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The assessment of model fit in latent trait modelling, better known as item response theory
(IRT), is an integral part of model testing if one is to make valid inferences about the estimated
parameters and their properties based on the selected IRT model. Though important, the
assessment of model fit has been less utilized in IRT research than it should according to
research reviews in the organizational literature domain, with dominance IRT models such as the
two-parameter logistic model (2PL) and the three-parameter logistic model (3PL) being the most
non-Rasch investigated models in terms of fit assessment. However, there have been less
research investigating fit for polytomous dominance models such the Graded Response Model
(GRM), and to a lesser extent ideal point models such as the Generalized Graded Unfolding
Models (GGUM), both in its dichotomous and polytomous forms. For such reasons, examining
fit for the GGUM is paramount and should be investigated thoroughly.

The current study tests for different fit indices when calibrating the GGUM model to
generated data from different IRT models. For dichotomous items, the GGUM model is fit to
GGUM, 2PL, and 3PL generated data. For polytomous data, the GGUM model is fit polytomous
GGUM data with four response categories and the GRM. The tested outcomes consist of type |
error and power rates across 100 replications for selected number of items and sample sizes with

respect to different model fit indices utilized in previous IRT literature. The fit statistics include



both absolute and relative fit statistics such as AIC and BIC. Also, different GGUM data are
generated with different delta distribution ranges for dichotomous data when utilizing relative fit
indices.

Results from the simulation study show that relative fit indices performed well in
identifying the correct dichotomous data model (i.e., GGUM) when the delta ranges are extended
beyond the specified distribution ranges for the dominance models. Also, polytomous GGUM
data were identified as the best fitting model in almost all the cases, irrespective of the number of
items and sample size. On the other hand, the majority of absolute fit indices did not perform
well in identifying fit/misfit. Still, there were some fit indices that performed well in detecting
fit/misfit for polytomous items only. A possible reason for the shortcomings of absolute fit
indices to detect misfit for the GGUM model in general may have to do with utilizing a
particular marginal maximum likelihood estimation (MMLE) density form to calibrate the model
parameters. Based on the results, it could be said that relative fit indices show some promise in
the assessment of model fit for ideal point IRT models such as the GGUM. This applies for both

dichotomous and polytomous generated items.
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CHAPTER 1

INTRODUCTION

Fit, Data Models, and a Standard for Appraising Latent Variables

The process of estimating fit for data models of choice is important, particularly when the
assumptions of selected data models are assumed to be true. For example, fitting data to a desired
model and assessing the degree of fit is common practice in latent trait modeling such as the
Rasch model (Nye, Joo, Zhang, & Stark, 2019; Wright, 1979; Wright & Masters, 1982). Like
many other models in statistics, the Rasch model has its own assumptions such as the choice of
dimensionality and the independence between a test’s items and its respective examinees’
responses (De Ayala, 2009). Nevertheless, the benefits inherent in statistical models will not hold
if the fit between the proposed model and respective data is weak. Other latent trait models such
as the two-parameter logistic model (2PL), the three-parameter logistic model (3PL), and the
generalized graded unfolding model (GGUM) do not involve fitting data to a model per se, but
will still require fitting the model of choice to the data in order to utilize the assumptions
inherent within each model.

Despite the importance of estimating fit for validating the models’ assumptions, there is
controversy as to whether relying on pre-specified models is the ‘right’ way to go about
understanding how both manifest and latent variables function. In an article published in 2001 by
Leo Breiman, it is mentioned that data scientists should steer away from pre-specifying models,
particularly if the objective of inquiry (i.e., criterion) is related to prediction (Breiman, 2001).
Breiman argues that his work as a consultant on different projects involving predictions made

him realize the limitations of relying on pre-selected data models when making valid predictions.



For example, he draws a dividing line between the conclusions pertaining to the selected model
mechanism for making predictions versus that of algorithmic modeling, with the latter negating
the necessity for assuming that a pre-selected data model represents truth. He also criticizes the
tendency of many statisticians to fit linear models to data, and subsequently use R? to estimate
goodness of fit; an inflated index contingent on the number of parameters subsumed by the
model. He argues for the implementation of algorithmic techniques that calls for data exploration
rather than modeling. Data analysis techniques such as decision trees are recommended by
Breiman for making predictions, which are substantially utilized in machine learning contexts
when dealing with ‘large’ datasets. Although the definition of a large dataset varies between
academic disciplines, hundreds of variables within a single analysis is usually referred to as
‘large’ in machine learning domains (Raschka & Mirjalili, 2019).

The criticisms of pre-specified models and fitting them to specific data may ‘somewhat’
be reasonable if the main objective of the analysis is prediction, given the more pronounced
methodologies available for such purposes in data science. In the domain of the social sciences
however, interpretability is a major concern, and testing pre-specified models with desirable
statistical assumptions aids such a process. The availability of large datasets with hundreds of
variables are seldom utilized in the social sciences due to the difficulty of obtaining large sample
sizes. Also, dealing with a large number of variables can lead to interpreting an endless set of
interactions between the variables, which is a practice that social scientists avoid if
interpretability is at stake. For example, when conducting linear regression analysis or ANOVA,
parsimony is encouraged via utilizing the minimum number of predictive variables that can
explain the highest proportion of variance accounted for by the model. The aforementioned

process entails pre-specifying a model such as a linear regression model and keeping the number



of predictor variables to a minimum or avoiding higher order polynomial analyses when possible
(Keppel & Wickens, 2004). Such processes would in turn aid in the interpretability of the
proposed model.

Because many of the cognitive and non-cognitive variables in the social sciences fall
within the latent variable category, their intangible nature mandates pre-specified models that
should fit the data to increase the possibility of accurate interpretations. Dealing with intangible
variables (i.e., constructs) is widely investigated in the social sciences in general and psychology
in particular. For example, the seminal works of Lee Cronbach and Paul Meehl in defining
construct validity during the 50’s was introduced as many psychologists during that time
struggled with attaching absolute definitions to latent concepts. Cronbach and Meehl proposed a
‘nomological network’ that would serve to define a construct based on its relationship with other
constructs as proposed by a pre-defined theory (Cronbach & Meehl, 1955; Loevinger, 1957).
Though the formulation of construct validity is not directly related to data models and the
importance of fit estimation, it demonstrates justifiable concerns about creating a reasonable
standard for appraising latent variables. Still, modern critics of construct validity assert that
correlational models for inferring validity are problematic and should be replaced by causal ones
(Borsboom, 2009). Their arguments stem from the fact that dealing with latent constructs
becomes a tricky business as psychologists such as Cronbach and Meehl try to avoid referential
meanings, which is a practice that conforms to the school logical positivism (Borsboom, 2009).
In short, it is sort of theorizing without getting into the ontological basis of the attribute.
Navigating ontology would mandate delving into the metaphysical domain; a philosophical

territory that some empirical scientists try to avoid if they can (Janssen, 2001; Kripke, 2008).



The concerns of creating a standard to appraise and measure latent variables also
resonates with methodologists in the social sciences. For example, the premise of the Rasch
model is about creating a standard unit for measuring variables. In other words, the log odds
(logit) of a desired response can be considered a standard when measuring an attribute, given its
property to remain constant across the metric of interest (De Ayala, 2009). Another attempt to
create a standard when investigating latent variables came in the form of a unidimensional
unfolding model, pioneered by the seminal works of mathematical psychologist Clyde Coombs
(Coombs, 1964). The premise of this model is the possible existence of a common latent attribute
that is unidimensional and can be conceptualized on a single scale (i.e., referred to as the J
scale). The proposed scale allows one to gauge the different preference orderings of subjects
being tested on a particular attribute. The unfolding model allows both the respondents’
preferences and the attribute of interest to be compared in the same dimensional space such that
the distances between the respondents’ standings on the scale and the stimuli points of the
attribute represent the actual psychological proximity of the stimuli to the individual (Mclver &
Carmines, 1981). There is also a multidimensional unfolding model variant that is an extension
of the Coombs unidimensional unfolding model to multivariate response data (Bennett & Hays,
1960; Coombs, 1964; Coombs, Dawes, & Tversky, 1970). The premise of Coombs unfolding is
integrated into the derivation of ideal point models in item response theory (IRT) (Roberts &
Laughlin, 1996). The ideal point models are the focus of this paper and its different fit indices.
However, before delving into ideal point models and fit estimation comparisons, a brief

introduction to IRT and the importance of model fit is warranted.



Item Response Theory (IRT) & Model Fit

In the field of psychometrics, item response theory (IRT) data models allow the
estimation of an item’s response probability given the level of the measured attribute (Bandalos,
2018). Since its inception around 70 years ago by people such as Frederic Lord and Georg Rasch
(Lord, 1952; Wright, 1979), IRT or latent trait modelling has gained popularity among
researchers due to its methodological advantages over other psychometric models such as
classical test theory (CTT) and generalizability theory (G theory) (Cronbach, Rajaratnam, &
Gleser, 1963; Traub, 2005). IRT models provide both item location (delta 6) and theta (0) (i.e.,
person ability) invariant parameters. Invariance is a desired feature in modern testing
applications such as computer adaptive testing (CAT; Linden & Glas, 2000), test equating (Cook
& Eignor, 1989), and differential item functioning (DIF) (Tay, Meade, & Cao, 2014). The
property of invariance would also allow reliability and error indices to be independent from
specific items or people utilized for model calibration. For example, researchers can design test
items for a criterion-referenced assessment inventory that calls for a specific ability level. This
can be achieved by pre-selecting a discrimination parameter (o)) that is sample invariant and use
its value as an index to retain items that will be on the assessment inventory. Researchers can
also make use of the invariance feature in IRT to create parallel test forms, which is possible
given the independence of the difficulty index (8) from the respondents’ respective scores
(Bandalos, 2018). The invariance features in IRT would allow ability scores (6) to be compared
on a single metric, irrespective of the items (i.e., test forms) or respondents (i.e., test group) used
for the calibration process when estimating the model’s parameters; a lacking feature in other
psychometric models such as CTT in which item difficulties and discriminations are sample

dependent.



As mentioned at the outset of this paper, the advantageous features of IRT will not be
realized without confirming that a chosen IRT model actually fits the data of interest. Given that,
the estimation of model fit for IRT should be a necessary step for such latent data models.
Surprisingly, the estimation of model fit in IRT literature is not as common as it should be given
its aforementioned advantages when compared to other domains such as structural equation
modeling (SEM) (Nye et al., 2019). For example, in organizational research literature, it has
been estimated that more than 40% of published articles utilizing IRT models do not include any
fit estimations (Foster, Min, & Zickar, 2017). The choice of fitting an incorrect IRT model to a
selected data is detrimental to the many features and applications that define the usefulness of
such latent models. Such features include but not limited to the construction of assessment scales
(Roberts, Laughlin, & Wedell, 1999), the estimation of IRT parameters (DeMars, 2010), CAT
(De Ayala, Dodd & Koch, 1992), DIF (Bolt, 2002), and test equating (Kaskowitz & De Ayala,
2001). Also, as cited in Nye et al. (2019), fitting an incorrect IRT model to the data can “affect
the rank order of individuals in a sample” (p. 460), as well as validity via altering the magnitude
of correlations with external variables.

Examining IRT model data fit involves a comparison between the observed responses on
test items and those predicted by the fitted IRT model. Such a comparison usually involves
examining the squared residuals (r?.i) between the observed (xni) and predicted scores (Pnix), and
summing them up to determine the degree of misfit between the data and fitted model. Although
the aforementioned method is generic and would involve additional mathematical manipulations
for performing such the needed computations, the majority of IRT model fit methods would
follow such a premise. The process of examining and comparing residuals in IRT for model fit

estimation usually involves chi-square or likelihood-ratio tests (Ames & Penfield, 2015). These



tests share the basic premise of examining residuals to determine misfit. They differ in terms of
setting a criterion for grouping respondents based on either their ability levels or observed test
scores, which will be discussed in the next chapter. Still, there are alternative methods to model
fit estimation that are prevalent in the SEM literature, such as those involving the estimation of
approximate fit (Maydeu-Olivares & Joe, 2014), or posterior predictive checks that involves a
Bayesian approach of model evaluation (Rubin, 1984; Sinharay, Johnson, & Stern, 2006).
Although chi-square, likelihood-ratio, and approximate fit methods will be explained in further
detail in the next chapter, the paper will not be covering Bayesian methods of fit. Interested
readers are referred to Ames and Penfield (2015) and Sinharay et al. (2006).

When it comes to applying model fit estimation to IRT models, the majority of the
research literature focuses on applying fit estimation to dominance IRT models (Nye et al.,
2019). These models use a monotonically increasing function that allows the desired response
probability to increase relative to the level of the latent trait (De Ayala, 2009; Roberts &
Laughlin, 1996). In other words, respondents with higher ability levels theta (6) will have higher
probabilities of responding correctly on an item. Dominance or cumulative models can include
both dichotomous (i.e., binary) and polytomous (i.e., graded) data, and can accommodate both
unidimensional and multidimensional models. The 1, 2, 3 parameter-logistic models, and the
graded response model (GRM; Samejima, 1969) are examples of dominance based models.

Another class of IRT models is referred to as ideal point models (Coombs, 1964). As
mentioned above, ideal point models are influenced by Coombs unfolding in terms of measuring
the distance between an item and a response as an indicator of preference/agreement. These
models assume that a person’s response to an item located on the latent trait continuum (i.e.,

analogous to the J scale in Coombs unfolding) will be close in proximity, contingent on whether



the item’s content matches the person’s actual standing on the latent trait. In simple terms,
individuals are more likely to endorse an item that matches their location on the latent trait.
Conversely, extreme items are less likely to be endorsed given the greater distance between their
respective locations to that of the respondent. The graded unfolding model (GUM) and the
generalized graded unfolding model (GGUM) are examples of ideal point models (Roberts &
Laughlin, 1996; Roberts, Donoghue, & Laughlin, 2000). Ideal point models can also
accommaodate both dichotomous and polytomous data, as well as unidimensional and
multidimensional models (Wang & Wu, 2015). Although there have been attempts by
researchers to examine item and model data fit for ideal point models such as the GGUM
(Roberts, 2008; Nye et al., 2019), there is a shortage of analyses pertaining to such an objective.
As mentioned earlier, the majority of publications covering model fit estimation for IRT
examined dominance based IRT models. For such reasons, it is incumbent to investigate which
method(s) of fit works best with ideal point IRT models. This paper will be comparing different
fit indices for the GGUM under different conditions pertaining to the number of items, sample
size, and item response type (i.e., dichotomous and polytomous). This study considers only
unidimensional data as well as IRT generated models that assume a continuous latent trait. Based
on the results, suggestions will be made as to which fit statistics are the most useful for the IRT

unfolding model.



CHAPTER 2

LITERATURE REVIEW

IRT Dominance Models

For dichotomous unidimensional data, IRT logistic models are usually utilized to
estimate the desired parameters for dominance models. For example, the three-parameter logistic
model (3PL) is represented by the following equation:

PLACKD)
p(xi = 118,05, 8;, i) = xi + (1 — x3) 15 ou®-5) (1)

where p is the probability of a response (e.g., correct response/endorsement) given the latent trait
of interest (0), ai is the discrimination parameter for item i, in which items with higher positive
values of o will discriminate better between respondents given their expected locations on the
latent trait, 6; is the difficulty parameter for item i, in which items located towards the higher end
of the ability continuum 8 (i.e., higher positive values of &) will usually be more difficult to
answer correctly or endorse, y; IS the guessing parameter, with higher values indicating a higher
probability of a correct response for respondents on item i, particularly those with lower 6 values
(Birnbaum, 1968). As mentioned in (De Ayala, 2009), a scaling factor D is sometimes presented
in equation 1 due to the existence of a normal ogive model for the 3PL, which functions to
minimize the “difference between the normal and the logistic distribution functions” (Camilli,
1994). By adding the scaling factor D, which is about 1.702 and re-adjusting the formula for

efficiency, the 3PL equation will be in the following form:

1
p(® = x; + (1 — x) s b5 (2)

Other logistic IRT models such the two- and one-parameter (i.e., 2PL and 1PL) models are

nested versions of the 3PL. The 2PL model will exclude the guessing parameter, while the 1PL
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will also set yj= 0 but in addition will constrain the discrimination parameter a; to be equal
across items. Figure 1 displays the item response function (IRF) (i.e., item characteristic curve)
for a hypothetical item calibrated using the 3PL model with o= 1.8, 6 =0, and x = 0.2:

Figure 1. IRF for a 3PL Model

a=1.8,0=0,1y=0.2

1.2
1

08
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The process of fitting IRT models involves the estimation of item and person parameters,
which include 3, a, y, and 0 for the 3PL model. Marginal maximum likelihood estimation
(MMLE) is performed for recovering the item parameters (Bock & Aitkin, 1981; Bock &
Lieberman, 1970). MMLE resolves some of the inherent problems with other MLE approaches
such as the joint maximum likelihood estimation (JMLE), which involves estimating the item
parameters from a fixed set of person parameters. MMLE resolves this problem via estimating
the item parameters from the larger population distribution. Conditioning the item parameters on
the population distribution resolves the issue of re-calibrating the instrument multiple times due
to the possible removal of misfitting items, which would require re-calibrating the person
locations all over again (De Ayala, 2009). Statistical packages such R and Mplus (Muthén &

Muthén, 1998-2017) can be used to calibrate IRT models’ parameters. Person location estimates
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(6) may be obtained via expected a posteriori (EAP) (Bock & Mislevy, 1982), in which the
estimated ability parameter (8) corresponds to the mean of the posterior distribution. By default,
many R packages calculating EAP will assume a normal distribution for the prior probability
distribution (e.g., mirt; Chalmers, 2012; GGUM; Tendeiro & Castro-Alvarez, 2020).

For polytomous unidimensional data, a typical model would include response categories per
item, with such categories and their respective scores having option response functions (ORFs). These
ORFs represent the probabilities of obtaining designated scores contingent on the level of the latent
trait theta (0). In ordered polytomous IRT models that divide responses into a set of ordered pairs
of adjacent categories, transitioning between option response functions per item occurs at
respective transition locations (6ins) between the ordered category pairs. Given that such item
transition locations separate the intervals associated with category scores with respect to (6), the
number of intervals per item will be (k + 1) relative to the item transition locations. The premise
of having such transition locations be ordered in terms of their magnitude will be dependent
upon the selected polytomous model, but such an assumption is not a necessary condition when
calibrating polytomous models in general (De Ayala, 2009). Although there are many
polytomous IRT models to introduce, only two will be briefly mentioned given their relevance to
subsequent analyses. One of the two dominance models is selected due to its similarity to the
GGUM, which is the main focus of the model fit analyses on the next chapter. The first model is
the generalized partial credit model (GPCM) (Muraki, 1992), which is defined in the following

equation:

exp{a; [y(6; — 6;) — Tneo Tirc |}
M _olexp{a; [w(6; — 6;) — Zh_o i3}

P =y 0) = 3

whereZ’;Z:f)” Tir = 0, Yi represents the probability of a response in item i’s y category, ((Yi=y|0)

=0, 1,2, ..., M), M corresponds to the number of response categories minus 1, 0; is the location
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of person j on the latent continuum, &; is the location of item i on the latent continuum, a, is the
discrimination of item i, and tix represents the location of kth response category threshold on the
latent continuum with respect to the ith item location. In short, equation 3 divides the probability
of selecting a specific response category given theta (6) over the sum of all the probabilities
corresponding to the locations of the response categories for a specific item conditional on theta
(6). Note that the GPCM response categories are separated by respective thresholds (i.e., ).
These thresholds can be sequentially ordered in more constrained versions of the GPCM for
respective response categories such as the rating scale model (RSM) (Masters, 1982), but are
allowed to be unordered for the GPCM and ideal point models such as the GGUM (Roberts et
al., 2000). Figure 2 displays the option response function (ORF) for a three-category hypothetical
item calibrated using the GPCM model with a = 1.5, 612 = -2, and 813 = 2:

Figure 2. ORF for the GPCM Model

a= 1.5, 812 = '2, 813 = 2
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The second polytomous IRT model for dominance data is the graded response model
(GRM) (Samejima, 1969). This model differs from the GPCM in defining the probability of a
response relative to the specified response categories per item. In GPCM, the premise was

estimating the probability of a response in a specific response category, and how the probability
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would change when transitioning to an adjacent response category accordingly as shown in
Figure 2. The GRM compares response probabilities in a cumulative fashion, in which a specific
point is selected on the latent continuum relative to the response categories that would define the
comparison. For example, in a three-category item, a comparison of probability pertaining to a
response might compare category O (i.e., obtaining a score of 0) to that of category one and two
together (i.e., obtaining a score of 1 or higher). The estimation of the cumulative probabilities
can be achieved via utilizing dichotomous models such as the 2PL (Samejima, 1969; De Ayala,
2009). This follows utilizing a series of 2PL models to a sequential series of responses, which
eventually yield the expected probabilities for the GRM response categories. The probabilities
for the response categories are complements to one other. For example, when examining an item
with three-response categories, the probability of responding in any of the categories will be 1,
while the probability of scoring in category 0 will be equal to 1 minus the probability of scoring
in category 1 or higher. The probability of scoring in category 1 or 2 rather than category 0 will
be equal to the difference between the probabilities of being in category 1 from that of being in
category 2. Finally, the probability of being in category 2 or higher is just the probability of
being in category 2 since the portability of being at a higher category is 0. For illustrative
purposes, the following equation is taken from (De Ayala, 2009), which demonstrates how to
obtain the probability of scoring in category 1 or 2 rather than category 0. Note that P* indicates
cumulative probabilities, and i, ai, and 6 are the category boundary location, item

discrimination, and person location parameters respectively:

eai(9—51) eai(e—sz)

Pp =P =Py =p(x ={1,2}|8) — p((x; = {2}| 8) = (4)

1+ e%®-80 14 ca(®-5)
If the 2PL model is applied for each category boundary location &; separately with respect to 9,

then we obtain cumulative probability curves corresponding to such boundary locations,
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sometimes referred to as category boundary curves. Figure 3 illustrates the category boundary

curves for a three-category item with a. = 2, 61 = -2, 62 = 2:

Figure 3. Boundary Category Curves for the GRM Model
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Figure 4 displays the ORFs for the same hypothetical item. Note that the orange curve in Figure

4 can be obtained by substituting the respective values of a and d; in equation 4 across 0:

Figure 4. ORF for the GRM Model
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The process of fitting IRT models for polytomous data involves the estimation of both
item and person parameters, which follows similar procedures to that of dichotomous data.
MMLE and EAP estimation processes are also utilized for estimating item and person
parameters respectively.

In the next chapter, The GRM will be selected as the IRT dominance model for
subsequent model fit comparisons with an ideal point model (i.e., GGUM) for polytomous data.
The GPCM on the other hand, represents one of the premises that defines the GGUM model,
which is going to be introduced in the following section as the ideal point IRT model of choice.
The GGUM will also be the calibrated model of choice for model fit analyses given the limited
amount of research done to that effect.

IRT Ideal Point Models

The theory behind ideal point models was first suggested by Thurstone (1928) as a way
of measuring attitudes, in which the endorsement of presented statements is related to how
similar these statements are to the actual attitude of the individuals. As mentioned in the
introduction, ideal point models in IRT are inspired from Coombs unfolding (Coombs, 1964),
which works well with non-cognitive items (i.e., attitudes) in terms of assessing their
psychological proximity to the actual attitudes of the responding individuals (Roberts &
Laughlin, 1996). Ideal point models do not assume a cumulative monotonic response function as
in dominance models, but rather an unfolding single-peaked response function (Roberts, et al.,
2000). Many researchers argue that both dichotomous and polytomous attitude statements, in
which some sort of self-reflection is required are better captured by ideal point models
(Drasgow, Chernyshenko, & Stark, 2010; Nye et al., 2019; Roberts, et al., 2000). For example,

Drasgow et al. (2010) suggests that in organizational research, inventories requiring employees
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to introspect are better modeled by ideal point processes. Nye et al. (2019) also cites several
studies demonstrating that ideal point models (i.e., unfolding models) are superior to dominance
based models when assessing personality, vocational interests, person-organization fit,
performance ratings, and job attitudes. Unfolding models are also useful for item-level analyses
when investigating response sets (e.g., malingering) associated with non-cognitive assessment
inventories (Liu & Zhang, 2020; Scherbaum, Sabet, Kern, & Agnello, 2013).

The generalized graded unfolding model (GGUM) is an ideal point IRT model introduced
by Roberts and colleagues (Roberts et al., 2000), with a constrained version of the model known
at the graded unfolding model (GUM) being introduced prior to the generalized version (Roberts
& Laughlin, 1996). Both the GGUM and GUM were developed under four basic premises
relative to the response process. Note that all of the explanations to follow assume a
unidimensional latent trait, and are based on the explanations in Roberts et al. (2000).

The first premise is that expected agreements of respondents to items/statements will be
contingent on the items’ relative positions to respondents’ actual positions on the latent
continuum representing the construct. Put simply, as the values of the ith item &; and the jth
person 6; approach one another, the distance between them approaches 0 and it is expected that
person j’s likelihood of agreement to item i will be high.

The second premise is that a person can select a specific response category (e.g.,
“disagree”) for two reasons. The first has to do with the person having a more positive attitude
than the item’s content, hence disagreeing from above. The second reason has to do with a
person holding a more negative attitude than the item’s content, hence disagreeing from below.
In other words, there are two subjective responses for every observable response on a rating

scale.
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The third premise is that subjective responses (e.g., disagreeing from “above or “below”
an item) to statements follow a dominance (i.e., cumulative) item response model. Muraki’s
(1992) GPCM can model GGUM’s subjective response functions, hence its introduction in the
previous section as one of the assumptions defining GGUM. In short, the subjective response
category probability functions follow a cumulative model. Also, the number of response
categories will be doubled because of the two possibilities for each observable response
category. For example, a hypothetical item with four observable response categories (ORCs):
strongly disagree, disagree, agree, and strongly agree can be modeled using the GPCM with
seven subjective response category (SRCs) thresholds (tiks). There are two subjective responses
for every observable response (i.e., eight intervals in total). Also, the dominance of the most
likely subjective response within the intervals is determined by the discrimination parameter (o).
As mentioned in Roberts et al. 2000, the model’s SRCs must be transformed into an ORC format
that is compatible with the graded agreement scale. Since the two subjective response categories
are mutually exclusive, the probability of a response within an observed response category will
be equal to the sum of the respective probabilities related to the two subjective response
categories.

The fourth premise builds on the idea that subjective response categories must be defined
in terms of the actual observable response category. The response category thresholds tiks will be
symmetric about the point (0 - &i) = 0. In short, premise four states that respondents have an
equal probability of agreeing to an item situated along the latent continuum by either —h or +h
units from their positions on the attitude continuum. By applying the forth premise, we get the
following identity: >¥-¢1;, = 0. By integrating the following identity and taking into account

that the sum of the mutually exclusive subjective categories would yield the observed response
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category probability functions, the GPCM model in equation 3 can be modified to yield the
formal definition the GGUM:

exp{a; [c(6; — 6;) — Th=oTix]} + exp{a; [((M — ) (6; — &) — Tico Tik]}
B _olexp{a; [w(6; — 6;) — Zh_o |3} + exp{a; [(M — )(6; — 6;) — ThcoTire]}

)

where Cj represents the observable response to itemi,c=0(z=0, 1, 2, ..., B) indicates the
strongest level of disagreement, ¢ = B indicates the strongest level of agreement and is equal to
the number of observable response categories minus 1, M = 2B + 1, 6; is the location of person j
on the latent continuum, &; is the location of item i on the latent continuum, «; is the
discrimination of item i, and ik represents the location of kth response category threshold on the
latent continuum with respect to the ith item location (Roberts et al., 2000). Figure 5 displays the
observable response categories (ORC’s) probability functions for a hypothetical four-category

item as a function of 6; - ;. C denotes the observed responses from 0 to 3:
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Figure 5. ORC Probability Functions for a GGUM Four-Category Item

107 Strongly Disagree
Strongly Agree
08
= 06 Disagree Agree
o
1l
e
0 04 -
/_,_——'—‘-\
0.0
| | | | | | | | |
4 3 2 1 0 1 2 3 4
6-06
— =0 — €=-1 — C-2 C:S‘

Note. This figure was produced in R using the package ‘GGUM’ by Tendeiro, J. N., and Castro-
Alvarez, S. (2020). GGUM: Generalized Graded Unfolding Model. R package version 0.4-1.

https://CRAN.R-project.org/package=GGUM

The graded unfolding model (GUM) is a constrained variant of the GGUM, in which the
discrimination parameters are set to unity and the threshold parameters are equal across items
(Roberts & Laughlin, 1996). Changing the discrimination parameter will alter the magnitude of
the expected values function, in which larger values of o yield more peaked expected value
functions reaching their upper bound. Also, changing the threshold values tik by increasing the
distance between them will also elevate the expected value function to its upper bound but will
decrease its steepness in a simultaneous fashion (Roberts et al., 2000). The dichotomous

unfolding data model is a simplified application of the polytomous variant using only two
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response categories such as ‘agree’ or ‘disagree’, and can be modelled using both GUM or
GGUM.

The process of fitting IRT ideal point models for data involves the estimation of both
item and person parameters, which follows similar procedures to that of IRT dominance models.
MMLE and EAP estimation processes are utilized for estimating item and person parameters
respectively. Although JMLE was utilized to estimate the item parameters for the GUM in
Roberts and Laughlin, (1996), subsequent publications utilized an MMLE estimation process in
calibrating the item parameters for both the GUM and GGUM.

Since the GGUM assumes unidimensionality, a principal component analysis (PCA) can
be performed to verify such an assumption. In Davison (1977), it is shown that responses
adhering to a simple unfolding model will yield two principal components. In short, a
unidimensional unfolding model can be inferred from a scree plot identifying two dominant
eigenvalues from a polychoric correlation matrix (De Ayala & Hertzog, 1991). Another rule of
thumb for assessing dimensionality in unfolding models entails estimating the final
communalities of the first two principal components and examining whether the respective
communality value is greater or equal to 0.3 (Roberts et al., 2000).

The GGUM for both dichotomous and polytomous data follows a parametric approach,
which allows the computation of attitude estimates to be invariant of the respective items used in
calibration. The invariance property is also applicable to the item locations, which are invariant
to the responses of the examinees constituting the attitude of interest in a sample (Roberts et al.,
2000). Item discrimination parameters are also invariant to the responses of the examinees, and
are tested for invariance via different methods that mainly involve the examination of the

interaction between item location and discrimination parameters between selected subsamples.
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Interested readers are referred to De Ayala (2009) for an overview on assessing invariance. The
applicability of the invariance property is only realized once the unfolding model fits the data

(Hoijtink, 1990).

IRT Model Fit Statistics

In theory, the majority of estimation processes examining IRT model fit would involve
comparing the individual-level residuals between the observed (xni) and predicted scores (Pnix).
However, a case of perfect model fit will still be short from yielding individual-level residuals
that are equal to zero. This occurs as a result of limiting the observed scores (Xni) to a set of fixed
values such as 0 or 1 for dichotomous data, while varying the respective item response function
that is used for estimating the predicted scores (Pnix) to range from 0 to 1 (Ames & Penfield,
2015). This problem led statisticians to come up with different ways to estimate model fit for
IRT models. One such solution is to sort individual scores into distinct groups h based on their
ability estimate 8, sometimes referred to as ‘binning’. This process allows a comparison of
observed and expected scores within each bin, hence allowing the residuals in theory to equal
zero in cases of good model fit; the usefulness of such binning process is dependent on sample
size.

As mentioned in the introduction, many of the model fit techniques utilize a chi-square
approach, with the generic form of the estimation process for dichotomous data presented in the

following equation:

(Thl)
Z Nhl Phl(l - Phl) (6)

where ry,; represents the bin-level residuals and Np,; refers to the number of respondents in bin h

attempting item i. Equation 6 incorporates the residuals relative to the selected bins rather than
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the whole item, which makes it possible to obtain zero residuals when estimating model fit.
Three chi square model fit estimates will be introduced. The first two of these statistics will bin
respondents into groups, with noticeable differences in the process of creating such bins, as well
as in the approach of estimating the bin-level predicted responses Py;.

Yen’s Q1 statistic.

This fit statistic (Yen, 1981) is based on another chi-square fit statistic introduced in
Bock (1960, 1972). The Q1 statistic accounts for the ability level theta 6 of respondents across an
item i and sorts them into 10 relatively equal sized groups based on their ability estimates. The
Ny; in Equation 6 corresponds to the number of respondents per group h, and ry,; is the difference
between the observed and predicted (i.e., expected) score proportions to those answering item i
correctly. The respective degrees of freedom needed to compare the obtained observed chi-
square value to that indicated by the expected distribution (i.e., expected value) are 10 — (# of
model parameters). For example, a 2PL model with its two parameters of &;, and ai will incur 8
degrees of freedom. The main difference between Q1 and Bock’s chi-square has to do with
selecting the number of bins. While Q1 specifies the number of bins to be exactly 10 based on
the respondents’ ability levels, Bock’s statistic can accommodate H number of bins. Also, Q1
utilizes the average bin-level predicted responses Py,; for estimating Py,; per bin, while Bock’s
chi-square uses the median Py; for respondents per bin (Ames & Penfield, 2015). The null
hypothesis specifies perfect model data fit.

Although this fit method may allow researchers to obtain zero residuals with good fitting
models, it has nevertheless been criticized in many respects. First, since the binning process is
dependent on ability estimates, it is possible that the presence of a biased ability to begin with

will produce an invalid fit statistic (Yen,1981). Second, the notion of binning into equal sized
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groups will vary depending on the sample size, which can yield high Type | error rates (Orlando
& Thissen, 2000). As mentioned earlier, larger sample sizes are usually more useful for applying
Q1 or Bock’s ¥2. Third, some models such as those realized by ideal point processes may not fare
well with such fit indices (Nye et al., 2019; Roberts, et al., 2000). It is possible to obtain
relatively small expected frequencies for particular response categories when dealing with ideal
point models. This could happen given the propensity of respondents to strongly agree with
items that are close in proximity to their locations on the latent trait. In other words, creating bins
of equal sample sizes will not work for such models. Nye et al. (2019) also adds that correcting
this problem by combining response categories to increase respondents per bin will not be useful
when the expected frequencies are small to begin with. Given such limitations, other fit indices
that do not require binning on model-dependent 6 estimates are recommended.

S — X2 statistic.

Orlando and Thissen (2000) proposed binning examines into groups based on observed
test scores rather than model-dependent 6 values. This can be achieved via tabulating expected
responses from the selected model’s respective predictions for each item across all of theta 6
intervals. The procedure would allow the expected responses to be compared to the observed
ones. Such a process will not require the reliance on an estimate of 6 for the binning process, and
would avoid the potential issues associated with model-dependent binning that were mentioned
earlier for Q1. The only issue that may occur with this binning approach is the inability to
maintain a fixed degrees of freedom when testing for model fit using the chi-square statistic,
since it is possible to incur dependencies among tables of observed counts for items on a single

test (Orlando & Thissen, 2000).
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The main difference between the S — X? and the aforementioned chi-square fit indices in
terms of estimation involves the expected/predicted frequencies. In other words, the Pni from
equation 6 is estimated differently, and would not involve calculating the average or median bin-
level predicted responses. Rather, a process involving the prediction of joint likelihood
distributions for each observed test score is utilized (Thissen, Pommerich, Billeaud, & Williams,
1995). Thissen and colleagues developed a recursive algorithm, which utilizes the joint
likelihood for selected groups based on their observed scores per item. Prediction using a joint
likelihood approach was actually first introduced in (Lord & Wingersky, 1984) for test equating
purposes, and was later modified for other IRT applications such as the S — X2 statistic. This
method involves omitting one item at a time when estimating the likelihood, and then adding the
item back to calculate the proportion of test takers with a specific observed score answering item
i correctly. S — X2 follows a chi-square distribution with degrees of freedom equal to I — 1 —m.
Where I is the number of items on a test and m is the number of parameters entailed by the IRT

model for a given item. The estimation of Pp; takes the following form:

TS (6)d6
T[S, 0(0)dd

(7)

As described by Orlando and Thissen (2000): “the S is the observed score posterior distribution
for score group h, Ti is the response function for item i, S; , is the observed score posterior
distribution for score group h-1 without the last item, and the integrals are estimated using
rectangular quadrature over equally spaced increments of 0 from -4.5 to 4.5” (pp. 53-54). The
null hypothesis specifies a perfect model data fit.

It has been argued that the S — X statistic works well for estimating model fit with
logistic IRT models (Orlando & Thissen, 2000). Namely, the statistic exhibits low Type | error

rates in general for such models. Also, power analyses involving the S — X? statistic demonstrated
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good results in terms of detecting misfit across different conditions through varying the number
of items exhibiting misfit (Orlando & Thissen, 2003). However, there are concerns about
whether the S — X2 works well with non-homogeneous groups based on the latent trait estimate.
After all, the binning process in S — X? does not create homogeneous respondent groups with
respect to the latent trait when varying models with non-equal discrimination parameters. This in
turn might affect the power of the item fit estimate given the process of assigning respondents to
different groups, which might be problematic as mixing respondents with misfitting responses
with other respondents will inevitably occur (Roberts, 2008). Observed test scores (OTS) are
used for the grouping process in S — X2, and if the latent trait is heterogeneous, then it might be
problematic to estimate item fit for ideal point models such as the GGUM. The reason is that
according to Roberts (2008), such models are usually defined by item characteristic curves that
are symmetric, do not follow a monotonic trajectory, and have their maximum values at 6; - 6; =
0. For such reasons, Roberts (2008) argues that it is possible to get identical expected OTSs from
examinees with completely different 6; when calibrating a GGUM model.

To resolve the issue of detecting misfit when performing power analyses, Roberts (2008)
introduced a corrected version of S — X? that does not include the score of the examined item i
(i.e., ¢ S—X?). Roberts also introduced variants of S — X? that utilized observed subset scores
(OSS), which are calculated from extreme item scores rather than OTS. Surprisingly, the
standard S — X2 still yielded relatively comparable results to that of the corrected version in terms
of exhibiting reasonable Type I error and power rates (Roberts, 2008). Such results were inferred
from a simulation study that varied sample size and test length. The simulation study also

compared the standard S — X? item fit statistic to the other fit indices using OSS in terms of
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detecting Type | error and power, with S — X2 showing better ability to detect misfit than any of
the OSS fit indices. For the complete analysis, interested readers can refer to Roberts’s article.

Adjusted chi-square % for item singlets, doublets, and triplets.

First introduced by Drasgow, Levine, Tsien, Williams, and Mead (1995), this fit method
does not require binning examinees into groups for estimating observed and expected response
frequencies. Rather, it requires summing up such frequencies over the number of response
options (Drasgow, Levine, Williams, McLaughlin, & Candell, 1989; Nye et al., 2019).
Conditional option response functions (CORFs) are usually utilized, which yields probability
estimates of choosing an incorrect option in examinees answering an item incorrectly given 0.
When calculating the »? statistic, there can be an | number of such statistics for I items calculated
separately, which can be referred to as item singles. The general form of expressing the chi

square fit statistic for item singles for dichotomous data follows an ordinary y? expression:

1
_ [0;(k) — E; (k)]
(= z E;(k) ®)

Where 0;(k) is the observed frequency of option k, and is estimated by counting the number of
times in which respondents selected option k in the sample. E; (k) represents the expected
number of times in which respondents choose option k, which is estimated from the respective

option response function by:

E(k) = N j P(u; = kIO)F(8)d(8)  (9)

The f in the above expression refers to the 0 density, which follows a standard normal given the
scaling of the option response function with respect to the distribution, u; refers to the response
score. Research has shown that the chi-square statistic for single items is generally insensitive to

detecting misfit under various conditions (Stark, Chernyshenko, Drasgow, & Williams, 2006;
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Van den Wollenberg, 1982). For example, Nye et al. (2019) found that a chi-square statistic for
single items is a poor indicator of misfit under most conditions pertaining to different sample
sizes and number of items. Given its limited ability to detect misfit, Drasgow et al. (1995)
introduced an y? statistic from the expected frequency of item pairs via endorsing response
options k and k£’ concurrently, referred to as item doubles. This follows estimating the observed
frequencies from a two-way contingency table, with the expected frequencies obtained by

expanding equation 9 to:
Ei(k, k) = Nf P(u; = k|®)P(w; = K'|0)£(8)d(®)  (10)

Extending to %2 items triples and beyond can be achieved by expanding equation 10. For

example, a multiway contingency table can be used for estimating the x2 using triples of items
(Tay, Ali, Drasgow, & Williams, 2011). There are () 2 possible statistics for item doubles and
(é) x2 for item triples. The possible combinations of item doubles and triples increases

dramatically by increasing the number of items. For example, a test with 30 items yields 435
combinations for item doubles and 4,060 combinations for triples. To overcome this issue,
Drasgow and colleagues (1995) divided the | test items into 1/3 sets of three items. These sets
were then used to compute the respective 2 statistics for individual items, item pairs for
doubles, and the whole set at once for triples. The degrees of freedom for the y2 statistics equal
to the number of cells minus one. For example, an item with three response categories will have
two degrees of freedom. For item doubles, the y2 statistic degrees of freedom with each item
having three response categories will be eight (i.e., 9 — 1). As mentioned by LaHuis, Clark, and
O'Brien (2009), a minimum expected frequency of five is maintained when collapsing over cells,

and adjustments to the degrees of freedom are made to reflect the collapsing process.
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Also, to account for the dependency of 2 on sample size, as well as ensuring that the
adjusted y2 statistics are comparable across different sample sizes (Tay et al., 2011), the
estimation of y2 for item singles, doubles, and triples are adjusted to a sample size of 3,000. The
x2 for such items will be estimated using the ratio of the chi-square to the respective degrees of

freedom y2/df. The sample size adjustment is expressed in the following equation:

2 2
Xi Xi —df
i 3,000 N

+df (11)

where df is the respective degrees of freedom. Although all of the presented IRT fit indices so far
are for each item, model-fit estimation has been conducted for the adjusted 2 fit statistics for
item singles, doubles, and triples. The basic premise involves taking the mean of the y2/df ratios
and comparing it with the value of 3 based on empirical findings using large cognitive ability
data (Chernyshenko, Stark, Chan, Drasgow, & Williams, 2001; Drasgow et al., 1995). Mean
ratios that are less than 3 for items singles, doubles, and triples indicate good model fit
(Chernyshenko et al., 2001).

Studies assessing model fit using the adjusted y2 fit statistics have been conducted
(Drasgow et al., 1995; Tay et al., 2011). Results favor the use of y2 fit for item doubles and
triples in detecting misfit and not item singles given the inability to detect misfit in many
conditions. For example, Tay and colleagues (2011) found that for both dichotomous and
polytomous data generated from different IRT models adjusted y2 fit tests for item pairs and
triplets were able to identify the correct model well. These fit indices were successful in
identifying the correct model for tests with relatively large numbers of items (i.e., 30 items). Nye
and colleagues (2019) also found that the adjusted x2 for item doubles and triples were among
the most accurate indicators of misfit, even when generating different dichotomous and

polytomous IRT models and calibrating them via the GGUM. However, the adjusted 2 for
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single items did not perform as well in detecting misfit. Nevertheless, power did improve for the
adjusted 2 for single items once the number of items were greater than 20.

The next fit indices are estimated using a likelihood-ratio approach. The first of these
approaches utilizes a similar binning process to that of Q1. The second approach is a relative-fit
method that compares different IRT models for best fit.

The G? statistic.

The simplest form of this likelihood ratio (LR) fit statistic is applicable to dichotomous

items and is given by:

H N,
hZ Nz In ( hl’;;l) + Npgo In (m)] (12)

where Ny;; and Ny;, correspond to the number people per bin h responding to item i correctly
and incorrectly, respectively (Ames & Penfield, 2015). For G? as proposed by McKinley and
Mills (1985), P;,;; represents the probability of responding correctly at the average value of the
ability level for respondents in bin h. Similar to the Q1 test of fit, examinees are binned
according to their ability estimate 8. However, the number of selected bins are not constrained to
10 as in Q1, hence examinees can be sorted in h number of bins according to their ability levels.
G? is also distributed as chi-square such as the aforementioned fit indices, with respective
degrees of freedom equal to the selected number of bins H. The null hypothesis assumes a
perfect model data fit.

As mentioned by Ames and Penfield (2015), G? also has similar problems to that of Q1 in
terms of relying on model-dependent 6 estimates for creating the bins, to which they cite DeMars
(2005) criticisms on such a matter. Also, Roberts (2008) simulation study that compared

different item fit statistics for the GGUM included the G? statistic. The results showed that
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statistic behaved erratically in terms of yielding a higher Type | error rate with larger sample
sizes. This did not occur with other fit indices such as the S — X? and those indices conditioned on
subtest test scores.

Testing relative model fit can also be assessed through the G2 statistic for nested IRT
models, in which related models can be compared with one another. For example, the GUM is
nested within the GGUM if the discrimination parameters are constrained to unity as well as
making the threshold parameters identical across all items. The comparison of the likelihood
ratios between the models using the difference of G?s takes the following form:

AG? = =2In(Lg) — (—=2In(Lp))  (13)
As defined by (De Ayala, 2009), Lr is the likelihood for the constrained model (e.g., GUM)
while Lr is the likelihood of the full model (e.g., GGUM). The main issue with this relative fit
approach is that it is restricted to comparing models from the same family. Also, it doesn’t
penalize models with unnecessary parameters. Therefore, there is a problem with model over-
parameterization. The next presented relative model fit statistics are supposed to handle the
aforementioned issues.

AIC and BIC.

Both Akaike’s information criterion (AIC) (Akaike, 1973) and Bayesian information
criterion (BIC) (Schwarz, 1978) are relative model fit indices, which are determined by the
number of parameters in the tested model. AIC is calculated as:

AIC = —2logL + 2v (14)
where log L is the log-likelihood and v refers to the number of parameters in the selected model.
The BIC is calculated as:

BIC = —2logL +vlogn (15)
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where n corresponds to the sample size. The log n in BIC incurs greater likelihood values when
compared to AIC, hence being the more stringent fit index when compared to AIC (i.e., yields
larger values). As mentioned by Nye et al. (2019), these relative fit statistics have shown
promising results for correctly identifying fit for dichotomous IRT models (Kang, Cohen, &
Sung, 2009). However, there has been less research done on the effectiveness of such relative fit
statistics in identifying the correct IRT model when calibrating ideal point models such as the
GGUM. Nye et al. (2019) is among the few studies that utilized both AIC and BIC in detecting
fit and misfit on generated data from dominance models that were calibrated by the GGUM.
Results from the study showed that such fit statistics are able to detect both Type I error and
power 100 percent of the time across replications, while not being influenced by either the
number of items or sample size.

The final fit statistic is often used in the SEM literature. However, it has been utilized to a
lesser degree in the IRT literature albeit its promising capabilities in identifying the correct
model under various conditions pertaining to different sample sizes and number of items on a
test.

Standardized root mean square residual (SRMSR).

This fit statistic is appropriate for both large nominal and ordinal data, and is usually
utilized in factor analysis. Also, it addresses some of the problems inherent with chi-square fit
statistics such as sensitivity to sample size. Maydeu-Olivares and Joe (2014) demonstrated the
SRMSR’s applicability for estimating approximate fit, which can be used for evaluating model
fit for IRT models. The SRMSR is simply the square root of the average squared residual

correlations between a set of item pairs i and j. The residual correlation is the sample or
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population correlation minus the expected correlation. The population SRMSR for item pair is

defined as follows:

ij — "ij

SRMSR = zm (16)

i<j

-t

~T ~0
where #;; refers to the population correlation, and #;; is the expected correlation. This statistic

and its extension to ordinal data are more useful over other limited information goodness of fit
statistics such as the M2 and Morp, since the former two can be computed without any degrees of
freedom. M is a limited information fit statistic that can be used for sparse dichotomous data
with large number of items (i.e., many empty cells in a frequency table). According to Xu, Paek,
and Xia (2017),

M follows asymptotically a central chi-square distribution under the null hypothesis with

asymptotically normal consistent estimators. Its degrees of freedom is equal to the

number of used multivariate moments (or the number of the margins up to 2) minus the

number of model parameters (p. 633).
It utilizes the means and cross-products (i.e., bivariate information) to estimate fit. Morp is an
extension of the M statistic that uses a different asymptotic covariance matrix and matrix of
derivatives when estimating parameters, and accommodates large number of items with multiple
response categories per item (i.e., ordinal data). Interested readers are referred to Maydeu-
Olivares and Joe (2014) for computing M2 and Morp.

The root mean square error of approximation (RMSEA) is a fit statistic that compares the
difference between a hypothesized model and a perfect model (Browne & Cudeck, 1992).
Though often utilized as a goodness of fit approximation in multivariate contexts and can be

applied to IRT models, its sampling distribution is only approximated with asymptotic methods
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in small models (Maydeu-Olivares & Joe, 2014). An alternative fit statistic RMSEA: resolves
this issue by using only bivariate information as the M statistic instead of the full information
needed to calculate RMSEA.

SRMSR is shown to be linearly related to RMSEA., with an average R? of 97%
(Maydeu-Olivares & Joe, 2014). Such a relationship is useful since RMSEA; can be estimated
using the My statistic. An SRMSR < 0.05 points toward a tested IRT model that approximately
represents the data of interest. Based on both simulated and empirical data (Maydeu-Olivares &
Joe, 2014; Nye et al., 2019), the SRMSR was selected to test for IRT model fit with favorable
results in terms identifying the correct model and detecting misfit (Nye et al., 2019).

Although less utilized when compared to the other model fit indices when examining IRT
calibrated data, the SRMSR may be among the most useful model fit statistics around. It can
accommodate different IRT models tested under different conditions pertaining to different
sample sizes and number of items (Nye et al., 2019). Also, few IRT software packages are
equipped with either approximate or limited fit information indices such as the SRMSR or M for
IRT models such as mirt (Chalmers, 2012) and flexMIRT (Cai, 2017), which make them less
likely to be utilized for performing model fit analyses.

In this respect, it would be conducive to IRT research if the aforementioned item and
model fit indices are compared in terms of correct model identification and the detection of
misfit for unfolded models such as the GGUM. After all, the advantageous properties inherent
within IRT models will only be applicable and valid if the pre-selected model fits the data.
Overlap of Item Response Functions between IRT Models

Although research has shown in theory and practice that ideal point IRT models such as

the GGUM are better suited for attitude and survey data given the possibility of obtaining higher
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observed ds (Coombs, 1964; Roberts & Laughlin, 1996; Thurstone, 1928), IRT data obtained
from dominance models such as the 2PL and 3PL models may fit the GGUM model well (Tay et
al., 2011). Actually, earlier research advocated fitting the 2PL model to self-report data such as
those assessing attitudes and personality (i.e., noncognitive items) since model fit estimation did
not indicate misfit (Fraley, Waller, & Brennan, 2000; Reise & Waller, 1990; Tay et al., 2011). In
short, an ideal point model such as the GGUM can fit generated data from the 2PL and 3PL
models well for high &; values without indicating misfit. Figure 6 illustrates how the IRFs of the
GGUM, 2PL, and 3PL are pretty much overlapping across the 6 continuum, albeit the divergence
of the IRFs paths between the GGUM and the dominance models as 6 becomes greater than 2.
Such a divergence represents a minority of respondents and would not affect model-fit (Tay et
al., 2011).

Figure 6. GGUM/2PL/3PL Item Response Function
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Note. The GGUM IRF in gray is computed with o = 0.9, 6i = 2, and tj = -1.3. The 2PL IRF in
blue is computed with ai = 1.1 and &; = 0.5. The 3PL IRF in orange is computed with ai = 1.1, &;

=0.5and i =0.1.
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Given