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Toll/IL-1R resistance (TIR) domain–containing adapter-inducing
IFN-β (TRIF) is a Toll-like receptor (TLR) adapter that mediates
MyD88-independent induction of type I interferons through acti-
vation of IFN regulatory factor 3 and NFκB. We have examined
peptides derived from the TRIF TIR domain for ability to inhibit
TLR4. In addition to a previously identified BB loop peptide (TF4),
a peptide derived from putative helix B of TRIF TIR (TF5) strongly
inhibits LPS-induced cytokine and MAPK activation in wild-type
cells. TF5 failed to inhibit LPS-induced cytokine and kinase activa-
tion in TRIF-deficient immortalized bone-marrow–derived macro-
phage, but was fully inhibitory in MyD88 knockout cells. TF5 does
not block macrophage activation induced by TLR2, TLR3, TLR9, or
retinoic acid-inducible gene 1/melanoma differentiation-associated
protein 5 agonists. Immunoprecipitation assays demonstrated that
TF4 binds to TLR4 but not TRIF-related adaptor molecule (TRAM),
whereas TF5 binds to TRAM strongly and TLR4 to a lesser extent.
Although TF5 prevented coimmunoprecipitation of TRIF with
both TRAM and TLR4, site-directed mutagenesis of the TRIF B
helix residues affected TRIF–TRAM coimmunoprecipitation selec-
tively, as these mutations did not block TRIF–TLR4 association.
These results suggest that the folded TRIF TIR domain associates
with TRAM through the TRIF B helix region, but uses a different
region for TRIF–TLR4 association. The B helix peptide TF5, how-
ever, can associate with either TRAM or TLR4. In a mouse model
of TLR4-driven inflammation, TF5 decreased plasma cytokine levels
and protected mice from a lethal LPS challenge. Our data identify
TRIF sites that are important for interaction with TLR4 and TRAM,
and demonstrate that TF5 is a potent TLR4 inhibitor with signifi-
cant potential as a candidate therapeutic for human sepsis.

signaling complex assembly | TLR4 targeting | TIR domain recognition site |
decoy peptides

Toll-like receptors (TLRs) initiate innate immune responses
by recognizing specific pathogen-associated molecules; for

example, TLR4 recognizes lipopolysaccharides (LPSs) of Gram-
negative bacteria (1, 2). Ligand recognition induces dimerization
of cytoplasmic Toll/IL-1R resistance (TIR) domains of two re-
ceptor molecules and causes recruitment of intracellular TIR
domain-containing adapters. Four adapter proteins participate in
TLR4 signaling: myeloid differentiation factor 88 (MyD88) (3), TIR
domain-containing adapter protein, also known as MyD88-adapter-
like (TIRAP–Mal) (4, 5), TIR domain–containing adapter-inducing
IFN-β, also known as TLR adaptor molecule 1 (TRIF–TICAM-1)
(6, 7), and TRIF-related adaptor molecule also known as TLR
adaptor molecule 2 (TRAM–TICAM-2) (8, 9). TIRAP–Mal is
important for MyD88 recruitment to the signaling complex located
at the plasma membrane to initiate early NF-κB and mitogen-
activated protein kinase (MAPK) activation and induce “MyD88-
dependent” proinflammatory cytokines, such as TNF-α and IL-1β
(4, 5, 10). TRAM is important for TRIF recruitment to the endo-
somally located TLR4 signaling complexes to activate IFN regula-
tory factor 3 (IRF3) and induce IRF3-dependent cytokines, such as

IFN-β and RANTES (regulated upon activation normal T-cell
expressed and secreted) (8, 9, 11).
A typical TIR domain consists of the central five stranded

parallel β sheets (the strands are designated as βA–βE) sur-
rounded by 5 α-helices (i.e., αA–αE) (12, 13). The TIRAP–Mal
TIR domain has an atypical fold compared with other resolved
mammalian TIR structures in that the position of its β-strand B is
shifted by 12–18 amino acids toward the C terminus, so that
TIRAP TIR does not have a helix B but has an unusually long
AB loop (14, 15). Structures of the TIR domains of TLR4,
TRIF, and TRAM have not been yet resolved. The TIR domain
is a key structural feature present in all TLRs and TLR adapter
proteins. TIR domains mediate transient homotypic or hetero-
typic protein interactions required for agonist-driven assembly of
TLR signaling complexes (13, 16, 17). Multiple interactions of
TIR domains of TLRs and TLR adapters are required to me-
diate adapter recruitment and stabilize initial complex (18–20).
It has been proposed that TLR4 activation leads to formation of
several compositionally distinct complexes. Kagan et al. pro-
posed that TLR4 engages TIRAP–MyD88 and TRAM–TRIF
sequentially at distinct cellular locations (11), thus implying that
the two sets of adapters may compete for the same binding site
at the TLR4 homodimer. However, it remains unclear how exactly
the four adapters interact with each other and TLR4 to orches-
trate TLR4 signaling.
The presumed mechanism of signaling inhibition by a decoy

peptide is that the peptide competes with its prototype protein
for the prototype’s docking site and thereby prevents a protein–
protein interaction required for signaling (19). In this study, we
have examined cell-permeable decoy peptides derived from the
TIR domain of TRIF. Two peptides, TF4 and TF5, from the
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second loop (BB loop) and the second helical region (helix B) of
the TRIF TIR, respectively, potently inhibited LPS-induced ac-
tivation of MAPKs and induction of MyD88-dependent and
TRIF-dependent cytokines in wild-type macrophages. TF5 did
not inhibit TLR4 signaling in TRIF−/− immortalized bone-
marrow–derived macrophages (iBMDMs) but did exhibit full
activity in the MyD88−/− cells. TF5 inhibits TLR4-driven macro-
phage signaling at a lower dose in vitro compared with TF4 and
binds to both TRAM and TLR4, whereas TF4 targets TLR4 but
not the TRAM TIR. In a mouse model of TLR4-driven inflam-
mation, TF5 potently decreased the systemic cytokine levels in-
duced in mice by a sublethal LPS dose, and dramatically improved
survival of mice challenged with a lethal LPS dose.

Results
Peptides Derived from the BB Loop (TF4) and B Helix (TF5) of TRIF TIR
Inhibit TLR4-Mediated Macrophage Activation. The TRIF-derived
peptide library was designed similarly to the TLR4, TIRAP, and
TRAM libraries as reported previously (20–22). Sequences of
TRIF peptides are provided in Table S1. Each peptide was
synthesized contiguously with the cell-permeating sequence of
Antennapedia homeodomain (RQIKIWFQNRRMKWKK) (Antp)
(23) located at the N terminus. Peptide effects on LPS-induced
cytokine mRNA expression were first measured. Murine peri-
toneal macrophages were pretreated with peptides at 5 or
20 μM for 30 min and then stimulated with LPS (100 ng/mL) for
1 or 5 h. TF5, a decoy peptide derived from the Β helix of TRIF
TIR, was most inhibitory among TRIF peptides; it potently
inhibited the LPS-induced mRNA expression of MyD88-
dependent (e.g., TNF-α and IL-1β) as well as “TRIF-dependent”
(e.g., IFN-β and RANTES) cytokines, even at the lower dose of
5 μM (Fig. 1A). Another inhibitory peptide, TF4, was derived
from the BB loop of TRIF TIR. This peptide was identified as
moderately inhibitory in our earlier study that compared pep-
tides derived from BB loops of four TLR adapters (24). TF4 was
effective only at the higher dose of 20 μM (Fig. 1 A–C). IL-6 is
induced later than the other cytokines studied; therefore, IL-6
expression was measured 5 h poststimulation. IL-6 mRNA ex-
pression was suppressed markedly by TF5 at 5 μM and TF4 at
20 μM (Fig. 1A). We next examined the effect of these TF4 and
TF5 inhibitory peptides on TLR4-mediated cytokine secretion.
Macrophage supernatants were collected 24 h after LPS stimu-
lation, and cytokine protein levels (e.g., TNF-α, IL-6, IFN-β,
RANTES) were measured by ELISA. IL-1β was measured in cell
lysates. Consistent with the effect of peptides on cytokine gene
expression, TF5 exerted a stronger inhibitory effect on pro-
duction of all five cytokines examined, whereas TF4 inhibited
less efficiently (Fig. 1B).
The effects of TRIF peptides on MAPK activation (p38, ERK,

and JNK) were also examined. Murine macrophages were pre-
treated with peptides for 30 min, stimulated with LPS, and lysed
30 min poststimulation. Consistent with peptide effects on cyto-
kine mRNA expression, both TF5 and TF4 blocked the activation
of all three MAPKs at 20 μM (Fig. 1C). Inhibitory TRIF peptides
did not affect cell viability in the MTT (3-(4,5-Dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide) viability assay that involved
a 2 h incubation and concurrent stimulation of cells with LPS
(Fig. S1A), indicating that the inhibition was not due to cellular
toxicity. The peptides were also tested for their possible agonist
activity. Except for TF11, the peptides did not activate p38
MAPK (Fig. S1B). LPS induces STAT1-Y701 phosphorylation
through autocrine activation of type I IFN receptor by IFN-β
(25). Fig. 1D demonstrates that TF5 efficiently blocks IFN-β
response and abolishes STAT1-Y701 phosphorylation.

Structural Analysis of TF4 and TF5 Peptides. We used circular di-
chroism (CD) spectroscopy to analyze solution structures of in-
hibitory TRIF peptides. Because peptides contain a common
Antennapedia homeodomain internalization sequence, Antp,

TF4, and TF5 spectra were referenced against that of Antp to
enable deduction of structures of TRIF-specific parts of these
peptides. The spectra of TF4, TF5, Antp, and the Antp-refer-
enced spectra of TF4 and TF5 are shown in Fig. S2. Antp pep-
tide is known to be disordered in aqueous solutions and adopt an
α-helical structure in less polar environments or upon binding to
lipid membranes (26–28). According to our data analyzed by
K2d algorithm (29), Antp is 7% α helical, 51% β strand, and 42%
coil. This structure is consistent with findings of Czajlik et al. and
Chrisiaens et al., who found that Antp in aqueous solution is
11% and 10% α helical, respectively (27, 28). Analysis of the
Antp-referenced TF4 spectrum suggested that the decoy part of
TF4 is predominantly a coil, as the peptide is 2% α helical, 17% β
strand, and 81% coil. Similar analysis suggested that the decoy
part of TF5 is 27% α helical, 32% β strand, and 41% coil. Thus,
TF5 appears to be more helical in solution than TF4, yet the coiled
conformation predominates in the solution structure of both pep-
tides. Similar results were obtained using the Self-Consistent
Method algorithm (SELCON3) (30). These findings agree with the
notion that peptides derived from a natural protein tend to prefer
the conformation they assume in the context of the folded protein

Fig. 1. Peptides derived from the BB loop (TF4) and B helix (TF5) of TRIF TIR
inhibit TLR4-mediated macrophage activation. (A and B) Mouse peritoneal
macrophages were incubated with 5 (black bars) or 20 (open bars) μM of
indicated peptides for 30 min before LPS stimulation (100 ng/mL). (A) Cy-
tokine mRNA expression was measured by real-time PCR 1 h (TNF-α, IL-1β,
IFN-β, and RANTES) or 5 h (IL-6) after LPS stimulation and was normalized to
the expression of the Hprt housekeeping gene. (B) Supernatants were col-
lected 24 h after LPS stimulation and analyzed for TNF-α, IL-6, IFN-β, and
RANTES by ELISA. IL-1β was measured in cell lysates. Means ± SEM of three
independent experiments are shown in A and B. *P < 0.01. (C and D) Cell
lysates were analyzed for activated forms of MAPKs or STAT1 30 min or 2 h
after LPS stimulation, respectively. C and D represent one of three separate
experiments. BD, below detection limit; CP, control peptide.
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because packing in natural proteins is, in general, energy-opti-
mized; yet peptides also demonstrate a higher degree of structural
heterogeneity due to higher mobility of their termini (31).

Specificity of TLR4 Inhibition by TRIF Peptides. The specificity of
TLR4 inhibition by TRIF peptides was studied next. TF3 was
used as a noninhibitory control peptide in these experiments.
TF4 inhibited IFN-β mRNA transcription in mouse macro-
phages stimulated with poly (I:C) (50 μg/mL) for 5 h (Fig. S3A).
However, the inhibition of IFN-β mRNA was relatively weak
and did not prevent the TLR3-induced phosphorylation of
STAT1-Y701 (Fig. S3C). In sharp contrast with the potent in-
hibition of TLR4-mediated macrophage activation, neither TF4
nor TF5 affected induction of TNF-α and IL-1β mRNA, or
MAPK phosphorylation induced by TLR2 agonists P3C or P2C
(Fig. S3 B and D). Neither TLR9– nor retinoic acid-inducible
gene 1- (RIG-I)–like receptor-mediated IFN-β activation in-
duced by oligonucleotide (ODN) 1668 and poly (I:C) LyoVec,
respectively, was affected by TF4 or TF5 (Fig. S3 A and C).

Peptide Derived from the Conserved Segment of TF5 Efficiently
Inhibits TLR4 in Mouse and Human Cells. The putative B helix of
the TRIF TIR domain is conserved in mice and humans. Nine
consecutive N-terminal amino acids of the region represented by
TF5 are identical in both species. Thus, we next compared the
inhibitory efficiency of original TF5 (CLQDAIDHSGFT) with
that of the conserved part of TF5, CLQDAIDHS (TF5-ΔC),
and the homologous sequence derived from the human TRIF,
CLQDAIDHSAFI (hTF5). All three peptides potently inhibited
LPS-induced cytokine and MAPKs activation in primary mouse
macrophages (Fig. 2 A and B) and differentiated THP-1 cells
(Fig. 2 D and E), thereby suggesting that nine N-terminal amino
acids are responsible for TLR4 inhibition by TF5.

Inhibition of TLR4 by TF5 Is TRIF-Dependent. Next, we studied how
TRIF peptides, which are inhibitory in wild-type cells, affect
TLR4 signaling in TRIF- and MyD88-deficient cells. TF5 and
TF5-ΔC inhibited activation of TLR4 in wild-type iBMDMs as
potently as in wild-type peritoneal macrophages (Figs. 1 A and C
and 2 F and H). In remarkable contrast with this observation,
TF5 and TF5-ΔC neither prevented activation of TNF-α and
IL1-β in TRIF-deficient iBMDM (Fig. 2F) nor inhibited MAPK
or IkB kinase (IKK)-α/β phosphorylation (Fig. 2H). Interestingly,
TF5 retained full inhibitory activity in MyD88-deficient peritoneal
macrophages (Fig. 2 G and I). These data strongly suggest that
TF5 targets a protein of the TRIF-dependent pathway, with
TRAM being the most likely target candidate.
TF4, a weaker inhibitor of TLR4 in wild-type macrophages,

did not inhibit TNF-α and IL-1β in iBMDMs (Fig. 2F), perhaps
due to differences in cell background. Therefore, it is hard to tell
whether inhibition of these genes by TF4 is TRIF pathway–
dependent; yet it should be noted that IFN-β and RANTES are
more weakly inhibited by TF4 in MyD88-deficient macrophages
compared with wild-type cells (Fig. 2G). Absence of IFN-β mRNA
induction in TRIF-deficient cells (Fig. 2F) and weak induction of
IL-1β mRNA in MyD88-deficient cells (Fig. 2G) are shown to
confirm cell phenotypes.

TF5 Binds Both TRAM and TLR4 and Blocks Both TRIF–TRAM and TRIF–
TLR4 Coimmunoprecipitation, Whereas TF4 Binds TLR4 Selectively and
Blocks Only TRIF–TLR4 Association. To understand the specificity of
TLR4 targeting by TF4 and TF5, we conducted dot blot peptide
binding assays. Lysates of HEK293T cells expressing Flag-tagged
TLR4 or TRAM were incubated with 20 μM of TF4 or TF5 for
1 h and then immunoprecipitated with anti-Flag antibody. The
precipitates were analyzed by dot blotting for TF4 and TF5
using an antibody to the translocating segment of Antennapedia,
present on both peptides. Peptide 4BB was used as a positive
binding control for TLR4, as we previously demonstrated strong

binding for this peptide–protein pair by FRET (20). Data suggest
that TF5 binds to TLR4 and TRAM, whereas TF4 binds only to
TLR4 and not TRAM. Binding of TF4 to TLR4 was consistently
stronger than TF5 but weaker than 4BB (Fig. 3A). The non-
inhibitory peptide TF3 did not bind TLR4 or TRAM (Fig. 3 A
and B). Thus, this analysis suggests that TLR4 binds TF4 and, to
a lesser extent, TF5, whereas TRAM is targeted by TF5. Next,
we used coimmunoprecipitation (co-IP) to study if TF4 and TF5
disrupt binary interactions between TRIF and either TLR4 or

Fig. 2. Conserved segment of TF5 inhibits TLR4 in mouse and human cells.
TLR4 inhibition by TF5 is TRIF-dependent. Experimental details are as in Fig.
1. We preincubated 2×106 mouse wild-type (A and B) or MyD88-deficient
(G and I) peritoneal macrophages or differentiated THP-1 cells (D and E ) or
wild-type or TRIF-deficient iBMDMs (F and H) with 20 μM of indicated
peptides for 30 min and stimulated them with LPS (100 ng/mL). (A, D, and F)
LPS-induced TNF-α, IL-1β, and IFN-β mRNA were measured 1 h after LPS chal-
lenge. RANTES mRNA (G) and phospho–STAT-1 (I) was measured 3 h post-
stimulation. Means ± SEM of three independent experiments are shown. *P <
0.01. (B, E, and H) MAPKs and IKK activation was measured 30 min after LPS
stimulation. Western blots shown represent three separate experiments. The
sequences of human and murine TF5 and TF5-ΔC are presented in C.
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TRAM. A plasmid that encodes an HA-tagged TIR domain of
TRIF (TRIF TIR-HA) was transfected to HEK293T cells to-
gether with plasmids that encode Flag-tagged TLR4 or Flag-
tagged TRAM, and the peptide effects on TRIF association with
TLR4 and TRAM were studied by co-IP. Our data suggest that
the TIR domain of TRIF can be coimmunoprecipitated with
TLR4 and TRAM. Both inhibitory TRIF peptides block TRIF–
TLR4 interaction, whereas the noninhibitory peptide TF3 had

no effect. This observation is consistent with the observation that
both peptides, TF4 and TF5, bind TLR4. Only the TF5 peptide,
and not the TF4 peptide, blocked TRIF–TRAM association
(Fig. 3D). This observation supports the dot blot data that show
that only TF5, and not TF4, binds to TRAM (Fig. 3B). These
data suggest that TF5 interacts with both TLR4 and TRAM
TIRs and thereby can block a wider set of TIR–TIR interactions.
Interestingly, neither TF4 nor TF5 bound to MyD88 or TIRAP
TIR domains (Fig. S4 A and B).

Residues Ile-448, Asp-449, and His-450 Within Region 5 of TRIF TIR Are
Important for TRIF–TRAM, Not TRIF–TLR4, Association. Our data
demonstrate that TF5 potently inhibits TLR4 signaling (Fig. 1)
and binds to both TRAM (Fig. 3B) and TLR4 (Fig. 3A). These
findings suggest that the B helix of TRIF TIR might be a func-
tionally important TIR–TIR interface. To confirm this hypoth-
esis, we engineered two TRIF TIR variants in which two groups
of residues within the B helix were substituted with alanine and
studied how these mutations affect TRIF–TLR4 and TRIF–
TRAM associations. The first mutant, designated as TRIF TIR-
QD/AA, has Gln-445 and Asp-446 residues replaced by alanine.
The second mutant, TRIF TIR-IDH/AAA, has Ile-448, Asp-449,
and His-450 substituted with alanines. Although QD/AA sub-
stitution only weakly affected the binding of TRIF TIR to TLR4
or TRAM, the IDH/AAA substitution abolished the interaction
between TRAM and TRIF, but not the TRIF–TLR4 interaction
(Fig. 3 E and F). These data confirm that the B helix of TRIF
TIR mediates the interaction of TRIF and TRAM TIR domains
and indicate that residues Ile-448, Asp-449, and His-450, which
are highly surface-exposed (Fig. S5, Right), are critical for TRAM
and TRIF interaction. Additionally, TF45, a peptide that rep-
resents the border area between regions 4 and 5 and does not
include the residues -IDH- (Table S1), does not inhibit TLR4
signaling (Fig. S6).

TF5 Blunts LPS-Induced Cytokine Response and Improves Survival of
Mice After LPS Challenge. We next examined TF5 in vivo. C57BL/
6J mice were treated with TF5 or CP (10 nmol/g mouse weight)
i.p. (Fig. 4A) or i.v. (Fig. 4B) 1 h before administration of a non-
lethal LPS dose (1 μg/g). Plasma TNF-α and IL-6 were measured
immediately before and 1, 2, and 4 h after LPS administration.
The i.p. administration of TF5 dramatically decreased systemic
levels of TNF-α and IL-6 induced by a sublethal LPS dose
throughout the observation period (Fig. 4A). The i.v. TF5 ad-
ministration affected systemic cytokine levels less strongly than
the i.p. administration; nevertheless, the effect of i.v. TF5 on
circulating IL-6 at the 2 and 4 h time points was highly significant
(Fig. 4B). We next studied whether TF5 would protect mice from
a lethal LPS challenge. LPS (20 μg/g) was injected into animals

Fig. 3. TF5 targets TLR4 and TRAM and blocks TRIF interaction with TLR4
and TRAM, whereas TF4 is selective to TLR4 and blocks only TLR4–TRIF as-
sociation (A–D). Mutations within the area represented by TF5 affect TRIF–
TRAM, not TRIF–TLR4, association (E and F). (A and B) Extracts of HEK293T
cells expressing Flag-tagged TLR4 or TRAM were incubated with peptides for
1 h and immunoprecipitated with anti-Flag antibody followed by dot blot
assay with anti-Antp antibody. (C and D) HEK293T cells were transfected with
plasmids as indicated. Forty-eight hours posttransfection, cells were treated
with 20 μM of the indicated peptide for 1 h. Lysates were immunoprecipitated
with anti-Flag antibody and the interacting complex was assessed using anti-
HA antibody. (E and F) Residues Ile-448, Asp-449, and His-450 of TRIF are im-
portant for TRIF and TRAM association. We cotransfected 0.5 μg HA-tagged
TRIF TIR plasmids with 10 μg Flag-tagged TLR4 or 1 μg Flag-tagged TRAM
constructs into HEK293 cells. Protein complexes were immunoprecipitated with
anti-Flag antibody and blotted with anti-HA antibody. The whole-cell lysates
(WCLs) were used to control for the expression levels of TRIF TIR, TRAM, or
TLR4 in C–F. Data in A–F represent one of three independent experiments.

Fig. 4. TF5 suppresses LPS-induced cytokine activation in vivo and protects mice from lethal endotoxemia. (A and B) C57BL/6J mice were injected i.p. with
a sublethal dose of purified E. coli K235 LPS (1 μg/g body weight), and plasma TNF-α and IL-6 levels were measured before and 1, 2, and 4 h after LPS
challenge. Peptides (10 nmol/g) or PBS were injected i.p. (A) or i.v. (B) 1 h before LPS administration. The means ± SEM of values obtained from five plasma
samples are shown. *P < 0.01. (C) Survival of C57BL/6J mice pretreated with peptides for 1 h and challenged with a lethal LPS dose (20 μg/g). TF9 was used as
a noninhibitory CP. Significance of differences in survival rate was determined by the Mantel–Cox log-rank test using GraphPad Prism software. **P < 0.001.
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i.p. This dose of LPS induced 100% mortality in control groups
of mice (Fig. 4C). Pretreatment of mice with 10 nmol/g of TF5
rescued 9 of 11 mice challenged with the lethal LPS dose (Fig. 4C),
whereas the noninhibitory TF9 peptide did not improve survival
(Fig. 4C). The survival rate improvement in the TF5-treated group
is highly significant compared with both control groups—that is,
vehicle- (PBS-) and TF9-treated group (P < 0.001). The results
presented demonstrate that TF5 effectively suppresses the sys-
temic TLR4-mediated inflammation and validate peptides or
peptidomimetics designed based on the structure of the B helix of
TRIF TIR as drug candidates for the development of thera-
peutics for treatment of TLR4-driven septic shock.

Discussion
This study examines decoy peptides derived from the TIR do-
main of the TLR adapter TRIF and thereby extends our prior
work that examined sets of similarly designed peptides from
TLR4, TRAM, and TIRAP (20–22). Two TRIF peptides, TF4
and TF5, which, based on structural alignments, are derived from
the BB loop and the B helix, the region immediately following the
BB loop, inhibit TLR4 signaling. The BB loop peptide was iden-
tified previously as a moderately inhibitory peptide compared with
peptides derived from the BB loop of the four TLR4 adapters
(24). The sequence of the newly identified inhibitory TF5 peptide
is not similar to any decoy peptide previously identified by us
or others as a TLR4 inhibitor (20–22, 32–34). One example of
dissimilarity of inhibitory sequences is the peptides derived
from region 5 of TIRAP (ELCQALSRSHCR) (21) and TRIF
(CLQDAIDHSGFT) that have only three amino acids posi-
tioned identically. Divergence of inhibitory sequences has long
been recognized (19) and stems from dissimilarity of surface-
exposed residues in TIR domains (35). It should also be noted
that region 5 is largely helical in the resolved structures of TIR
domains of TLR2 (13), TLR1 (13), TLR10 (36), and IL-1RAPL
(37), whereas the MyD88 TIR has a shorter helix B (38) and the
homologous region of TIRAP/Mal does not form a helix (14, 15).
Each set of TIR decoy peptides we have examined contained

several peptides that potently inhibit TLR4 signaling. The inhibitory
peptides derive from different structural regions of TIR domains.
For example, the BB loop peptides (region 4) from TLR4, TRAM,
and TRIF TIR domains are inhibitory, whereas in the TIRAP set,
peptides derived from the flanking regions, TR3 and TR5 peptides,
are more potent inhibitors (21). Peptides from region 5 were in-
hibitory in TIRAP and TRIF libraries, not in TLR4 or TRAM li-
braries, whereas in the TRAM library, the C helix peptide (region
6), but not B helix peptide, was inhibitory. These findings reflect and
support the generalization that positions of TIR–TIR interaction
sites are not conserved among TIR domains (19).
The peptide binding assay has demonstrated that the TRIF B

helix peptide, TF5, binds to both TRAM and TLR4, whereas the
BB loop peptide, TF4, is more selective and binds to TLR4, but
not TRAM (Fig. 3 A and B). In full accordance with this binding
pattern, TF5 blocked interactions of TRIF with both TRAM and
TLR4 in co-IP assays, whereas TF4 affected TRIF–TLR4 but
not TRIF–TRAM interaction (Fig. 3 C and D). Alanine sub-
stitutions introduced into the TRIF TIR region that corresponds
to TF5, however, affected TRIF co-IP more selectively than the
TF5 blocking peptide. The replacement of -IDH- residues lo-
cated in the center of TF5 with alanines abolished TRIF–TRAM
co-IP, whereas this mutation had little or no effect on TRIF–
TLR4 interaction (Fig. 3 E and F). This strong and selective
effect of these residues on TRIF–TRAM interaction, further
supported by the ability of the corresponding peptide to block
this protein interaction, suggests that the B helix of TRIF is
a part of the functional TRIF–TRAM interface. Replacement
of -QD- residues, which are located in the B helix coil, which pre-
cedes the IDH site, did not significantly affect the TRIF–TRAM
co-IP, indicating a lesser contribution of these amino acids to
TRIF–TRAM recognition and binding. Collectively, our binding

studies suggest that the folded TRIF binds TRAM through the B
helix of TRIF TIR, whereas TRIF–TLR4 interaction is likely
mediated by the BB loop of TRIF TIR. The peptide derived
from the B helix of TRIF, TF5, however, can bind to both
TRAM and TLR4 and thereby block both TRIF–TRAM and
TRIF–TLR4 interaction. Thus, TF5 binding to TLR4 appears to
represent an example of a peptide derived from a protein–protein
interface that has a wider set of binding partners compared with
the same peptide sequence in the context of the folded protein.
Less specific binding and higher affinity of a peptide–protein in-
teraction (compared with that of the protein–protein interaction)
might be due to higher conformation flexibility of peptides and
was anticipated for some cases (19). Although binding of TF5 to
TLR4 is unlikely to represent a functionally important TIR–TIR
interaction, the ability of TF5 to bind to TLR4 and block an
additional interaction of TIR domains may be a critical factor
that makes this peptide a good inhibitor in wild-type cells and
in vivo. We think that the finding that TF5 has multiple binding
partners among TIR domains of proteins that mediate TLR4
signal transduction is very important for understanding the mech-
anisms of signaling inhibition by decoy peptides.
In wild-type macrophages, TRIF peptides, similarly to in-

hibitory peptides from other TIR domains that we identified
previously (20–22), inhibit cytokine genes traditionally associated
with the TRIF-dependent, as well as the TRIF-independent,
MyD88-dependent pathway (Fig. 1). However, TF5 did not block
the MyD88-dependent responses in TRIF-deficient iBMDMs
(Fig. 2 F and H). This finding strongly confirms that direct
binding of TF5 to TRAM is the key mechanism of TLR4 inhi-
bition by TF5. The ability of TF5 to block the MyD88-dependent
genes in wild-type cells, but not in TRIF-deficient cells, in our
opinion, is not controversial because these TRIF- and MyD88-
dependent pathways that were first identified based on observa-
tions obtained using gene knockout models activate significantly
overlapping sets of transcription factors and genes (4, 9, 39, 40),
and therefore, both pathways—that is, all four adapters—are
important for full activation of cytokine genes in wild-type cells.
Targeting the MyD88-dependent genes in wild-type cells by TRIF
peptides can also be explained by the fact that both peptides bind
TLR4 (Fig. 3A) and thereby can interfere with recruitment of
adapters of the MyD88-dependent pathway. Interestingly, viral
inhibitory peptide of TLR4 (VIPER) also demonstrates broad
inhibitory specificity, as this peptide blocks LPS-induced acti-
vation of TNF-α, macrophage inflammatory protein 2 (MIP-2),
RANTES, and IL-6 in iBMDMs (34).
TF5, the more potent TLR4-inhibitory TRIF peptide in vitro,

was examined in vivo. TF5 potently diminished systemic LPS-
induced cytokine response (Fig. 4A). In survival tests, TF5 res-
cued more than 80% of animals injected with an LPS dose that
caused 100% mortality in the control group (Fig. 4C). Efficiency
of TF5 administered i.p. was higher than that after i.v. admin-
istration. A similar pattern was noted previously for TM4 and
TM4-ΔC; these two TRAM-derived peptides also provided more
efficient anti-inflammatory protection after i.p. administration (22).
Results of in vivo experiments demonstrate that TF5 effectively
suppresses the systemic TLR4-mediated inflammation and thus
validate peptides or peptidomimetic designed based on the struc-
ture of B helix of TRIF TIR as drug candidates for development of
therapeutics for treatment of TLR4-driven septic shock.
In summary, this study identifies TRIF TIR domain-derived

peptides that effectively block TLR4 signaling in vivo. Our data
suggest that TLR4 adapters TRIF and TRAM interact through
the B helix of TRIF.

Materials and Methods
Mice, Cells, and Treatment. C57BL/6J mice, including the MyD88-deficient
strain, were obtained from the Jackson Laboratory. Harvesting, culturing, and
stimulation of peritoneal macrophages were described previously (24). THP-1
cells were cultured in 10% (vol/vol) FCS cRPMI-1640 and differentiated by 3 d
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incubation in the presence of 10 nM phorbol myristate acetate (PMA).
Immortalized wild-type and TRIF-deficient BMDM were a kind gift of Kate
Fitzgerald (University of Massachusetts Medical School, Worcester, MA).
Highly purified Escherichia coli K235 LPS (41) was used at the final concen-
tration of 100 ng/mL in cell culture experiments. We also used 2,3-bis(pal-
mitoyloxy)-(2-RS)-propyl-N-palmitoyl-(R)-Cys-Ser-Lys4-OH (P3C) and S-[2,3-bis
(palmitoyloxy)-(2-RS)-propyl]-[R]-Cys-Ser-Lys4-OH (P2C) (EMC Microcollections).
ODN 1668 and low molecular weight polyinosinic-polycytidylic acid [poly
(I:C)] in complex with LyoVecTM were obtained from InVivoGen.

Expression Vectors. Full-length TLR4-Flag, TRAM-Flag, or the TRIF TIR-HA
constructs were generated by PCR amplification of mouse TLR4, TRAM, or the
TIR domain of mouse TRIF cDNA and cloned into the pEF-BOS vector with
C-terminal Flag or HA tag. MyD88 TIR-Cer and TIRAP-Cer plasmids were
made by PCR amplification of mouse MyD88 or TIRAP cDNA and cloning into
the mTLR4-Cer construct (20) by replacing the TLR4 coding sequence. The
alanine substitutions in TRIF TIR were generated by site-directed muta-
genesis using the kit from Agilent Technologies, Inc.

Immunoblotting and Co-IP. HEK293T cells were transfected using Superfect
Transfection Reagent (Qiagen) and lysed 48 h posttransfection as described
previously (22). Rabbit antibody against phospho-ERK, phospho-JNK, STAT1-
Y701, total STAT1, and GAPDH were from Cell Signaling Technology. Rabbit
anti–phospho-p38 antibody was from Promega. Mouse anti-Flag M2 and
rabbit anti-HA antibodies were from Sigma-Aldrich.

Dot Blot Analysis of Peptide–Protein Binding.We transiently transfected 2×106

HEK293T cells with 10 μg TLR4-Flag, or 1 μg TRAM-Flag, MyD88 TIR-Cer, or
TIRAP-Cer construct. Cells were lysed 48 h posttransfection, and lysate ali-
quots containing 100 μg of total protein were diluted by PBS to 500 μL and
incubated with or without peptides (20 μM) for 1 h at 4 °C, followed by 3 h
incubation with 0.5 μg of mouse anti-Flag or anti-eCFP antibody (8A6,
Origene) and 4 h incubation with 25 μL protein G Agarose beads (Roche).
The beads were then washed four times and boiled in Laemmli buffer. The
supernatants were then spotted into the PVDF membrane, followed by
immunoblotting with anti-Antp antibody (Abcam).

Animal Experiments. Eight-week-old C57BL/6J mice were injected i.p. with
E. coli K235 LPS (1 or 20 μg/g of animal weight). Peptides were administered
1 h before LPS. Survival of animals was monitored every 6–16 h after LPS chal-
lenge. All animal experiments were carried out with University of Maryland
School of Medicine Office of Animal Welfare Assurance approval.

A full description of cytokine mRNA and protein quantification, MTT
viability assay, and CD spectroscopy methods as well as detailed peptide
information are provided in SI Materials and Methods.
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