior to bifenthrin or 

KCl treatments. Ouabain had no significant effect (p > 0.05) on caterpillar growth or diet 

consumption for any combination of KCl and bifenthrin. On day 7, 24 h after KCl and 

bifenthrin treatment, a significant 32% (t = -5.14; df = 208; p < 0.0001), 28% (t = -4.35; 

df = 208; p < 0.0001), 26% (t = -3.94; df = 208; p < 0.0001) and 29% (t = -4.54; df = 208; 

p < 0.0001) decrease in body weight was observed for caterpillars exposed to an 

untreated diet, KCl-treated diet, ouabain-treated diet, and ouabain plus KCl-treated diet, 

respectively, relative to individuals that were topically treated with acetone. Similarly, on 

day 8, 48 h after treatment with bifenthrin, a significant 27% (t = -4.07; df = 208; p < 

0.0001), 23% (t = -3.38; df = 208; p = 0.0009), 17.1% (t = -2.42; df = 208; p = 0.0163) 

and 26% (t = -3.82; df = 208; p = 0.0002) decrease in body weight was observed for 

caterpillars exposed to an untreated diet, KCl treated diet, ouabain treated diet, and 



72 

ouabain plus KCl-treated diet, respectively. However, on day 9 a significant 23% (t = -

3.25; df = 208; p = 0.0014) and 13% (t = -2.25; df = 208; p = 0.0257) decrease in body 

weight was only observed for caterpillars exposed to a KCl treated diet and an ouabain 

plus KCl-treated diet, respectively. The final categorical model for the effect of ouabain, 

KCl, and bifenthrin on caterpillar weight used significant day x ouabain x KCl (F = 0.77; 

df = 5, 954; p = 0.0421), day x KCl (F = 2.83; df = 5, 954; p = 0.0151), and day x 

bifenthrin (F = 8.37, df = 5, 954, p < 0.0001) interaction terms.  Day, experimental 

replicate, and caterpillar starting weight also had a significant effect on caterpillar weight 

(p < 0.0001).  The ouabain x KCl (F = 2.15; df = 1, 208; p = 0.14), ouabain x KCl x 

bifenthrin (F = 0.201; df = 1, 208; p = 0.65) and day x ouabain x KCl x bifenthrin (F = 

0.774; df = 5, 954; p = 0.0151) interaction terms were not significant in the model.  

The results of daily diet consumed by caterpillars receiving a KCl- and ouabain-

treated diet and treated with bifenthrin are presented in Fig. 3.5B.  Caterpillars exposed to 

ouabain and KCl exhibited a significant 32% (t = -3.25; df = 208; p = 0.0014) and 28% (t 

= -3.25; df = 208; p = 0.0014) reduction in diet consumed on day 7 and 8, respectively, 

24 and 48 h after treatment with bifenthrin relative to caterpillars receiving the same diet 

treated with acetone.  Caterpillars exposed to ouabain, KCl and bifenthrin exhibited a 

significant 32% (t = -2.74; df = 208; p = 0.0067) and 28% (t = -2.26; df = 208; p = 

0.0243) reduction in diet consumption on day 8 and 9, respectively, relative to individuals 

exposed to only ouabain and bifenthrin.  A significant 17% (t = -2.14; df = 208; p = 

0.0334) and 21% (t = -2.96; df = 208; p = 0.0035) reduction in diet consumption was 

observed for caterpillars exposed to KCl on day 8 and 9, respectively, relative to 
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caterpillars receiving an untreated diet. The final categorical model for the effect of 

ouabain, KCl, and bifenthrin on diet consumption used significant bifenthrin (F = 43.7; df 

=1, 208; p < 0.0001), day x bifenthrin (F = 54.1; df = 5, 952; p < 0.0001), and day x KCl 

(F = 3.23; df = 5, 952; p = 0.0068) interaction terms.  Day, experimental replicate, and 

caterpillar starting weight also had a significant effect on diet consumption (p < 0.0001).  

No other ouabain, KCl, bifenthrin, or day interactions were significant (p > 0.05).  The 

results of caterpillar survival after receiving a KCl- and ouabain-treated diet and treated 

with bifenthrin are presented in Fig. 3.6.  Survival did not significantly differ (p < 0.05) 

following treatment with 0.1 µg/µl bifenthrin on any ouabain or KCl diet. The binomial 

model predicts 89%, 84%, 83% and 83% of caterpillars will survive treatment with 0.1 

µg/µl bifenthrin on untreated diet, 1 mg/g ouabain diet, 10 mg/g KCl diet, and 1 mg/g 

ouabain + 10 mg/g KCl diet, respectively.  

Discussion 

This study provides the first report of potassium to affect the growth and development of 

monarch caterpillars. Here, we also show a concentration-dependent increase in the body 

weight of caterpillars exposed to the polar Digitalis-derived cardenolide ouabain. We 

observed a significant interaction of KCl + bifenthrin on caterpillar diet consumption and 

a significant interaction of ouabain + KCl + bifenthrin on caterpillar weight. While these 

interaction terms were significant in the mixed model analyses, there was no significant 

interaction observed for KCl and ouabain on the sensitivity of caterpillars to bifenthrin.  

  We have observed significant increases in caterpillar body mass starting on day 3 

and continuing over the 10-day period when caterpillars were exposed to 1 and 3 mg 

ouabain/g diet. In addition to increased caterpillar weight, we observed an accelerated 
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development time of caterpillars that were exposed to 1 and 3 mg ouabain/g diet 

compared to lower concentrations. There were more caterpillars that developed to the 

fifth-instar stage on day 5 and 6 when feeding on the elevated concentrations of ouabain 

compared to those that fed on lower concentrations. The 1 mg ouabain/g diet used in the 

interaction experiments was chosen to mimic total cardenolide concentrations of 

approximately 1 mg/g reported in A. curassavica (Rasmann and Agrawal 2011, Tan et al. 

2019). Higher cardenolide concentrations in milkweed species have been associated with 

reduced growth and survival, particularly with early-instar caterpillars (Zalucki et al. 

1990, 2001, Pocius et al. 2017). However, polar cardenolides, such as ouabain, are less 

toxic to and readily sequestered by monarch caterpillars (Frick and Wink 1995) compared 

to nonpolar cardenolides (Jones et al. 2019). The prevalence of polar cardenolides 

compared to non-polar cardenolides is variable between milkweed species (Agrawal et al. 

2012). It has been reported that milkweed species with higher cardenolide defenses also 

contain higher amounts of non-polar cardenolides (Rasmann and Agrawal 2011). It is 

challenging to extrapolate our findings with ouabain to native milkweed species. 

However, it has been reported that tropical milkweed (Asclepias curassavica) and white 

swamp milkweed (Asclepias perennis) have a higher proportion of polar cardenolides 

(i.e., low polarity score) (Jones et al. 2019). Our data suggests that caterpillars grow 

faster and have higher body weight when feeding on milkweeds with high levels of polar 

cardenolides.  

We have observed significant effects on caterpillar growth and diet consumption 

after exposure to 50 mg KCl/g diet with the final model analysis predicting adverse 
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effects to caterpillars at concentrations exceeding 21 mg KCl /g diet. Interestingly, the 

final models for the effect of KCl on caterpillar weight and diet consumption show a 

significant quartic relationship with KCl. This quartic relationship estimates increased 

caterpillar growth and diet consumption after exposure to low concentrations of KCl and 

before the onset of adverse effects elicited from higher KCl concentrations.  

Lepidopterans require higher concentrations of salt in artificial diets (Beck et al. 1968, 

Banu 2004, Han et al. 2012), which is due to the higher K+:Na+ ratio maintained in their 

hemolymph (Harvey et al. 1975). The salt requirements in artificial diets suggest there 

are elevated concentrations of salts already present in the diet before the addition of 

potassium. An incremental increase of KCl might adjust the overall concentration to an 

optimal concentration range of KCl in the diet for the caterpillars. As a result, it is also 

unclear how much potassium caterpillars receive during the exposure period. Potassium 

fertilizer exposure is dynamic in the field and the bioavailability to caterpillars is 

unknown following the application of fertilizers. Future studies are warranted to estimate 

the bioavailability of KCl to caterpillars in the field. 

Caterpillar weight and diet consumption were used as metrics of sub-lethal 

toxicity for each experiment as described by Krueger et al. (2021). These metrics provide 

similar results for effect thresholds when exposure is limited to a single instar stage of 

caterpillars (i.e., 72-h treatment for fifth-instar caterpillars). This is evident with the KCl 

data and the congruent model predictions of effect thresholds for caterpillar diet 

consumption and weight. However, caterpillar diet consumption can be highly variable 

across multiple instar stages and longer exposure periods. Caterpillars are observed to 
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stop feeding on the diet as they approach the next molting stage. During these pre-molt 

stages, any treatment effects reducing consumption will be confounded by a naturally 

lower consumption of diet. Additionally, caterpillars within a treatment group will be 

variable in the molting time, which can lead to differences in daily consumed diet (Fig. 

3.1B). The results from the chronic ouabain exposure suggest caterpillar weight can 

capture delayed development effects and have reduced margins of error (Fig. 3.1A).  

We observed a significant interaction of KCl x bifenthrin on diet consumption. 

However, there were no significant interactions observed for caterpillar weight or 

survival. Caterpillars exposed to 10 mg KCl/g diet and treated with 0.2 µg/µl bifenthrin 

consumed significantly less diet compared to those provided an untreated diet. Despite 

the differences in diet consumption, there were no significant differences in caterpillar 

weight for individuals provided an untreated and KCl-treated diet and caterpillars treated 

with 0.2 µg/µl bifenthrin. While not statistically significant, there was a trend of 

increased survival on the KCl-treated diet at 0.1 and 0.2 µg/µl bifenthrin and reduced 

survival on the KCl-treated diet at 0.4 µg/µl bifenthrin. Padhy et al. (2014) report a 

reduction in carbamate toxicity to cyanobacterium when co-exposed to potash fertilizers. 

For the caterpillars treated with combinations of ouabain + KCl + bifenthrin, there was a 

significant day x KCl x ouabain interaction on caterpillar individual weights, but there 

was no significant interaction on diet consumption or survival. Overall, the interactions 

observed do not show KCl or ouabain to affect the sensitivity of caterpillars to bifenthrin. 

Herbivorous insects feeding on chemically defended host plants often have developed 

metabolic detoxification resistance to cope with phytotoxins (Després et al. 2007). The 
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overproduction of detoxification proteins, such as esterases and cytochrome P450 

monooxygenases, have been documented for a number of insect species (Kasai et al. 

1998). This phenomenon has prompted the exploration of cross-resistance between plant 

allelochemicals and insecticides. For example, swallowtail butterflies, Papilio glaucus 

canadensis [Lepidoptera: Nymphalidae], have evolved resistance to phenolic glycosides 

in the leaves of host plants via elevated esterase activity, but when challenged with 

pyrethroid insecticides, the increased activity had no effect on pyrethroid toxicity 

(Lindroth 1989). Recent work has shown changes in expression of some detoxification 

genes in monarch caterpillars after feeding on different milkweed species (Tan et al. 

2019). We did not observe any evidence for cross resistance with ouabain and bifenthrin 

at the concentrations tested in this study.  

The bifenthrin concentrations used in this study have been shown to be field-

relevant following aerial applications of the formulated product Brigade-2EC (Krueger et 

al. 2021).  We mimicked a KCl exposure where bifenthrin and KCl would be applied 

simultaneously. In cotton, where potassium fertilization is imperative, tank mixes of 

pyrethroids and potassium have been shown to be compatible and not interfere with 

pyrethroid efficacy (Oosterhuis 2002). Fertilizer applications may increase in the future 

to counteract nutrient limitations and mitigate drought resiliency in the face of increasing 

temperatures and eroding soils. The habitat requirements for restoring the monarch 

population (i.e., 1.8 billion stems) can only be met if milkweed stems are planted on 

agricultural working lands (Thogmartin et al. 2017). Therefore, it is imperative to 
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understand the implications of increased potassium, and other agricultural product, inputs 

to build monarch habitat for 50-year candidate conservation agreements (USFWS 2020).  

Here, we report no significant interactions of ouabain and KCl on bifenthrin 

sensitivity at the concentrations tested in this study.  An understanding of interacting 

agricultural inputs on monarch growth and survival is important for managing their 

critical habitats in the Midwest US.  To assess these interactions, we first need to 

understand the effects of milkweed-specific cardenolides on monarch physiology and, in 

turn, the implications for monarch insecticide toxicity. Future studies should explore 

these exposure combinations to provide a better understanding of monarch resiliency, 

such as oviposition, foraging, and fecundity, in changing landscapes when faced with 

multiple stressors.  
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Figure 3.1 Caterpillar weight (A) and daily diet consumption (B) throughout 

ouabain exposure. Estimates the linear mixed model output are represented by the 

connecting line and 95% confidence intervals are shown as shading around the line. 

Response is plotted on a logarithmic scale on the ouabain axis but axis labels are 

converted to linear scale. Gray shading indicates significant (p < 0.05) differences from 

the control. 
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Figure 3.2 Caterpillar weight (A) and daily diet consumption (B) throughout 

potassium chloride exposure. Estimates the linear mixed model output are represented 

by the connecting line and 95% confidence intervals are shown as shading around the 

line. Response is plotted on a logarithmic scale on the potassium chloride axis but axis 

labels are converted to linear scale. Gray shading indicates significant (p < 0.05) 

differences from the control. 
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Figure 3.3 Caterpillar weight (A) and diet consumption (B) with KCl and bifenthrin 

exposure. Symbols depict average with upper and lower 95% confidence intervals. 

Asterisks denote significant (p < 0.05) differences between 0 KCl and 10 mg/g KCl. 
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Figure 3.4 Survival of fifth-instars 72-h following topical bifenthrin treatment with 

and without KCl exposure. Symbols depict average with upper and lower 95% 

confidence intervals. No significant (p < 0.05) differences in survival between caterpillars 

exposed to 0 KCl or 10 mg/g KCl were observed.  
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Figure 3.5 Caterpillar weight (A) and diet consumption (B) with combinations of 

ouabain, KCl and bifenthrin. Symbols depict average with upper and lower 95% 

confidence intervals. Asterisks denote significant (p < 0.05) differences between 0 

bifenthrin and 0.1 µg/µl bifenthrin. 
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Figure 3.6 Survival of fifth-instars 72-h after treatment with 0.1 µg/µl bifenthrin 

and combinations of ouabain and KCl. Symbols depict average with upper and lower 

95% confidence intervals. Caterpillars were exposed to ouabain from third instar (day 0) 

through the duration of the experiment. Caterpillars were exposed to KCl at fifth instar 

day 6-10 and treated with bifenthrin on day 6. 
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CHAPTER 4 : MILKWEED SPECIES AFFECT DETOXIFICATION ENZYME 

ACTIVITY AND EXPRESSION IN MONARCH CATERPILLARS 
 

This chapter is currently under preparation for publication in Pesticide Biochemistry and 

Physiology A. J. Krueger, L. C. Rault, E. A. Robinson, T. J. Weissling, A. M. Vélez, and T. 

D. Anderson “Milkweed species affect detoxification enzyme activity and expression in 

monarch caterpillars” 

 

1. Introduction 

The monarch butterfly (Danaus plexippus) has co-evolved with milkweed 

(Asclepias sp.) [Gentianales: Apocynaceae] and has developed physiological mechanisms 

to cope with cardenolide defenses of the plant.  The reduction of milkweed stems 

throughout the US, specifically the US Midwest, is implicated in the decline of the 

monarch butterfly population (Pleasants and Oberhauser, 2013). The remaining milkweed 

stems are primarily confined to the margins of agricultural fields which, in turn, forces  

monarchs to concentrate near row-crop production (Thogmartin et al. 2017). Thogmartin 

et al. (2017) estimate an additional 1.8 billion milkweed stems are needed to recover the 

eastern monarch population.  

There are 73 native milkweed species in North America that monarchs can utilize 

during the breeding season (Agrawal et al., 2012). Monarch caterpillars and other 

herbivorous insects that feed on milkweed are exposed to insecticidal cardenolide 

defenses of milkweeds. Cardenolides are secondary plant metabolites within a sub-class 

of cardiac glycosides derived from triterpenoids with broad-spectrum insecticidal activity 

(Agrawal et al., 2012). These compounds target Na+/K+-ATPase of the nervous system, 

where they reversibly bind to the α-subunit, locking it in a phosphorylated conformation, 

and disrupting ion translocation and nerve function (Dobler et al., 2011; Horisberger, 
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2004). There are ca. 500 identified cardenolide derivatives with diverse structural 

conformations (Agrawal et al., 2012; Schönfeld et al., 1985). Milkweed species vary in 

their cardenolide composition and concentration (Agrawal et al., 2012; Brower et al., 

1982; Frick and Wink, 1995; Seiber et al., 1983). However, monarchs have evolved 

resistance to cardenolides via modifications of the Na+/K+-ATPase (Holzinger and Wink, 

1996). Monarchs and other cardenolide-insensitive butterfly species possess a single 

mutation of glutamine (Q) to valine (V) at the 111 position in the ouabain binding site of 

the Na+/K+-ATPase, however monarchs have two additional mutations of alanine (A) to 

serine (S) and asparagine (N) to histidine (H) at the 119 and 122 positions, respectively 

(Karageorgi et al., 2019; Petschenka et al., 2013). The combination of these three 

mutations has been associated with the ability of monarchs to sequester cardenolides 

(Petschenka and Agrawal, 2015). However, the mechanisms of cardenolide sequestration 

in monarchs are still largely unknown. In both the salicin-sequestering poplar leaf beetle 

(Chyrosmela populi) and the cardenolide-sequestering dogbane beetle (Chrysocus 

auratus), ATP-binding cassette (ABC) transporters have been implicated as the active 

carrier the sequestration of these respective compounds (Kowalski et al., 2020; Strauss et 

al., 2013). Little is known about ABC transporters in monarchs and the potential role they 

play in cardenolide sequestration in Lepidoptera. 

Insects interacting with chemically defended host plants often have evolved 

metabolic detoxification resistance to cope with phytotoxins (Després et al., 2007). The 

overproduction of esterases and cytochrome P450 monooxygenases  in response to these 

phytotoxins have been documented for a number of insect species (Kasai et al., 1998). 
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This phenomenon has prompted exploration of cross-resistance between plant 

allelochemicals and insecticides. For example, swallowtail butterflies, Papilio glaucus 

canadensis, have evolved resistance to phenolic glycosides in the leaves of host plants via 

elevated esterase activity, but when challenged with two different pyrethroids, the 

increased activity had no effect on pyrethroid toxicity (Lindroth, 1989). For monarchs, 

there is little information on metabolic detoxification enzyme activities and the potential 

for cross-resistance or impact of cardenolide resistance on these enzymes. Cytochrome 

P450 monooxygenases are involved in cardenolide metabolism in monarchs (Agrawal et 

al., 2012). The potential for cross-resistance or impact of cardenolide resistance on 

detoxification enzymes has largely remained unexplored. Recent work has shown 

changes in expression of detoxification genes after monarch caterpillars feed on different 

milkweed species (Tan et al., 2019).  Furthermore, Krishnan et al. (2020) documented a 

significantly higher LD50 for imidacloprid when caterpillars fed on tropical milkweed 

compared to common milkweed. There is relatively little information on how milkweed 

species can affect detoxification mechanisms in monarchs. However, understanding this 

potential host-plant interaction could have significant implications for monarch-

insecticide interactions near agriculture. 

Pyrethroid insecticides are commonly used to control insect pests in corn and 

soybean across the US Corn Belt (Ragsdale et al., 2011). These broad-spectrum 

insecticides are acutely neuro-toxic, targeting the voltage-gated Na+ channel and 

disrupting neurological function (Clements and May, 1977). Because of their acute 

toxicity, pyrethroids have been used to control a variety of insect outbreaks. The timing 
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of soybean aphid outbreaks and subsequent foliar applications of pyrethroids often occur 

when monarch caterpillars are present on the landscape (Bradbury et al., 2017). 

Pyrethroid toxicity and exposure data shows monarchs developing in field margins 0-10 

m from the field may be adversely affected by foliar applications during the breeding 

season (Krishnan et al., 2020; Krueger et al., 2021; Olaya-Arenas and Kaplan, 2019).  

While foliar applications of pyrethroids pose the greatest risk to monarchs in field 

margins, many Lepidoptera pests these applications target have evolved resistance to 

pyrethroids. Pyrethroid-resistant populations of Helicoverpa armigera are reported to 

overproduce esterases for the rapid detoxification of many commonly used pyrethroids 

(Young et al., 2005).  Yang et al. (2005) has also documented increased activity and 

investment in cytochrome P450 monooxygenase in resistant H. armigera populations. 

Across many insect orders, the over expression of glutathione S-transferases can reduce 

pyrethroid cytotoxicity (Ketterman et al., 2011) and protect from pyrethroid-induced 

oxidative stress (Vontas et al., 2001). (Vontas et al., 2001). If cardenolides in milkweed 

have increased expression and production of detoxification enzymes in monarchs, it is 

possible monarch caterpillars would be better able to metabolize pyrethroid insecticides. 

The aim of this study was to compare the toxicity of the pyrethroid insecticide 

bifenthrin to fifth-instar caterpillars feeding on tropical (A. curassavica) or swamp (A. 

incarnata) milkweed. Tropical and swamp milkweed differ in both total cardenolide 

concentration and content, which allows for comparative responses of detoxification 

mechanisms following exposure to field-realistic concentrations of cardenolides. Further, 

differential detoxification gene expression has already been documented in the second-



94 

instar stage of monarchs feeding on these two species (Tan et al., 2019).  The average 

cardenolide content reported for tropical and swamp milkweed is 3.3 and 0.5 µg/mg dry 

weight, respectively (Rasmann and Agrawal, 2011). Fifth-instar caterpillars were 

topically treated with either acetone (solvent control) or bifenthrin (in acetone) and 

monitored for 24 h.  After 24 h, caterpillar mortality, detoxification enzyme activity, and 

detoxification gene expression were quantified to assess the effects of milkweed species 

and bifenthrin exposure to monarch caterpillars. We specifically focused on the activity 

and expression of select esterases, glutathione S-transferases, cytochrome P450s, and 

ABC transporters given their relevance in both cardenolide metabolism and pyrethroid 

detoxification. Here, we report significant differences in detoxification enzyme activity 

and expression between caterpillars feeding on different milkweed species.  

2. Materials and Methods 

2.1 Test organism 

Monarch caterpillars were sourced from a colony maintained in the Department of 

Entomology at the University of Nebraska as described by Krueger et al. (2021). Briefly, 

the eggs were collected daily, stored at 16 °C up to 1-week post-collection and moved to 

room temperature for each experiment. Neonates hatched within 2-3 d and were placed 

on leaves of either swamp or tropical milkweed. Caterpillars were maintained on leaves 

through the fifth-instar stage for each experiment. 

2.2 Milkweed plants 

Milkweed seeds were purchased from Prairie Nursery (Westfield, WI). Common 

and swamp milkweed were cold stratified for one week at 16 °C. Seeds were planted in 

standard greenhouse soil and fertilized with nitrogen, phosphorous, potassium fertilizer 
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(NPK, 20:60:20) at 4-, 8- and 12-weeks post emergence. Leaves were removed from 

plants, washed in a 10% (v:v) bleach solution and air dried. Leaf petioles were clipped 

just prior to provisioning and wrapped in a wet cotton ball to maintain leaf rigidity.   

2.3 Experimental setup 

Monarch caterpillars on each milkweed species were maintained in 3 groups of 20 

from first to third-instar stage in custom made vented collection pans.  At the third-instar 

stage, a total of 30 individual caterpillars were moved to individual 8 oz. plastic cups 

(Lake Forest, IL) and provisioned with leaves ad libitum until reaching the fifth-instar 

stage.  

2.3.1 Bifenthrin exposure 

Bifenthrin (CAS# 82657-04-3, 99.5%) was purchased from Chem Service Inc. 

(West Chester, PA) and stored at room temperature. Stock solutions were prepared in 

acetone (Sigma-Aldrich, St. Louis, MO). One-day old fifth instar caterpillars were 

randomly assigned to control or bifenthrin treatments within each milkweed species. 

Caterpillar were treated with either acetone as the solvent control or 0.1 µg/µl bifenthrin. 

A 1 µL aliquot was applied to the dorsal prothorax, between the anterior tentacles, of 

each caterpillar. Mortality was recorded 24h post-treatment and surviving caterpillars 

were frozen in liquid nitrogen and stored for enzyme activity and gene expression 

analyses. Each experiment was repeated in triplicate.  

2.4 Dissections 

Five caterpillars from each treatment in each experiment were removed from -

80ºC for enzyme activity assays. Caterpillars were placed on ice where the hemolymph 

was collected and the head was dissected from the body. The head was stored in a 1.5-ml 
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microcentrifuge. The internal organs were not dissected from the body.  The last two 

pairs of abdominal prolegs were clipped with dissecting scissors and hemolymph was 

collected and transferred  to a 1.5-ml microcentrifuge tube containing a few crystals of 

phenylthiourea (PTU) (CAS# 103-85-5, Sigma-Aldrich, St. Louis, MO ) to prevent 

melanization as described by Wongkobrat and Dahlman (1976). After a minimum of 100 

µL hemolymph was collected, the caterpillar body was placed in a 1.5-ml 

microcentrifuge tube. All dissected tissues (head, hemolymph, body) were immediately 

frozen at –80 ºC for enzyme assays.  

2.5 Detoxification enzyme activity assays 

Measurements for all colorimetric enzyme activity assays were conducted using a 

SpectraMax i3x multimode microplate reader (Molecular Devices, Inc., Sunnyvale, CA). 

Detoxification enzyme activities are reported for individual caterpillars. Total protein in 

each sample preparation was determined using bicinchoninic acid assay with bovine 

serum albumin as a standard and measurements conducted at 560 nm (Smith et al. 1985). 

2.5.1 Chemicals 

Acetone, α-naphthyl acetate (α-NA), fast blue B salt (O-dianisidine, tetrazotized), 

sodium dodecylsulfate (SDS), α-naphthol, reduced glutathione, and 1-chloro-2, 4-dinitro-

benzene (CDNB) acetone, 7-ethoxycoumarin (7-EC), β-nicotinamide adenine 

dinucleotide phosphate (reduced β-NADPH), oxidized glutathione, glutathione reductase, 

acetonitrile, TRIZMA-base, bicinchoninic acid solution, bovine serum albumin and 

cupric sulfate were purchased from Sigma Aldrich (St. Louis, MO, USA).  
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2.5.2 General esterase activity 

General esterase activity of monarch caterpillar hemolymph was determined using 

α-NA as the substrate according to the methods described by van Asperen (1962) with 

modifications by O’Neal et al. (2019). Additional sample preparation steps were required 

for monarch hemolymph samples. Hemolymph was thawed and centrifuged at 10,000 x g 

for 10 min at 4ºC to remove PTU crystals from the sample. Centrifugation and PTU 

removal were necessary to avoid interference with esterase, GST and protein colorimetric 

assays. A PTU blank was prepared using PTU crystals in 500 µl nanopure water and 

centrifuged along with the hemolymph samples. Samples and the PTU blank were then 

diluted 100-fold in ice-cold 0.1 M sodium phosphate buffer at pH 7.8. Aliquots of 15 µl 

of diluted hemolymph or diluted PTU blank were added to clear microplate wells with 

135 µl or 0.3 M α-NA. The microplate was then incubated for 30 min at 37ºC. After 

incubation, the reaction was stopped by adding 50 µl of fast blue B in 5% SDS solution. 

The microplate was then left at room temperature for 15 minutes to allow color to 

develop before the absorbance was read at 600 nm.  A standard curve was prepared using 

α-naphthol to quantify the amount of hydrolytic product in each sample. Estimated mean 

specific activity (µmol/min/mg of total protein) and upper and lower confidence limits 

are reported for each treatment.   

2.5.3 Glutathione S-transferase Activity 

Glutathione S-transferase (GST) activity of monarch caterpillar hemolymph was 

determined according to O’Neal et al. (2019) using CDNB as the substrate. The same 

100-fold dilution used for esterase activity assays was used to quantify GST activity with 
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the 100-fold diluted PTU solution as a blank. Aliquots of 20 µl of diluted hemolymph or 

diluted PTU blank were added to microplate wells. A reaction mix was prepared with 10 

mM reduced glutathione and 150 mM CDNB and 180 µl of reaction mix were added to 

each well. The change in absorbance for each sample was recorded at 340 nm for 10 min 

at 1 min intervals. Estimated mean specific activity (µmol/min/mg) and upper and lower 

confidence limits are reported for each treatment.  

2.5.4 Cytochrome P450 activity 

Cytochrome P450 activity of monarch caterpillars was determined in isolated 

microsomes according to the method of O’Neal et al. (2019) using 7-EC as a substrate. 

Microsomes were isolated using the microsome isolation kit (ab206995) from Abcam 

(Cambridge, United Kingdom) to improve the detection of enzyme activity. Due to their 

size, monarch body samples were cut in half and homogenized in 1 ml of supplied 

homogenization buffer with protease inhibitor. Samples were centrifuged for 10,000 x g 

for 15 min at 4ºC and supernatant from each half caterpillar was combined to reconstitute 

the individual sample. Manufacturer instructions were followed for the remaining 

isolation steps. Isolated microsomes were resuspended in 150 µl of supplied storage 

buffer with protease inhibitor.  

Cytochrome P450 activity was then quantified from isolated microsomes as 

follows. Aliquots of 20 µl of isolated microsomes or 20 µl of storage buffer with protease 

inhibitor were added to a black microplate. A reaction mixture was prepared with 50 mM 

7-EC and 62.5 mM reduced β-NADPH and 80 µl was added to each well.  The 

microplate was placed in a shaking incubator for 1 hour at 30 ºC shaking at 400 rpm. 
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After 1 hour, the plate was removed and 10 µl of 100 mM oxidized glutathione and 1.0 U 

glutathione reductase were added to each microplate well and incubated for 15 min at 

37ºC. The plate was then removed and 120 µl of 50% (v:v) acetonitrile in 50 mM 

TRIZMA-base buffer were added to each well to stop the reaction. Fluorescence was read 

at 465 nm while exciting at 390 nm. Estimated mean relative fluorescence units (RFU/mg 

total protein) and upper and lower confidence limits are reported for each treatment. 

2.5.5 Protein quantification 

Protein was quantified for each hemolymph and isolated microsome samples 

following methods described by (Smith et al., 1985). For quantification of hemolymph 

samples, 20 µl of 100-fold diluted hemolymph or 100-fold diluted PTU blank were added 

to each well of a clear microplate. For quantification of isolated microsome samples, 20 

µl of isolated microsome or 20 µl of storage buffer with protease inhibitor were added to 

each well. A reaction mix was prepared with 4% cupric sulfate solution and bicinchoninic 

acid and 180 µl was added to each well. The microplate was incubated at 37ºC for 30 

minutes and set at room temperature for 5 minutes before absorbance was measured at 

560 nm.  A standard curve was prepared using bovine serum albumin to quantify protein 

concentrations for each sample.   

2.6 Gene expression analysis 

2.6.1 RNA extraction 

RNA was extracted from fifth-instar caterpillars using a Qiagen RNeasy Maxi Kit 

(Valencia, CA). Following the RNA extraction, 1 μg of RNA per 20 μL reaction volume 

was reverse transcribed using a iScript cDNA reverse transcription kit (BioRad, Hercules, 
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CA) and stored at –20 ºC. The resulting cDNA was diluted 10-fold for quantitative-

reverse transcriptase polymerase chain reaction (qRT-PCR).  

2.6.2 Quantitative-reverse transcriptase PCR  

Primer pairs for the qRT-PCR were designed using Primer3 (Rozen and 

Skaletsky, 2000) from genes identified by Tan et al. (2019) as differentially expressed in 

swamp and tropical milkweed. Sequences, approximate amplicon size and primer 

efficiencies are reported in Appendix 6. Primers were synthesized by Sigma Aldrich (St. 

Louis, MO). The qRT-PCR experiments followed the methods and PCR protocol 

outlined in Rault et al. (2019b). Briefly, qRT-PCR was conducted with a Biorad CFX 

Connect Real-Time System using iTaq Universal SYBR® Green Supermix (Biorad, 

Hercules, CA). Two housekeeping genes, 28S ribosomal RNA (28S) and elongation 

factor 1α (EF1a), were selected from Pan et al.(2015). However, 28S expression was 

affected by bifenthrin treatment so EF1a was the only housekeeping gene used in the 

analysis.  

2.7 Data analysis 

All statistical analyses were conducted in R 4.0.1 (R Core Team, 2020). All figures 

were generated using the estimates obtained using the estimated marginal means (emmeans) 

package (Lenth, 2020) from the model outputs and the ggplot2 package (Wickham, 2016) for 

plotting. For survival and enzyme activity analyses, residuals were plotted using qq-plots and 

used to test assumptions of normality. For gene expression analyses, trace plots were used to 

assess model fit.  
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2.7.1 Survival analysis 

The proportion of surviving caterpillars was analyzed for bifenthrin treatments on 

swamp and tropical milkweed using a generalized linear mixed model assuming a binomial 

distribution with a cumulative log-log link function using the glm function in the stats 

package (R Core Team, 2020). Experimental replicate was included as a fixed block effect in 

the model.  The model was only run for bifenthrin treated caterpillars since no mortality was 

observed in the acetone-treated caterpillars on either milkweed species. Differences in 

survival following bifenthrin treatment were tested between milkweed species.  

2.7.2 Enzyme activity analyses 

Detoxification enzyme activities were analyzed using a  linear mixed model assuming 

a normal distribution using the lm function in the stats package (R Core Team, 2020). The 

model for each enzyme, included experimental replicate as a fixed block and bifenthrin, 

milkweed species, and the interaction of bifenthrin and milkweed species as treatment 

factors. From each model, estimated mean enzyme activity was compared between 1) 

bifenthrin-treated and solvent-treated caterpillars on tropical milkweed, 2) bifenthrin-

treated and solvent-treated caterpillars on swamp milkweed, and 3) solvent-treated 

caterpillars on tropical and swamp milkweed, using the emmeans package (Lenth, 2020) 

to obtain pairwise t-tests of interest. Residual and quantile-quantile plots were used to 

assess model fit and test assumptions of normality.2.7.3 Gene expression analyses 

2.7.3 Gene Expression Analysis 

Gene expression data was analyzed using Bayesian methods in R using the 

MCMC.qpcr package (Matz et al., 2013). The Bayesian analysis provides key advantages 



102 

for data sets with larger variability (Rault et al., 2019a). A Markov Chain Monte Carlo is 

run to fit a Poisson-lognormal generalized linear mixed model (GLMM) to the gene 

molecular counts for EF1a, esterase, ABC, GST20, GST21, and CYP. Molecule counts 

could be calculated by the model using primer efficiency values and the measured Ct 

values for each gene and treatment combination. Fixed effects for milkweed, bifenthrin, 

and their interaction are estimated with EF1a as the control gene with the control prior 

variance specified with an allowed average fold-change of 1.2. Effective sample sizes and 

trace plots were used to evaluate model fit.  

3. Results 

3.1 Survival 

The results of caterpillar survival after 24-h treatment with bifenthrin are shown 

in Fig. 4.1. No mortality was observed for the solvent-treated caterpillars from each of 

the milkweed species. Furthermore, the survival of caterpillars from swamp and tropical 

milkweed was not significantly different after treatment with bifenthrin (z = -0.723; p = 

0.47).  

3.2 General esterase activity 

The results of caterpillar general esterase activity are shown in Fig. 4.2A. 

Caterpillars feeding on swamp milkweed and treated with 0.1 µg/µl bifenthrin had 

significantly lower general esterase activity following a 24-h treatment of bifenthrin (t = 

3.44; df = 54; p = 0.0011). There was a significant decrease in general esterase activity in 

bifenthrin-treated caterpillars compared to solvent-treated caterpillars feeding on tropical 

milkweed (t = 2.78, df = 54; p = 0.0075). The solvent-treated caterpillars feeding on 
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tropical milkweed had significantly lower general esterase activity compared to solvent-

treated caterpillars feeding on swamp milkweed (t = 4.81; df = 54; p < 0.001).   

3.3 Glutathione S-transferase activity 

The results of caterpillar glutathione S-transferase activity are shown in Fig. 4.2B. 

Caterpillars feeding on swamp milkweed and treated with 0.1 µg/µl bifenthrin had 

significantly higher glutathione S-transferase activity compared to solvent-treated 

caterpillars (t = 2.72; df = 54; p = 0.0089). Bifenthrin-treated caterpillars feeding on 

tropical milkweed did not have significantly different glutathione S-transferase activity 

compared to solvent-treated caterpillars (t = 1.86; df = 54; p = 0.068). There was a 

marginally significant difference in glutathione S-transferase activity for solvent-treated 

caterpillars feeding on swamp and tropical milkweed (t = -1.91; df = 54; p = 0.062).  

3.4 Cytochrome P450 activity 

The results of caterpillar cytochrome P450 activity are shown in Fig. 4.2C. There 

were no significant differences in cytochrome P450 activity between solvent- and 

bifenthrin-treated caterpillars feeding on swamp (t = 0.83; df = 37; p = 0.41) or tropical (t 

= -1.33; df = 37; p = 0.19) milkweed. However, there was a significant difference in 

cytochrome P450 activity between solvent-treated caterpillars feeding on tropical and 

swamp milkweed (t = -2.20; df = 37; p = 0.034). 

3.5 Gene expression analysis 

The results of gene expression for caterpillars feeding on tropical and swamp 

milkweed and treated with bifenthrin are shown in Fig. 4.3. The expression of esterase 

was significantly higher in solvent-treated caterpillars feeding on swamp milkweed 

compared to solvent-treated caterpillars feeding on tropical milkweed (+1.62, p = 0.0058) 
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without bifenthrin treatment. The expression of esterase was significantly higher for 

bifenthrin-treated caterpillars compared to solvent-treated caterpillars feeding on tropical 

milkweed (+1.18, p = 0.037). The expression of GST20 was significantly lower in 

solvent-treated caterpillars feeding on swamp milkweed compared to solvent-treated 

caterpillars feeding on tropical milkweed (-1.11, p = 0.0012). The expression of GST20 

was significantly lower for bifenthrin-treated caterpillars compared to solvent-treated 

caterpillars feeding on tropical milkweed (-0.75, p = 0.025). There were no significant 

differences in GST21 or CYP450 expression for caterpillars treated with bifenthrin and 

feeding on tropical or swamp milkweed.  The expression of ABC transporter was 

significantly higher in solvent-treated caterpillars feeding on swamp milkweed compared 

to solvent-treated caterpillars feeding on tropical milkweed (+1.03, p = 0.022).  

4. Discussion  

 This study provides the first evidence of differential detoxification enzyme 

activities and the expression of select detoxification gene transcripts in monarch 

caterpillars treated with the pyrethroid insecticide bifenthrin and feeding on tropical and 

swamp milkweed. The toxicity of bifenthrin to caterpillars was not significantly different 

for individuals feeding on tropical and swamp milkweed. However, the general esterase 

and glutathione S-transferase activities were significantly different for caterpillars feeding 

on tropical and swamp milkweed. Furthermore, a differential expression of esterase and 

glutathione S-transferase genes was observed for caterpillars treated with bifenthrin. Tan 

et al. (2019) report a transcriptomic approach for observing the differential expression of 

detoxification genes in second-instar monarch caterpillars.  While the study provides 

valuable insight for the expression of detoxification genes potentially affected by 
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cardenolides in milkweed, it is limited to a transcriptome profile with no confirmation for 

the observed differences in expression using qRT-PCR (Tan et al., 2019). Here, we 

confirm the differential expression of select detoxification transcripts, in fifth-instar 

caterpillars treated with a sub-lethal concentration of bifenthrin and feeding on tropical 

and swamp milkweed.  

 Tropical and swamp milkweed did not significantly affect the survival of 

bifenthrin-treated caterpillars despite significant differences in detoxification enzyme 

activity and expression. Previous studies exploring cross-resistance in swallowtails 

(Papilio glaucus canadensis) report significant differences in both esterase and GST 

enzyme activity were associated with increased levels of phenolic glycosides (Lindroth, 

1989). Furthermore, swallowtails challenged with the ester-containing insecticides, 

malathion and permethrin, were not observed to have a significant survival advantage 

when feeding on diets higher in phenolic glycosides.  

 Detoxification enzyme activity significantly differed between solvent- and 

bifenthrin-treated caterpillars feeding on both swamp and tropical. General esterase 

activity was significantly reduced in caterpillars feeding on swamp milkweed whereas 

GST activity was significantly increased for caterpillars feeding on tropical milkweed. 

Increased detoxification enzyme activity has been associated with insecticide resistance 

in other Lepidoptera (Vontas et al., 2001; Yang et al., 2005). Interestingly, general 

esterase activity from solvent-treated caterpillars feeding on either milkweed species are 

significantly higher than previously reported  for other Lepidoptera (Achaleke et al., 

2009; Lai et al., 2011; Mukherjee, 2003). Swallowtails that adapted to a diet composed of 
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ester-containing phenolic glycosides represented the highest reported activity levels 

across Lepidoptera (Lindroth, 1989). However, swallowtail general esterase activity was 

still had 5-fold lower than what has been reported here in monarchs.   

 Expression of detoxification genes on control caterpillars differed between swamp 

and tropical milkweed. Previous transcriptome analysis of second instars on swamp and 

topical milkweed showed significant differences in CYP450 and GST gene expression, 

with several genes upregulated on swamp and others upregulated on tropical milkweed 

(Tan et al., 2019). Interestingly, the authors also documented 8 ABC-transporters 

differentially expressed in swamp milkweed relative to tropical milkweed, with all 8 

genes upregulated in swamp.  Our results with one of these 8 ABC-transporter genes in 

the G-subfamily show a similar trend between milkweed species. Genes belonging to the 

ABCG family have been associated with detoxification in a number of insect species (Wu 

et al., 2019). Interestingly, members of the ABCB and ABCC subfamilies have been 

identified as an active carrier involved in cardenolide sequestration (Kowalski et al., 

2020; Strauss et al., 2013). Future work should explore how expression of ABC-

transporter genes belonging to these subfamilies compares across caterpillars developing 

on different milkweed species. Tan et al. (Tan et al., 2019) also observed one esterase 

enzyme significantly upregulated in second instar caterpillars feeding on tropical 

milkweed compared to swamp milkweed. This same gene appeared to show the opposite 

trend in fifth instar caterpillars, with higher esterase expression on swamp milkweed 

compared to tropical milkweed. Esterase enzymes are involved in many different 

physiological processes (Montella et al., 2012). There are two potential matches for this 
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gene in BlastX as either a juvenile hormone esterase or a carboxyl/choline esterase 

enzyme. It is possible this esterase is related to growth metabolism rather than 

detoxification however, this would not explain the significant increase in expression 

following bifenthrin treatment on tropical milkweed. 

 Gene expression significantly differed between control caterpillars and bifenthrin 

treated caterpillars on tropical milkweed but not swamp milkweed. These differences 

showed the opposite trend of gene expression data for esterase or GST. Other studies 

comparing responses to different host plant species in grasshopper have linked trends in 

enzyme data with those in gene expression data for both GSTs and CYP450s (Huang et 

al., 2017). This disconnect in gene expression and enzyme activity could be related to 

different half-lives of the proteins (Hargrove and Schmidt, 1989) or other GST or esterase 

genes may be responsible for the significant differences in enzyme activity. Further, there 

could be interplay of expression of multiple esterase, GST, or CYP450 genes not 

quantified in this study.  

 Swamp and tropical milkweed species have been used for multiple studies to 

compare physiological responses and behavior of milkweed specialists with different 

cardenolide exposures (Martel and Malcolm, 2004; Tan et al., 2019; Zalucki et al., 1990). 

For habitat restoration, swamp milkweed is a more suitable species for plantings in the 

US Midwest. Tropical milkweed is non-native to the Midwest and adverse effects on 

adult migration have been reported (Faldyn et al., 2018). However, tropical milkweed is 

used to maintain many laboratory monarch colonies (e.g., Krishnan et al., 2020; Krueger 

et al., 2021) and is relevant in southeastern breeding habitat. Understanding how 
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detoxification enzymes differ between milkweed species will be important for evaluating 

the risk of insecticides across different host plants.  

Here, we report significant differences in detoxification enzyme activity and 

expression in caterpillars on swamp versus tropical milkweed. Overall, there was no 

significant difference in survival, suggesting while physiological differences occur, 

pyrethroid sensitivity will not differ on these milkweed species at this dose. Milkweed 

species selection for monarch habitat restoration must offer adult monarchs a preferred 

oviposition site, sufficient biomass to support larval development, and the highest 

likelihood of survival. Data presented here suggest there are physiological differences 

between caterpillars on swamp and tropical milkweed. Further research should explore 

these physiological consequences in the context of detoxification on other milkweed 

species relevant for conservation. Optimizing habitat for monarchs will be key for 

maximizing conservation benefits of the 1.8 billion stems planted and ensuring resiliency 

for the monarch population. 
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Figure 4.1 Survival of caterpillars feeding on swamp or tropical milkweed with 

bifenthrin treatment. Percent survival modeled with glm on caterpillars exposed to 0.1 

µg/µl bifenthrin and feeding on swamp (n = 39) or tropical (n = 45) milkweed. Points 

represent estimated mean percent survival, error bars depict upper and lower confidence 

limits.  
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Figure 4.2 General esterase, glutathione S-transferase, and cytochrome P450 

activities for caterpillars feeding on swamp or tropical milkweed with and without 

bifenthrin treatment. Bars represent estimated mean specific activity for esterase 

(n=15), glutathione S-transferase (n=15) and cytochrome P450 (n=11), error bars depict 

the upper and lower confidence limits for each estimate. Activity was compared between 

0 and 0.1 µg/µl bifenthrin treatments for swamp and tropical milkweed, and between 0 

bifenthrin on swamp and tropical milkweed. Brackets represent the statistical comparison 

tested and asterisks represent significant differences (p < 0.05) between treatments. 

* 

* 

* 

* 
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Figure 4.3. Transcript abundance of caterpillars feeding on swamp or tropical 

milkweed with and without bifenthrin treated. Points represent estimated mean 

transcript abundance (n=7), error bars represent the upper and lower credible intervals. 

Gene abbreviations are as follows: ATP-binding cassette transporter (ABC), cytochrome 

P450 (CYP), elongation factor 1-α (EF1a), glutathione S-transferase 20 (GST20) and 21 

(GST21). Asterisks denote significant differences from the 0 µg/µl treatment on swamp 

milkweed, daggers (¥) denote significand differences from the 0 µg/µl treatment on 

tropical milkweed. 



117 

CHAPTER 5 : CONCLUSIONS 

 

Understanding the risk of habitat bordering agricultural landscapes is critical for 

informing monarch conservation efforts in the U.S. Midwest. Foliar applications of 

insecticides likely pose the greatest risk to developing monarch caterpillars. Pyrethroid 

insecticides are one of the most commonly used modes of action in the U.S. Midwest, 

hence, understanding the lethal and sub-lethal effects of different pyrethroids on monarch 

development will help inform this risk assessment. The SECOND CHAPTER of this 

dissertation investigated the acute contact toxicity of two pyrethroid insecticides and their 

effects on the growth and development of monarch caterpillars.   The data presented are 

the first monarch toxicity data generated for bifenthrin and provide evidence of 

pyrethroid effects on growth and diet consumption for monarchs developing in habitat 

down-wind of aerial or ground applications. 

With these effect thresholds characterized, it is important to determine what other 

chemical interactions may affect the sensitivity of monarchs to pyrethroid insecticides. 

The interaction of milkweed cardenolides has been largely overlooked in monarch 

toxicity studies. Yet, any interaction with cardenolides would have significant 

implications for monarch conservation. There is an additional interaction with potassium 

fertilizers that may affect either pyrethroid sensitivity or the interaction of cardenolides 

and pyrethroids. Exploring this potential three-way interaction, using single 

representative compounds, provides novel insights into more complex chemical dynamics 

in this habitat. The THIRD CHAPTER of this dissertation explored how additional 

agrochemical interactions in habitat bordering agriculture might affect the toxicity of 
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bifenthrin to monarch caterpillars. The acute effects of fertilizer, potassium chloride, and 

the chronic effects of the cardenolide, ouabain, on caterpillar growth and development 

were evaluated first on their own. Field realistic levels of KCl and ouabain were then 

used for subsequent combination exposures with bifenthrin. This work demonstrates the 

increased growth and development effects of higher polar cardenolide concentrations on 

monarch caterpillars and the potential adverse effects of elevated levels of potassium 

chloride. Furthermore, this work illustrates the complex interactions between monarchs 

and milkweed cardenolides with regard to understanding the sublethal effects of 

pesticides. 

While single compounds are easier for testing a potential mechanistic interaction, 

each milkweed species contains a complex mixture of different cardenolides. Ultimately, 

understanding the effects of milkweed species on bifenthrin toxicity to monarch 

caterpillars has significant implications for conservation around agriculture. The 

FOURTH CHAPTER of this dissertation further explored the potential effects of 

milkweed cardenolides on bifenthrin toxicity by comparing the survival, detoxification 

enzyme activity, and detoxification gene expression of monarch caterpillars feeding on 

tropical and swamp milkweed species. Caterpillars fed on either swamp milkweed (low 

cardenolide), common milkweed (mid cardenolide), or tropical milkweed (high 

cardenolide) until the fifth-instar stage when they were topically treated with a sublethal 

concentration of bifenthrin. This work not only demonstrates the impact of milkweed 

species on monarch caterpillar physiology and detoxification, but also how this can affect 

insecticide detoxification capabilities.    
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Future Directions 

There is relatively limited knowledge of the toxicology of monarch butterflies and 

dose response curves for different modes of action have only been characterized in the 

past two years.  Moreover, there is a limited understanding of how milkweed species may 

affect monarch resiliency towards agrochemical stressors. It is necessary to better 

understand this monarch-milkweed interaction for the identification of milkweed 

cardenolide metabolism and sequestration mechanisms and how these mechanisms might 

affect the insecticide detoxification of monarchs. The varied cardenolide concentrations 

and compositions of the 73 different milkweed species makes this an even more 

interesting system to work with. Monarch caterpillars develop at different rates on 

different milkweed species, suggesting the energy devoted to growth is required to cope 

with other energetically demanding processes on some milkweed species but not others. 

If different milkweed species require caterpillars to spend more energy on digestion 

and/or cardenolide metabolism (e.g., hydrolyzation of non-polar cardenolides), there 

could be repercussions for insecticide detoxification. While ouabain was used for 

controlled cardenolide exposures, future work should focus on either non-polar 

cardenolides that are more toxic (e.g., digitoxin), or cardenolides commonly found in 

milkweed species (e.g., calotropin, calactin) if possible. Combinations of KCl and 

cardenolides did not show any evidence of antagonism. However, further exploration of 

KCl antagonism, particularly with non-polar cardenolides, may provide key insights into 

cardenolide sequestration mechanisms.   
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Laboratory insect colonies are not always representative of field populations. 

However, laboratory monarch colonies can be used to generate a wealth of information 

on many basic physiology questions, such as those previously mentioned. A laboratory 

colony also provides a more homogenous population to work with for initial studies 

exploring biological trends to further evaluate in a field population.  Monarchs are one of 

the few candidate species for listing under the Endangered Species Act that can be grown 

in the laboratory. While maintaining a laboratory colony of monarchs has challenges, 

these colonies should be utilized to help understand monarch physiology and inform 

conservation practices.      
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Appendix 1. Sample size overview for experimental replicates for each exposure 

1. Ouabain Treatments    

  NC 0.03 0.1 0.3 1 3   

R1 10 10 10 10 10 10   

R2 10 10 10 10 10 10   

R3 10 10 10 10 10 10   

TOTAL 30 30 30 30 30 30   

         

2. KCl Treatments   
  

  NC 0.4 2 10 50  
  

R1 9 9 9 9 9  
  

R2 7 7 7 7 7  
  

R3 5 5 5 5 5  
  

R4 7 10 10 10 10  
  

TOTAL 28 31 31 31 31  
  

         

3. KCl + Bifenthrin 

  Untreated Diet KCl Diet 

  SC 0.1 0.2 0.4 SC 0.1 0.2 0.4 

R1 10 10 10 10 10 10 10 10 

R2 8 8 8 8 9 9 9 9 

R3 8 9 10 10 10 10 10 10 

TOTAL 26 27 28 28 29 29 29 29 

         

4. Ouabain + KCl + Bifenthrin 

  
Untreated 

Diet 
KCl Diet Ouabain Diet 

Oua + KCl 
Diet 

  SC BIF SC BIF SC BIF SC BIF 

R1 8 8 8 8 10 12 10 10 

R2 10 12 10 12 9 10 9 10 

R3 6 10 7 10 4 10 5 10 

TOTAL 24 30 25 30 23 32 24 30 
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Appendix 2. ANOVA tables from caterpillar weight and diet consumption analyses for ouabain 

experiments 

 

Caterpillar Weight: Model Selection 
Model df AIC BIC logLik 

Full 37 162.3478 365.4147 -44.1739 

Reduced 36 160.4659 358.0445 -44.233 

 

 

Caterpillar Weight: Final Model 
Model Terms numDF denDF F-value p-value 

(Intercept) 1 1580 2570.873 0.00000 

experiment 2 174 23.70158 0.00000 

logouabain_x 1 174 13.29347 0.00035 

day 9 1580 457.7591 0.00000 

I(logouabain_x^2) 1 174 0.467727 0.49494 

basecat0 1 174 43.60872 0.00000 

logouabain_x:day 9 1580 3.915577 0.00006 

day:I(logouabain_x^2) 9 1580 1.757951 0.07167 

 

Diet Consumption: Model Selection 
Model df AIC BIC logLik 

Full 66 1603.575 1965.839 -735.788 

Reduced 46 1598.179 1850.666 -753.089 

 

Diet Consumption: Final Model 
Model Terms numDF denDF F-value p-value 

(Intercept) 1 1572 558.4225 0.00000 

experiment 2 173 0.393011 0.67562 

logouabain_x 1 173 3.711473 0.05568 

day 9 1572 40.83835 0.00000 

I(logouabain_x^2) 1 173 5.088425 0.02534 

I(logouabain_x^3) 1 173 0.194462 0.65978 

basecat0 1 173 10.61339 0.00135 

logouabain_x:day 9 1572 3.96228 0.00005 

day:I(logouabain_x^2) 9 1572 2.723375 0.00375 

day:I(logouabain_x^3) 9 1572 1.987918 0.03720 
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Appendix 3. ANOVA tables from caterpillar weight and diet consumption analyses for KCl 

experiments 

 

Caterpillar Weight: Model Selection 
Model df AIC BIC logLik 

Full 22 -496.495 -405.8 270.2474 

 

Caterpillar Weight: Final Model 
Model Terms numDF denDF F-value p-value 

(Intercept) 1 294 6336.728 0.00000 

experiment 3 143 5.11628 0.00216 

logkcl_x 1 143 182.7989 0.00000 

day 2 294 129.3693 0.00000 

I(logkcl_x^2) 1 143 119.9775 0.00000 

I(logkcl_x^3) 1 143 10.92353 0.00120 

I(logkcl_x^4) 1 143 6.530348 0.01165 

basecat0 1 143 135.3774 0.00000 

logkcl_x:day 2 294 22.87283 0.00000 

day:I(logkcl_x^2) 2 294 16.13276 0.00000 

day:I(logkcl_x^3) 2 294 6.329494 0.00204 

day:I(logkcl_x^4) 2 294 3.449106 0.03307 

 

Diet Consumption: Model Selection 
Model df AIC BIC logLik 

Full 22 471.2009 561.8958 -213.6 

Reduced 18 465.5392 539.7441 -214.77 

 

Diet Consumption: Final Model 
Column1 numDF denDF F-value p-value 

(Intercept) 1 298 938.1506 0.00000 

experiment 3 143 4.240271 0.00664 

logkcl_x 1 143 126.5118 0.00000 

day 2 298 21.44136 0.00000 

I(logkcl_x^2) 1 143 62.80727 0.00000 

I(logkcl_x^3) 1 143 5.894955 0.01643 

I(logkcl_x^4) 1 143 3.949137 0.04881 

basecat0 1 143 5.373216 0.02187 

logkcl_x:day 2 298 2.896143 0.05679 

day:I(logkcl_x^2) 2 298 2.020786 0.13436 
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Appendix 4. ANOVA Tables for KCL+Bifenthrin analyses 

 

Caterpillar Weight 
Model Terms numDF denDF F-value p-value 

(Intercept) 1 284 6.622185 0.01058 

experiment 2 146 0.918053 0.40159 

kcl 1 146 0.215271 0.64336 

bifenthrin 3 146 1.713606 0.16677 

day 2 284 1.939332 0.14570 

basecat0 1 146 13.24515 0.00038 

kcl:bifenthrin 3 146 0.563393 0.64001 

kcl:day 2 284 0.034017 0.96656 

bifenthrin:day 6 284 0.676921 0.66841 

kcl:bifenthrin:day 6 284 0.955563 0.45573 

 

Diet Consumption 
Model Terms numDF denDF F-value p-value 

(Intercept) 1 284 95.06509 0.00000 

experiment 2 146 14.21049 0.00000 

kcl 1 146 3.12167 0.07935 

bifenthrin 3 146 18.15681 0.00000 

day 2 284 26.6295 0.00000 

basecat0 1 146 1.559517 0.21373 

kcl:bifenthrin 3 146 1.69148 0.17141 

kcl:day 2 284 9.306582 0.00012 

bifenthrin:day 6 284 7.977917 0.00000 

kcl:bifenthrin:day 6 284 2.1478 0.04821 

 

Survival 
Model Terms npar Sum Sq Mean Sq F value 

experiment 2 6.64576 3.32288 3.32288 

bifenthrin 2 11.51811 5.759057 5.759057 

kcl 1 0.007135 0.007135 0.007135 

basecat0 1 21.65864 21.65864 21.65864 

bifenthrin:kcl 2 6.915922 3.457961 3.457961 
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Appendix 5. ANOVA Tables for Ouabain+KCL+Bifenthrin analyses 

 

Caterpillar Weight 
Model Terms numDF denDF F-value p-value 

(Intercept) 1 954 4261.256 0.00000 

experiment 2 208 73.90893 0.00000 

bifenthrin 1 208 42.79901 0.00000 

day 5 954 1662.43 0.00000 

ouabain 1 208 0.002932 0.95687 

kcl 1 208 1.074022 0.30124 

lnbasecat0_1000 1 208 105.6034 0.00000 

bifenthrin:day 5 954 22.40271 0.00000 

bifenthrin:ouabain 1 208 0.140182 0.70848 

day:ouabain 5 954 0.435984 0.82360 

bifenthrin:kcl 1 208 0.560787 0.45479 

day:kcl 5 954 1.708305 0.12996 

ouabain:kcl 1 208 0.095412 0.75772 

bifenthrin:day:ouabain 5 954 0.270122 0.92952 

bifenthrin:day:kcl 5 954 0.629798 0.67707 

bifenthrin:ouabain:kcl 1 208 0.056686 0.81205 

day:ouabain:kcl 5 954 2.275633 0.04524 

bifenthrin:day:ouabain:kcl 5 954 0.774928 0.56786 

 

Diet Consumption 
Model Terms numDF denDF F-value p-value 

(Intercept) 1 952 3034.777 0.00000 

experiment 2 208 23.67556 0.00000 

bifenthrin 1 208 43.65991 0.00000 

day 5 952 112.5098 0.00000 

ouabain 1 208 1.912352 0.16818 

kcl 1 208 1.369778 0.24319 

basecat0_1000 1 208 5.716545 0.01770 

bifenthrin:day 5 952 54.10652 0.00000 

bifenthrin:ouabain 1 208 0.161868 0.68786 

day:ouabain 5 952 1.265813 0.27649 

bifenthrin:kcl 1 208 0.445791 0.50508 

day:kcl 5 952 3.226955 0.00677 

ouabain:kcl 1 208 1.017513 0.31428 

bifenthrin:day:ouabain 5 952 0.350651 0.88198 
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bifenthrin:day:kcl 5 952 0.773483 0.56892 

bifenthrin:ouabain:kcl 1 208 1.397297 0.23853 

day:ouabain:kcl 5 952 0.647748 0.66330 

bifenthrin:day:ouabain:kcl 5 952 0.736792 0.59595 

 

Survival 
Model Terms npar Sum Sq Mean Sq F value 

experiment 2 2.863647 1.431824 1.431824 

ouabain 1 0.065627 0.065627 0.065627 

kcl 1 0.112816 0.112816 0.112816 

basecat6_1000 1 22.17215 22.17215 22.17215 

ouabain:kcl 1 0.143299 0.143299 0.143299 
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Appendix 6. Sequences and relative amplicon size for monarch primers. 
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