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Abstract 

T-cell receptors (TCRs) have emerged as a new class of therapeutics, most prominently for 

cancer where they are the key components of new cellular therapies as well as soluble biologics. 

Many studies have generated high affinity TCRs in order to enhance sensitivity. Recent 

outcomes, however, have suggested that fine manipulation of TCR binding, with an emphasis on 

specificity may be more valuable than large affinity increments. Structure-guided design is 

ideally suited for this role, and here we studied the generality of structure-guided design as 

applied to TCRs. We found that a previous approach, which successfully optimized the binding 

of a therapeutic TCR, had poor accuracy when applied to a broader set of TCR interfaces. We 

thus sought to develop a more general purpose TCR design framework. After assembling a large 

dataset of experimental data spanning multiple interfaces, we trained a new scoring function that 

accounted for unique features of each interface. Together with other improvements, such as 

explicit inclusion of molecular flexibility, this permitted the design new affinity-enhancing 

mutations in multiple TCRs, including those not used in training. Our approach also captured the 

impacts of mutations and substitutions in the peptide/MHC ligand, and recapitulated recent 

findings regarding TCR specificity, indicating utility in more general mutational scanning of 

TCR–pMHC interfaces. 

Keywords: affinity, mutational scanning, specificity, structure-guided design, T-cell receptor 

 

Introduction 

αβ T cells utilize clonotypic T-cell receptors (TCRs) to recognize antigens and initiate cellular 

immune responses. TCRs have emerged as a new class of therapeutics, most prominently for the 

treatment of cancer. Although in many ways similar to antibodies, TCRs differ in the complexity 

of the receptor-ligand interface: whereas antibodies can be elicited to almost any antigen, TCRs 

are restricted to linear peptide antigens presented by class I or class II MHC proteins (pMHC), 

with the TCR invariably contacting both (Rossjohn et al., 2015). Additionally, TCRs do not 

undergo affinity maturation, and, similar to naive antibodies, bind with weak-to-moderate 

affinities and reduced specificity (Baker et al., 2012). 

Recent advances have highlighted the potential therapeutic uses for TCRs with altered binding 

properties. As T-cell potency can be improved with antigen affinity (Varela-Rohena et al., 2008; 

Zhao et al., 2007), clinical trials with gene-modified T cells have explored the use of engineered, 

high affinity TCRs for improved antigen targeting (Linette et al., 2013). High affinity TCRs are 

also used as the antigen recognition component of soluble reagents designed to redirect naive, 

unmodified T cells (Oates and Jakobsen, 2013). 

Multiple methods have been used to generate high affinity TCRs, with the majority created using 

yeast or phage display (Bowerman et al., 2009; Holler et al., 2000; Li et al., 2005; Varela-

Rohena et al., 2008; Zhao et al., 2007). However, recent findings have shown that careful control 

is necessary when modifying TCRs. Due to their cross-reactive nature, enhancing affinity may 
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introduce new reactivities: improving affinity against one antigen can improve affinity towards 

others, leading to reactivity towards antigens that might otherwise be ignored by T cells 

expressing the wild-type receptor. This could include self-antigens, leading to possible off-target 

recognition (Zhao et al., 2007). Such an outcome is believed to have led to fatal autoimmunity in 

a recent clinical trial that used a high affinity TCR to target a melanoma antigen (Linette et al., 

2013). The likelihood of such an outcome may be increased if added ‘glue’ is directed more 

towards the MHC protein than the peptide. Additionally, the relationship between TCR affinity 

and potency is not well understood. Although some very high affinity TCRs show considerable 

sensitivity (Varela-Rohena et al., 2008), in other cases improving affinity outside an optimal 

window or above a threshold has led to decreased potency (Stone and Kranz, 2013). 

Although in vitro evolution has been used to generate the majority of high affinity TCRs, 

structure-guided computational design offers the potential for finer control over affinity and 

specificity. Not only can interactions be manipulated in a way that more appropriately addresses 

peptide specificity, affinity increments can in principle be more tightly controlled. Towards these 

goals, structure-guided design has been used to modify a small number of TCRs (Haidar et al., 

2009; Malecek et al., 2014; Pierce et al., 2014; Zoete et al., 2013). Recently, we used structure-

guided design to engineer variants of the DMF5 TCR, which has been used clinically in 

immunotherapy for melanoma and continues to serve as a model TCR for improving cancer 

immunotherapy (Johnson et al., 2009). Building on an approach originally developed for the 

well-studied A6 TCR (Haidar et al., 2009), we successfully engineered nanomolar affinity 

variants of DMF5 with altered specificity, and found excellent agreement between prediction and 

experiment for both structure and affinity (Pierce et al., 2014). 

Here we addressed the generality of our TCR design efforts. We found that our approach 

successfully used with DMF5 performed poorly with additional mutations and other, unrelated 

TCRs. This may be attributable to the complexity of TCRs and their interfaces with pMHC, such 

as varying binding geometries, sub-optimal packing and differing amounts of receptor and ligand 

flexibility (Baker et al., 2012, Rossjohn et al., 2015). We therefore sought to develop a more 

generalizable framework for TCR design. After assembling and modeling a large training set of 

experimental binding data spanning multiple TCR–pMHC systems, we trained a candidate score 

function which outperformed those used previously. Performance was further enhanced by 

optimizing the scoring methodology and including information on receptor/ligand flexibility as 

well as buried water. This allowed for successful design of new, affinity-enhancing mutations in 

multiple TCRs, including an unrelated receptor not used in training. The new design framework 

was also successful in recapitulating positive and negative effects of mutations to the MHC 

protein as well as substitutions in the peptide, and captured emerging themes in TCR specificity 

(Adams et al., 2016). Although there are avenues for improvement, these new developments 

greatly extend the applicability of structure-guided design for the manipulation and screening of 

TCR binding properties, and suggest ways for computational screening for peptide antigenicity. 

 

Materials and Methods 

Crystal structure processing and design parameters 
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For structural modeling, Rosetta with the Talaris2013 score function was used (Das and Baker, 

2008; Kaufmann et al., 2010; Leaver-Fay et al., 2013; Moretti et al., 2013), using the PyRosetta 

interface (Chaudhury et al., 2010). Native crystal structures were brought to local energy minima 

through multiple cycles of backbone minimization and rotamer optimization with heavy atom 

restraints (Bradley et al., 2005). Following structure minimization, the desired TCR, MHC, or 

peptide mutation was computationally introduced followed by three independent Monte Carlo 

based simulated annealing trajectories of the TCR CDR loops. This was performed using 

Rosetta's LoopMover_Refine_CCD mover with 3 outer cycles and 10 inner cycles, using an 

initial metropolis acceptance criteria of 2.2 that decreased linearly to 0.6 (Canutescu and 

Dunbrack, 2003). The large number of resulting packing operations introduced some minor 

variability when scoring the models. Therefore, the unweighted score terms for the three 

trajectories were averaged and stored for point mutation energy calculations (Kellogg et al., 

2011). When screening TCR point mutations, TCR residue positions with a center of mass within 

10 Å (DMF5 and B7) or 15 Å (DMF4) of a peptide heavy atom were selected for design. For 

peptide screens, all positions other than the primary anchors of the MART126(27L)–35 peptide 

underwent the design procedure. The design process sampled every amino acid (19 mutations 

and the wild-type residue) at each specified position in triplicate. Wild-type complexes were 

modeled and included in scoring to account for impacts of minimization and conformational 

sampling. For double mutants, both mutations were introduced simultaneously followed by a 

minimum of six independent minimization trajectories to account for additional structural 

impacts. 

Score function training 

To develop a new score function for predicting changes in binding ΔΔG°, we considered Rosetta 

full atom terms in addition to dynamically derived terms (bound and free order parameters and 

RMS fluctuations). Multiple linear regression was performed in MATLAB 2015b using 

measured ΔΔG° values. A stepwise elimination protocol was used to remove contextually 

insignificant terms. A k-fold (k = 10) cross validation was performed with the data points and 

significant predictor terms (Arlot and Celisse, 2010). 

Modeling explicit water molecules and sarcosine 

To model and score buried water molecules and the non-standard sarcosine, explicit TIP3P 

waters and sarcosine parameters were enabled in Rosetta. Water molecules were placed at their 

initial crystallographic coordinates followed by 100 high resolution docking trials to coordinate 

the water molecule in the pocket of the interfaces. The water coordinates were then fixed in 

position relative to the pMHC for TCR point mutation modeling. 

Molecular dynamics simulations of bound and free structures 

Molecular dynamics simulations were calculated utilizing the AMBER molecular dynamics suite 

(Salomon-Ferrer et al., 2013) as previously described (Ayres et al., 2016). Results for the free 

and bound A6 and DMF5 were taken from these simulations, with other simulations following 

the same protocol. Briefly, coordinates for the complexes with the LC13, B7 and DMF4 TCRs 

were obtained from PDB accession codes 1MI5, 1BD2 and 3QDM. Coordinates for the free 
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Tax11–19/HLA-A2 complex were from 1DUZ. For the LC13, B7 and DMF4 TCRs, coordinates 

for the free TCRs were obtained by stripping away the pMHC. Prior to simulation, starting 

systems were charge neutralized with explicit Na+ counterions and solvated with explicit SPC/E 

water. Following this, systems were energy minimized and heated to 300 K with solute 

restraints. Afterwards, solute restraints were gradually relaxed and followed with 2 ns of 

simulation with no solute restraints for equilibration, after which 100 ns production trajectories 

for all systems were calculated. Trajectories were calculated using GPU-accelerated code (Götz 

et al., 2012; Salomon-Ferrer et al., 2013). Trajectory analysis including calculation of RMSF 

values used the ccptraj from the AMBER suite (Roe and Cheatham, 2013). Order parameters 

were calculated using isotropic reorientational eigenmode dynamic analysis using vectors 

defined from the Cα to Cβ (or Cα to H for glycine) atoms (Prompers and Brüschweiler, 2002). 

For double mutants, descriptors were averaged between the two positions for scoring purposes 

(i.e. for mutant XY, the RMSF of position X is averaged with the position Y RMSF to give an 

RMSF descriptor for XY). 

Protein expression and purification 

Expression and refolding of soluble constructs of the DMF5, B7 and DMF4 TCRs and HLA-A2 

were performed as previously described (Davis-Harrison et al., 2005). Briefly, the TCR α and β 

chains, the HLA-A2 heavy chain and β2-microglobulin (β2m) were generated in Escherichia coli 

as inclusion bodies, which were isolated and denatured in 8 M urea. TCR α and β chains were 

diluted in TCR refolding buffer (50 mM Tris (pH 8), 2 mM EDTA, 2.5 M urea, 9.6 mM 

cysteamine, 5.5 mM cystamine, 0.2 mM PMSF) at a 1:1 ratio. HLA-A2 and β2m were diluted in 

MHC refolding buffer (100 mM Tris (pH 8), 2 mM EDTA, 400 mM l-arginine, 6.3 mM 

cysteamine, 3.7 mM cystamine, 0.2 mM PMSF) at a 1:1 ratio in the presence of excess peptide. 

TCR and pMHC complexes were incubated for 24 h at 4°C. Afterward, complexes were desalted 

by dialysis at 4°C and room temperature respectively, then purified by anion exchange followed 

by size-exclusion chromatography. Refolded protein absorptions at 280 nm were measured 

spectroscopically and concentrations determined with appropriate extinction coefficients. 

Mutations in TCR α and β chains were generated by whole-plasmid mutagenesis and confirmed 

by sequencing. Peptides were synthesized and purified commercially. 

Surface plasmon resonance 

Surface plasmon resonance experiments were performed with a Biacore 3000 instrument using 

CM5 sensor chips as previously described (Davis-Harrison et al., 2005). In all experiments, TCR 

was immobilized to the sensor chip via standard amine coupling and pMHC complex was 

injected as analyte. Experiments were performed at 25°C in 20 mM HEPES (pH 7.4), 150 mM 

NaCl, 0.005% Nonidet P-20. All experiments were steady-state experiments measuring RU vs. 

concentration of injected analyte, and were performed with TCRs coupled onto the sensor chip at 

400–2000 response units. Injected pMHC spanned a concentration range of 0.1–150 μM at flow 

rates of 5 µl/min. Data were processed with BiaEvaluation 4.1 and fit using a 1:1 binding model 

utilizing MATLAB 2015b. 
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Results 

Application of earlier structure-guided design methods to the B7 TCR 

Based on previous work with the A6 TCR (Haidar et al., 2009), we recently described a 

modeling and scoring scheme to predict the structural and energetic effects of point mutations 

within interfaces with the αβ TCR DMF5 (Pierce et al., 2014). Using this approach we identified 

several affinity-enhancing mutations in DMF5 which when combined led to affinity 

enhancements towards pMHC of up to 400-fold. To explore the generality of this approach, we 

applied the same methodology to the B7 TCR (Ding et al., 1998), which binds the human T-cell 

lymphoma virus Tax11–19 peptide presented by HLA-A2 with a similar affinity and orientation as 

the A6 TCR (Fig. (Fig.1a).1a). The A6 and B7 TCRs also share the same germline-derived Vβ 

chain, although crystallographic structures and biophysical studies of A6 and B7 with Tax11–

19/HLA-A2 showed structural and thermodynamic differences in binding (Davis-Harrison et al., 

2005). We modeled 740 point mutations in the B7-Tax11–19/HLA-A2 interface using Rosetta 

(Das and Baker, 2008; Kaufmann et al., 2010) and the scheme described in Pierce et al. (2014). 

As performed previously, effects were determined by scoring the complex, then separating the 

components and separately scoring the TCR and pMHC in order to calculate a ‘binding score’ 

(Kortemme and Baker, 2002). Based on these scores, nine mutations were selected for predicted 

enhancements to binding affinity and chosen for experimental testing. 
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Fig. 1  Mutations in the interface between the B7 TCR and Tax11-19/HLA-A2 are scored poorly 

with the Rosetta interface and ZAFFI 1.1 functions. (a) Structural overview of the B7 TCR–

pMHC complex. (b) Score vs. experimental ΔΔG° for point mutations modeled with Rosetta and 

scored with the Rosetta interface function. The best fit line and correlation coefficient is 

indicated. (c) As with panel b, scored with the ZAFFI 1.1 function (Haidar et al., 2009; Pierce et 

al., 2014). 

 

We performed mutagenesis using soluble B7 gene constructs, expressed and purified the mutant 

and wild-type proteins, and measured their binding affinities toward Tax11–19/HLA-A2 using 

surface plasmon resonance (Table S1 and Fig. S1). Three of the mutations (S27αM, S50αY, 

G99βY) led to moderately enhanced affinity towards Tax11–19/HLA-A2, although the remaining 

six mutations weakened affinity or led to no detectable binding. Including four additional B7 

mutations studied previously (Piepenbrink et al., 2013), the correlation between the predicted 

and experimental change in binding energy was low with the Rosetta interface score function 

(R = 0.21; Fig. Fig.1b).1b). Utilizing the ZAFFI score function first developed for the A6 TCR 

and refined with the DMF5 TCR (Haidar et al., 2009; Pierce et al., 2014) led to an improved but 
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still weak correlation (R = 0.47; Fig. Fig.1c).1c). Thus, the TCR design approach developed for 

the A6 TCR and later applied to DMF5 performs poorly with the B7 TCR.  

Collection of new data to train a score function for HLA-A2-restricted TCRs 

In light of the low correlations between prediction and experiment with the B7 TCR, we aimed 

to develop a more generalizable framework for modeling and predicting point mutations across 

multiple TCR–pMHC interfaces. We collected 96 independent ΔΔG° values resulting from 

single amino acid mutations from four TCR–pMHC interfaces (A6-Tax11–19/HLA-A2; B7-Tax11–

19/HLA-A2; DMF5-MART127–35/HLA-A2; and DMF5-MART126(27L)–35/HLA-A2). This data 

originated from our previously published structure-guided design efforts with the A6 and DMF5 

TCRs (Haidar et al., 2009; Pierce et al., 2014) as well as our recent double mutant cycle 

deconstruction of the A6 interface (Piepenbrink et al., 2013). We also included the additional 

data with B7 described above, and performed new binding measurements in the DMF5-

MART126(27L)–35/HLA-A2 interface (Table S1 and Fig. S1). We restricted the dataset to high 

quality measurements with low experimental error (< 0.5 kcal/mol). 

The point mutations in our dataset covered a broad range of mutation types as described in Table 

S2. The ΔΔG° values ranged from −1.8 to 2.8 kcal/mol and were approximately normal in 

distribution (Fig. (Fig.2a).2a). The median ΔΔG° value of the selected dataset was 0.5 kcal/mol 

with a standard deviation of 1.1 kcal/mol. When comparing the 29 mutations that improved 

binding, it became evident the majority of affinity-enhancing mutations resulted from 

replacement of small or polar residues with large hydrophobic or amphipathic residues (Fig. 

(Fig.22b).  

 

 
 

Fig. 2 Experimental ΔΔG° values of TCR point mutations are normal in distribution and affinity-

enhancing mutations are predominantly hydrophobic or amphipathic. (a) The 96 point mutations 

collected in different TCR–pMHC interfaces were approximately normal in distribution with a 
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median ΔΔG° value of 0.5 kcal/mol and a standard deviation of 1.1 kcal/mol. (b) Sequence logos 

of the 29 mutations that improved binding (ΔΔG° < 0). 

Development of a generalized TCR–pMHC scoring function 

We next developed computational structural models of all 96 point mutations for training 

generalized TCR prediction models. We extended our strategy by adapting techniques for 

modeling the effects of interface mutations shown to be successful in recent community-wide 

assessments. Mutations were modeled with the standard Talaris2013 score function allowing for 

off-rotamer sampling and limited backbone flexibility in the CDR loops (Leaver-Fay et al., 

2013; Moretti et al., 2013). Additionally, side chains of residues within a 10 Å sphere of any 

CDR loop residue were repacked in response to each mutation and resulting CDR loop 

movements. Each point mutation was modeled in triplicate and scores averaged for further 

analysis. Analysis of the mutation models identified one with an anomalously high repulsive 

clash score and another where a residue was forced into an unusual high energy rotamer. Both of 

these mutations were excluded from further training and comparisons, leaving a dataset of 94 

point mutations and their structural models. 

To develop a generalizable TCR scoring function, we considered 16 full-atom Rosetta terms 

commonly used for protein design and structure prediction (Leaver-Fay et al., 2013; Moretti et 

al., 2013). Using the Rosetta terms as predictor variables and experimental binding energies of 

the dataset described above as the response variable, we used multi-linear regression to 

parameterize a starting score function for estimating the effect of the various point mutations on 

ΔΔG°. The most significant contributors to the model (P < 0.05) described van der Waals 

attractive forces and solvation effects. However, the correlation between binding score and 

ΔΔG° remained low (R = 0.43; Fig. Fig.3a).3a). Thus we did not explore removing insignificant 

features at this stage in favor of obtaining a more robust prediction model.  
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Fig. 3  Relative TCR–pMHC complex scores correlate better with affinity than binding scores. 

(a) Scores vs. experimental ∆∆G° for modeled point mutations. Scores were determined by 

scoring each complex and two free proteins (i.e. binding score = scorecomplex − (scoreTCR + 

scorepMHC)). The wild-type ‘binding score’ was then subtracted from each mutant binding score. 

After parameterization of Rosetta structural terms, relative binding scores were plotted vs. 

experimental ΔΔG°. (b) As with panel a, but scores determined and parameterized by scoring 

only the wild-type and each mutant complex, yielding ‘complex scores’ as described in the text. 
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Ideally, binding energy calculations would utilize structural information for both the free and 

bound molecules (Kortemme and Baker, 2002; Vreven et al., 2012). However, structures of free 

TCRs and pMHCs can vary between free and bound states (Armstrong et al., 2008), and the 

large surface areas of receptor and ligand binding sites possess significant conformational 

degrees of freedom. We thus focused only on relative effects by scoring only TCR–pMHC 

complexes, rather than scoring the complex and the two free proteins as described above. We 

refer to the difference in scores between wild type and mutant complexes as ‘complex scores’. 

This approach comes with a limitation in that complex scores do not account for energies in the 

free TCR associated with making the mutation (i.e. the ΔG° for TCR WT ↔ TCR mutant). 

Ideally these would be subtracted when examining the impact of a mutation on binding. There 

are two potentially significant consequences to this. First, an improved complex score could arise 

solely due to improved contacts within the TCR (i.e better TCR stability). We minimized the 

impact of this by focusing on sites that are in proximity to the ligand and thus more likely to 

influence binding. Second, any effects on binding stemming from conformational changes in the 

free TCR will be ignored. 

Using the same 16 full-atom Rosetta terms, a multi-linear regression of complex scores vs. ΔΔG° 

yielded an improved function (R = 0.66 for complex scores, vs. R = 0.43 for binding scores; Fig. 

Fig.3b).3b). Despite the theoretical limitations noted above, complex scores are therefore more 

applicable for our framework and were used for all further calculations. The improvement using 

complex scores may reveal underlying limitations in the energy function terms and/or limitations 

in recapitulating conformational differences between free and bound TCRs as noted above, 

leading to inaccuracies when ‘binding scores’ are computed. The inherently weak affinities and 

correspondingly poor quality of TCR–pMHC interfaces (compared, e.g. to high affinity 

antibody-antigen interfaces) could also contribute to why complex scores outperform binding 

scores. 

Refinement of the regression model to include flexibility and validation of terms 

Although utilization of complex scores improved the correlation between prediction and 

experiment, we sought to identify additional predictors of TCR binding affinity that might 

further improve performance. One of the differences between TCRs is their degree of binding 

loop flexibility, particularly for the hypervariable CDR3α and CDR3β loops (Scott et al., 2011). 

Although various methods for conformational sampling such as stochastic loop perturbations or 

generation of structural ensembles exist (Feixas et al., 2014; Sinko et al., 2013; Tuffery and 

Derreumaux, 2012), these are computationally expensive. To more simply address the impacts of 

TCR loop flexibility, we considered descriptors from molecular dynamics (MD) simulations of 

the free and bound TCRs. We recently described a comprehensive MD study of the free and 

bound A6 and DMF5 TCRs (Ayres et al., 2016) using an experimentally benchmarked 

simulation methodology (Scott et al., 2011, Scott et al., 2012). We performed similar simulations 

on the free and bound B7 TCR. From these simulations root mean square (RMS) fluctuations for 

each α carbon were determined along with Cα-Cβ (Cα-H for glycine) and Cα-C order parameters 

to quantify nanosecond timescale backbone flexibility (Fig. S2). Due to the time that would be 

required to simulate dozens or hundreds of mutations, only the wild-type TCRs and their 

complexes were simulated. Fluctuation values and order parameters were then treated as 

‘positional modifiers’ for each amino acid position, biasing positions for design based on their 
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relative flexibility in the wild-type free and bound structures. Although necessary for throughput, 

this approach makes the limiting assumption that any given mutation does not impact backbone 

flexibility on the nanosecond timescale. 

To determine if inclusion of RMS fluctuations and/or order parameters could lead to an 

improved scoring function, we included these six terms along with the 16 full-atom Rosetta 

terms in a multi-linear regression of complex scores vs. ΔΔG°, coupled with a stepwise 

elimination protocol (Hocking, 1976). This fit identified six significant (P < 0.05) features: four 

structural terms (van der Waals attractive and repulsive forces, solvation energies and sidechain 

hydrogen bonding) and two flexibility terms (RMS fluctuations for α carbons of the free and 

bound structures). A structural term weighting Ramachandran angle propensities was borderline 

significant (P = 0.11), but was retained to help identify and exclude structural models with 

residues forced into unrealistic conformations. 

The regression models estimated the weights of the RMS fluctuation features to be negative, 

suggesting flexible positions are more favorable to target for design (although mobility in the 

complex was weighted more heavily as discussed below). To critically examine the significance 

of this determination, models with and without the fluctuation terms in addition to the five 

Rosetta terms were generated and compared. Akaike information criterion (AIC) (Akaike, 1998) 

found the incorporation of features describing flexibility resulted in a 99.8% likelihood of a 

superior prediction model. Bayesian information criterion (BIC) (Kass and Raftery, 1995) more 

strongly penalized additional terms, yet also indicated that inclusion of the fluctuation terms 

improved the regression model beyond random chance (Table (TableII).  

Table I. 

Inclusion of RMS fluctuations improves the score function regression model 

Criteria RMSF excluded RMSF included 

R  0.63 0.71 

P-value 7.9 × 10−9 9.0 × 10−11 

AIC 239.2 226.8 

BIC 254.4 246.2 

Finally, a k-fold cross validation (k = 10) (Arlot and Celisse, 2010) was used to validate and 

estimate overall predictive performance. From this analysis, the RMS error (reflecting the 

difference between experimental and predicted ΔΔG° values) was estimated as 0.81 kcal/mol, 

with an impressive correlation of 0.71 (Fig. (Fig.4a;4a; note this correlation includes accounting 

for structural water as described below). For comparison, our previous approach with the Rosetta 

interface score function yielded a correlation of only 0.16 (Fig. (Fig.4b),4b), and a recent 

analysis of protein design approaches estimated an average error of 1.2 kcal/mol for protein–

protein interactions (Potapov et al., 2009). The terms and weights for the final regression model, 

termed the TR3 score function, are shown in Table TableIIII.  
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Fig. 4  The TR3 score function outperforms our previous TCR design methodology. (a) Complex 

score vs. experimental ΔΔG° for 94 point mutations modeled with Rosetta and scored with the 

TR3 function. The best fit line, 95% confidence interval, and correlation coefficient is indicated. 

(b) Performance of our previous methodology applied to the same data. An off-scale prediction 

score of 26 (DMF5 G28αL) is denoted by a black arrow and the best fit line and correlation are 

indicated. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5181382/figure/gzw050F4/
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=5181382_gzw050f04.jpg


Table II. 

Terms and their statistics in the TR3 score function 

Term Weight Errora P-valueb 

Intercept 2.29 0.35 <0.001 

Fa_atr 0.21 0.03 <0.001 

Fa_rep 0.05 0.01 0.005 

Fa_sol 0.18 0.08 <0.001 

Hbond_sc 0.34 0.09 0.008 

Rama 0.12 0.05 0.119 

RMSF_bound −0.82 0.30 0.049 

RMSF_free −0.36 0.10 0.003 

Estimated error: 0.81 kcal/molc 

aDetermined as 1.96 standard deviations of k-fold cross-validation weights. 
bP-value for the F statistic of the hypotheses test that the corresponding coefficient is equal to 

zero.  
cAverage test RMS error from k-fold cross validation. 

 

Accounting for energetically significant structural water improves predictions 

Rosetta utilizes an implicit solvation model to estimate solvation energies associated with bulk 

water (Lazaridis and Karplus, 1999). However, TCR–pMHC interfaces are large and buried 

water molecules are often observed crystallographically. In some instances these structural 

waters play key roles in the interface that would not be captured with an implicit solvation model 

(Jiang et al., 2005). Indeed, many predicted mutations which filled the void of an interfacial 

water molecule in the interface with the DMF5 TCR resulted in a falsely favorable score. For 

example, Ser99 in the DMF5 β chain contacts the peptide, but is also involved in a complex 

water-mediated hydrogen bond network linking the peptide to the TCR (Fig. (Fig.5a).5a). The 

predicted impacts of mutations at this position did not correlate well with experiment (Fig. 

(Fig.5b),5b), consistent with a determination that this water molecule is structurally and 

energetically significant. To directly account for it, the buried water in the DMF5 interface was 

docked into its corresponding pocket and treated explicitly in modeling and scoring. This 

improved the agreement between prediction and experiment for Ser99β point mutations without 

altering the predictions for distant residues (Fig. (Fig.5c).5c). Further design efforts incorporated 

this technique when buried water molecules were observed crystallographically in the interface 

between peptide and TCR (i.e. the DMF4 and LC13 TCRs as described later).  
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Fig. 5  Accounting for buried structural water improves predictions. (a) A buried water molecule 

observed crystallographically in the DMF5-MART126(27L)-35/HLA-A2 interface forms multiple 

electrostatic interactions between the TCR and peptide. The sidechain of Ser99 of the DMF5 β 

chain is indicated. (b) The correlation between prediction and experiment for models of DMF5 

point mutants scored with TR3 is 0.63 when the buried water molecule is ignored. Five 

mutations at position 99β are indicated and are responsible for the low correlations. (c) The 

correlation between prediction and experiment for DMF5 point mutants improves to 0.80 when 

the buried water molecule is treated explicitly. The predicted effects of the five mutations at 

position 99β agree better with experiment as shown. 
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Validation with new TCR mutations and combinations to further modulate 

affinity 

We next collected additional data to assess the performance of our new framework on mutations 

not used in training. We screened for new mutations in the interfaces with the DMF5 and B7 

TCRs (DMF5-MART126(27L)–35/HLA-A2 and B7-Tax11–19/HLA-A2). To emphasize peptide 

specificity, only positions with a center of mass within 10 Å of a peptide heavy atom were 

selected for design. A total of 18 sites in both DMF5 and B7 were modeled and scored with all 

20 amino acids (684 point mutations in total and 36 wild-type controls). As expected, most 

mutations were predicted to have deleterious effects on binding. However, several mutations 

were predicted to enhance affinity, most at sites where mutations have previously been shown to 

favorably impact binding (Table S1). The two predicted to be most favorable (G99βW for B7; 

D26αF for DMF5) were both generated, and the impact on binding assessed experimentally. 

Both mutations improved binding as predicted. The ΔΔG° for G99βW in B7 was −0.5 kcal/mol; 

for D26αF in DMF5 it was −0.4 kcal/mol. The value for D26αF was less than observed 

previously with tyrosine or tryptophan at this position (−1.8 and −1.6 kcal/mol, respectively), 

suggesting that the amphipathic character of tyrosine and tryptophan may be advantageous for 

enhancing TCR affinity as discussed below. 

Our previous designs for the A6 and DMF5 TCRs combined multiple mutations to generate 

molecules which bound in the nanomolar range (Haidar et al., 2009; Pierce et al., 2014). The 

approximate additive effects of mutations in both interfaces were captured by our new 

framework with the TR3 score function after averaging the RMSF positional values of each of 

the mutations. To ask if our new framework also allowed for this in another TCR, we combined 

the S27αM and G99βY mutations in the B7 receptor, which together improved the B7 affinity 

for Tax11–19/HLA-A2 7-fold, from 1.5 μM to 220 nM (Fig. (Fig.6).6). These mutations are ~27 Å 

apart, and were correctly predicted to be additive when combined (ΔΔG° = −1.2 kcal/mol, 

complex score = −0.77).  
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Fig. 6 Combining two computationally designed B7 mutations yields nanomolar binding affinity. 

(a) Combining the S27αM and G99βY mutations in the B7 TCR improves binding to Tax11-

19/HLA-A2 7-fold, from 1.5 µM to 220 nM. (b) The sites of the S27αM and G99βY mutations in 

the B7 TCR are separated by ~27 Å and are predicted to improve affinity independently through 

improved van der Waals interactions with the pMHC. 
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To investigate broader applicability, mutations in another TCR not used in training were 

modeled and scored. The DMF4 TCR also recognizes MART1 antigens presented by HLA-A2, 

but utilizes different α and β chains than DMF5, A6 and B7 (Borbulevych et al., 2011; Johnson 

et al., 2009). As performed with the A6, B7 and DMF5 TCRs, MD simulations of the free wild-

type DMF4 TCR and its complex with MART126(27L)–35/HLA-A2 were performed and used 

along with Rosetta to simulate 960 structures (19 mutations at 48 sites, and 48 wild-type 

controls) in the DMF4-MART126(27L)−35/HLA-A2 interface. Several mutations in the α chain 

were favorably ranked based on their ability to fill an interfacial void near the N-terminus of the 

peptide. Three of these mutations were selected for experimental investigation (S26αW, N29αW 

and T92αW). Although the N29αW mutation was of particular interest as it provided another 

opportunity to investigate a structural water, this mutant could not be folded from inclusion 

bodies. This left two mutations for experimental testing. As predicted, both of these enhanced 

DMF4 binding affinity, with ΔΔG° values of −0.4 and −0.9 kcal/mol (Table S1). These 

mutations were also predicted and found to be additive when combined: together the S26αW and 

T92αW mutations improved the affinity of the DMF4 TCR 10-fold, from 60 to 6 µM (ΔΔG° of 

−1.4 kcal/mol). 

Overall, when applied to data outside of our training set, our new modeling and scoring 

procedure recapitulated the effects of multiple mutations in the B7, DMF5 and DMF4 TCRs and 

permitted the identification of new affinity-enhancing mutations in all three receptors. The RMS 

error between predicted and experimentally determined impacts on binding was 1.5 kcal/mol, 

higher than observed with training and cross-validation but still lower than observed with our 

previous methodology (Fig. (Fig.7a,7a, black points).  
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Fig. 7  Performance of our improved framework on new TCR mutations, HLA-A2 mutations and 

peptide variations. (a) All point mutation data examined in evaluating our new approach, 

including TCR, peptide and HLA-A2 data, plotted together, excluding data used in training. The 

overall correlation between prediction and experiment is 0.86. (b) The predicted effects of 

MART126(27L)-35 peptide substitutions on the binding of DMF5 to MART126(27L)–35/HLA-A2 

indicate amino acids that are more tolerating of or more sensitive to substitutions. Position 6 near 

the center of the peptide is particularly sensitive. Each segment of the plot shows the complex 

scores for all 20 amino acids substituted at the indicated position. Solid lines and numbers in 

each segment show the average scores for all 20 amino acids at that position. (c) Performance is 

more limited on a system involving a more diverse, non-HLA-A2 restricted TCR. The impact of 

mutations in the LC13 TCR with FLR/HLA-B8 are predicted with a correlation coefficient of 

0.60 (ΔΔG° values of mutations with no detectable binding were reported previously as 1.6 

kcal/mol) (Borg et al., 2005). 
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Including HLA-A2 mutations in validation 

αβ TCRs show MHC restriction, i.e. they recognize peptides only when presented by MHC 

proteins (Zinkernagel and Doherty, 1974). Many studies have examined the effects of mutations 

in the α helices of MHC binding groove as a means to determine energetically significant 

positions that might guide restriction, including a recent comprehensive analysis of the binding 

of A6 TCR to the Tax11–19/HLA-A2 complex. Of nine published mutations, eight weakened 

affinity and one enhanced affinity (Piepenbrink et al., 2013). To recapitulate this data in silico, 

we modeled the impact of mutations in HLA-A2 on the binding of A6 to Tax11–19/HLA-A2, 

incorporating free and bound flexibility through MD simulations as described above. The effects 

of these mutations were well captured, with RMS error between prediction and experiment of 1.0 

kcal/mol (Fig. (Fig.7a,7a, green points). Thus our new framework is applicable not only to 

TCRs, but can predict the energetics associated with mutations in the HLA-A2 side of the 

interface as well. 

Computational scanning of peptide variants 

TCRs are broadly cross-reactive and recognize a multitude of antigenic peptides, a requirement 

of the fixed size of the T-cell repertoire (Mason, 1998). Additionally, altering TCR binding by 

changing peptide sequence is another approach for modulating TCR binding and immune 

responses (McMahan and Slansky, 2007; Piepenbrink et al., 2009). Quantitative data for how 

eight substitutions in the Tax11–19 peptide impact the binding of the A6 TCR is available (Davis-

Harrison et al., 2007; Piepenbrink et al., 2013), and we collected new alanine scanning data for 

recognition of four more Tax11–19 variants by B7 (Table S1). As with the HLA-A2 mutations 

above, we used our new modeling and scoring approach to assess how these peptide variants 

impact recognition by A6 and B7. The impacts on binding ΔΔG° were recapitulated well, with 

an RMS error of 0.9 kcal/mol (Fig. (Fig.7a,7a, yellow points). 

To further demonstrate the utility of our approach for assessing peptide variations, residues in the 

MART126(27L)–35 peptide were computationally varied to cover all 20 amino acids, and, after 

completing a MD simulation of the MART126(27L)–35/HLA-A2 complex, scored for impact on 

DMF5 binding. All peptide substitutions were predicted to be unfavorable, although mutations at 

the P3 and P6 positions were predicted to have the most dramatic impacts (Fig. (Fig.7b).7b). 

This outcome is consistent with recent findings on TCR specificity, which suggest the existence 

of peptide ‘hotspots’ of reduced structural and chemical diversity, outside of which greater 

variation is permitted (Adams et al., 2016). 

Next, eight MART126(27L)–35 peptide variants with a broad range of complex scores were selected 

for experimental testing with DMF5 (Table S1). We also examined a peptide with a non-standard 

sarcosine (N-methyl glycine) substituted for Gly6 of the peptide to help test the implications of 

treating structured water explicitly in the DMF5 interface as discussed above and shown in Fig. 

Fig.5.5. Overall, there was a good correlation between ΔΔG° and binding score for the nine 

MART126(27L)–35 peptide variants explored experimentally, with experiment and prediction 

differing with an RMS error of 0.9 kcal/mol (Fig. (Fig.7a,7a, blue points). The experiments with 
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the sarcosine-modified peptide led to improved binding as predicted, leading to a 3-fold affinity 

enhancement in affinity (ΔΔG° of −0.6 kcal/mol). The affinity enhancement is attributable to the 

increased van der Waals interactions to Thr102 of the TCR while maintaining the solvated state 

of polar atoms in the surrounding pocket. 

Overall performance and exploration of an even more diverse, non-HLA-A2 

interface 

To explore the overall performance of our new approach, we examined the new TCR mutations, 

HLA-A2 mutations and peptide variants described above together as one large test set. These 

amounted to 40 independent ΔΔG° measurements distinct from the training set from five 

different TCR–pMHC interfaces. We also included the double mutants in the DMF5, B7 and A6 

TCRs. Altogether, performance was excellent, with predicted and experimental impacts on 

binding agreeing with an impressive correlation coefficient of 0.86 and a RMS error of 1.1 

kcal/mol, spanning a large range of ~7 kcal/mol in binding free energy (Fig. (Fig.7a,7a, all 

points). Complex scores again showed improved performance over binding scores, as scoring the 

40 test set mutations using binding scores yielded a weaker correlation coefficient (R = 0.66) and 

larger RMS error (2.8 kcal/mol) (Fig. S3). 

The systems used in development and testing all involved the class I MHC protein HLA-A2. To 

explore how our new framework performed when additional diversity was included, we used it 

to assess the impact of mutations between the interface of the LC13 TCR and the class I MHC 

protein HLA-B:08:01 (HLA-B8) presenting the FLR peptide (sequence FLRGRAYGL). The 

structure of the LC13-FLR/HLA-B8 complex has been determined, as have ΔΔG° values for 39 

alanine or glycine mutations in the various LC13 CDR loops (Borg et al., 2005). After 

completing MD simulations of LC13 and its complex, we applied our approach to this dataset, 

recapitulating the effects of these mutations with an overall correlation of 0.60 and an RMS error 

of 1.0 kcal/mol (Fig. (Fig.7c).7c). While errors are still within the range obtained with our 

previous methodology (Pierce et al., 2014), the correlation is weaker than what we achieved with 

HLA-A2-restricted systems. 

There are at least two possible reasons for the weaker performance with the LC13 TCR. First, 

many of the 39 mutations in the LC13 interface result in very weak or no detectable binding, 

with ΔΔG° values reported simply as above an upper limit of 1.6 kcal/mol (corresponding to a 

15-fold weakening of affinity). The limited accuracy of these measurements will affect the 

correlation between prediction and experiment. As evidence of this, binary metrics demonstrated 

good predictive performance when separating affinity increasing mutations from affinity 

decreasing mutations (ROC AUC = 0.84; Fig. S4). Second, our reliance on HLA-A2-restricted 

systems in parameterization of the new TR3 score function could result in an inherent bias. 

HLA-A2 and HLA-B8 differ by 42 amino acids, 32 of which are in the peptide binding domain 

(Robinson et al., 2011). In addition to different energetic contributions, these differences could 

alter the structural and dynamic responses to mutations in ways that are poorly captured by our 

framework. 
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Discussion 

TCRs have emerged as a new class of immunological therapeutics, most prominently for cancer, 

where they are the key components of new cellular immunotherapies as well as soluble biologics 

(Oates and Jakobsen, 2013; Restifo et al., 2012). There is significant interest in enhancing TCR 

affinity to improve antigen sensitivity, and accordingly, numerous high affinity TCRs have been 

generated. Although T-cell potency has been shown to improve with affinity, questions remain 

about the existence of optimal affinity windows or thresholds and the merits of large vs. 

incremental improvements in binding affinity (Stone and Kranz, 2013). Additionally, following 

adverse events in clinical trials (Morgan et al., 2013; Parkhurst et al., 2011), there is a growing 

recognition of the importance of evaluating and controlling specificity in affinity-enhanced or 

otherwise modified TCRs. 

In principle, structure-guided computational design offers the potential for fine manipulation of 

TCR binding properties. Structure-guided design has been used to generate a small number of 

high affinity TCRs, as well as manipulate binding specificity (Haidar et al., 2009; Malecek et al., 

2014; Pierce et al., 2014; Zoete et al., 2013). However, although the TCR–pMHC structural 

database has grown significantly in recent years, wide-scale application of structure-guided TCR 

design is hindered by several complexities. These include the complex architecture of the TCR–

pMHC interface (Baker et al., 2012; Rossjohn et al., 2015), as well as the varying degrees of 

diversity and molecular flexibility in both receptor and ligand (Borbulevych et al., 2009; 

Insaidoo et al., 2011; Scott et al., 2011). We demonstrated the limited applicability of current 

TCR design approaches here by showing that our prior approach used to successfully engineer 

the clinically relevant DMF5 TCR performed poorly when applied to the unrelated B7 TCR. 

To generate an improved framework for structure-guided TCR design, we assembled a large 

database of mutations from four TCR–pMHC interfaces and used this in developing a new, 

‘general purpose’ approach to TCR design, including a novel score function. Similar to other 

score functions trained to predict binding affinity (Kortemme and Baker, 2002), the results 

heavily weighted van der Waals attractive forces and solvation and dampened repulsive terms. 

We also accounted for molecular flexibility via a novel cost-effective approach. For data in the 

training set we were able to achieve a correlation between predicted effect on binding and 

experimental ΔΔG° of 0.71. When applied to new data from multiple TCRs, HLA-A2 and 

peptides, we obtained an impressive correlation of 0.86 and low RMS error of 1.1 kcal/mol, 

which is near the expected upper limit due to error in experimental data (Potapov et al., 2009). 

As with other studies, the slope of predicted vs. experimental ΔΔG° was <1, indicating that 

impacts on binding affinity are typically under-estimated, giving some indications of ways to 

improve. The potential for further improvements is also found with the better performance 

observed with complex vs. binding scores, despite the theoretical limitations associated with 

complex scores. 

Accounting for flexibility is an important aspect of our improved framework, as varying degrees 

of CDR loop, MHC and peptide flexibility is a characteristic feature of TCRs and pMHC 

complexes (Borbulevych et al., 2009; Insaidoo et al., 2011; Scott et al., 2011). As with other 

efforts in protein design, we relied on MD simulations to incorporate flexibility. However, as 

opposed to simulating structures to identify alternate configurations or generate structural 
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ensembles (Feixas et al., 2014; Sinko et al., 2013; Tuffery and Derreumaux, 2012), we added 

‘positional modifiers’ that report on amino-acid level motional properties as terms in the score 

function. We chose this approach as it greatly simplifies the treatment of flexibility, requiring 

only single MD trajectories for the free wild-type TCR and the TCR–pMHC complex. Of the 

properties considered, Cα RMS fluctuations were most significant and were incorporated into the 

final function. The weights for these terms were negative, indicating that more flexible positions 

are more favorable for design. There is some anecdotal evidence to support this: in the A6 TCR, 

the hypervariable CDR3β loop is by far the most mobile, and multiple mutations within this loop 

improve A6 binding (Haidar et al., 2014; Li et al., 2005; Scott et al., 2011). This could reflect a 

form of the ‘fly-casting’ effect, in which mobile sites in a receptor are more adept at finding 

compatible partner sites in a ligand (Shoemaker et al., 2000). Interestingly, the flexibility 

weights were larger for residues in the bound state. While residual mobility in TCR–pMHC 

interfaces has been observed and this term could be accounting for this (Hawse et al., 2014; 

Reboul et al., 2012), it is also possible that in the complex this term helps overcome limited 

conformational sampling in modeling. Further work is needed to explore this, along with 

whether using longer or additional MD simulations can yield further improvements, at the 

expense of throughput. 

Solvent considerations can be important in structure-guided design, as buried water molecules 

can play critical roles in protein binding (Janin, 1999; Rodier et al., 2005). As seen in other 

systems (de Graaf et al., 2005), we demonstrate that explicitly modeling water in TCR interfaces 

can improve predictions. This was most useful for the DMF5 TCR, although buried waters were 

incorporated when modeling the DMF4 and LC13 interfaces as well (chosen in these cases 

because they were buried in the interface and participated in multiple hydrogen bonds with the 

TCR, peptide or MHC). Because we relied on crystallographically observed water, there is a 

corresponding demand on the resolution and quality of the original crystal structure. As TCR–

pMHC interfaces may be poorly packed and crystallographic resolutions low, incorporation of 

approaches to predict the location of water molecules not observed crystallographically could 

lead to further improvements (Bui et al., 2007; Jiang et al., 2005). 

Our improved framework for TCR design permitted the identification of new affinity-enhancing 

mutations in multiple interfaces, including the DMF4 TCR which was not used in training and 

uses different Vα and Vβ genes than those in the training set (Borbulevych et al., 2011; Johnson 

et al., 2009). The enhancements to affinity are relatively modest, but as noted above fine control 

may be most desirable when manipulating TCR affinity. Additionally, when combined these 

mutations can yield larger improvements, as shown for the B7, A6, DMF4 and DMF5 TCRs. 

Our approach also accounted for the relative effects of alanine and glycine mutations in another 

TCR, LC13, although the poorer performance with this receptor suggests that application to class 

I MHC proteins other than HLA-A2 (such as the HLA-B8 allele recognized by LC13) could 

require additional training outside of HLA-A2 systems to improve generality. By extension, we 

can expect that application towards other MHC proteins, particularly class II or nonclassical 

MHC proteins, will also require further effort. 

Mutations which enhanced affinity tended to be (although were not exclusively) those that 

replaced small polar or charged residues with large hydrophobic or amphipathic amino acids. 

The significance of this is unclear; this was seen in our training data as well as new mutations. 
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Increasing buried hydrophobic surface area is a well-known strategy for enhancing binding, and 

the rigid, bulky and amphipathic nature of tyrosine and tryptophan provide structural and 

chemical utility (Koide and Sidhu, 2009). Highly antigenic peptides have a tendency to be 

enriched in hydrophobic amino acids in TCR contact sites (Chowell et al., 2015), potentially 

indicating that such amino acids are indeed optimal for enhancing TCR affinity. 

What do these results indicate about introducing charged or polar amino acids? While 

electrostatic interactions can contribute to specificity, their contributions to affinity can vary due 

to high desolvation penalties (Bosshard et al., 2004; Hendsch and Tidor, 1994). Additionally, 

electrostatic interactions have strict geometrical dependences. Due to these complexities, protein 

design algorithms are recognized to have limited success modeling electrostatics (Fleishman et 

al., 2011; Procko et al., 2013; Stranges and Kuhlman, 2013). Thus introduction of charged or 

polar interactions may be unintentionally disfavored during design. Overcoming this potential 

limitation is important, as an over-reliance on select amino acids limits applicability. Further, 

accurately accounting for electrostatic effects could provide another means to selectively 

engineer TCR specificity, irrespective of their impacts on binding affinity (Blevins et al., 2016; 

Stadinski et al., 2016). 

The availability of polar/charged mutations that improve TCR binding will be helpful in further 

assessing and improving our design framework. Molecular evolution experiments can provide 

such data, although because multiple mutations are often found in affinity-matured molecules, 

identifying the impact of individual mutations can be difficult. Perhaps a more promising source 

for such data could be deep mutational scanning experiments, which sample the effects of every 

amino acid at multiple positions in one experiment (Fowler and Fields, 2014; Whitehead et al., 

2012). Our recent deep mutational scanning experiments with the A6 and variant TCRs provide 

several promising examples of polar/charged mutations that appear to favorably impact binding 

(Harris et al., 2016), and careful analysis of these will be helpful. 

Lastly, our approach was also able to account for the effects of mutations in the HLA-A2 protein 

as well as peptide substitutions. This raises the possibility of using computational design not only 

for engineering TCRs to modulate their binding properties, but also ligands with enhanced 

affinity for select TCRs. Such an approach has been proposed as a novel means for peptide-based 

vaccine design (McMahan and Slansky, 2007; Piepenbrink et al., 2009), and could be useful in 

the development of new T-cell detection or imaging reagents. Additionally, the capacity to 

accurately score peptide variants could allow for computationally assessing the cross-reactivity 

of TCRs or the reactivities of peptide sets. This could prove useful for predicting and controlling 

off target toxicity for TCRs used clinically or identifying reactive self-antigens in autoimmunity, 

transplantation or vaccination. 
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Figure S2. Root mean square fluctuations from MD simulations of free and bound TCRs and pMHC complexes. 
For TCRs, shaded boxes indicate the locations and values of the six CDR loops. Data for the A6 and B7 TCRs 
is from Ayres et al., 2016.

Figure S1. Representative TCR-pMHC SPR binding data for experiments shown in Table S1.
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Figure S4. Receiver operating characteristic (ROC) curve for predictions in the LC13 system. The area under the 
curve is 0.84, indicating good predictive performance when separating affinity increasing mutations from affinity 
decreasing mutations

Figure S3. Performance of our improved framework on new TCR mutations, HLA-A2 mutations, and peptide variations 
when evaluated using binding rather than complex scores. All point mutation data examined in evaluating our new 
framework, including TCR, peptide, and HLA-A2 data, are plotted together, excluding data used in training. The overall 
correlation between prediction and experiment with binding scores is 0.66, compared to 0.86 when using complex 
scores (compare with Fig. 7a).
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Table S1. New binding data for TCR mutations and peptide substitutions in the B7, DMF5, and DMF4 
TCR-pMHC interfaces 

TCR Peptidea TCR mutation or 
peptide substitution ΔΔG° (kcal/mol) Error (kcal/mol) 

B7 Tax S27αM -0.43 0.08 
B7 Tax D30αQ >2 NDb 

B7 Tax S50αY -0.73 0.09 
B7 Tax M93αE >2 ND 

B7 Tax M93αQ 1.94 0.1 
B7 Tax Q102αW 0.56 0.14 
B7 Tax P97βW >2 ND 

B7 Tax G98βF 0.82 0.09 
B7 Tax G99βY -0.39 0.11 
B7 Tax G99βW -0.47 0.08 
B7 Tax S27αM/G99βY -1.15 0.1 
B7 Tax pF3A 2.7 0.02 
B7 Tax pY5A 3.28 0.11 
B7 Tax pY5F 0.55 0.04 
B7 Tax pY8A 2.76 0.07 

DMF5 ELA D26αF -0.43 0.1 
DMF5 ELA R27αF -0.3 0.13 
DMF5 ELA K96αW -0.65 0.12 
DMF5 ELA T54αI 0.33 0.12 
DMF5 ELA S99βF >2 ND 

DMF5 ELA S99βH 1.48 0.11 
DMF5 ELA S99βI 1.36 0.09 
DMF5 ELA S99βL 2.27 0.03 
DMF5 ELA S99βT 0.4 0.13 
DMF5 ELA pE1A 0.06 0.19 
DMF5 ELA pE1D 1.3 0.26 
DMF5 ELA pE1F 2.26 0.06 
DMF5 ELA pE1Q 1.0 0.03 
DMF5 ELA pI5E 3.07 0.18 
DMF5 ELA pG6-Sarc -0.58 0.07 
DMF5 ELA pL8A >3 ND 

DMF5 ELA pT9A 1.6 0.03 
DMF5 ELA pT9W >3 ND 

DMF4 ELA S26αW -0.63 0.04 
DMF4 ELA T92αW -0.38 0.06 

 

aTax = HTLV Tax11-19 (LLFGYPVYV); ELA = MART-126(27L)-35 (ELAGIGILTV) 
bND =  not determined 



Table S2. Descriptive breakdown of training set data 

Total mutations in training set 94  
Polar/charged WT residues 56 (60%) 
Polar/charged mutant residues 24 (26%) 
Mutations with polar/charged WT & mutant residues 11 (12%) 
Large hydrophobic/aromatic WT residues1 14 (16%) 
Large hydrophobic/aromatic mutant residue 41 (44%) 
Mutations with large hydrophobic/aromatic WT & mutant residues 7 (7%) 
Alanine mutations2 22 (23%) 
Alanine mutations with large/hydrophobic WT residues 5 (5%) 
1Large hydrophobic/aromatic residues defined as Y/W/L/I/F/M 
2Excluding mutations with glycine WT residues 
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