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The assessment of model fit in latent trait modelling, better known as item response theory 

(IRT), is an integral part of model testing if one is to make valid inferences about the estimated 

parameters and their properties based on the selected IRT model. Though important, the 

assessment of model fit has been less utilized in IRT research than it should according to 

research reviews in the organizational literature domain, with dominance IRT models such as the 

two-parameter logistic model (2PL) and the three-parameter logistic model (3PL) being the most 

non-Rasch investigated models in terms of fit assessment. However, there have been less 

research investigating fit for polytomous dominance models such the Graded Response Model 

(GRM), and to a lesser extent ideal point models such as the Generalized Graded Unfolding 

Models (GGUM), both in its dichotomous and polytomous forms. For such reasons, examining 

fit for the GGUM is paramount and should be investigated thoroughly. 

 The current study tests for different fit indices when calibrating the GGUM model to 

generated data from different IRT models. For dichotomous items, the GGUM model is fit to 

GGUM, 2PL, and 3PL generated data. For polytomous data, the GGUM model is fit polytomous 

GGUM data with four response categories and the GRM. The tested outcomes consist of type I 

error and power rates across 100 replications for selected number of items and sample sizes with 

respect to different model fit indices utilized in previous IRT literature. The fit statistics include 



 

 

both absolute and relative fit statistics such as AIC and BIC. Also, different GGUM data are 

generated with different delta distribution ranges for dichotomous data when utilizing relative fit 

indices. 

 Results from the simulation study show that relative fit indices performed well in 

identifying the correct dichotomous data model (i.e., GGUM) when the delta ranges are extended 

beyond the specified distribution ranges for the dominance models. Also, polytomous GGUM 

data were identified as the best fitting model in almost all the cases, irrespective of the number of 

items and sample size. On the other hand, the majority of absolute fit indices did not perform 

well in identifying fit/misfit. Still, there were some fit indices that performed well in detecting 

fit/misfit for polytomous items only. A possible reason for the shortcomings of absolute fit 

indices to detect misfit for the GGUM model in general may have to do with utilizing a 

particular marginal maximum likelihood estimation (MMLE) density form to calibrate the model 

parameters. Based on the results, it could be said that relative fit indices show some promise in 

the assessment of model fit for ideal point IRT models such as the GGUM. This applies for both 

dichotomous and polytomous generated items.  
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CHAPTER 1  

INTRODUCTION 

Fit, Data Models, and a Standard for Appraising Latent Variables 

 The process of estimating fit for data models of choice is important, particularly when the 

assumptions of selected data models are assumed to be true. For example, fitting data to a desired 

model and assessing the degree of fit is common practice in latent trait modeling such as the 

Rasch model (Nye, Joo, Zhang, & Stark, 2019; Wright, 1979; Wright & Masters, 1982). Like 

many other models in statistics, the Rasch model has its own assumptions such as the choice of 

dimensionality and the independence between a test’s items and its respective examinees’ 

responses (De Ayala, 2009). Nevertheless, the benefits inherent in statistical models will not hold 

if the fit between the proposed model and respective data is weak. Other latent trait models such 

as the two-parameter logistic model (2PL), the three-parameter logistic model (3PL), and the 

generalized graded unfolding model (GGUM) do not involve fitting data to a model per se, but 

will still require fitting the model of choice to the data in order to utilize the assumptions 

inherent within each model. 

 Despite the importance of estimating fit for validating the models’ assumptions, there is 

controversy as to whether relying on pre-specified models is the ‘right’ way to go about 

understanding how both manifest and latent variables function. In an article published in 2001 by 

Leo Breiman, it is mentioned that data scientists should steer away from pre-specifying models, 

particularly if the objective of inquiry (i.e., criterion) is related to prediction (Breiman, 2001). 

Breiman argues that his work as a consultant on different projects involving predictions made 

him realize the limitations of relying on pre-selected data models when making valid predictions. 
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For example, he draws a dividing line between the conclusions pertaining to the selected model 

mechanism for making predictions versus that of algorithmic modeling, with the latter negating 

the necessity for assuming that a pre-selected data model represents truth. He also criticizes the 

tendency of many statisticians to fit linear models to data, and subsequently use R2 to estimate 

goodness of fit; an inflated index contingent on the number of parameters subsumed by the 

model. He argues for the implementation of algorithmic techniques that calls for data exploration 

rather than modeling. Data analysis techniques such as decision trees are recommended by 

Breiman for making predictions, which are substantially utilized in machine learning contexts 

when dealing with ‘large’ datasets. Although the definition of a large dataset varies between 

academic disciplines, hundreds of variables within a single analysis is usually referred to as 

‘large’ in machine learning domains (Raschka & Mirjalili, 2019). 

 The criticisms of pre-specified models and fitting them to specific data may ‘somewhat’ 

be reasonable if the main objective of the analysis is prediction, given the more pronounced 

methodologies available for such purposes in data science. In the domain of the social sciences 

however, interpretability is a major concern, and testing pre-specified models with desirable 

statistical assumptions aids such a process. The availability of large datasets with hundreds of 

variables are seldom utilized in the social sciences due to the difficulty of obtaining large sample 

sizes. Also, dealing with a large number of variables can lead to interpreting an endless set of 

interactions between the variables, which is a practice that social scientists avoid if 

interpretability is at stake. For example, when conducting linear regression analysis or ANOVA, 

parsimony is encouraged via utilizing the minimum number of predictive variables that can 

explain the highest proportion of variance accounted for by the model. The aforementioned 

process entails pre-specifying a model such as a linear regression model and keeping the number 
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of predictor variables to a minimum or avoiding higher order polynomial analyses when possible 

(Keppel & Wickens, 2004). Such processes would in turn aid in the interpretability of the 

proposed model.  

Because many of the cognitive and non-cognitive variables in the social sciences fall 

within the latent variable category, their intangible nature mandates pre-specified models that 

should fit the data to increase the possibility of accurate interpretations. Dealing with intangible 

variables (i.e., constructs) is widely investigated in the social sciences in general and psychology 

in particular. For example, the seminal works of Lee Cronbach and Paul Meehl in defining 

construct validity during the 50’s was introduced as many psychologists during that time 

struggled with attaching absolute definitions to latent concepts. Cronbach and Meehl proposed a 

‘nomological network’ that would serve to define a construct based on its relationship with other 

constructs as proposed by a pre-defined theory (Cronbach & Meehl, 1955; Loevinger, 1957). 

Though the formulation of construct validity is not directly related to data models and the 

importance of fit estimation, it demonstrates justifiable concerns about creating a reasonable 

standard for appraising latent variables. Still, modern critics of construct validity assert that 

correlational models for inferring validity are problematic and should be replaced by causal ones 

(Borsboom, 2009). Their arguments stem from the fact that dealing with latent constructs 

becomes a tricky business as psychologists such as Cronbach and Meehl try to avoid referential 

meanings, which is a practice that conforms to the school logical positivism (Borsboom, 2009). 

In short, it is sort of theorizing without getting into the ontological basis of the attribute. 

Navigating ontology would mandate delving into the metaphysical domain; a philosophical 

territory that some empirical scientists try to avoid if they can (Janssen, 2001; Kripke, 2008). 
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The concerns of creating a standard to appraise and measure latent variables also 

resonates with methodologists in the social sciences. For example, the premise of the Rasch 

model is about creating a standard unit for measuring variables. In other words, the log odds 

(logit) of a desired response can be considered a standard when measuring an attribute, given its 

property to remain constant across the metric of interest (De Ayala, 2009). Another attempt to 

create a standard when investigating latent variables came in the form of a unidimensional 

unfolding model, pioneered by the seminal works of mathematical psychologist Clyde Coombs 

(Coombs, 1964). The premise of this model is the possible existence of a common latent attribute 

that is unidimensional and can be conceptualized on a single scale (i.e., referred to as the J 

scale). The proposed scale allows one to gauge the different preference orderings of subjects 

being tested on a particular attribute. The unfolding model allows both the respondents’ 

preferences and the attribute of interest to be compared in the same dimensional space such that 

the distances between the respondents’ standings on the scale and the stimuli points of the 

attribute represent the actual psychological proximity of the stimuli to the individual (McIver & 

Carmines, 1981). There is also a multidimensional unfolding model variant that is an extension 

of the Coombs unidimensional unfolding model to multivariate response data (Bennett & Hays, 

1960; Coombs, 1964; Coombs, Dawes, & Tversky, 1970). The premise of Coombs unfolding is 

integrated into the derivation of ideal point models in item response theory (IRT) (Roberts & 

Laughlin, 1996). The ideal point models are the focus of this paper and its different fit indices. 

However, before delving into ideal point models and fit estimation comparisons, a brief 

introduction to IRT and the importance of model fit is warranted.  
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Item Response Theory (IRT) & Model Fit 

 In the field of psychometrics, item response theory (IRT) data models allow the 

estimation of an item’s response probability given the level of the measured attribute (Bandalos, 

2018). Since its inception around 70 years ago by people such as Frederic Lord and Georg Rasch 

(Lord, 1952; Wright, 1979), IRT or latent trait modelling has gained popularity among 

researchers due to its methodological advantages over other psychometric models such as 

classical test theory (CTT) and generalizability theory (G theory) (Cronbach, Rajaratnam, & 

Gleser, 1963; Traub, 2005). IRT models provide both item location (delta δ) and theta (θ) (i.e., 

person ability) invariant parameters. Invariance is a desired feature in modern testing 

applications such as computer adaptive testing (CAT; Linden & Glas, 2000), test equating (Cook 

& Eignor, 1989), and differential item functioning (DIF) (Tay, Meade, & Cao, 2014). The 

property of invariance would also allow reliability and error indices to be independent from 

specific items or people utilized for model calibration. For example, researchers can design test 

items for a criterion-referenced assessment inventory that calls for a specific ability level. This 

can be achieved by pre-selecting a discrimination parameter (α) that is sample invariant and use 

its value as an index to retain items that will be on the assessment inventory. Researchers can 

also make use of the invariance feature in IRT to create parallel test forms, which is possible 

given the independence of the difficulty index (δ) from the respondents’ respective scores 

(Bandalos, 2018). The invariance features in IRT would allow ability scores (θ) to be compared 

on a single metric, irrespective of the items (i.e., test forms) or respondents (i.e., test group) used 

for the calibration process when estimating the model’s parameters; a lacking feature in other 

psychometric models such as CTT in which item difficulties and discriminations are sample 

dependent. 
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 As mentioned at the outset of this paper, the advantageous features of IRT will not be 

realized without confirming that a chosen IRT model actually fits the data of interest. Given that, 

the estimation of model fit for IRT should be a necessary step for such latent data models. 

Surprisingly, the estimation of model fit in IRT literature is not as common as it should be given 

its aforementioned advantages when compared to other domains such as structural equation 

modeling (SEM) (Nye et al., 2019). For example, in organizational research literature, it has 

been estimated that more than 40% of published articles utilizing IRT models do not include any 

fit estimations (Foster, Min, & Zickar, 2017). The choice of fitting an incorrect IRT model to a 

selected data is detrimental to the many features and applications that define the usefulness of 

such latent models. Such features include but not limited to the construction of assessment scales 

(Roberts, Laughlin, & Wedell, 1999), the estimation of IRT parameters (DeMars, 2010), CAT 

(De Ayala, Dodd & Koch, 1992), DIF (Bolt, 2002), and test equating (Kaskowitz & De Ayala, 

2001). Also, as cited in Nye et al. (2019), fitting an incorrect IRT model to the data can “affect 

the rank order of individuals in a sample” (p. 460), as well as validity via altering the magnitude 

of correlations with external variables.  

 Examining IRT model data fit involves a comparison between the observed responses on 

test items and those predicted by the fitted IRT model. Such a comparison usually involves 

examining the squared residuals (r2
ni) between the observed (xni) and predicted scores (Pnix), and 

summing them up to determine the degree of misfit between the data and fitted model. Although 

the aforementioned method is generic and would involve additional mathematical manipulations 

for performing such the needed computations, the majority of IRT model fit methods would 

follow such a premise. The process of examining and comparing residuals in IRT for model fit 

estimation usually involves chi-square or likelihood-ratio tests (Ames & Penfield, 2015). These 



7 
 

 

tests share the basic premise of examining residuals to determine misfit. They differ in terms of 

setting a criterion for grouping respondents based on either their ability levels or observed test 

scores, which will be discussed in the next chapter. Still, there are alternative methods to model 

fit estimation that are prevalent in the SEM literature, such as those involving the estimation of 

approximate fit (Maydeu-Olivares & Joe, 2014), or posterior predictive checks that involves a 

Bayesian approach of model evaluation (Rubin, 1984; Sinharay, Johnson, & Stern, 2006). 

Although chi-square, likelihood-ratio, and approximate fit methods will be explained in further 

detail in the next chapter, the paper will not be covering Bayesian methods of fit. Interested 

readers are referred to Ames and Penfield (2015) and Sinharay et al. (2006). 

 When it comes to applying model fit estimation to IRT models, the majority of the 

research literature focuses on applying fit estimation to dominance IRT models (Nye et al., 

2019). These models use a monotonically increasing function that allows the desired response 

probability to increase relative to the level of the latent trait (De Ayala, 2009; Roberts & 

Laughlin, 1996). In other words, respondents with higher ability levels theta (θ) will have higher 

probabilities of responding correctly on an item. Dominance or cumulative models can include 

both dichotomous (i.e., binary) and polytomous (i.e., graded) data, and can accommodate both 

unidimensional and multidimensional models. The 1, 2, 3 parameter-logistic models, and the 

graded response model (GRM; Samejima, 1969) are examples of dominance based models. 

 Another class of IRT models is referred to as ideal point models (Coombs, 1964). As 

mentioned above, ideal point models are influenced by Coombs unfolding in terms of measuring 

the distance between an item and a response as an indicator of preference/agreement. These 

models assume that a person’s response to an item located on the latent trait continuum (i.e., 

analogous to the J scale in Coombs unfolding) will be close in proximity, contingent on whether 
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the item’s content matches the person’s actual standing on the latent trait. In simple terms, 

individuals are more likely to endorse an item that matches their location on the latent trait. 

Conversely, extreme items are less likely to be endorsed given the greater distance between their 

respective locations to that of the respondent. The graded unfolding model (GUM) and the 

generalized graded unfolding model (GGUM) are examples of ideal point models (Roberts & 

Laughlin, 1996; Roberts, Donoghue, & Laughlin, 2000). Ideal point models can also 

accommodate both dichotomous and polytomous data, as well as unidimensional and 

multidimensional models (Wang & Wu, 2015). Although there have been attempts by 

researchers to examine item and model data fit for ideal point models such as the GGUM 

(Roberts, 2008; Nye et al., 2019), there is a shortage of analyses pertaining to such an objective. 

As mentioned earlier, the majority of publications covering model fit estimation for IRT 

examined dominance based IRT models. For such reasons, it is incumbent to investigate which 

method(s) of fit works best with ideal point IRT models. This paper will be comparing different 

fit indices for the GGUM under different conditions pertaining to the number of items, sample 

size, and item response type (i.e., dichotomous and polytomous). This study considers only 

unidimensional data as well as IRT generated models that assume a continuous latent trait. Based 

on the results, suggestions will be made as to which fit statistics are the most useful for the IRT 

unfolding model. 
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CHAPTER 2 

LITERATURE REVIEW 

IRT Dominance Models 

 For dichotomous unidimensional data, IRT logistic models are usually utilized to 

estimate the desired parameters for dominance models. For example, the three-parameter logistic 

model (3PL) is represented by the following equation:  

p(xi = 1|θ, αi, δi, χi) =  χi + (1 −  χi) 
𝑒α𝑖(θ−δ𝑖)

1 +  𝑒α𝑖(θ−δ𝑖)
          (1) 

where p is the probability of a response (e.g., correct response/endorsement) given the latent trait 

of interest (θ), αi is the discrimination parameter for item i, in which items with higher positive 

values of α will discriminate better between respondents given their expected locations on the 

latent trait, δi is the difficulty parameter for item i, in which items located towards the higher end 

of the ability continuum θ (i.e., higher positive values of δ) will usually be more difficult to 

answer correctly or endorse,  χi is the guessing parameter, with higher values indicating a higher 

probability of a correct response for respondents on item i, particularly those with lower θ values 

(Birnbaum, 1968). As mentioned in (De Ayala, 2009), a scaling factor D is sometimes presented 

in equation 1 due to the existence of a normal ogive model for the 3PL, which functions to 

minimize the “difference between the normal and the logistic distribution functions” (Camilli, 

1994). By adding the scaling factor D, which is about 1.702 and re-adjusting the formula for 

efficiency, the 3PL equation will be in the following form: 

p(θ) =  χ𝑖 + (1 −  χ𝑖) 
1

1+ 𝑒−𝐷α𝑖(θ−δ𝑖)
         (2)              

Other logistic IRT models such the two- and one-parameter (i.e., 2PL and 1PL) models are 

nested versions of the 3PL. The 2PL model will exclude the guessing parameter, while the 1PL 
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will also set χi = 0 but in addition will constrain the discrimination parameter αi to be equal 

across items. Figure 1 displays the item response function (IRF) (i.e., item characteristic curve) 

for a hypothetical item calibrated using the 3PL model with α = 1.8, δ = 0, and χ = 0.2: 

Figure 1. IRF for a 3PL Model 

 

                     

 The process of fitting IRT models involves the estimation of item and person parameters, 

which include δ, α, χ, and θ for the 3PL model. Marginal maximum likelihood estimation 

(MMLE) is performed for recovering the item parameters (Bock & Aitkin, 1981; Bock & 

Lieberman, 1970). MMLE resolves some of the inherent problems with other MLE approaches 

such as the joint maximum likelihood estimation (JMLE), which involves estimating the item 

parameters from a fixed set of person parameters. MMLE resolves this problem via estimating 

the item parameters from the larger population distribution. Conditioning the item parameters on 

the population distribution resolves the issue of re-calibrating the instrument multiple times due 

to the possible removal of misfitting items, which would require re-calibrating the person 

locations all over again (De Ayala, 2009). Statistical packages such R and Mplus (Muthén & 

Muthén, 1998-2017) can be used to calibrate IRT models’ parameters. Person location estimates 
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(θ) may be obtained via expected a posteriori (EAP) (Bock & Mislevy, 1982), in which the 

estimated ability parameter (θ̂) corresponds to the mean of the posterior distribution. By default, 

many R packages calculating EAP will assume a normal distribution for the prior probability 

distribution (e.g., mirt; Chalmers, 2012; GGUM; Tendeiro & Castro-Alvarez, 2020).  

 For polytomous unidimensional data, a typical model would include response categories per 

item, with such categories and their respective scores having option response functions (ORFs). These 

ORFs represent the probabilities of obtaining designated scores contingent on the level of the latent 

trait theta (θ). In ordered polytomous IRT models that divide responses into a set of ordered pairs 

of adjacent categories, transitioning between option response functions per item occurs at 

respective transition locations (δihs) between the ordered category pairs. Given that such item 

transition locations separate the intervals associated with category scores with respect to (θ), the 

number of intervals per item will be (k + 1) relative to the item transition locations. The premise 

of having such transition locations be ordered in terms of their magnitude will be dependent 

upon the selected polytomous model, but such an assumption is not a necessary condition when 

calibrating polytomous models in general (De Ayala, 2009). Although there are many 

polytomous IRT models to introduce, only two will be briefly mentioned given their relevance to 

subsequent analyses. One of the two dominance models is selected due to its similarity to the 

GGUM, which is the main focus of the model fit analyses on the next chapter. The first model is 

the generalized partial credit model (GPCM) (Muraki, 1992), which is defined in the following 

equation: 

P(𝑌i = 𝑦 | θj) =  
exp {𝛼𝑖 [𝑦(𝜃𝑗 −  𝛿𝑖) − ∑ τ𝑖𝑘

𝑦
𝑘=0 ]} 

∑ {exp {𝛼𝑖 [𝑤(𝜃𝑗 − 𝛿𝑖) − ∑ τ𝑖𝑘
𝑤
𝑘=0 ]}}𝑀

𝑤=0

          (3) 

where∑ τ𝑖𝑘 = 0
𝑦=𝑀
𝑘=0 , Yi represents the probability of a response in item i’s y category, ((Yi= y|θ) 

= 0, 1, 2, ..., M), M corresponds to the number of response categories minus 1, θj is the location 
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of person j on the latent continuum, δi is the location of item i on the latent continuum, αi is the 

discrimination of item i, and τik represents the location of kth response category threshold on the 

latent continuum with respect to the ith item location. In short, equation 3 divides the probability 

of selecting a specific response category given theta (θ) over the sum of all the probabilities 

corresponding to the locations of the response categories for a specific item conditional on theta 

(θ). Note that the GPCM response categories are separated by respective thresholds (i.e., τik). 

These thresholds can be sequentially ordered in more constrained versions of the GPCM for 

respective response categories such as the rating scale model (RSM) (Masters, 1982), but are 

allowed to be unordered for the GPCM and ideal point models such as the GGUM (Roberts et 

al., 2000). Figure 2 displays the option response function (ORF) for a three-category hypothetical 

item calibrated using the GPCM model with α = 1.5, δ12 = -2, and δ13 = 2: 

Figure 2. ORF for the GPCM Model 

 

 The second polytomous IRT model for dominance data is the graded response model 

(GRM) (Samejima, 1969). This model differs from the GPCM in defining the probability of a 

response relative to the specified response categories per item. In GPCM, the premise was 

estimating the probability of a response in a specific response category, and how the probability 
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would change when transitioning to an adjacent response category accordingly as shown in 

Figure 2.  The GRM compares response probabilities in a cumulative fashion, in which a specific 

point is selected on the latent continuum relative to the response categories that would define the 

comparison. For example, in a three-category item, a comparison of probability pertaining to a 

response might compare category 0 (i.e., obtaining a score of 0) to that of category one and two 

together (i.e., obtaining a score of 1 or higher). The estimation of the cumulative probabilities 

can be achieved via utilizing dichotomous models such as the 2PL (Samejima, 1969; De Ayala, 

2009). This follows utilizing a series of 2PL models to a sequential series of responses, which 

eventually yield the expected probabilities for the GRM response categories. The probabilities 

for the response categories are complements to one other. For example, when examining an item 

with three-response categories, the probability of responding in any of the categories will be 1, 

while the probability of scoring in category 0 will be equal to 1 minus the probability of scoring 

in category 1 or higher. The probability of scoring in category 1 or 2 rather than category 0 will 

be equal to the difference between the probabilities of being in category 1 from that of being in 

category 2. Finally, the probability of being in category 2 or higher is just the probability of 

being in category 2 since the portability of being at a higher category is 0. For illustrative 

purposes, the following equation is taken from (De Ayala, 2009), which demonstrates how to 

obtain the probability of scoring in category 1 or 2 rather than category 0. Note that P* indicates 

cumulative probabilities, and δi, αi, and θ are the category boundary location, item 

discrimination, and person location parameters respectively: 

P1 = P1
∗ − P2

∗ = p(xi = {1, 2}| θ) − p((xi = {2}| θ) =  
𝑒αi(θ−δ1)

1 +  𝑒αi(θ−δ1)
−  

𝑒αi(θ−δ2)

1 +  𝑒αi(θ−δ2)
         (4)  

If the 2PL model is applied for each category boundary location δi separately with respect to θ, 

then we obtain cumulative probability curves corresponding to such boundary locations, 
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sometimes referred to as category boundary curves. Figure 3 illustrates the category boundary 

curves for a three-category item with α = 2, δ1 = -2, δ2 = 2: 

Figure 3. Boundary Category Curves for the GRM Model 

 

Figure 4 displays the ORFs for the same hypothetical item. Note that the orange curve in Figure 

4 can be obtained by substituting the respective values of α and δi in equation 4 across θ: 

Figure 4. ORF for the GRM Model 
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 The process of fitting IRT models for polytomous data involves the estimation of both 

item and person parameters, which follows similar procedures to that of dichotomous data. 

MMLE and EAP estimation processes are also utilized for estimating item and person 

parameters respectively.  

 In the next chapter, The GRM will be selected as the IRT dominance model for 

subsequent model fit comparisons with an ideal point model (i.e., GGUM) for polytomous data. 

The GPCM on the other hand, represents one of the premises that defines the GGUM model, 

which is going to be introduced in the following section as the ideal point IRT model of choice. 

The GGUM will also be the calibrated model of choice for model fit analyses given the limited 

amount of research done to that effect.  

IRT Ideal Point Models 

 The theory behind ideal point models was first suggested by Thurstone (1928) as a way 

of measuring attitudes, in which the endorsement of presented statements is related to how 

similar these statements are to the actual attitude of the individuals. As mentioned in the 

introduction, ideal point models in IRT are inspired from Coombs unfolding (Coombs, 1964), 

which works well with non-cognitive items (i.e., attitudes) in terms of assessing their 

psychological proximity to the actual attitudes of the responding individuals (Roberts & 

Laughlin, 1996). Ideal point models do not assume a cumulative monotonic response function as 

in dominance models, but rather an unfolding single-peaked response function (Roberts, et al., 

2000). Many researchers argue that both dichotomous and polytomous attitude statements, in 

which some sort of self-reflection is required are better captured by ideal point models 

(Drasgow, Chernyshenko, & Stark, 2010; Nye et al., 2019; Roberts, et al., 2000). For example, 

Drasgow et al. (2010) suggests that in organizational research, inventories requiring employees 
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to introspect are better modeled by ideal point processes. Nye et al. (2019) also cites several 

studies demonstrating that ideal point models (i.e., unfolding models) are superior to dominance 

based models when assessing personality, vocational interests, person-organization fit, 

performance ratings, and job attitudes. Unfolding models are also useful for item-level analyses 

when investigating response sets (e.g., malingering) associated with non-cognitive assessment 

inventories (Liu & Zhang, 2020; Scherbaum, Sabet, Kern, & Agnello, 2013). 

 The generalized graded unfolding model (GGUM) is an ideal point IRT model introduced 

by Roberts and colleagues (Roberts et al., 2000), with a constrained version of the model known 

at the graded unfolding model (GUM) being introduced prior to the generalized version (Roberts 

& Laughlin, 1996). Both the GGUM and GUM were developed under four basic premises 

relative to the response process. Note that all of the explanations to follow assume a 

unidimensional latent trait, and are based on the explanations in Roberts et al. (2000).  

 The first premise is that expected agreements of respondents to items/statements will be 

contingent on the items’ relative positions to respondents’ actual positions on the latent 

continuum representing the construct. Put simply, as the values of the ith item δi and the jth 

person θj approach one another, the distance between them approaches 0 and it is expected that 

person j’s likelihood of agreement to item i will be high.  

 The second premise is that a person can select a specific response category (e.g., 

“disagree”) for two reasons. The first has to do with the person having a more positive attitude 

than the item’s content, hence disagreeing from above. The second reason has to do with a 

person holding a more negative attitude than the item’s content, hence disagreeing from below. 

In other words, there are two subjective responses for every observable response on a rating 

scale.  
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 The third premise is that subjective responses (e.g., disagreeing from “above or “below” 

an item) to statements follow a dominance (i.e., cumulative) item response model. Muraki’s 

(1992) GPCM can model GGUM’s subjective response functions, hence its introduction in the 

previous section as one of the assumptions defining GGUM. In short, the subjective response 

category probability functions follow a cumulative model. Also, the number of response 

categories will be doubled because of the two possibilities for each observable response 

category. For example, a hypothetical item with four observable response categories (ORCs): 

strongly disagree, disagree, agree, and strongly agree can be modeled using the GPCM with 

seven subjective response category (SRCs) thresholds (τiks). There are two subjective responses 

for every observable response (i.e., eight intervals in total). Also, the dominance of the most 

likely subjective response within the intervals is determined by the discrimination parameter (αi). 

As mentioned in Roberts et al. 2000, the model’s SRCs must be transformed into an ORC format 

that is compatible with the graded agreement scale. Since the two subjective response categories 

are mutually exclusive, the probability of a response within an observed response category will 

be equal to the sum of the respective probabilities related to the two subjective response 

categories. 

 The fourth premise builds on the idea that subjective response categories must be defined 

in terms of the actual observable response category. The response category thresholds τiks will be 

symmetric about the point (θj - δi) = 0. In short, premise four states that respondents have an 

equal probability of agreeing to an item situated along the latent continuum by either –h or +h 

units from their positions on the attitude continuum. By applying the forth premise, we get the 

following identity: ∑ τ𝑖𝑘 = 0𝑀−𝑐
𝑘=0 . By integrating the following identity and taking into account 

that the sum of the mutually exclusive subjective categories would yield the observed response 
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category probability functions, the GPCM model in equation 3 can be modified to yield the 

formal definition the GGUM: 

P(𝐶i = 𝑐 | θj)

=  
exp{𝛼𝑖 [𝑐(𝜃𝑗 −  𝛿𝑖) − ∑ τ𝑖𝑘

𝑐
𝑘=0 ]} +  exp{𝛼𝑖 [(𝑀 − 𝑐)(𝜃𝑗 −  𝛿𝑖) − ∑ τ𝑖𝑘

𝑐
𝑘=0 ]}

∑ {exp {𝛼𝑖 [𝑤(𝜃𝑗 −  𝛿𝑖) − ∑ τ𝑖𝑘
𝑤
𝑘=0 ]}}𝐵

𝑤=0 + exp{𝛼𝑖 [(𝑀 − 𝑐)(𝜃𝑗 −  𝛿𝑖) − ∑ τ𝑖𝑘
𝑐
𝑘=0 ]}

    (5) 

where Ci represents the observable response to item i, c = 0 (z = 0, 1, 2, ..., B) indicates the 

strongest level of disagreement, c = B indicates the strongest level of agreement and is equal to 

the number of observable response categories minus 1, M = 2B + 1, θj is the location of person j 

on the latent continuum, δi is the location of item i on the latent continuum, αi is the 

discrimination of item i, and τik represents the location of kth response category threshold on the 

latent continuum with respect to the ith item location (Roberts et al., 2000). Figure 5 displays the 

observable response categories (ORC’s) probability functions for a hypothetical four-category 

item as a function of  θj - δi. C denotes the observed responses from 0 to 3: 
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 Figure 5. ORC Probability Functions for a GGUM Four-Category Item 

 

Note. This figure was produced in R using the package ‘GGUM’ by Tendeiro, J. N., and Castro-

Alvarez, S. (2020). GGUM: Generalized Graded Unfolding Model. R package version 0.4-1. 

https://CRAN.R-project.org/package=GGUM 

 The graded unfolding model (GUM) is a constrained variant of the GGUM, in which the 

discrimination parameters are set to unity and the threshold parameters are equal across items 

(Roberts & Laughlin, 1996). Changing the discrimination parameter will alter the magnitude of 

the expected values function, in which larger values of αi yield more peaked expected value 

functions reaching their upper bound. Also, changing the threshold values τik by increasing the 

distance between them will also elevate the expected value function to its upper bound but will 

decrease its steepness in a simultaneous fashion (Roberts et al., 2000). The dichotomous 

unfolding data model is a simplified application of the polytomous variant using only two 
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response categories such as ‘agree’ or ‘disagree’, and can be modelled using both GUM or 

GGUM.  

 The process of fitting IRT ideal point models for data involves the estimation of both 

item and person parameters, which follows similar procedures to that of IRT dominance models. 

MMLE and EAP estimation processes are utilized for estimating item and person parameters 

respectively. Although JMLE was utilized to estimate the item parameters for the GUM in 

Roberts and Laughlin, (1996), subsequent publications utilized an MMLE estimation process in 

calibrating the item parameters for both the GUM and GGUM.  

 Since the GGUM assumes unidimensionality, a principal component analysis (PCA) can 

be performed to verify such an assumption. In Davison (1977), it is shown that responses 

adhering to a simple unfolding model will yield two principal components. In short, a 

unidimensional unfolding model can be inferred from a scree plot identifying two dominant 

eigenvalues from a polychoric correlation matrix (De Ayala & Hertzog, 1991). Another rule of 

thumb for assessing dimensionality in unfolding models entails estimating the final 

communalities of the first two principal components and examining whether the respective 

communality value is greater or equal to 0.3 (Roberts et al., 2000).  

 The GGUM for both dichotomous and polytomous data follows a parametric approach, 

which allows the computation of attitude estimates to be invariant of the respective items used in 

calibration. The invariance property is also applicable to the item locations, which are invariant 

to the responses of the examinees constituting the attitude of interest in a sample (Roberts et al., 

2000). Item discrimination parameters are also invariant to the responses of the examinees, and 

are tested for invariance via different methods that mainly involve the examination of the 

interaction between item location and discrimination parameters between selected subsamples. 
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Interested readers are referred to De Ayala (2009) for an overview on assessing invariance. The 

applicability of the invariance property is only realized once the unfolding model fits the data 

(Hoijtink, 1990). 

IRT Model Fit Statistics 

 In theory, the majority of estimation processes examining IRT model fit would involve 

comparing the individual-level residuals between the observed (xni) and predicted scores (Pnix). 

However, a case of perfect model fit will still be short from yielding individual-level residuals 

that are equal to zero. This occurs as a result of limiting the observed scores (xni) to a set of fixed 

values such as 0 or 1 for dichotomous data, while varying the respective item response function 

that is used for estimating the predicted scores (Pnix) to range from 0 to 1 (Ames & Penfield, 

2015). This problem led statisticians to come up with different ways to estimate model fit for 

IRT models. One such solution is to sort individual scores into distinct groups h based on their 

ability estimate θ̂, sometimes referred to as ‘binning’. This process allows a comparison of 

observed and expected scores within each bin, hence allowing the residuals in theory to equal  

zero in cases of good model fit; the usefulness of such binning process is dependent on sample 

size.   

 As mentioned in the introduction, many of the model fit techniques utilize a chi-square 

approach, with the generic form of the estimation process for dichotomous data presented in the 

following equation: 

χ𝑖
2 =  ∑ 𝑁ℎ𝑖  

(𝑟ℎ𝑖)
2

𝑃ℎ𝑖(1 −  𝑃ℎ𝑖)

𝐻

ℎ=1

          (6) 

where 𝑟ℎ𝑖 represents the bin-level residuals and 𝑁ℎ𝑖 refers to the number of respondents in bin h 

attempting item i. Equation 6 incorporates the residuals relative to the selected bins rather than 
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the whole item, which makes it possible to obtain zero residuals when estimating model fit. 

Three chi square model fit estimates will be introduced. The first two of these statistics will bin 

respondents into groups, with noticeable differences in the process of creating such bins, as well 

as in the approach of estimating the bin-level predicted responses 𝑃ℎ𝑖. 

Yen’s Q1 statistic. 

 This fit statistic (Yen, 1981) is based on another chi-square fit statistic introduced in 

Bock (1960, 1972). The Q1 statistic accounts for the ability level theta θ of respondents across an 

item i and sorts them into 10 relatively equal sized groups based on their ability estimates. The 

𝑁ℎ𝑖 in Equation 6 corresponds to the number of respondents per group h, and 𝑟ℎ𝑖 is the difference 

between the observed and predicted (i.e., expected) score proportions to those answering item i 

correctly. The respective degrees of freedom needed to compare the obtained observed chi-

square value to that indicated by the expected distribution (i.e., expected value) are 10 – (# of 

model parameters). For example, a 2PL model with its two parameters of δi, and αi will incur 8 

degrees of freedom. The main difference between Q1 and Bock’s chi-square has to do with 

selecting the number of bins. While Q1 specifies the number of bins to be exactly 10 based on 

the respondents’ ability levels, Bock’s statistic can accommodate H number of bins. Also, Q1 

utilizes the average bin-level predicted responses 𝑃ℎ𝑖 for estimating 𝑃ℎ𝑖 per bin, while Bock’s 

chi-square uses the median 𝑃ℎ𝑖 for respondents per bin (Ames & Penfield, 2015). The null 

hypothesis specifies perfect model data fit.  

 Although this fit method may allow researchers to obtain zero residuals with good fitting 

models, it has nevertheless been criticized in many respects. First, since the binning process is 

dependent on ability estimates, it is possible that the presence of a biased ability to begin with 

will produce an invalid fit statistic (Yen,1981). Second, the notion of binning into equal sized 
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groups will vary depending on the sample size, which can yield high Type I error rates (Orlando 

& Thissen, 2000). As mentioned earlier, larger sample sizes are usually more useful for applying 

Q1 or Bock’s χ2. Third, some models such as those realized by ideal point processes may not fare 

well with such fit indices (Nye et al., 2019; Roberts, et al., 2000). It is possible to obtain 

relatively small expected frequencies for particular response categories when dealing with ideal 

point models. This could happen given the propensity of respondents to strongly agree with 

items that are close in proximity to their locations on the latent trait. In other words, creating bins 

of equal sample sizes will not work for such models. Nye et al. (2019) also adds that correcting 

this problem by combining response categories to increase respondents per bin will not be useful 

when the expected frequencies are small to begin with. Given such limitations, other fit indices 

that do not require binning on model-dependent θ estimates are recommended.  

S – X2 statistic. 

 Orlando and Thissen (2000) proposed binning examines into groups based on observed 

test scores rather than model-dependent θ values. This can be achieved via tabulating expected 

responses from the selected model’s respective predictions for each item across all of theta θ 

intervals. The procedure would allow the expected responses to be compared to the observed 

ones. Such a process will not require the reliance on an estimate of θ for the binning process, and 

would avoid the potential issues associated with model-dependent binning that were mentioned 

earlier for Q1. The only issue that may occur with this binning approach is the inability to 

maintain a fixed degrees of freedom when testing for model fit using the chi-square statistic, 

since it is possible to incur dependencies among tables of observed counts for items on a single 

test (Orlando & Thissen, 2000).  
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 The main difference between the S – X2 and the aforementioned chi-square fit indices in 

terms of estimation involves the expected/predicted frequencies. In other words, the Phi from 

equation 6 is estimated differently, and would not involve calculating the average or median bin-

level predicted responses. Rather, a process involving the prediction of joint likelihood 

distributions for each observed test score is utilized (Thissen, Pommerich, Billeaud, & Williams, 

1995). Thissen and colleagues developed a recursive algorithm, which utilizes the joint 

likelihood for selected groups based on their observed scores per item. Prediction using a joint 

likelihood approach was actually first introduced in (Lord & Wingersky, 1984) for test equating 

purposes, and was later modified for other IRT applications such as the S – X2 statistic. This 

method involves omitting one item at a time when estimating the likelihood, and then adding the 

item back to calculate the proportion of test takers with a specific observed score answering item 

i correctly. S – X2 follows a chi-square distribution with degrees of freedom equal to I – 1 – m. 

Where I is the number of items on a test and m is the number of parameters entailed by the IRT 

model for a given item.  The estimation of Phi takes the following form: 

𝑃ℎ𝑖 =  
∫ 𝑇𝑖𝑆ℎ−1

∗𝑖 𝛷(𝜃)𝑑θ

∫ 𝑆ℎ 𝛷(𝜃)𝑑θ
          (7) 

As described by Orlando and Thissen (2000): “the Sh is the observed score posterior distribution 

for score group h, Ti is the response function for item i, Sh−1
∗i

 is the observed score posterior 

distribution for score group h-1 without the last item, and the integrals are estimated using 

rectangular quadrature over equally spaced increments of θ from -4.5 to 4.5” (pp. 53-54). The 

null hypothesis specifies a perfect model data fit.   

 It has been argued that the S – X2 statistic works well for estimating model fit with 

logistic IRT models (Orlando & Thissen, 2000). Namely, the statistic exhibits low Type I error 

rates in general for such models. Also, power analyses involving the S – X2 statistic demonstrated 
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good results in terms of detecting misfit across different conditions through varying the number 

of items exhibiting misfit (Orlando & Thissen, 2003). However, there are concerns about 

whether the S – X2 works well with non-homogeneous groups based on the latent trait estimate. 

After all, the binning process in S – X2 does not create homogeneous respondent groups with 

respect to the latent trait when varying models with non-equal discrimination parameters. This in 

turn might affect the power of the item fit estimate given the process of assigning respondents to 

different groups, which might be problematic as mixing respondents with misfitting responses 

with other respondents will inevitably occur (Roberts, 2008). Observed test scores (OTS) are 

used for the grouping process in S – X2, and if the latent trait is heterogeneous, then it might be 

problematic to estimate item fit for ideal point models such as the GGUM. The reason is that 

according to Roberts (2008), such models are usually defined by item characteristic curves that 

are symmetric, do not follow a monotonic trajectory, and have their maximum values at θj - δj = 

0. For such reasons, Roberts (2008) argues that it is possible to get identical expected OTSs from 

examinees with completely different θj when calibrating a GGUM model.  

 To resolve the issue of detecting misfit when performing power analyses, Roberts (2008) 

introduced a corrected version of S – X2 that does not include the score of the examined item i 

(i.e., c S – X2).  Roberts also introduced variants of S – X2 that utilized observed subset scores 

(OSS), which are calculated from extreme item scores rather than OTS. Surprisingly, the 

standard S – X2 still yielded relatively comparable results to that of the corrected version in terms 

of exhibiting reasonable Type I error and power rates (Roberts, 2008). Such results were inferred 

from a simulation study that varied sample size and test length. The simulation study also 

compared the standard S – X2 item fit statistic to the other fit indices using OSS in terms of 
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detecting Type I error and power, with S – X2 showing better ability to detect misfit than any of 

the OSS fit indices. For the complete analysis, interested readers can refer to Roberts’s article.  

Adjusted chi-square χ2 for item singlets, doublets, and triplets.  

 First introduced by Drasgow, Levine, Tsien, Williams, and Mead (1995), this fit method 

does not require binning examinees into groups for estimating observed and expected response 

frequencies. Rather, it requires summing up such frequencies over the number of response 

options (Drasgow, Levine, Williams, McLaughlin, & Candell, 1989; Nye et al., 2019). 

Conditional option response functions (CORFs) are usually utilized, which yields probability 

estimates of choosing an incorrect option in examinees answering an item incorrectly given θ. 

When calculating the χ2 statistic, there can be an I number of such statistics for I items calculated 

separately, which can be referred to as item singles. The general form of expressing the chi 

square fit statistic for item singles for dichotomous data follows an ordinary χ2 expression: 

𝜒𝑖
2 =  ∑

[𝑂𝑖(𝑘) − 𝐸𝑖(𝑘)]2

𝐸𝑖(𝑘)

1

𝑘=0

          (8) 

Where 𝑂𝑖(𝑘) is the observed frequency of option k, and is estimated by counting the number of 

times in which respondents selected option k in the sample. 𝐸𝑖(𝑘) represents the expected 

number of times in which respondents choose option k, which is estimated from the respective 

option response function by: 

𝐸𝑖(𝑘) = 𝑁 ∫ 𝑃(𝑢𝑖 = 𝑘|θ)𝑓(θ)𝑑(θ)          (9) 

The f in the above expression refers to the θ density, which follows a standard normal given the 

scaling of the option response function with respect to the distribution, ui refers to the response 

score. Research has shown that the chi-square statistic for single items is generally insensitive to 

detecting misfit under various conditions (Stark, Chernyshenko, Drasgow, & Williams, 2006; 
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Van den Wollenberg, 1982). For example, Nye et al. (2019) found that a chi-square statistic for 

single items is a poor indicator of misfit under most conditions pertaining to different sample 

sizes and number of items. Given its limited ability to detect misfit, Drasgow et al. (1995) 

introduced an χ2 statistic from the expected frequency of item pairs via endorsing response 

options k and k’ concurrently, referred to as item doubles. This follows estimating the observed 

frequencies from a two-way contingency table, with the expected frequencies obtained by 

expanding equation 9 to:  

𝐸𝑖(𝑘, 𝑘′) = 𝑁 ∫ 𝑃(𝑢𝑖 = 𝑘|θ)𝑃(𝑢𝑗 = 𝑘′|θ)𝑓(θ)𝑑(θ)         (10) 

Extending to χ2 items triples and beyond can be achieved by expanding equation 10. For 

example, a multiway contingency table can be used for estimating the χ2 using triples of items 

(Tay, Ali, Drasgow, & Williams, 2011). There are (𝐼
2
) χ2 possible statistics for item doubles and 

(𝐼
3
) χ2 for item triples. The possible combinations of item doubles and triples increases 

dramatically by increasing the number of items. For example, a test with 30 items yields 435 

combinations for item doubles and 4,060 combinations for triples. To overcome this issue, 

Drasgow and colleagues (1995) divided the I test items into I/3 sets of three items. These sets 

were then used to compute the respective χ2 statistics for individual items, item pairs for 

doubles, and the whole set at once for triples. The degrees of freedom for the χ2 statistics equal 

to the number of cells minus one. For example, an item with three response categories will have 

two degrees of freedom. For item doubles, the χ2 statistic degrees of freedom with each item 

having three response categories will be eight (i.e., 9 – 1). As mentioned by LaHuis, Clark, and 

O'Brien (2009), a minimum expected frequency of five is maintained when collapsing over cells, 

and adjustments to the degrees of freedom are made to reflect the collapsing process.   
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 Also, to account for the dependency of χ2 on sample size, as well as ensuring that the 

adjusted χ2 statistics are comparable across different sample sizes (Tay et al., 2011), the 

estimation of χ2 for item singles, doubles, and triples are adjusted to a sample size of 3,000. The 

χ2 for such items will be estimated using the ratio of the chi-square to the respective degrees of 

freedom χ2/df. The sample size adjustment is expressed in the following equation: 

χ𝑖
2

𝑑𝑓
= 3,000

χ𝑖
2 − 𝑑𝑓

𝑁
+ 𝑑𝑓          (11) 

where df is the respective degrees of freedom. Although all of the presented IRT fit indices so far 

are for each item, model-fit estimation has been conducted for the adjusted χ2 fit statistics for 

item singles, doubles, and triples. The basic premise involves taking the mean of the χ2/df ratios 

and comparing it with the value of 3 based on empirical findings using large cognitive ability 

data (Chernyshenko, Stark, Chan, Drasgow, & Williams, 2001; Drasgow et al., 1995). Mean 

ratios that are less than 3 for items singles, doubles, and triples indicate good model fit 

(Chernyshenko et al., 2001). 

 Studies assessing model fit using the adjusted χ2 fit statistics have been conducted 

(Drasgow et al., 1995; Tay et al., 2011). Results favor the use of χ2 fit for item doubles and 

triples in detecting misfit and not item singles given the inability to detect misfit in many 

conditions. For example, Tay and colleagues (2011) found that for both dichotomous and 

polytomous data generated from different IRT models adjusted χ2 fit tests for item pairs and 

triplets were able to identify the correct model well. These fit indices were successful in 

identifying the correct model for tests with relatively large numbers of items (i.e., 30 items). Nye 

and colleagues (2019) also found that the adjusted χ2 for item doubles and triples were among 

the most accurate indicators of misfit, even when generating different dichotomous and 

polytomous IRT models and calibrating them via the GGUM. However, the adjusted χ2 for 
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single items did not perform as well in detecting misfit. Nevertheless, power did improve for the 

adjusted χ2 for single items once the number of items were greater than 20.   

 The next fit indices are estimated using a likelihood-ratio approach. The first of these 

approaches utilizes a similar binning process to that of Q1. The second approach is a relative-fit 

method that compares different IRT models for best fit. 

The G2 statistic. 

 The simplest form of this likelihood ratio (LR) fit statistic is applicable to dichotomous 

items and is given by: 

𝐿𝑅𝑖 = 2 ∑[𝑁ℎ𝑖1

𝐻

ℎ=1

ln (
𝑁ℎ𝑖1

𝑁ℎ𝑖𝑃ℎ𝑖1
) +  𝑁ℎ𝑖0 ln (

𝑁ℎ𝑖0

𝑁ℎ𝑖(1 − 𝑃ℎ𝑖1)
)]          (12) 

where 𝑁ℎ𝑖1 and 𝑁ℎ𝑖0 correspond to the number people per bin h responding to item i correctly 

and incorrectly, respectively (Ames & Penfield, 2015). For G2 as proposed by McKinley and 

Mills (1985), 𝑃ℎ𝑖1 represents the probability of responding correctly at the average value of the 

ability level for respondents in bin h. Similar to the Q1 test of fit, examinees are binned 

according to their ability estimate θ̂. However, the number of selected bins are not constrained to 

10 as in Q1, hence examinees can be sorted in h number of bins according to their ability levels. 

G2 is also distributed as chi-square such as the aforementioned fit indices, with respective 

degrees of freedom equal to the selected number of bins H. The null hypothesis assumes a 

perfect model data fit.  

 As mentioned by Ames and Penfield (2015), G2 also has similar problems to that of Q1 in 

terms of relying on model-dependent θ estimates for creating the bins, to which they cite DeMars 

(2005) criticisms on such a matter. Also, Roberts (2008) simulation study that compared 

different item fit statistics for the GGUM included the G2 statistic. The results showed that 
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statistic behaved erratically in terms of yielding a higher Type I error rate with larger sample 

sizes. This did not occur with other fit indices such as the S – X2 and those indices conditioned on 

subtest test scores.  

 Testing relative model fit can also be assessed through the G2 statistic for nested IRT 

models, in which related models can be compared with one another. For example, the GUM is 

nested within the GGUM if the discrimination parameters are constrained to unity as well as 

making the threshold parameters identical across all items. The comparison of the likelihood 

ratios between the models using the difference of G2s takes the following form: 

∆𝐺2 =  −2 ln(𝐿𝑅) − (−2 ln(𝐿𝐹))         (13) 

As defined by (De Ayala, 2009), LR is the likelihood for the constrained model (e.g., GUM) 

while LF is the likelihood of the full model (e.g., GGUM). The main issue with this relative fit 

approach is that it is restricted to comparing models from the same family. Also, it doesn’t 

penalize models with unnecessary parameters. Therefore, there is a problem with model over-

parameterization. The next presented relative model fit statistics are supposed to handle the 

aforementioned issues. 

AIC and BIC. 

 Both Akaike’s information criterion (AIC) (Akaike, 1973) and Bayesian information 

criterion (BIC) (Schwarz, 1978) are relative model fit indices, which are determined by the 

number of parameters in the tested model. AIC is calculated as: 

𝐴𝐼𝐶 =  −2𝑙𝑜𝑔𝐿 + 2𝑣          (14) 

where log L is the log-likelihood and v refers to the number of parameters in the selected model. 

The BIC is calculated as: 

𝐵𝐼𝐶 =  −2𝑙𝑜𝑔𝐿 + 𝑣 𝑙𝑜𝑔 𝑛          (15) 
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where n corresponds to the sample size. The log n in BIC incurs greater likelihood values when 

compared to AIC, hence being the more stringent fit index when compared to AIC (i.e., yields 

larger values). As mentioned by Nye et al. (2019), these relative fit statistics have shown 

promising results for correctly identifying fit for dichotomous IRT models (Kang, Cohen, & 

Sung, 2009). However, there has been less research done on the effectiveness of such relative fit 

statistics in identifying the correct IRT model when calibrating ideal point models such as the 

GGUM. Nye et al. (2019) is among the few studies that utilized both AIC and BIC in detecting 

fit and misfit on generated data from dominance models that were calibrated by the GGUM. 

Results from the study showed that such fit statistics are able to detect both Type I error and 

power 100 percent of the time across replications, while not being influenced by either the 

number of items or sample size.  

 The final fit statistic is often used in the SEM literature. However, it has been utilized to a 

lesser degree in the IRT literature albeit its promising capabilities in identifying the correct 

model under various conditions pertaining to different sample sizes and number of items on a 

test. 

Standardized root mean square residual (SRMSR). 

 This fit statistic is appropriate for both large nominal and ordinal data, and is usually 

utilized in factor analysis. Also, it addresses some of the problems inherent with chi-square fit 

statistics such as sensitivity to sample size. Maydeu-Olivares and Joe (2014) demonstrated the 

SRMSR’s applicability for estimating approximate fit, which can be used for evaluating model 

fit for IRT models. The SRMSR is simply the square root of the average squared residual 

correlations between a set of item pairs i and j. The residual correlation is the sample or 
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population correlation minus the expected correlation. The population SRMSR for item pair is 

defined as follows: 

𝑆𝑅𝑀𝑆𝑅 =  √∑
( 𝑖𝑗

𝑇
− 𝑖𝑗

0
)

2

𝑛(𝑛 − 1)/2
𝑖<𝑗

          (16) 

where 𝑖𝑗

𝑇
 refers to the population correlation, and 𝑖𝑗

0
 is the expected correlation. This statistic 

and its extension to ordinal data are more useful over other limited information goodness of fit 

statistics such as the M2 and MORD, since the former two can be computed without any degrees of 

freedom. M2 is a limited information fit statistic that can be used for sparse dichotomous data 

with large number of items (i.e., many empty cells in a frequency table). According to Xu, Paek, 

and Xia (2017),  

M2 follows asymptotically a central chi-square distribution under the null hypothesis with 

asymptotically normal consistent estimators. Its degrees of freedom is equal to the 

number of used multivariate moments (or the number of the margins up to 2) minus the 

number of model parameters (p. 633).  

It utilizes the means and cross-products (i.e., bivariate information) to estimate fit. MORD is an 

extension of the M2 statistic that uses a different asymptotic covariance matrix and matrix of 

derivatives when estimating parameters, and accommodates large number of items with multiple 

response categories per item (i.e., ordinal data). Interested readers are referred to Maydeu-

Olivares and Joe (2014) for computing M2 and MORD.  

 The root mean square error of approximation (RMSEA) is a fit statistic that compares the 

difference between a hypothesized model and a perfect model (Browne & Cudeck, 1992). 

Though often utilized as a goodness of fit approximation in multivariate contexts and can be 

applied to IRT models, its sampling distribution is only approximated with asymptotic methods 
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in small models (Maydeu-Olivares & Joe, 2014). An alternative fit statistic RMSEA2 resolves 

this issue by using only bivariate information as the M2 statistic instead of the full information 

needed to calculate RMSEA. 

 SRMSR is shown to be linearly related to RMSEA2, with an average R2 of 97% 

(Maydeu-Olivares & Joe, 2014). Such a relationship is useful since RMSEA2 can be estimated 

using the M2 statistic. An SRMSR ≤ 0.05 points toward a tested IRT model that approximately 

represents the data of interest. Based on both simulated and empirical data (Maydeu-Olivares & 

Joe, 2014; Nye et al., 2019), the SRMSR was selected to test for IRT model fit with favorable 

results in terms identifying the correct model and detecting misfit (Nye et al., 2019).  

 Although less utilized when compared to the other model fit indices when examining IRT 

calibrated data, the SRMSR may be among the most useful model fit statistics around. It can 

accommodate different IRT models tested under different conditions pertaining to different 

sample sizes and number of items (Nye et al., 2019). Also, few IRT software packages are 

equipped with either approximate or limited fit information indices such as the SRMSR or M2 for 

IRT models such as mirt (Chalmers, 2012) and flexMIRT (Cai, 2017), which make them less 

likely to be utilized for performing model fit analyses.  

 In this respect, it would be conducive to IRT research if the aforementioned item and 

model fit indices are compared in terms of correct model identification and the detection of 

misfit for unfolded models such as the GGUM. After all, the advantageous properties inherent 

within IRT models will only be applicable and valid if the pre-selected model fits the data. 

Overlap of Item Response Functions between IRT Models 

 Although research has shown in theory and practice that ideal point IRT models such as 

the GGUM are better suited for attitude and survey data given the possibility of obtaining higher 
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observed δs (Coombs, 1964; Roberts & Laughlin, 1996; Thurstone, 1928), IRT data obtained 

from dominance models such as the 2PL and 3PL models may fit the GGUM model well (Tay et 

al., 2011). Actually, earlier research advocated fitting the 2PL model to self-report data such as 

those assessing attitudes and personality (i.e., noncognitive items) since model fit estimation did 

not indicate misfit (Fraley, Waller, & Brennan, 2000; Reise & Waller, 1990; Tay et al., 2011). In 

short, an ideal point model such as the GGUM can fit generated data from the 2PL and 3PL 

models well for high δi values without indicating misfit. Figure 6 illustrates how the IRFs of the 

GGUM, 2PL, and 3PL are pretty much overlapping across the θ continuum, albeit the divergence 

of the IRFs paths between the GGUM and the dominance models as θ becomes greater than 2. 

Such a divergence represents a minority of respondents and would not affect model-fit (Tay et 

al., 2011).  

Figure 6. GGUM/2PL/3PL Item Response Function 

 

Note. The GGUM IRF in gray is computed with αi = 0.9, δi = 2, and τi = -1.3. The 2PL IRF in 

blue is computed with αi = 1.1 and δi = 0.5. The 3PL IRF in orange is computed with αi = 1.1, δi 

= 0.5, and χ i = 0.1. 
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 Given such overlap between IRT models, subsequent analyses of model fit would entail 

specifying different ranges of generated δs between the GGUM and the dominance models 

across replications, which might to a certain extent allow the GGUM model to differentiate 

between the generated data from the different IRT models in terms of fit. 

The Current Study 

 The purpose of this study is to compare the aforementioned IRT model fit indices by 

fitting the Generalized Graded Unfolding Model (GGUM) to different generated IRT data 

models, and test their Type I error and power rates respectively. The generated IRT data from the 

models will include both dichotomous and polytomous variants, and they will be unidimensional. 

Based on the results, suggestions will be made as to which fit statistics are the most useful for the 

IRT unfolding model. 

 Research questions to be addressed:  

1) How comparable are the different model fit indices in terms of identifying the correct 

model (i.e., Type I error) when the generated data are actually from the GGUM? 

2) How comparable are the different model fit indices in terms of detecting misfit (i.e., 

power) when the generated data actually is from another IRT model calibrated by the 

GGUM? 

3) How would the different model fit indices fare when varying numbers pertaining to 

sample size, items, and response categories (i.e., dichotomous vs. polytomous) on 

detection rates of fit and misfit?  

4) How comparable are relative fit indices (i.e., AIC and BIC) when the GGUM model is fit 

to generated GGUM data utilizing different δ ranges and compared to dichotomous 

dominance models. 
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CHAPTER 3 

METHODS 

Variables 

 A simulation study was performed utilizing four variables: sample size (500, 1000, 2000, 

3000), number of items (10, 20, 40), type of IRT model used to generate data, and type of data 

(dichotomous or polytomous). For dichotomous IRT models, data were generated from the 2PL 

model, 3PL model, and GGUM comprised of two response categories (i.e., coded 0 or 1). For 

polytomous IRT models, data were generated from the graded response model (GRM) and the 

GGUM comprised of four response categories. Within each condition, data were generated and 

an IRT model was fitted to the data for each of 100 replications. All simulations pertaining to 

data generation, fitting the model to the generated data, and estimation of model fit indices were 

conducted in R (Chalmers, 2012; Nydick, 2014; Tendeiro & Castro-Alvarez, 2020).   

Data Generation 

Item and person parameters. 

 The distributions from which the generated item parameters were obtained from previous IRT 

simulation studies (Nye et al., 2019; Roberts, Donoghue & Laughlin, 2002; Tay et al., 2011). For 

dichotomous dominance IRT models (i.e., 2PL and 3PL), the discrimination parameters were 

generated from a log-normal [0, 0.5] distribution and dividing by 1.702. The item locations were 

generated from a random uniform distribution [-2, 2]. For the 3PL model, the guessing parameter 

χ was obtained from a random uniform distribution [0, 0.3]. For the GGUM model, the 

discrimination parameters were generated from a uniform distribution [0.5, 2] distribution.. The 

threshold parameter (τ) was sampled from a uniform random distribution [-1.4. -0.4]. For 

polytomous IRT models, the discrimination parameters were generated from a log-normal [0, 
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0.5] distribution and dividing by 1.702, while the discrimination parameters for the GGUM were 

generated from a random uniform distribution [0.5, 2]. The threshold parameters for the GRM 

(δ1, δ2, δ3) were generated from random uniform distributions [-2, -0.5], [-0.5, 0.5], [0.5, 2], 

respectively (Kieftenbeld & Natesan, 2012; Nye et al., 2019). For the GGUM as indicated by 

Roberts et al. (2002), the threshold parameters (τik) were generated independently for each item. 

For a selected item, the highest threshold parameter (τiB or τ3) was drawn from a uniform 

distribution [-1.4. -0.4]. Successive τ parameters for each item (i.e., τ2 or τ1) were sampled using 

the following recursive formula: 

τ𝑖𝑘−1 =  τ𝑖𝑘 − 0.25 + 𝑒𝑖𝑘−1,   for 𝑘 = 2, 3,          (17) 

where 𝑒𝑖𝑘−1 represents a random error term sampled from a normal distribution N(0, 0.04). The 

item parameters will vary across replications to test as many different ranges of items and 

observe whether the detection of fit/misfit will hold across different generated items. Although 

varying the item parameters might produce less consistent patterns when it comes to detecting 

misfit, such as when fitting the GGUM to the incorrect generated data (i.e., large sample size and 

number of items might not always yield the highest rates of misfit), it would nevertheless be 

useful for generalizability purposes in terms of testing the accuracy of the model fit indices in 

detecting fit/misfit under different parameter ranges. For all IRT models, person parameters (θ) 

are generated from a random normal distribution N(0, 1), which also varies per replication. 

Item location parameters for the GGUM. 

 The item location δs parameters for the GGUM were generated using 3 different ranges 

from random uniform distributions. The first parameters was generated from a random uniform 

distribution [-2, 2] as specified by Roberts et al. (2002). The second set of item location 

parameters were also generated from a random uniform distribution [-2, 2] as specified by 
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Roberts et al. (2002). Nevertheless, these item locations do not include values ranging from -1 to 

1 in order to prevent possible overlap between small values of δs between competing models, 

which supposedly reduces the detection of misfit. The third set of item locations were generated 

from a random uniform distribution [-3, 3], which has a greater range of generated δs to that of 

the other competing dominance models. This is done to reduce the possibility of incurring large 

δs for the dominance models, which might lead to higher proportions of false negatives. The 

different sets were compared in terms of relative fit (i.e., comparative fit) to one another via AIC 

and BIC fit indices, and the set with the smallest fit values were selected for subsequent fit 

analyses. Based on the expected overlap between the IRF’s of the GGUM and the dichotomous 

dominance models, it is expected that Roberts et al. (2002) recommended range of a uniform 

distribution [-2, 2] will fare worse than the other two sets in terms of relative fit when utilizing 

the marginal maximum likelihood algorithm for parameter estimation.  

Response data generation. 

 Responses from simulated data for dichotomous items were generated through comparing the 

item response probabilities from each model to a random uniform distribution [0, 1]. As indicated by 

Nye et al. (2019), a score of 1 was assigned to a response data for a dichotomous item if the response 

probability is greater than the generated number from the uniform distribution, while a score of 0 was 

assigned if the response probability is less than the generated number from the uniform distribution. 

For dominance IRT models with dichotomous items such as the 2PL and 3PL, response data were 

generated by the “catIRT” package in R (Nydick, 2014). . For the GGUM model with dichotomous 

items, response data were generated by the “GGUM” package in R by setting the category 

threshold indicator C to 1 (Tendeiro & Castro-Alvarez, 2020). 
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 For polytomous items with four response categories, a score of 3 was assigned to a response 

data if the sum of the response probabilities for categories 0, 1, and 2 was less than the randomly 

sampled uniform number. If the random generated number was less than the sum of the probabilities 

for categories 0, 1, and 2 but greater than the sum of the probabilities for categories 0, and 1, then a 

score of 2 was assigned, and so forth. For dominance IRT models such as the GRM, response data 

were also generated by the “catIRT” package in R (Nydick, 2014). However, response data 

generated for the GRM by the “catIRT’ package assigned a value of 1 instead of 0 to the lowest 

response category. Hence, an adjustment was made in which a value of 1 is deducted from each 

of the response category values ranging from 1 to 4, which in turn yielded response values 

ranging from 0 to 3. For the GGUM model with four response category items, response data 

were also generated by the “GGUM” package in R, but via setting the category threshold 

indicator C to 3 (Tendeiro & Castro-Alvarez, 2020). 

Model Parameters Calibration 

 Once the generated response data for the selected IRT models were created, the GGUM model 

was fit to the data accordingly by the marginal maximum likelihood algorithm as specified by Roberts 

et al. (2000), which is based on an expectation-maximization (EM) approach. R packages “GGUM” 

and “mirt” were utilized to calibrate the item parameters (Chalmers, 2012; Tendeiro & Castro-

Alvarez, 2020). The reason for using two different packages to perform the calibration process has to 

do with subsequent model fit estimation approaches that are available in one of the packages but not 

the other. For instance, the GGUM package is only able to estimate the Adjusted Chi-square χ2 and 

relative fit statistics (i.e., AIC and BIC), while the mirt package is only able to estimate fit 

statistics such as Q1, S – X2, G2, SRMSR, and the relative fit statistics.  
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 In the GGUM package, the selected number of nodes used for numerical integration is 

60. The selected maximum number of EM outer and inner iterations are 200 and 30, respectively. 

The convergence tolerance is set to 0.001. The selected number of nodes, iterations, and 

convergence tolerance values follows those utilized in Tay et al. (2011). 

 In the mirt package, the GGUM model is fit to generated data by setting the type of 

density form for the latent parameters to ‘empircalhist’, which utilizes an empirical histogram as 

described by Bock and Aitkin (1981). This form is only applicable for unidimensional models 

estimated using the EM algorithm (Chalmers, 2012). The numerical optimizer is set to ‘nlminb’. 

The Newton-Raphson optimizer is desired since it also follows Bock and Aitkin (1981), but is 

not utilized since it is less stable in yielding converged solutions in mirt. Sixty quadrature points 

are used for item estimation and the convergence tolerance is also set to 0.001 as in the GGUM 

package. The number of N cycles is set to 10000. 

Model Fit Indices 

 The calibrated GGUM was fit to generated IRT data and is evaluated using the following 

model fit indices: Q1, S – X2, G2, Adjusted Chi-square χ2 (i.e., adjusted to a sample size of 3000), 

SRMSR, AIC, and BIC. As suggested by Nye et al. (2019), fit indices were calculated using 

estimated item and person parameters in each replication. To compare item-level fit statistics 

(e.g., Q1, S – X2, G2, and Adjusted Chi-square χ2 for item singles) to scale-level fit statistics (e.g., 

Adjusted Chi-square χ2 for item doubles and triples, SRMSR, AIC, and BIC), model-data fit is 

calculated via examining the proportion of items exhibiting misfit per replication, and 

subsequently averaging the proportions across the replications. 

 Critical values for evaluating model fit within each index are as follows. The Q1 statistic 

for each item on a single replication is compared to a chi-square distribution with 10 – m degrees 
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of freedom; m is the number of estimated parameters for an item. The S – X2 statistic for each 

item on a single replication is compared to chi-square distribution with I – 1 – m degrees of 

freedom, where I is the number of items on a test. The G2 statistic for each item on a single 

replication is compared to chi-square distribution with h degrees of freedom, where h equals to 

the selected number of bins. The selected bins correspond to grouped individuals on a test or 

measure based on specified ranges corresponding to ability θ (Ames & Penfield, 2015). 

 The average Adjusted Chi-square χ2 for item singles, doubles, and triples are divided by 

their degrees of freedom and ratios greater than 3 indicate misfit (Chernyshenko et al., 2001). For 

the SRMSR, values greater than 0.05 indicate misfit as noted by Maydeu-Olivares and Joe 

(2014). For the relative model-fit statistics AIC and BIC, indices' values are compared against 

one another, with the model yielding the lowest information criterion considered the best fitting 

model. Across replications (i.e., 100 replications), the number of times that the fitted model with 

the lowest values of AIC and BIC is reported. 

 For all of the aforementioned model fit analyses except for AIC and BIC fit statistics, 

respective proportions of Type I error rates and power across replications for each of the fit 

indices are calculated and reported as an indicator of model fit/misfit. For Type I error, the 

proportion of times in which the GGUM model falsely rejects the null hypothesis of model fit 

when calibrated to GGUM generated data across the 100 replications is reported (i.e., the number 

of false rejections divided by 100). For estimating power, the proportion of times in which the 

GGUM model correctly rejects the null hypothesis of model fit when calibrated to a dominance 

IRT model generated data across the 100 replications is reported (i.e., the number of correct 

rejections divided by 100). For example, for model fit indices such as Adjusted Chi-square χ2 

and SRMSR, if the GGUM model is fit to different GGUM generated data 100 times, and it was 
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found that the null hypothesis of model fit is only rejected four times across the 100 replications, 

then the type I error is 0.04 or 4 percent. Similarly, if the GGUM model is fit to the 2PL 

generated data 100 times, and it was found that the null hypothesis of model fit is rejected 89 

times across the 100 replications, then power is 0.89 or 89 percent. For item fit statistics such as 

Q1, S – X2, and G2, each item is examined and counted as 1 if the null hypothesis of item fit is 

rejected. The number of rejected null hypotheses on a single replication is counted and averaged 

across the number of items. For example, if 4 out of 20 items had their null hypotheses of item fit 

rejected, then 0.2 or 20 percent of items from the set of 20 items are presumed to exhibit misfit. 

This process was followed across the 100 replications with the final type I error rate or power 

obtained by averaging the proportions of items’ misfit across replications. For AIC and BIC, 

models are compared to each other. Across the 100 replications, the number of times in which 

each of the competing models has the lowest AIC and BIC is reported. For example across the 

100 replications, if the GGUM model had the lowest BIC value when fitting to a GGUM data 89 

percent of the time, while the 2PL data incurred the lowest BIC 6 percent of the time, and the 

3PL data incurred the lowest BIC 5 percent of the time, then it can be said that the BIC is able to 

correctly detect model fit 89 for the percent of the time for GGUM generated data. 

Technical Considerations and Seed Selection 

 For dichotomous generated data, the default selected seed is set to 2875 for both 

packages that are used to generate data (i.e., GGUM and catIRT). However, some of the 

calibrations did not converge in conditions with small number of items, and a different seed had 

to be assigned to achieve convergence (Table 1). For polytomous generated data, the default 

selected seed is also 2875 for both packages that are used to generate data (i.e., GGUM and 

catIRT). However, many of the simulated data led to nonconvergence and had to be assigned a 
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different seed to achieve convergence (Table 2). Also, fitting polytomous data to the GGUM 

model is time consuming and therefore utilized UNL’s Holland Computing Center 

supercomputer for the computation process. The RStudio interactive sessions on Holland’s 

supercomputer only allows a maximum of 8 hours per sessions. For such reasons, the total 

number of replications are segmented into mini sessions for conditions with large number of 

items, hence prompting the assignment of different seeds for the segmented runs. For example, 

generated data with 40 items via the catIRT package required segmenting the 100 replications 

into 4 sessions, with each session consisting of 25 calibrations. Table 2 displays the number of 

segments per condition with its respective seed.  

Table 1. Seed Values for catIRT and GGUM Packages for Dichotomous Generated Data 

I N Package Seed (catIrt) Seed  (GGUM) 

10 

500 

GGUM 2875 2875 

2PL 2875 7777 

3PL 2875 2875 

1000 

GGUM 7777 2875 

2PL 2875 2875 

3PL 2875 2875 

2000 

GGUM 2875 2875 

2PL 2875 2875 

3PL 2875 2875 

3000 
GGUM 2875 2875 
2PL 2875 2875 
3PL 2875 2875 

I   Package Seed (catIrt) Seed  (GGUM) 

20 

500 

GGUM 2875 2875 

2PL 2875 2875 

3PL 2875 2875 

1000 

GGUM 2875 2875 

2PL 2875 2875 

3PL 2875 2875 

2000 

GGUM 2875 2875 

2PL 2875 2875 

3PL 2875 2875 

3000 
GGUM 2875 2875 
2PL 2875 2875 
3PL 2875 2875 
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I   Package Seed (catIrt) Seed  (GGUM) 

40 

500 

GGUM 2875 2875 

2PL 2875 2875 

3PL 2875 2875 

1000 

GGUM 2875 2875 

2PL 2875 2875 

3PL 2875 2875 

2000 

GGUM 2875 2875 

2PL 2875 2875 

3PL 2875 2875 

3000 

GGUM 2875 2875 

2PL 2875 2875 

3PL 2875 2875 
I = number of items; N = sample size. 

Table 2. Seed Values for catIRT and GGUM Packages for Polytomous Generated Data 

I N Package 
Seed 1 
(catIrt) 

Seed 2 
(catIrt) 

Seed 3 
(catIrt) 

Seed 4 
(catIrt) 

Seed 1 
(GGUM) 

Seed 2 
(GGUM) 

Seed 3 
(GGUM) 

Seed 4 
(GGUM) 

Seed 5 
(GGUM) 

Seed 6 
(GGUM) 

10 

500 
GGUM 7777 - - - 7777 - - - - - 

GRM 7777 - - - 7777 - - - - - 

1000 
GGUM 2875 - - - 2875 - - - - - 

GRM 2875 - - - 2875 - - - - - 

2000 
GGUM 2875 - - - 7777 - - - - - 

GRM 7777 - - - 7777 - - - - - 

3000 
GGUM 2875 - - - 2875 - - - - - 

GRM 7777 - - - 2875 7777 - - - - 

I N Package 
Seed 1 
(catIrt) 

Seed 2 
(catIrt) 

Seed 3 
(catIrt) 

Seed 4 
(catIrt) 

Seed 1 
(GGUM) 

Seed 2 
(GGUM) 

Seed 3 
(GGUM) 

Seed 4 
(GGUM) 

Seed 5 
(GGUM) 

Seed 6 
(GGUM) 

20 

500 
GGUM 2875 7777 - - 2875 - - - - - 

GRM 2875 1111 - - 2875 7777 1111 - - 
 

1000 
GGUM 2875 7777 - - 2875 - - - - - 

GRM 1234 7777 - - 2875 7777 1111 - - 
 

2000 
GGUM 9997 7777 - - 2875 - - - - - 

GRM 2875 7777 - - 2875 7777 1111 - - 
 

3000 
GGUM 9997 7777 - - 2875 - - - - - 

GRM 2875 7777 - - 2875 7777 1111 - - - 
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I N Package 
Seed 1 
(catIrt) 

Seed 2 
(catIrt) 

Seed 3 
(catIrt) 

Seed 4 
(catIrt) 

Seed 1 
(GGUM) 

Seed 2 
(GGUM) 

Seed 3 
(GGUM) 

Seed 4 
(GGUM) 

Seed 5 
(GGUM) 

Seed 6 
(GGUM) 

40 

500 
GGUM 2875 7777 7887 1111 2875 - - - - - 

GRM 2875 7777 7887 1111 2875 7777 1997 1111 1234 - 

1000 
GGUM 2875 7777 7887 1111 2875 - - - - - 

GRM 2875 7777 7887 1111 2875 7777 1997 1111 1234 - 

2000 
GGUM 2875 7777 3232 1111 2875 7777 - - - - 

GRM 2875 7777 3232 1111 2875 7777 1997 1111 1234 - 

3000 GGUM 2875 7777 2001 1111 2875 7777 - - - - 

GRM 2875 7777 2001 1111 2875 7777 1997 1111 1234 1212 

I = number of items; N = sample size. 
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CHAPTER 4 

RESULTS 

Relative Fit between Dichotomous GGUM Generated Data 

 Table 3 presents the results of relative fit between two GGUM simulated data sets, with 

the generated set of δs ranging from a uniform distribution [-2, 2] while excluding the interval [-

1, 1] being a better fit than the generated set of δs ranging from a uniform distribution [-2, 2] as 

specified by Roberts et al. (2002). This table shows that the generated set of δs that do not 

include the interval [-1, 1] are better calibrated by the GGUM model about 95 percent of the 

time, and almost 100 percent of the time when the number of items are 20 and above. Note that 

in the condition specifying a sample size of 3000 and 20 items as well as a sample size of 500 

and 40 items, the generated set of δs that do not include the interval [-1, 1] have the lowest AIC 

and BIC values in 99 replications out of a 100. Conditions with smaller sample sizes with 20 

items do show a slightly better fit of 100 percent. This may be due to varying the model 

parameters per replication as mentioned in the previous section.  

Table 3. Relative Fit Indices Rates of GGUM Data Models AIC and BIC with Generated δs from 

a Uniform Distribution [-2, 2] That Do Not Include [-1, 1] Against Generated δs from a Uniform 

Distribution [-2, 2] 

I N Gen. Model AIC BIC 

10 

500 
GGUM (No -1 to 1) 0.95 0.95 

GGUM (-2 to 2) 0.05 0.05 

1000 
GGUM (No -1 to 1) 0.94 0.94 

GGUM (-2 to 2) 0.06 0.06 

2000 
GGUM (No -1 to 1) 0.96 0.96 

GGUM (-2 to 2) 0.04 0.04 

3000 
GGUM (No -1 to 1) 0.96 0.96 

GGUM (-2 to 2) 0.04 0.04 
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    Gen. Model AIC BIC 

20 

500 
GGUM (No -1 to 1) 1.00 1.00 

GGUM (-2 to 2) 0 0 

1000 
GGUM (No -1 to 1) 1.00 1.00 

GGUM (-2 to 2) 0 0 

2000 
GGUM (No -1 to 1) 1.00 1.00 

GGUM (-2 to 2) 0 0 

3000 
GGUM (No -1 to 1) 0.99 0.99 

GGUM (-2 to 2) 0.01 0.01 

    Gen. Model AIC BIC 

40 

500 
GGUM (No -1 to 1) 0.99 0.99 

GGUM (-2 to 2) 0.01 0.01 

1000 
GGUM (No -1 to 1) 1.00 1.00 

GGUM (-2 to 2) 0 0 

2000 
GGUM (No -1 to 1) 1.00 1.00 

GGUM (-2 to 2) 0 0 

3000 
GGUM (No -1 to 1) 1.00 1.00 

GGUM (-2 to 2) 0 0 

 

I = number of items; N = sample size; Gen. Model = data generation models; GGUM (No -1 to 1) = GGUM 
generated data with δs ranging from a uniform distribution [-2, 2] that do not Include [-1, 1]; GGUM (-2 to 2) = 
GGUM generated data with δs ranging from a uniform distribution [-2, 2]. 

 Table 4 also presents the results of relative fit between two GGUM simulated data sets, 

with the generated set of δs ranging from a uniform distribution [-3, 3] having even a better fit 

than the generated set of δs ranging from a uniform distribution [-2, 2] when compared to Table 

3. In this comparison, the generated set of δs from a uniform distribution [-3, 3] are better 

calibrated by the GGUM model in about 100 percent of the replications across all conditions. 

This may be due to the fact that the GGUM data are better calibrated when they include more 

items with extreme item responses such as those common in noncognitive measures of attitudes 

and personality surveys (Coombs, 1964; Thurstone, 1928). Hence, extending the δ range 

facilitate capturing the more extreme items.  
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Table 4. Relative Fit Indices Rates of GGUM Data Models AIC and BIC with Generated δs from 

a Uniform Distribution [-3, 3] Against Generated δs from a Uniform Distribution [-2, 2] 

I N Gen. Model AIC BIC 

10 

500 
GGUM (-3 to 3) 1.00 1.00 

GGUM (-2 to 2) 0 0 

1000 
GGUM (-3 to 3) 0.99 0.99 

GGUM (-2 to 2) 0.01 0.01 

2000 
GGUM (-3 to 3) 1.00 1.00 

GGUM (-2 to 2) 0 0 

3000 
GGUM (-3 to 3) 1.00 1.00 

GGUM (-2 to 2) 0 0 

    Gen. Model AIC BIC 

20 

500 
GGUM (-3 to 3) 1.00 1.00 

GGUM (-2 to 2) 0 0 

1000 
GGUM (-3 to 3) 1.00 1.00 

GGUM (-2 to 2) 0 0 

2000 
GGUM (-3 to 3) 1.00 1.00 

GGUM (-2 to 2) 0 0 

3000 
GGUM (-3 to 3) 1.00 1.00 

GGUM (-2 to 2) 0 0 

    Gen. Model AIC BIC 

40 

500 
GGUM (-3 to 3) 1.00 1.00 

GGUM (-2 to 2) 0 0 

1000 
GGUM (-3 to 3) 1.00 1.00 

GGUM (-2 to 2) 0 0 

2000 
GGUM (-3 to 3) 1.00 1.00 

GGUM (-2 to 2) 0 0 

3000 
GGUM (-3 to 3) 1.00 1.00 

GGUM (-2 to 2) 0 0 
 



49 
 

 

I = number of items; N = sample size; Gen. Model = data generation models; GGUM (-3 to 3) = GGUM generated 

data with δs ranging from a uniform distribution [-3, 3]; GGUM (-2 to 2) = GGUM generated data with δs ranging 

from a uniform distribution [-2, 2]. 

 Table 5 compares the relative fit between two GGUM simulated data sets, with the 

generated set of δs ranging from a uniform distribution [-3, 3] being a better fit than the 

generated set of δs ranging from a uniform distribution [-2. 2] that do not include the interval [-1, 

1]. This table shows that the generated set of δs ranging from a uniform distribution [-3, 3] are 

better calibrated by the GGUM model about 80 percent of the time, and above 95 percent of the 

time when the number of items is 40.  Based on these comparisons, dichotomous GGUM 

generated data with δs ranging from a uniform distribution [-3, 3] is selected for subsequent 

comparisons of absolute fit against dichotomous dominance models. 

Table 4. Relative Fit Indices Rates of GGUM Data Models AIC and BIC with Generated δs from 

a Unif. orm Distribution [-3, 3] Against Generated δs from a Uniform Distribution [-2, 2] that do 

not Include [-1, 1] 

I N Gen. Model AIC BIC 

10 

500 
GGUM (-3 to 3) 0.80 0.80 

GGUM (No -1 to 1) 0.20 0.20 

1000 
GGUM (-3 to 3) 0.82 0.82 

GGUM (No -1 to 1) 0.18 0.18 

2000 
GGUM (-3 to 3) 0.80 0.80 

GGUM (No -1 to 1) 0.20 0.20 

3000 
GGUM (-3 to 3) 0.83 0.83 

GGUM (No -1 to 1) 0.17 0.17 

    Gen. Model AIC BIC 

20 

500 
GGUM (-3 to 3) 0.80 0.80 

GGUM (No -1 to 1) 0.20 0.20 

1000 
GGUM (-3 to 3) 0.88 0.88 

GGUM (No -1 to 1) 0.12 0.12 

2000 
GGUM (-3 to 3) 0.90 0.90 

GGUM (No -1 to 1) 0.10 0.10 
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3000 
GGUM (-3 to 3) 0.91 0.91 

GGUM (No -1 to 1) 0.09 0.09 

    Gen. Model AIC BIC 

40 

500 
GGUM (-3 to 3) 0.96 0.04 

GGUM (No -1 to 1) 0.96 0.04 

1000 
GGUM (-3 to 3) 0.96 0.04 

GGUM (No -1 to 1) 0.96 0.04 

2000 
GGUM (-3 to 3) 0.93 0.07 

GGUM (No -1 to 1) 0.93 0.07 

3000 
GGUM (-3 to 3) 0.96 0.04 

GGUM (No -1 to 1) 0.96 0.04 

 

I = number of items; N = sample size; Gen. Model = data generation models; GGUM (-3 to 3) = GGUM generated 

data with δs ranging from a uniform distribution [-3, 3]; GGUM (No -1 to 1) = GGUM generated data with δs 

ranging from a uniform distribution [-2, 2] that do not Include [-1, 1]. 

Absolute Fit Indices for Dichotomous Data 

GGUM package fit indices. 

 Table 6 presents the results of the average Adjusted Chi-square χ2 for item singles, doubles, 

and triples across the 100 replications from the GGUM package. When the GGUM model is 

correctly fit to GGUM generated data, Adjusted Chi-square χ2 fit statistics exhibit low type I 

error rates for all item variants, with an almost zero rejection rate of model fit for all cases when 

utilizing 20 items or above, irrespective of sample size. Albeit useful, these Adjusted Chi-square 

χ2 fit statistics exhibit low rejection rates when the GGUM model is fit to incorrect data models 

such as the 2PL and 3PL models. In other words, power to detect misfit is poorly realized by the 

Adjusted Chi-square χ2 for item singles, doubles, and triples. This poses a problem when using 

real data since low rejection rates of model fit might represent a case of low power to detect 

misfit when the data actually comes from other IRT models. 
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Table 5. Type I Error Rates and Power of Absolute Model Fit Indices When the GGUM Model is 

Fit to Dichotomous IRT Data Models 

I N Gen. Model Q1 S-X2 G2 X2  Singles X2 Doubles X2  Triples SRMSR 

10 

500 

GGUM 0.95 (27) 0.75 (2) 0.94 (43) 0.01 0.01 0.01 0.90 

2PL 0.97 (35) 0.57 0.98 (55) 0.02 0.02 0.02 0.56 

3PL 0.93 (33) 0.55 0.93 (56) 0 0 0 0.50 

1000 

GGUM 1.00 (13) 0.85 1.00 (23) 0.01 0.03 0.02 0.89 

2PL 1.00 (24) 0.56 1.00 (50) 0 0 0 0.34 

3PL 0.98 (18) 0.47 0.99 (39) 0 0 0 0.23 

2000 

GGUM 1.00 (2) 0.91 1.00 (12) 0.01 0.02 0.02 0.87 

2PL 1.00 (8) 0.62 1.00 (39) 0 0 0 0.09 

3PL 1.00 (9) 0.54 1.00 (37) 0 0 0 0.07 

3000 

GGUM 1.00 (4) 0.93 1.00 (8) 0.01 0.01 0.01 0.82 

2PL 1.00 (7) 0.65 1.00 (28) 0 0 0 0.04 

3PL 1.00 (5) 0.56 1.00 (26) 0 0 0 0 

 
  Gen. Model Q1 S-X2 G2 X2  Singles X2 Doubles X2  Triples SRMSR 

20 

500 

GGUM 0.76 (27) 0.76 (5) 0.77 (29) 0 0 0.01 0.98 

2PL 0.89 (39) 0.44 0.90 (44) 0 0 0 0.69 

3PL 0.84 (39) 0.43 0.82 (43) 0 0 0 0.57 

1000 

GGUM 0.94 (11) 0.84 (4) 0.94 (19) 0 0 0 0.97 

2PL 0.99 (23) 0.44 0.98 (33) 0 0 0 0.24 

3PL 0.97 (30) 0.48 0.97 (32) 0 0 0 0.24 

2000 

GGUM 0.99 (1) 0.89 (1) 0.99 (1) 0 0 0 0.98 

2PL 1.00 (8) 0.53 1.00 (15) 0 0 0 0.06 

3PL 1.00 (24) 0.50 1.00 (27) 0 0 0 0.08 

3000 

GGUM 1.00 0.92 1.00 0 0 0 0.99 

2PL 1.00 (9) 0.57 1.00 (15) 0 0 0 0.03 

3PL 1.00 (17) 0.54 1.00 (19) 0 0 0 0.07 

 
  Gen. Model Q1 S-X2 G2 X2  Singles X2 Doubles X2  Triples SRMSR 

40 

500 

GGUM 0.44 (40) 0.69 (14) 0.46 (43) 0 0 0 1.00 

2PL 0.83 (24) 0.32 0.82(29) 0.04 0.04 0.04 0.53 

3PL 0.76 (37) 0.35 0.74 (38) 0 0 0 0.60 

1000 

GGUM 0.67 (10) 0.77 (4) 0.70 (13) 0 0 0 1.00 

2PL 0.95(25) 0.34 0.95 (29) 0.02 0.02 0.02 0.14 

3PL 0.92 (25) 0.36 0.92 (25) 0 0 0 0.37 

2000 

GGUM 0.89 (1) 0.85 0.90 (1) 0 0 0 1.00 

2PL 0.98 (18) 0.42 0.98(18) 0.03 0.03 0.03 0.04 

3PL 0.98 (24) 0.42 0.98 (24) 0 0 0 0.27 

3000 

GGUM 0.95 0.89 0.96 0 0 0 1.00 

2PL 0.99 (17) 0.47 0.99 (17) 0.03 0.03 0.03 0.05 

3PL 0.99 (16) 0.48 0.99 (17) 0 0 0 0.27 

 

I = number of items; N = sample size; Gen. Model = data generation models. Shaded cells in light blue indicate the 
correct data model (i.e., GGUM generated data); ( ) = number of uncounted replications; Q1 = Yen’s Q1 (1981) 
statistic; S-X2 = Orlando and Thissen (2000) fit statistic; G2 = McKinley and Mills (1985) fit statistic; Singles, doubles, 
and triples are Drasgow et al.’s (1995) adjusted chi-square model fit statistics; SRMSR = Maydeu-Olivares and Joe 
(2014) standardized root mean square residual fit statistic.  
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Mirt package fit indices. 

 Table 6 also presents the results of the average Q1, S – X2, G2, and SRMSR across the 100 

replications from the mirt package. Upon examining the results and analyzing the calibrations, it 

seems that utilizing the empirical histogram density form as described by Bock and Aitkin 

(1981) is not recommended for dichotomous data, albeit being originally utilized in the marginal 

maximum likelihood algorithm, which is based on an expectation-maximization (EM) approach. Note 

that the EM approach is also the default method specified by Roberts et al. (2000) for calibrating the 

GGUM parameters. In addition, it should be mentioned that although all of the calibrations achieved 

convergence, many of them under the mirt package produced warnings indicating possible issues with 

parameters’ stability, which prompted changing the seeds constantly. This can be observed by the 

erratic patterns within Table 6, in which type I error for the SRMSR is really high for the GGUM 

generated data while power gets lower as the number of items increase for the 2PL and 3PL data 

models. Also, item fit statistics Q1 and G2 had difficulty estimating respective chi-square values 

for many items within each replication. The brackets in corresponding cells show the number of 

replications omitted when calculating the average fit values. For example, the Q1 fit type I error 

for the GGUM generated data with 10 items and 500 simulees exclude 27 replications from the 

100 replications to estimate the average number of model fit rejections. These omissions occur if 

the bin-level predicted responses 𝑃ℎ𝑖 for a particular item cannot be estimated accurately given a 

few number of subjects per bin corresponding a specific estimated ability range. The S – X2 item 

fit statistic had less of its replications omitted when compared to Q1 and G2 due to its reliance on 

observed scores rather than the estimated ability level. Still, the S – X2 item fit statistic tends to 

overestimates type I error for the GGUM generated data and somewhat underestimates power for 

2PL and 3PL, though to a lesser extent than SRMSR.  Based on the fit results from both 
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packages, the only accurate absolute fit statistics obtained from comparing parameters to those 

estimated through calibrating the GGUM model via the (EM) approach are the Adjusted Chi-

square χ2 for item singles, doubles, and triples for the GGUM generated (i.e., correct) data 

model.  

Relative Fit Indices for Dichotomous Models 

 Table 7 presents the results for the relative fit indices AIC and BIC, with the GGUM 

generated set of δs ranging from a uniform distribution [-3, 3]. As shown, The GGUM model is 

best fit to generated GGUM data when compared to dominance models. For 10 items, the 

GGUM generated data have the lowest AIC and BIC values in 81, 87, 83, and 85 of the time out 

of a 100 for sample sizes 500, 1000, 2000, and 3000, respectively when compared to the 2PL and 

3PL data models. The percentages went up in the 90’s range when the number of item is 

increased to 20, and all the way up to 100 percent when the number of items is 40. As mentioned 

earlier, conditions with smaller sample sizes may sometime yield higher percentages due to 

varying the model parameters per replication. Having said that, these relative fit indices do 

produce favorable results in terms of specifying the correct data model to the GGUM model. 

Table 6. Relative Fit Indices Rates of GGUM Data Model AIC and BIC with Generated δs from 

a Uniform Distribution [-3, 3] Against Generated data from 2PL and 3PL Data Models  

I N Gen. Model AIC BIC 

10 

500 

GGUM 0.81 0.81 

2PL 0.12 0.12 

3PL 0.07 0.07 

1000 

GGUM 0.87 0.87 

2PL 0.10 0.10 

3PL 0.03 0.03 

2000 

GGUM 0.83 0.83 

2PL 0.13 0.13 

3PL 0.04 0.04 

3000 
GGUM 0.85 0.85 
2PL 0.12 0.12 
3PL 0.03 0.03 
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    Gen. Model AIC BIC 

20 

500 

GGUM 0.97 0.97 

2PL 0.02 0.02 

3PL 0.01 0.01 

1000 

GGUM 0.95 0.95 

2PL 0.04 0.04 

3PL 0.01 0.01 

2000 

GGUM 0.95 0.95 

2PL 0.03 0.03 

3PL 0.02 0.02 

3000 
GGUM 0.94 0.94 
2PL 0.04 0.04 
3PL 0.02 0.02 

    Gen. Model AIC BIC 

40 

500 

GGUM 1.00 1.00 

2PL 0 0 

3PL 0 0 

1000 

GGUM 1.00 1.00 

2PL 0 0 

3PL 0 0 

2000 

GGUM 1.00 1.00 

2PL 0 0 

3PL 0 0 

3000 

GGUM 1.00 1.00 

2PL 0 0 

3PL 0 0 

 

I = number of items; N = sample size; Gen. Model = data generation models; GGUM = GGUM generated data with 

δs ranging from a uniform distribution [-3, 3]. 

 Table 8 presents the results for the relative fit indices AIC and BIC, with the GGUM 

generated set of δs ranging from a uniform distribution [-2, 2] while excluding the interval [-1, 

1]. As shown, The GGUM model is best fit to generated GGUM data when compared to 

dominance models, but is less able to predict the correct model for smaller number of items 

when compared to the previous generated GGUM data model in Table 7. For 10 items, the 

GGUM generated data in Table 8 have the lowest AIC and BIC values in 58, 74, 71, and 74 of 

the time out of a 100 for sample sizes 500, 1000, 2000, and 3000, respectively when compared to 

the 2PL and 3PL data models. The percentages go above 85 percent when the number of item is 
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increased to 20, and almost all the way to 100 percent when the number of items is 40. Again, 

conditions with smaller sample sizes can sometime yield higher percentages due to varying the 

model parameters per replication. Having said that, these relative fit indices do somewhat 

produce favorable results in terms of specifying the correct data model to the GGUM model. 

Table 7. Relative Fit Indices Rates of GGUM Data Model AIC and BIC with Generated δs from 

a Uniform Distribution [-2, 2] that do not Include [-1, 1] Against Generated data from 2PL and 

3PL Data Models 

I N Gen. Model AIC BIC 

10 

500 

GGUM (No 1 to -1) 0.58 0.58 

2PL 0.25 0.25 

3PL 0.17 0.17 

1000 

GGUM (No 1 to -1) 0.74 0.74 

2PL 0.20 0.20 

3PL 0.06 0.06 

2000 

GGUM (No 1 to -1) 0.71 0.71 

2PL 0.22 0.22 

3PL 0.07 0.07 

3000 

GGUM (No 1 to -1) 0.74 0.74 
2PL 0.17 0.17 
3PL 0.09 0.09 

    Gen. Model AIC BIC 

20 

500 

GGUM (No 1 to -1) 0.90 0.90 

2PL 0.07 0.07 

3PL 0.03 0.03 

1000 

GGUM (No 1 to -1) 0.92 0.92 

2PL 0.06 0.06 

3PL 0.03 0.03 

2000 

GGUM (No 1 to -1) 0.88 0.88 

2PL 0.07 0.07 

3PL 0.05 0.05 

3000 

GGUM (No 1 to -1) 0.87 0.87 
2PL 0.08 0.08 
3PL 0.05 0.05 

    Gen. Model AIC BIC 

40 

500 

GGUM (No 1 to -1) 1.00 1.00 

2PL 0 0 

3PL 0 0 

1000 

GGUM (No 1 to -1) 1.00 1.00 

2PL 0 0 

3PL 0 0 
2000 GGUM (No 1 to -1) 0.99 0.99 
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2PL 0 0 

3PL 0.01 0.01 

3000 

GGUM (No 1 to -1) 1.00 1.00 

2PL 0 0 

3PL 0 0 
 

I = number of items; N = sample size; Gen. Model = data generation models; GGUM (No -1 to 1) = GGUM 
generated data with δs ranging from a uniform distribution [-2, 2] that do not Include [-1, 1]. 

 Table 9 presents the results for the relative fit indices AIC and BIC, with the original 

GGUM generated set of δs ranging from a uniform distribution [-2, 2] as specified by Roberts et 

al. (2002). As observed, the GGUM model does not fit generated GGUM data better than the 

dominance models when the number of items is 10. It is the 2PL generated data that the GGUM 

model best fits to, followed by the 3PL model when the sample size is 500. The GGUM 

generated data gains traction with 10 items in terms of being identified as a better fitting data by 

having a lower AIC and BIC relative to the 3PL with increasing sample size. However, the 2PL 

generated data still have the lowest relative fit values in the 10-item condition, irrespective of 

increases in sample size. The GGUM generated data are better identified as the best fitting data 

model as the number of items increases to 20, followed by the 2PL and 3PL generated data 

models, respectively. The highest percentage in which the GGUM generated data is identified as 

the best fitting data by the model for 20 items is 57 percent at a sample size of 3000. This is 

considered a low value when compared to percentages on the previous GGUM generated data 

from tables 7 and 8, in which the percentages were in the high 80’s and even 90’s. When the 

number of item is increased to 40, the GGUM generated data are better identified as having the 

lowest AIC and BIC, with identification percentages going all the way up to 86 percent at a 

sample size of 1000. Again, conditions with larger sample sizes such as 3000 can sometime yield 

lower percentages due to varying the model parameters per replication.  

Table 8. Relative Fit Indices Rates of GGUM Data Model AIC and BIC with Generated δs from 

a Uniform Distribution [-2, 2] Against Generated data from 2PL and 3PL Data Models  
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I N Gen. Model AIC BIC 

10 

500 

GGUM (-2 to 2) 0.20 0.20 

2PL 0.48 0.48 

3PL 0.32 0.32 

1000 

GGUM (-2 to 2) 0.39 0.39 

2PL 0.43 0.43 

3PL 0.18 0.18 

2000 

GGUM (-2 to 2) 0.32 0.32 

2PL 0.44 0.44 

3PL 0.24 0.24 

3000 

GGUM (-2 to 2) 0.35 0.35 

2PL 0.45 0.45 

3PL 0.20 0.20 

    Gen. Model AIC BIC 

20 

500 

GGUM (-2 to 2) 0.46 0.46 

2PL 0.33 0.33 

3PL 0.21 0.21 

1000 

GGUM (-2 to 2) 0.44 0.44 

2PL 0.33 0.33 

3PL 0.23 0.23 

2000 

GGUM (-2 to 2) 0.49 0.49 

2PL 0.26 0.26 

3PL 0.25 0.25 

3000 

GGUM (-2 to 2) 0.57 0.57 

2PL 0.20 0.20 

3PL 0.23 0.23 

    Gen. Model AIC BIC 

40 

500 

GGUM (-2 to 2) 0.78 0.78 

2PL 0.15 0.15 

3PL 0.07 0.07 

1000 

GGUM (-2 to 2) 0.86 0.86 

2PL 0.10 0.10 

3PL 0.04 0.04 

2000 

GGUM (-2 to 2) 0.76 0.76 

2PL 0.18 0.18 

3PL 0.06 0.06 

3000 

GGUM (-2 to 2) 0.77 0.77 

2PL 0.15 0.15 

3PL 0.08 0.08 

 

I = number of items; N = sample size; Gen. Model = data generation models; GGUM (No -2 to 1) = GGUM 

generated data with δs ranging from a uniform distribution [-2, 2]. 
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 Although the relative fit indices in Table 9 do somewhat produce favorable results in 

terms of specifying the correct data model to the GGUM model when the number of items are 

relatively high, that is not the case in conditions with smaller set of items. In other words, data 

from dominance IRT models such as the 2PL may be fit by the GGUM as well. This goes back 

to the possible overlap between the response functions of both dominance and ideal point IRT 

models (Tay et al., 2011). As shown, one of the solutions to the overlap issue is to expand the 

range of the δs values for the GGUM generated data in order to capture the differences in the 

response functions between the models as they become more apparent on the extremes. Another 

solution would be to exclude the δs that are possibly overlapping, mainly the ones located near 0 

(i.e., omitting δs between -1 and 1). Based on comparing the different GGUM generated data, the 

first solution yielded the lowest AIC and BIC values. To summarize, generated GGUM data with 

δs ranging from a uniform distribution [-3, 3] in Table 7 had the lowest AIC and BIC values with 

relatively high percentages across all replications and conditions. 

Absolute Fit Indices for Polytomous Data 

GGUM package fit indices. 

 Table 10 presents the results of the average Adjusted Chi-square χ2 for item singles, 

doubles, and triples across the 100 replications from the GGUM package for polytomous data. 

When the GGUM model is correctly fit to GGUM generated data, Adjusted Chi-square χ2 fit 

statistics exhibit low type I error rates for all item variants, with a zero rejection rate of model fit 

across all conditions, irrespective of the number of items and sample size. When fitting the 

GGUM model to GRM data, the rate of detecting misfit (i.e., power) vary as a function of the 

specific model fit index, the number of items, and sample size. Adjusted Chi-square χ2 for item 

singles and doubles are better able to detect misfit than their item triples counterpart, with the 
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highest rates of detecting misfit being in the 20 items conditions instead of those with 40 items, 

except for the condition of item doubles with 40 items and 3000 simulees, in which the detection 

rate of misfit is 78 percent. This might be due to varying the model parameters per replication as 

mentioned in previous sections. Also, the rate of detecting misfit increased with increasing 

sample size for item singles and doubles fit indices within each item category, while surprisingly 

decreasing with the item triples fit index.  

 These results do not agree with what was found in previous studies about Adjusted Chi-

square χ2 for item doubles and triples as being the more useful fit indices in identifying the 

correct model when compared to item singles (Drasgow et al., 1995; Tay et al., 2011). Although 

the detection of misfit improved greatly by the Adjusted Chi-square χ2 fit statistics for 

polytomous data when compared to those generated by dichotomous models, the performance of 

such fit statistics are yet to be considered high, with the highest detection rate barely reaching 80 

percent. Also, the decreasing detection rate of item triples fit index with increasing sample size is 

problematic and should be noted accordingly. 

Mirt package fit indices. 

 Table 10 also presents the results of the average Q1, S – X2, G2, and SRMSR across the 100 

replications from the mirt package for polytomous data. As in the case for dichotomous data, the 

type I error rate is really high by the SRMSR fit index for the GGUM generated data, as well the 

other fit indices. Also, mirt produced the same warnings with dichotomous data indicating possible 

issues with parameters’ stability, which prompted changing the seeds constantly. It can also be noted 

that for item fit statistics Q1, S – X2, and G2, the number of excluded replications still exist but in 

smaller quantities. However, when fitting the GGUM to GRM generated data, the ability of the 

SRMSR, Q1, and G2 to detect misfit increased as the number of items and sample size increased.  
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Table 9. Type I Error Rates and Power of Absolute Model Fit Indices When the GGUM Model is 

Fit to Polytomous IRT Data Models 

I N Gen. Model Q1 S-X2 G2 

X2  
Singles 

X2 

Doubles 
X2  

Triples SRMSR 

10 

500 
GGUM 0.88 (8) 0.82 (1) 0.91 (12) 0 0 0 1.00 

GRM 0.94 (2) 0.51 0.93 (9) 0.23 0.38 0.44 0.71 

1000 
GGUM 0.97 (3) 0.90 (2) 0.98 (3) 0.04 0.04 0.02 1.00 

GRM 0.98 0.52 0.99 (2) 0.45 0.53 0.41 0.70 

2000 
GGUM 0.99 (1) 0.96 (5) 0.99 (2) 0 0 0 1.00 

GRM 1.00 0.67 1.00 (2) 0.49 0.58 0.31 0.78 

3000 
GGUM 1.00 (2) 0.97 (1) 1.00 (2) 0.03 0.03 0.01 1.00 

GRM 1.00 0.70 1.00 (2) 0.65 0.69 0.33 0.79 

  
 

Gen. Model Q1 S-X2 G2 

X2  
Singles 

X2 

Doubles 

X2  
Triples SRMSR 

20 

500 
GGUM 0.72 (7) 0.85 (18) 0.74 (9) 0 0 0 1.00 

GRM 0.94 (1) 0.35 0.91 (4) 0.61 0.64 0.58 0.94 

1000 
GGUM 0.85 (1) 0.89 (14) 0.87 (1) 0 0 0 1.00 

GRM 0.98 (2) 0.47 0.98 (3) 0.67 0.63 0.46 0.97 

2000 
GGUM 0.93 0.96 (10) 0.95 0 0 0 1.00 

GRM 1.00 0.51 1.00 (1) 0.72 0.76 0.39 1.00 

3000 
GGUM 0.98 (1) 0.98 (9) 0.98 (1) 0 0 0 1.00 

GRM 1.00 (1) 0.575 1.00 (1) 0.69 0.74 0.48 0.99 

  
 

Gen. Model Q1 S-X2 G2 

X2  
Singles 

X2 

Doubles 

X2  
Triples SRMSR 

40 

500 
GGUM 0.55 (7) 0.83 (12) 0.56 (8) 0 0 0 1.00 

GRM 0.93 0.29 0.88 (1) 0.21 0.49 0.50 1.00 

1000 
GGUM 0.66 (1) 0.92 (19) 0.66 (1) 0 0 0 1.00 

GRM 0.99 (2) 0.36 0.97 (3) 0.40 0.59 0.43 1.00 

2000 
GGUM 0.80 0.98 (10) 0.80 0 0 0 1.00 

GRM 1.00 (4) 0.43 0.99 (5) 0.50 0.68 0.36 1.00 

3000 
GGUM 0.86 0.99 (14) 0.87 0 0 0 1.00 

GRM 1.00 (5) 0.47 1.00 (6) 0.64 0.78 0.38 1.00 

 

I = number of items; N = sample size; Gen. Model = data generation models. Shaded cells in light blue indicate the 
correct data model (i.e., GGUM generated data); ( ) = number of uncounted replications; Q1 = Yen’s Q1 (1981) 
statistic; S-X2 = Orlando and Thissen (2000) fit statistic; G2 = McKinley and Mills (1985) fit statistic; Singles, doubles, 
and triples are Drasgow et al.’s (1995) adjusted chi-square model fit statistics; SRMSR = Maydeu-Olivares and Joe 
(2014) standardized root mean square residual fit statistic.  
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 As observed in Table 10, the ability of the SRMSR to detect misfit went up from 71 to 79 

percent on the 10-item condition with increasing sample size. For 20 items, the detection of 

misfit for the SRMSR went up from 94 to 100 percent. For 40 items, the detection of misfit is 

observed across all replications 100 of the time, irrespective of sample size. For item fit statistics 

Q1 and G2, the detection of misfit is also high and mostly in the 90’s range, even displaying a 

perfect rate of detecting misfit for large sample sizes, irrespective of the number of items. 

However, some of the calibrations for these item fit statistics are omitted when calculating the 

percentage of misfit out of the total calibrations as was the case for dichotomous data, which 

makes SRMSR a better model fit index for detecting misfit. Having said that, it should be noted 

that omitted calibrations for the Q1 and G2 item fit statistics are few and might still be considered 

as good estimators of model misfit for polytomous data models. This of course, is not the case 

for dichotomous data. For the S– X2 item fit statistic, the ability to detect misfit is not consistent 

across conditions, and ranged from 29 percent all the way to 70 percent in an unsystematic 

progression across the conditions with some omitted calibrations. Hence, the S – X2 item fit 

statistic is the least performing fit statistic in detecting misfit when calibrating polytomous data. 

Although some of these results are promising for detecting misfit with absolute fit indices when 

compared to the calibrations with dichotomous data, utilizing the marginal maximum likelihood 

algorithm in mirt still fails to identify the correct polytomous generated data when the GGUM model 

is calibrated to GGUM generated data,  

Relative Fit Indices for Polytomous Models 

 Table 11 presents the results for the relative fit indices AIC and BIC when fitting 

polytomous data. As shown, The GGUM model is best fit to generated GGUM data when 

compared to those generated by the GRM. Across all conditions, irrespective of the number of 
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items and sample size, the GGUM generated data are almost identified perfectly by the GGUM 

model across the 100 replications as having lower relative AIC and BIC values when compared 

to data generated from the GRM model. Again, these results show that relative fit indices seem 

to be more reliable in identifying the correct data model when compared to their absolute fit 

counterparts, even more so when testing polytomous data. In Table 11, it can be seen that the 

ability to identify the correct model is at almost 100 percent across replications for just 10 items, 

while being in the 80’s range in terms of identification percentages for dichotomous data. A 

possible explanation for correct higher identification rates by generated polytomous data might 

have to do with the lower probability of overlap between observable response categories (ORCs) 

from different polytomous IRT models. Also, dichotomizing graded data prior to model 

calibration might risk in decreasing the precision of person estimates (Roberts & Laughlin, 

1996). The aforementioned statement holds if there is a theoretical rationale behind utilizing 

graded (i.e., polytomous) data for data collection. 
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Table 10. Relative Fit Indices Rates of GGUM Polytomous Data Model AIC and BIC Against 

Generated data from the GRM Data Model 

I N Gen. Model AIC BIC 

10 

500 
GGUM  1.00 1.00 

GRM 0 0 

1000 
GGUM  0.99 0.99 

GRM 0.01 0.01 

2000 
GGUM  1.00 1.00 

GRM 0 0 

3000 
GGUM  1.00 1.00 

GRM 0 0 

    Gen. Model AIC BIC 

20 

500 
GGUM  1.00 1.00 

GRM 0 0 

1000 
GGUM  1.00 1.00 

GRM 0 0 

2000 
GGUM  1.00 1.00 

GRM 0 0 

3000 
GGUM  1.00 1.00 

GRM 0 0 

    Gen. Model AIC BIC 

40 

500 
GGUM  1.00 1.00 

GRM 0 0 

1000 
GGUM  1.00 1.00 

GRM 0 0 

2000 
GGUM  1.00 1.00 

GRM 0 0 

3000 
GGUM  1.00 1.00 

GRM 0 0 
 

I = number of items; N = sample size; Gen. Model = data generation models; GGUM = GGUM polytomous 

generated data with 4 response categories. 
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 Based on calibrating the model parameters via MMLE and subsequently testing their 

model fit, it seems that polytomous datasets are better identified by the GGUM model as either 

being generated by the correct data model or otherwise. Despite issues with some of the absolute 

fit indices in detecting fit/misfit, it seems that relative fit indices do perform relatively well in 

identifying the correct data model for both dichotomous and polytomous datasets. 
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CHAPTER 5 

DISCUSSION 

General Discussion of Results 

 This study tested the performance of several IRT model fit indices when the GGUM is fit 

to both dominance and ideal point IRT generated data for both dichotomous and polytomous 

item responses. Currently, the only attempt that compared different IRT model fit indices 

directly for dominance and ideal point data models in terms detecting misfit was conducted by 

Nye et al. (2019). They also examined multidimensional generated IRT data. However, their 

analyses did not include the S– X2 and G2 fit statistics. In addition, they calibrated the 2PL and 

GRM models to different generated IRT data models and the calibration involved Markov chain 

Monte Carlo (MCMC) estimation with Metropolis-Hastings within Gibbs sampling (Patz & 

Junker, 1999) instead of the EM approach used in this study. 

 The results showed that the ability of the absolute model fit indices to detect misfit as 

well as to identify the correct data model was best realized by the SRMSR and Adjusted Chi-

square χ2 model fit statistics for polytomous data, respectively. As for dichotomous generated 

data, the Adjusted Chi-square χ2 fit statistics was the only accurate absolute fit indices yielding 

low type I error rates when comparing GGUM estimates to their. These results are based on 

selecting a desired nominal rate of 0.05 for type I error and 0.80 for power as cutoff points for 

determining the ‘low’ and “high” values for such indices. As mentioned and demonstrated earlier, 

utilizing the empirical histogram density form for dichotomous data when using MMLE yielded 

high type I error rates and low power, irrespective of the number of items and sample size. Also, 

it is possible that the overlap between the IRF’s of dichotomous dominance IRT models such as the 
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2PL and 3PL with ideal point models such as the GGUM makes it more difficult for the fit indices to 

detect misfit when the model calibration is performed via the EM algorithm.  

 Prior to performing the analyses for the dichotomous generated items, model calibration was 

tested using the ‘Gaussian’ density form in mirt. This produced lower type I error rates than the 

empirical histogram density form but still resulted in low power for dominance models. Also, many of 

the calibrations did either not converge or produced warnings indicating possible issues with 

parameters’ stability. Table 12 presents the type I error and power rates for trial calibrations of sample 

sizes 500 and 2000 when the GGUM model is fit to both GGUM and 2PL generated data while 

utilizing the Gaussian density form within the EM algorithm. As observed, model convergence could 

not be achieved for the 10 and 20 item conditions when the sample size is 500. Given that, it seems 

that the empirical histogram density form leads to more cases of model convergence than does the 

Gaussian density form, even if issues of model stability do sometimes emerge when fitting the 

GGUM model to its generated data in mirt. Also, since the GGUM package uses the EM algorithm, 

the empirical histogram density form was kept in the mirt package to closely align the estimation 

settings in terms of parameter calibrations between both packages. 
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Table 11. Trial Calibrations Type I Error Rates and Power of Absolute Model Fit Indices When 

the GGUM Model is Fit to Dichotomous IRT Data Models using the ‘Gaussian’ Density Form in 

mirt. 

I N Gen. Model Q1 S-X2 G2 SRMSR 

10 

500 
GGUM - - - - 

2PL - - - - 

2000 
GGUM 1.00 (8) 0.28 1.00 (15) 0.39 

2PL 1.00 (13) 0.14 1.00 (32) 0.01 

  
Gen. Model Q1 S-X2 G2 SRMSR 

20 

500 
GGUM - - - - 

2PL - - - - 

2000 
GGUM 0.84 (1) 0.25 0.85 (2) 0.30 

2PL 0.98 (3) 0.11 0.99 (20) 0 

  
Gen. Model Q1 S-X2 G2 SRMSR 

40 

500 
GGUM 0.12 (39) 0.11 0.13 (43) 0.38 

2PL 0.76 (23) 0.09 0.68 (28) 0.04 

2000 
GGUM 0.30 0.21 0.32 0.19 

2PL 0.95 (4) 0.11 0.96(7) 0 

 

I = number of items; N = sample size; Gen. Model = data generation models. Shaded cells in light blue indicate the 
correct data model (i.e., GGUM generated data); ( ) = number of uncounted replications; blank cells = unconverged 
calibrations; Q1 = Yen’s Q1 (1981) statistic; S-X2 = Orlando and Thissen (2000) fit statistic; G2 = McKinley and Mills 
(1985) fit statistic; SRMSR = Maydeu-Olivares and Joe (2014) standardized root mean square residual fit statistic.  

 For polytomous generated items, type I error rates were also high when fitting the 

GGUM model to its generated data in mirt. To exclude the possibility that such high rates may 

be caused by the negative generated taus (τik) in the GGUM package, which are used to generate 

item responses along with the other model parameters in equation 5, GGUM data were also 

simulated using the mirt package’s ‘simdata’ feature on trial calibrations. Table 13 presents both 
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negative and positive taus generated for 20 hypothetical items, in which the first three columns 

are the ones used to generate item responses in the GGUM package. Although ‘simdata’ utilizes 

positive taus (τik) for generating polytomous response data (i.e., columns 5 to 7 in Table 13), the 

results are still similar in terms of type I error rates between the packages when the GGUM 

model is fit to its data.  

Table 12. Positive and Negative Taus (τik) Generated for 20 Hypothetical Items Using GGUM 

Package 

Item # Negative taus   Positive taus  

tau 1 tau 2 tau 3 tau 0 tau 3 tau 2 tau 1 

1 -0.9405 -0.6859 -0.4389 0 0.4389 0.6859 0.9405 

2 -1.3475 -1.1412 -0.9136 0 0.9136 1.1412 1.3475 

3 -1.3656 -1.0732 -0.714 0 0.714 1.0732 1.3656 

4 -1.3928 -1.1802 -0.9625 0 0.9625 1.1802 1.3928 

5 -0.9462 -0.6939 -0.478 0 0.478 0.6939 0.9462 

6 -1.3669 -1.1155 -0.8359 0 0.8359 1.1155 1.3669 

7 -1.0729 -0.802 -0.4565 0 0.4565 0.802 1.0729 

8 -1.0097 -0.7635 -0.5384 0 0.5384 0.7635 1.0097 

9 -1.0162 -0.7263 -0.4857 0 0.4857 0.7263 1.0162 

10 -1.1297 -0.8754 -0.6223 0 0.6223 0.8754 1.1297 

11 -1.3484 -1.0977 -0.8576 0 0.8576 1.0977 1.3484 

12 -1.4863 -1.2365 -0.9858 0 0.9858 1.2365 1.4863 

13 -1.2769 -1.0755 -0.8628 0 0.8628 1.0755 1.2769 

14 -1.207 -0.9614 -0.7787 0 0.7787 0.9614 1.207 

15 -1.291 -1.0061 -0.7277 0 0.7277 1.0061 1.291 

16 -1.1376 -0.9244 -0.6208 0 0.6208 0.9244 1.1376 

17 -1.107 -0.9176 -0.621 0 0.621 0.9176 1.107 

18 -1.3235 -1.0603 -0.8205 0 0.8205 1.0603 1.3235 
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19 -1.0073 -0.7705 -0.5673 0 0.5673 0.7705 1.0073 

20 -1.397 -1.1895 -0.9375 0 0.9375 1.1895 1.397 

 

 Table 14 shows the model fit results of 5 selected calibrations (i.e., replications) using 

both packages with 20 items and a sample size of 2000, with SRMSR statistic from the mirt 

package being compared to the Adjusted Chi-square χ2 statistics from the GGUM package.  

Table 13. Model Fit Results of 5 Selected Calibrations via Simulating GGUM Data from the 

‘simdata’ Syntax in mirt with 20 Polytomous Items and a Sample size of 2000 

(I = 20)   (N = 2000)  (C = 3)  
(Seed = 2875) 

Gen.  
Model 

X2  Singles 
(mean) 

X2 Doubles 
(mean) 

X2  Triples 
(mean) 

SRMSR 

Replication #1  

 

 

GGUM 

0 0.3425 0.7054 0.3162446 

Replication #2 0 0.3237 0.6789 0.2467794 

Replication #3 0 0.4355 0.6547 0.3191819 

Replication #4 0 0.3131 0.5934 0.291728 

Replication #5 0 0.3159 0.4957 0.2890404 

 

I = number of items; N = sample size; C = number of response categories -1; Gen. Model = data generation models; 
GGUM = GGUM polytomous generated data with 4 response categories; Singles, doubles, and triples are Drasgow 
et al.’s (1995) adjusted chi-square model fit statistics; SRMSR = Maydeu-Olivares and Joe (2014) standardized root 
mean square residual fit statistic.  

 As observed, all of the 5 calibrations produced SRMSR values that are greater than 0.05, 

which incorrectly indicate misfit (i.e., high type I error). In contrast, all of the mean Adjusted 

Chi-square χ2 statistics values for item singles, doubles, and triples are less than 3, which 

indicate that the model fits the data. These results are similar to those obtained on the actual 

analysis, which generated data using the GGUM package.  
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 The GGUM package ability to detect misfit for Adjusted Chi-square χ2 fit statistics barely 

approached 80 percent in the condition of 40 items and sample size of 3000. However, this was 

only the case for the item doubles fit statistics. Also, conditions with 20 items for item singles 

and doubles fit statistics had generally higher detection rates of misfit than those with 40 items. 

This might be due to varying the model parameters per replications, which might cause a 

combination of item and person generated parameters that yield better fit results, even in cases 

with smaller number of items. 

 Item level fit statistics Q1, S – X2, and G2 did perform poorly in detecting misfit for 

dichotomous generated data, with many of the items being excluded from the analysis of Q1 and 

G2 due to the possible lack of a minimum number of subjects to be assigned to an ability group 

during the binning process when estimating fit. However, both Q1 and G2 were able to correctly 

detect misfit a high percentage of the time with polytomous generated items. Omitted items are 

also excluded in calibrations with polytomous data but to a lesser degree than their dichotomous 

counterparts. The S – X2 item fit statistic incurred less instances of excluded items since its 

grouping process is based on total scores rather than simulees’ abilities. However, its 

performance in detecting misfit is weak when compared to Q1 and G2. This result contradicts a 

body of research demonstrating its efficiency and accuracy over the aforementioned item fit 

statistics in detecting misfit (Ames & Penfield, 2015; Orlando & Thissen, 2000, 2003; Roberts, 

2008).  

 Although previous research has shown that the S – X2 fit statistic performed well in 

detecting misfit using MMLE and EM, none of the papers except for Roberts (2008) that actually 

investigated its performance in calibrating the GGUM parameters. For instance, the series of 

papers published by Orlando and Thissen investigated the performance of the S – X2 fit statistic 
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for nested dominance models only. As for Roberts (2008), his study differed from the current 

one by comparing different S – X2 fit statistics variants to nested GGUM models via fixing the 

discrimination and threshold parameters for some conditions across 1000 replications per cell. 

Also, six response categories were used instead of four in his analysis, which by default excludes 

testing the fit of dichotomous items. Roberts (2008) results also excluded items that did not have 

cases in particular bins to perform the fit estimation. New set of parameters were generated 

accordingly, which might have led to higher proportions of misfit detection between nested 

GGUM models. This practice is not utilized in the current study, which might explain the poor 

performance of the S – X2 fit statistic. 

 Adjusted Chi-square χ2 statistics also performed better for the GGUM in terms of 

detecting misfit when compared to the current study for dichotomous items in Tay et al. (2011) 

using MMLE and EM. The disparity in the results between the studies is probably due to 

preselecting and omitting the middle ranged δ values within each generated data per calibration 

in Tay et al. (2011); a practice that is also not followed in the current study. Also, cross 

validation data is utilized in Tay et al. (2011) using the same generated item parameters (i.e., 

fixing the parameters across replications). These generated item parameters do not include 

simulees with zero endorsements when estimating doubles and triples fit statistics. The 

aforementioned data setup is also not followed in the current study.  

 When identifying the correct data model based on relative fit indices AIC and BIC, the 

GGUM model did identify the correct model consistently for dichotomous items as the number 

of items and sample size increased. However, given the overlap between the IRF’s of the 

dichotomous IRT models, the choice of item location ranges δs for the GGUM generated data 

determined the percentage of correct data model identifications. As was shown, a range of δs [-3, 
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3] from a uniform distribution produced the highest percentages of correct identification in terms 

of the GGUM data model having the lowest AIC and BIC when compared to those generated by 

dominance models, even in conditions where the number of items was 10. A range of δs [-2, 2] 

from a uniform distribution produced the least percentages of correct identifications in terms of 

exhibiting higher AIC and BIC values when compared to data generated form dominance 

models. This was most likely to be observed when the number of items is 10, in which 2PL 

generated data had the lowest AIC and BIC values. For polytomous items, relative fit indices 

almost always identified the correct model 100 percent of the time, with GGUM generated data 

resulting in lower AIC and BIC values than GRM generated data across all conditions, 

irrespective of the number of items and sample size. In short, the relative (i.e., comparative) 

model fit indices AIC and BIC are the most consistent and efficient indices in identifying the 

correct data model. In this study, this applies to both dichotomous data with generated δs [-3, 3] 

from a uniform distribution, and to a larger extent to polytomous data when the EM algorithm is 

used for model calibration. 

 Given that AIC and BIC indices are relative fit indices, their utility might only be realized 

when interpreted along with absolute fit indices. One useful strategy to test data models is to 

compare their relative fit indices first, and then testing the data model yielding the lowest AIC 

and BIC values using some measure of absolute fit index such as the SRMSR or the Adjusted 

Chi-square χ2 fit statistics. As mentioned in Nye et al. (2019), the practice of testing multiple fit 

indices to assess model fit is common in SEM literature (Hu & Bentler, 1999). However, such a 

practice is less realized in IRT literature and might assist researchers in identifying the 

appropriate IRT model for implemented data (Nye et al., 2019). 
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Recommendations for Future Studies 

 Assessing model fit for ideal point models such as the GGUM is of paramount 

importance, particularly when the assumptions of the selected IRT model are assumed to be true. 

Unfortunately, there is a shortage of analyses pertaining to model fit for ideal point models. 

Based on comparing different model fit indices in this study, the majority of such fit indices were 

not able to detect misfit for dichotomous data when the GGUM was fit to dominance model. 

However, more promising results were obtained for polytomous data in terms of detecting misfit, 

particularly when utilizing the SRMSR fit statistic. Also, low type I error rates were only 

observed by the Adjusted Chi-square χ2 fit statistics. In general, the best performing fit statistics 

were the relative (i.e., comparative) ones such as AIC and BIC, with the selection of appropriate 

δ ranges affecting the rate of correct identification for dichotomous data, while correctly 

identifying the data model for polytomous data in across all conditions. However, previous 

attempts to compare different fit indices for both dominance and ideal point IRT models did 

produce more promising results in terms of detecting fit/misfit for dichotomous data (Nye et al., 

2019).  

 One possible issue in the current study that might have led to the poor performance of the 

absolute model fit indices in detecting misfit is the implementation of the marginal maximum 

likelihood EM algorithm to calibrate the parameters using the empirical histogram density form 

(Bock & Aitkin, 1981). In Nye et al. (2019), Bayesian procedures were implemented to calibrate 

the model parameters. Possible future studies can compare the accuracy of the calibrated 

parameters using both the EM algorithm and one of the Bayesian methods such as the Markov 

chain Monte Carlo (MCMC) method. The R package ‘bggum’ utilizes a Bayesian approach to 

calibrate the GGUM parameters, and can be used to perform a comparative analysis of model fit 
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indices using both model calibration algorithms (Brandon, Duck-Mayr, & Montgomery, 2020). For 

example, it would be interesting to observe the performance of the item fit statistic S – X2 when the 

calibrated parameters are calculated using a Bayesian estimator, since this fit statistic is usually 

more accurate in detecting misfit than more traditional ones such as Q1 and G2 (Orlando & 

Thissen, 2000). Such an outcome is not realized in the current study when the EM algorithm is 

used given its different research objectives and data generation process from the aforementioned 

studies. In short, previous research testing model fit indices for the GGUM utilized conditions to 

data generation that increased the proportion of detecting misfit across calibrations. Though 

promising, the results of such studies are less generalizable than the current one. As mentioned 

earlier, the only study that compared model fit indices between different IRT models as the 

current one is Nye et al. (2019), which utilized a Bayesian approach to calibrate the GGUM 

parameters. 

 Future studies can also fix model parameters such as item or person parameters to narrow 

down the possible sources of disturbance associated with the data, which was apparent at several 

conditions where higher detection rates of misfit were observed under smaller number of items and 

sample sizes. Though useful, it should be noted that fixing any of the item parameters may lower the 

generalizability of results. In other words, having a particular model fit index detect misfit in a 

consistent manner while varying item and person parameters along their respective distribution 

spectrums makes it more viable as a measure of fit. Still, future studies could generate multiple sets of 

response data and control the degree to which parameters are fixed within datasets. These datasets 

would then be compared to one another in terms of detecting fit. 

 The overlap between the IRFs of the dichotomous models made it difficult for the relative fit 

indices to identify the correct data model, particularly between GGUM and the 2PL-generated data. 
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Future researchers might be interested in testing a series of different item parameters ranges other than 

the items’ locations δs as was investigated in this study. Such an overlap might explain why some 

attitude and survey data can still be well calibrated by dominance IRT models such as the 2PL 

model (Tay et al., 2011).  

 It would also be interesting to investigate how other polytomous IRT data models such as 

Muraki’s (1992) GPCM would fare in terms of fit when calibrated by the GGUM model. As 

mentioned earlier, the GPCM can model the GGUM’s model subjective response categories as 

described by the third premise when defining the GGUM model (Roberts et al., 2000). Given that, 

researchers can investigate possible ranges in which specific ORFs between the GGUM and the 

GPCM overlap.  

 Although simple IRT dominance models such as the Rasch or the 1PL models cannot be 

compared directly to the GGUM model in terms of fit given that the latter does not assume a fixed 

slope (i.e., discrimination) across items, they can nevertheless be possibly compared to the GUM 

variant of the model. The GUM model assumes a fixed slope across items (Roberts & Laughlin, 

1996). Hence, generated GUM data can probably be compared to the Rasch or 1PL models by the 

INFIT and OUTFIT fit indices (Ames & Penfield, 2015; Masters, 1982).  

Conclusion 

 Although the results provide some promising methods for assessing fit, particularly those 

assessing relative model fit both dichotomous and polytomous item responses, they also point 

out the limitations with several absolute fit indices when the marginal maximum likelihood EM 

algorithm is used to calibrate the model parameters. Also, it is difficult for absolute model fit 

indices to detect misfit when the GGUM model is fit to dichotomous generated data such as the 

2PL and 3PL model given their IRFs’ overlap with that of the GGUM data. However, expanding 
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the ranges of item locations δs for GGUM generated data might lead to identifying the correct 

data model by relative fit statistics such as AIC and BIC more frequently. For polytomous 

response data, SRMSR fit statistic is useful in detecting misfit when the GGUM model is fit to 

the GRM data, while the Adjusted Chi-square χ2 fit statistics are useful in detecting fit when the 

GGUM model is fit to its data, even when the EM algorithm is used to calibrate the model 

parameters.  
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APPENDIX A 

R Code 

Starting Codes for the GGUM Package 

GGUM package data generation code GEN.D1 for δs ranging from a [-3, 3] uniform distribution. 

For a uniform distribution with δs ranging from [-2, 2], the italicized line of code below is 

replaced by delta <- sort(round(runif(I, -2, 2), 4)). For a uniform 

distribution with δs ranging from [-2, 2] but not including [-1, 1], the italicized line if code below 

is replaced by delta <- sort(round(c(runif(I2, -2, -1),runif(I2, 1, 

2)), 4)), with I2 equal to the number of items divided by 2. The rest of the code is identical 

to that from the GGUM package by Tendeiro and Castro-Alvarez (2020).  

GEN.D1<-function (N, I, C, model = “GGUM”, seed = 2875)  

{ 

  set.seed(seed) 

  if (model == “GGUM”)  

    alpha <- round(runif(I, 0.5, 2), 4) 

  if (model == “GUM”)  

    alpha <- rep(1, I) 

  delta <- sort(round(runif(I, -3, 3), 4)) 

  if (length© == 1)  

    C <- rep(C, I) 

  C.max <- max© 

  if (model == “GGUM”) { 

    tau.half <- matrix(NA, nrow = I, ncol = C.max) 

    tau.half[, 1] <- round(runif(I, 0.4, 1.4), 4) 

    if (C.max >= 2) { 
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      for (i in 2:C.max) { 

        tau.half[, i] <- (i <= C) * (tau.half[, i –  

                                                1] + 0.25 + 

round(rnorm(I, 0, 0.04), 4)) 

      } 

    } 

    taus <- cbind(-tau.half[, C.max:1], 0, tau.half) 

  } 

  if (model == “GUM”) { 

    tau.half <- rep(NA, C.max) 

    tau.half[1] <- round(runif(1, 0.4, 1), 4) 

    if (C.max >= 2) { 

      for (i in 2:C.max) { 

        tau.half[i] <- tau.half[i – 1] + 0.25 + round(rnorm(1,  

                                                            0, 

0.04), 4) 

      } 

    } 

    taus <- c(0, tau.half) 

    taus <- matrix(rep(taus, I), nrow = I, byrow = TRUE) 

    for (i in 1:I) { 

      if (C[i] < C.max)  

        taus[i, (C[i] + 2):(C.max + 1)] <- 0 

    } 

    taus <- cbind(-taus[, (C.max + 1):2], taus) 

  } 

  theta <- round(rnorm(N, 0, 1), 4) 

  M <- 2 * C + 1 

  probs.array <- array(NA, dim = c(N, I, C.max + 1)) 

  for (z in 0:C.max) { 

    probs.array[, , z + 1] <- P.GGUM(z, alpha, delta, taus,  
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                                     theta, C) 

  } 

  res <- apply(probs.array, 1:2, function(vec) 

which(rmultinom(1,  

                                                               

1, vec) == 1) – 1) 

  return(list(alpha.gen = alpha, delta.gen = delta, taus.gen = 

taus,  

              theta.gen = theta, data = res)) 

} 

 

To obtain the P.GGUM function above, the original source code from the GGUM package has to 

run first. The following syntax corresponds to Tendeiro and Castro-Alvarez (2020) source code: 

# GPCM (base for GUM and GGUM) ---- 

#    y     : Either scalar (whose value is then replicated I 

times), or vector  

#            of length I 

#    alpha : Vector of length I 

#    delta : Vector of length I 

#    taus  : Either vector of length M (which is then replicated 

I times), or  

#           (generalized) matrix I x max(M) 

#    theta : Vector of length N 

#    M     : Either scalar (whose value is then replicated I 

times), or vector  

#            of length I 

#  

# GPCM applies to GGUM in its most general form. 

 

# P.GPCM ---- 

P.GPCM <- function(y, alpha, delta, taus, theta, M) 
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{ 

  N         <- length(theta) 

  I         <- length(delta) 

  if (length(y) == 1) y <- rep(y, I) 

  if (is.vector(taus)) taus <- matrix(rep(taus, I), nrow = I, 

byrow = TRUE) 

  if (length(M) == 1) M <- rep(M, I) 

  taus.zero <- cbind(0, taus) 

  taus.cum  <- t(apply(taus.zero, 1, cumsum)) 

  part      <- function(i, w)  

  { 

    if ((0 <= w) && (w <= M[i])) { 

      exp(alpha[i] * (w * (theta - delta[i]) - taus.cum[i, 

((max(M) - M[i])/2) + w + 1])) 

    } else rep(0, N) 

  } 

  num       <- sapply(1:I,      function(i) part(i, y[i]), 

simplify = "array") 

  tmp       <- sapply(0:max(M), function(w) sapply(1:I, 

function(i) part(i, w))) 

  den       <- matrix(rowSums(tmp, na.rm = TRUE), ncol = I, 

byrow = FALSE) 

  return(num / den) 

} 

 

# P.GGUM ---- 

P.GGUM <- function(z, alpha, delta, taus, theta, C) 

{ 

  N         <- length(theta) 

  I         <- length(delta) 

  if (length(z) == 1) z <- rep(z, I) 
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  if (is.vector(taus)) taus <- matrix(rep(taus, I), nrow = I, 

byrow = TRUE) 

  if (length(C) == 1) C <- rep(C, I) 

  M         <- 2 * C + 1 

  mat.ind   <- matrix(rep(z <= C, N), nrow = N, byrow = TRUE) 

  return( mat.ind * (P.GPCM(z, alpha, delta, taus, theta, M) + 

P.GPCM(M - z, alpha, delta, taus, theta, M)) ) 

} 

 

# probs.GGUM ---- 

#' @title Compute model probabilities for the GGUM 

#'    

#' @description \code{probs.GGUM} computes model probabilities 

for the GGUM (and 

#'   the GUM) for given item and person parameters. 

#'    

#' @param alpha A vector of length \eqn{I} with the 

discrimination parameters. 

#' @param delta A vector of length \eqn{I} with the difficulty 

parameters. 

#' @param taus An \eqn{I\times M}{IxM} matrix with the threshold 

parameters  

#'   (\eqn{M = 2\times\max{C}+1}{M = 2*max(C)+1}). 

#' @param theta A vector of length \eqn{N} with the person 

parameters. 

#' @param C \eqn{C} is the number of observable response 

categories minus 1 

#'   (i.e., the item scores will be in the set \eqn{\{0, 1, ..., 

C\}}). It 

#'   should either be a vector of \eqn{I} elements or a scalar. 

In the latter 

#'   case, it is assumed that \eqn{C} applies to all items. 

#'    
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#' @return The function returns an \eqn{N\times I\times 

K}{NxIxK} array with the 

#'   GGUM probabilities, with \eqn{K=\max{C}+1}{K=max(C)+1}. To 

retrieve the 

#'   GUM-based probabilities just constrain alpha to a unit 

vector of length {I} 

#'   (i.e., \code{alpha = rep(1, I)}). In this case, make sure 

\code{C} is 

#'   constant across items. 

#'    

#' @section Details: This function computes the GGUM-based 

probabilities for all 

#'   (person, item, response category) combinations. For the 

GGUM formula see 

#'   the help for function \code{GGUM} 

(\code{\link[GGUM]{GGUM}}). 

#'    

#' @author Jorge N. Tendeiro, \email{j.n.tendeiro@rug.nl} 

#'    

#' @examples 

#' C <- c(3, 3, 3, 5, 5) 

#' gen <- GenData.GGUM(10, 5, C, seed = 456) 

#' gen.alpha <- gen$alpha.gen 

#' gen.delta <- gen$delta.gen 

#' gen.taus  <- gen$taus.gen 

#' gen.theta <- gen$theta.gen 

#'   

#' # Compute model probabilities for the parameters above: 

#' Ps <- probs.GGUM(gen.alpha, gen.delta, gen.taus, gen.theta, 

C) 

#' Ps 

#' # In particular, the sum of the probabilities across all 

response options  
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#' # (i.e., the third dimension) should be 1 for all (person, 

item) combinations: 

#' apply(Ps, 1:2, sum) 

#' @export 

probs.GGUM <- function(alpha, delta, taus, theta, C) 

{ 

  # Sanity check - parameters: 

  Sanity.params(alpha, delta, taus, theta, C) 

   

  N     <- length(theta) 

  I     <- length(alpha) 

  C.max <- max(C) 

  res <- array(0, dim = c(N, I, C.max + 1)) 

  for (c in 0:C.max) res[, , c+1] <- P.GGUM(c, alpha, delta, 

taus, theta, C) 

  dimnames(res)[[1]] <- paste0("N", 1:N) 

  dimnames(res)[[2]] <- paste0("I", 1:I) 

  dimnames(res)[[3]] <- paste0("C=", 0:C.max) 

  return(res) 

} 

 

# P.GRM ---- 

P.GRM <- function(C, IP, theta) 

{ 

  N         <- length(theta) 

  I         <- nrow(IP) 

  alpha     <- IP[, ncol(IP)] 

  betas     <- IP[, -ncol(IP)] 

  res.cum   <- array(NA, c(N, I, C)) 

  for (i in 1:I) 

  { 
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    for (c in 1:C) 

    { 

      arg              <- alpha[i] * (theta - betas[i, c]) 

      res.cum[ , i, c] <- exp(arg) / (1 + exp(arg)) 

    } 

  } 

  res.cum <- array(c(matrix(1, N, I), res.cum, matrix(0, N, I)), 

dim = c(N, I, C + 2)) 

  res     <- array(NA, c(N, I, C + 1)) 

  for (c in 1:(C + 1)) res[, , c] <- res.cum[, , c] - res.cum[, 

, c + 1] 

  return(res) 

} 

 

Simulation Codes for Absolute Fit Indices 

Fitting the GGUM model to GGUM dichotomous data and testing for Adjusted Chi-square χ2 fit 

statistics via the GGUM Package.  

# First, make sure to run the source code for GEN.D1, which is 

an edited code from the GGUM package utilizing a different delta 

distribution (Tendeiro & Castro-Alvarez, 2020) # 

GGUM_fit_GGUM_Dich_Data <- function(F, N, I) 

{ 

   

# F = # of replications, N = sample size, I = # of items # 

library(GGUM) 

# C = # of response categories - 1 # 

C <- 1 

# Generate GGUM data after adjusting item location & Tau # 

list1 <- vector("list", length=F) 

set.seed(2875) 
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for (i in 1:F) { 

    list1[[i]] <- GEN.D1(N, I, C, "GGUM", seed = sample(1:50000, 

1, replace = FALSE)) 

}  

# Subset the response matrices from list 1 # 

list2 <- vector("list", length=F) 

for (i in 1:F) { 

  list2[[i]] <- subset(list1[[i]][["data"]])       

}  

# Fit the GGUM model to the generated data # 

list3 <- vector("list", length=F) 

for (i in 1:F) { 

  list3[[i]] <- GGUM(list2[[i]], 1, N.nodes = 60, max.outer = 

200, max.inner = 30)       

}  

# Calculating model fit using Adj Chi-square statistics # 

list4 <- vector("list", length=F) 

for (i in 1:F) { 

  list4[[i]] <- MODFIT(list3[[i]])      

}  

# Tabulating results and calculating proportion of Type I error 

and power # 

x <-

data.frame("sin"=double(),"Dob"=double(),"Tri"=double(),"SinT"=d

ouble(),"DobT"=double(),"TriT"=double()) 

for (i in 1:F) { 

  x[i,1]<- list4[[i]][["Summary.table"]][1,8] 

} 

for (i in 1:F) { 

  x[i,2]<- list4[[i]][["Summary.table"]][2,8]  

} 

for (i in 1:F) { 
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  x[i,3]<- list4[[i]][["Summary.table"]][3,8] 

} 

x[,4:6] <- ifelse(x[,1:3]>= 3,1,0) 

y<-

data.frame("Singlets"=mean(x[,4]),"Doublets"=mean(x[,5]),"Triple

ts"=mean(x[,6])) 

list_final <- list(list1, list2, list3, list4, x, y) 

return(list_final) 

} 

 

Fitting the GGUM model to dominance IRT data models (i.e., 2PL & 3PL) and testing for 

Adjusted Chi-square χ2 fit statistics via the GGUM package.  

GGUM_fit_2PL_Data <- function(F, N, I) 

{ 

# F = # of replications, N = sample size, I = # of items # 

  library(catIrt) 

  library(GGUM) 

  # Generating item parameters, for 3PL, replace c = 0 with c = 

runif(I, 0, 0.3) #   

  list1 <- vector("list", length=F) 

  set.seed(2875) 

  for (i in 1:F) { 

    list1[[i]] <- cbind(a = (rlnorm(I, meanlog = 0, sdlog = 

0.5))/1.702, b = runif(I, -2, 2), c = 0) 

  } 

# Simulating 2PL IRT response data using the catIRT package and 

subsetting the data into a list # 

  list2 <- vector("list", length=F) 

  for (i in 1:F) { 

    list2[[i]] <- simIrt(theta = rnorm(N),  params = list1[[i]], 

mod = "brm") 
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  } 

  list3 <- vector("list", length=F) 

  for (i in 1:F) { 

    list3[[i]] <- subset(list2[[i]][["resp"]])       

  }  

  # Fitting the GGUM model to the generated 2PL data #   

  list4 <- vector("list", length=F) 

  for (i in 1:F) { 

    list4[[i]] <- GGUM(list3[[i]], 1, N.nodes = 60, max.outer = 

200, max.inner = 30)   

  }  

  # Estimating model fit using adjusted chi-square indices for 

item singles, double, triples #   

  list5 <- vector("list", length=F) 

  for (i in 1:F) { 

    list5[[i]] <- MODFIT(list4[[i]])  

  } 

  # Indexing values of results and tabulating the proportion of 

Type I error & power #  

  x <-

data.frame("sin"=double(),"Dob"=double(),"Tri"=double(),"SinT"=d

ouble(),"DobT"=double(),"TriT"=double()) 

  for (i in 1:F) { 

    x[i,1]<- list5[[i]][["Summary.table"]][1,8] 

  } 

  for (i in 1:F) { 

    x[i,2]<- list5[[i]][["Summary.table"]][2,8]  

  } 

  for (i in 1:F) { 

    x[i,3]<- list5[[i]][["Summary.table"]][3,8] 

  } 

  x[,4:6] <- ifelse(x[,1:3]>= 3,1,0) 
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  y<-

data.frame("Singlets"=mean(x[,4]),"Doublets"=mean(x[,5]),"Triple

ts"=mean(x[,6])) 

   

  list_final <- list(list1, list2, list3, list4, list5, x, y) 

   

  return(list_final) 

} 

 

Fitting the GGUM model to GGUM dichotomous data and testing for Q1, S – X2, G2, and 

SRMSR fit statistics via the mirt Package.  

# First, make sure to run the source code for GEN.D1, which is 

an edited code from the GGUM package utilizing a different delta 

distribution (Tendeiro & Castro-Alvarez, 2020) # 

mirt_fit_GGUM_Dich_Data <- function(F, N, I) 

{ 

  # F = # of replications, N = sample size, I = # of items. 

Also, manually adjusting the code under list3 for the number of 

items is required # 

  # Seed number can be edited in the set.seed command under 

list1 

library(mirt)     

library(GGUM) 

# C = # of response categories - 1 # 

C <- 1 

# Generating item parameters and GGUM response data #   

list1 <- vector("list", length=F) 

set.seed(2875) 

for (i in 1:F) { 
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  list1[[i]] <- GEN.D1(N, I, C, "GGUM", seed = sample(1:50000, 

1, replace = FALSE)) 

}  

# subsetting the GGUM data into a list # 

list2 <- vector("list", length=F) 

for (i in 1:F) { 

  list2[[i]] <- subset(list1[[i]][["data"]])       

}  

# Fitting the GGUM model to GGUM data with 20 items. for x 

number of items, replace  Model.Dich<-'F1=1-x' & paste0("Item", 

1:x) # 

list3 <- vector("list", length=F) 

for (i in 1:F) { 

  Model.Dich<-'F1=1-20' 

  colnames(list2[[i]]) <- paste0("Item", 1:20) 

  list3[[i]]<-mirt(list2[[i]], model = Model.Dich,itemtype = 

"ggum", method = "EM", dentype = 'empiricalhist', TOL = 0.001, 

quadpts = 60, technical = list(NCYCLES = 10000)) 

} 

# SRMSR Statistic ----------- # 

list4 <- vector("list", length=F) 

for (i in 1:F) { 

  list4[[i]] <- M2(list3[[i]])       

}  

# Q1 Statistic -------------- # 

list5 <- vector("list", length=F) 

for (i in 1:F) { 

  list5[[i]] <- itemfit(list3[[i]], 'X2', group.bins = 10)       

}  

list6 <- vector("list", length=F) 

for (i in 1:F) { 

  list6[[i]] <- ifelse(list5[[i]][,5]<= 0.05,1,0)        
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} 

# S-X2 Statistic -------------- # 

list7 <- vector("list", length=F) 

for (i in 1:F) { 

 list7[[i]] <- itemfit(list3[[i]], 'S_X2')       

} 

list8 <- vector("list", length=F) 

for (i in 1:F) { 

  list8[[i]] <- ifelse(list7[[i]][,5]<= 0.05,1,0) 

} 

# G2 Statistic -------------- # 

list9 <- vector("list", length=F) 

for (i in 1:F) { 

  list9[[i]] <- itemfit(list3[[i]], 'G2')       

} 

list10 <- vector("list", length=F) 

for (i in 1:F) { 

  list10[[i]] <- ifelse(list9[[i]][,5]<= 0.05,1,0) 

} 

# Tabulation and proportions ---------- # 

x <-data.frame("SRMSR"=double(),"Q1"=double(),"S-

X2"=double(),"G2"=double(),  

               "SRMSR_P"=double()) 

for (i in 1:F) { 

  x[i,1]<- list4[[i]][1,7] 

} 

for (i in 1:F) { 

  x[i,2]<- mean(list6[[i]]) 

} 

for (i in 1:F) { 
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  x[i,3]<- mean(list8[[i]]) 

} 

for (i in 1:F) { 

  x[i,4]<- mean(list10[[i]]) 

x[,5] <- ifelse(x[,1]>= 0.05,1,0) 

y<-data.frame("SRMSR"=mean(x[,5]),"Q1"=mean(x[,2], na.rm = 

TRUE),"S-X2"=mean(x[,3], na.rm = TRUE), "G2"=mean(x[,4], na.rm = 

TRUE)) 

list_final <- list(list1, list2, list3, list4, list5, list6, 

list7, list8, list9, list10, x, y) 

return(list_final) 

} 

 

Fitting the GGUM model to dominance IRT data models (i.e., 2PL & 3PL) and testing for Q1, S 

– X2, G2, and SRMSR fit statistics via the mirt Package. 

mirt_fit_2PL_Data <- function(F, N, I) 

{ 

# F = # of replications, N = sample size, I = # of items. Also, 

manually adjusting the code under list4 for the number of items 

is required # 

# Seed number can be edited in the set.seed command under list1 

library(mirt) 

library(catIrt) 

# Generating item parameters, for 3PL, replace c = 0 with c = 

runif(I, 0, 0.3)  #   

list1 <- vector("list", length=F) 

set.seed(2875) 

for (i in 1:F) { 

  list1[[i]] <- cbind(a = (rlnorm(I, meanlog = 0, sdlog = 

0.5))/1.702, b = runif(I, -2, 2), c = 0) 

} 
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# Simulating 2PL IRT response data using the catIRT package and 

subsetting the data into a list # 

list2 <- vector("list", length=F) 

for (i in 1:F) { 

  list2[[i]] <- simIrt(theta = rnorm(N),  params = list1[[i]], 

mod = "brm") 

} 

list3 <- vector("list", length=F) 

for (i in 1:F) { 

  list3[[i]] <- subset(list2[[i]][["resp"]])       

}   

# Fitting the GGUM model to 2PL data with 20 items. for x number 

of items, replace  Model.Dich<-'F1=1-x' & paste0("Item", 1:x) # 

# for a Gaussian density type, replace "dentype = 

'empiricalhist'" with 'dentype = 'Gaussian'" # 

list4 <- vector("list", length=F) 

for (i in 1:F) { 

  Model.Dich<-'F1=1-20' 

  colnames(list3[[i]]) <- paste0("Item", 1:20) 

  list4[[i]]<-mirt(list3[[i]], model = Model.Dich,itemtype = 

"ggum", method = "EM", dentype = 'empiricalhist', TOL = 0.001, 

quadpts = 60, technical = list(NCYCLES = 10000)) 

} 

# SRMSR Statistic ----------- # 

list5 <- vector("list", length=F) 

for (i in 1:F) { 

  list5[[i]] <- M2(list4[[i]])       

}  

# Q1 Statistic -------------- # 

list6 <- vector("list", length=F) 

for (i in 1:F) { 

  list6[[i]] <- itemfit(list4[[i]], 'X2', group.bins = 10)       



103 
 

 

}  

list7 <- vector("list", length=F) 

for (i in 1:F) { 

  list7[[i]] <- ifelse(list6[[i]][,5]<= 0.05,1,0)        

} 

# S-X2 Statistic -------------- # 

list8 <- vector("list", length=F) 

for (i in 1:F) { 

  list8[[i]] <- itemfit(list4[[i]], 'S_X2')       

} 

list9 <- vector("list", length=F) 

for (i in 1:F) { 

  list9[[i]] <- ifelse(list8[[i]][,5]<= 0.05,1,0) 

} 

# G2 Statistic -------------- # 

list10 <- vector("list", length=F) 

for (i in 1:F) { 

  list10[[i]] <- itemfit(list4[[i]], 'G2')       

} 

list11 <- vector("list", length=F) 

for (i in 1:F) { 

  list11[[i]] <- ifelse(list10[[i]][,5]<= 0.05,1,0) 

} 

# Tabulation and proportions ---------- # 

x <-data.frame("SRMSR"=double(),"Q1"=double(),"S-

X2"=double(),"G2"=double(),  

               "SRMSR_P"=double()) 

for (i in 1:F) { 

  x[i,1]<- list5[[i]][1,7] 

} 
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for (i in 1:F) { 

  x[i,2]<- mean(list7[[i]]) 

} 

for (i in 1:F) { 

  x[i,3]<- mean(list9[[i]]) 

} 

for (i in 1:F) { 

  x[i,4]<- mean(list11[[i]]) 

} 

x[,5] <- ifelse(x[,1]>= 0.05,1,0) 

y<-data.frame("SRMSR"=mean(x[,5]),"Q1"=mean(x[,2], na.rm = 

TRUE),"S-X2"=mean(x[,3], na.rm = TRUE), "G2"=mean(x[,4], na.rm = 

TRUE)) 

list_final <- list(list1, list2, list3, list4, list5, list6, 

list7, list8, list9, list10, list11, x, y) 

return(list_final) 

} 

 

Fitting the GGUM model to GGUM polytomous data and testing for Adjusted Chi-square χ2 fit 

statistics via the GGUM Package.  

# First, make sure to run the source code for GEN.D1, which is 

an edited code from the GGUM package utilizing a different delta 

distribution (Tendeiro & Castro-Alvarez, 2020) # 

GGUM_fit_GGUM_Poly_Data <- function(F, N, I) 

{ 

  # F = # of replications, N = sample size, I = # of items # 

  library(GGUM) 

  # C = # of response categories - 1 # 

  C <- 3 

  # Generate GGUM data after adjusting item location & Tau # 

  list1 <- vector("list", length=F) 



105 
 

 

  set.seed(2875) 

  for (i in 1:F) { 

    list1[[i]] <- GEN.D1(N, I, C, "GGUM", seed = sample(1:50000, 

1, replace = FALSE)) 

  }  

  # Subset the response matrices from list 1 # 

  list2 <- vector("list", length=F) 

  for (i in 1:F) { 

    list2[[i]] <- subset(list1[[i]][["data"]])       

  }  

  # Fit the GGUM model to the generated data # 

  list3 <- vector("list", length=F) 

  for (i in 1:F) { 

    list3[[i]] <- GGUM(list2[[i]], C, N.nodes = 60, max.outer = 

200, max.inner = 30)       

  }  

  # Calculating model fit using Adj Chi-square statistics # 

  list4 <- vector("list", length=F) 

  for (i in 1:F) { 

    list4[[i]] <- MODFIT(list3[[i]])      

  }  

  # Tabulating results and calculating proportion of Type I 

error and power # 

  x <-

data.frame("sin"=double(),"Dob"=double(),"Tri"=double(),"SinT"=d

ouble(),"DobT"=double(),"TriT"=double()) 

  for (i in 1:F) { 

    x[i,1]<- list4[[i]][["Summary.table"]][1,8] 

  } 

  for (i in 1:F) { 

    x[i,2]<- list4[[i]][["Summary.table"]][2,8]  

  } 
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  for (i in 1:F) { 

    x[i,3]<- list4[[i]][["Summary.table"]][3,8] 

  x[,4:6] <- ifelse(x[,1:3]>= 3,1,0) 

  y<-

data.frame("Singlets"=mean(x[,4]),"Doublets"=mean(x[,5]),"Triple

ts"=mean(x[,6])) 

  list_final <- list(list1, list2, list3, list4, x, y) 

  return(list_final) 

} 

 

Fitting the GGUM model to the GRM data model and testing for Adjusted Chi-square χ2 fit 

statistics via the GGUM package. 

GGUM_fit_GRM_Data <- function(F, N, I) 

{ 

# F = # of replications, N = sample size, I = # of items # 

 library(catIrt) 

  library(GGUM) 

  # Generating item parameters #   

  list1 <- vector("list", length=F) 

  set.seed(2875) 

  for (i in 1:F) { 

    list1[[i]] <- cbind(a = (rlnorm(I, meanlog = 0, sdlog = 

0.5))/1.702, b1 = runif(I, -2, -0.5), b2 = runif(I, -0.5, 0.5), 

                        b3 = runif(I, 0.5, 2)) 

  } 

  # Simulating GRM IRT response data using the catIRT package 

and subsetting the data into a list by adjusting the responses 

to range from category 0 to 3 # 

  list2 <- vector("list", length=F) 

  for (i in 1:F) { 



107 
 

 

    list2[[i]] <- simIrt(theta = rnorm(N),  params = list1[[i]], 

mod = "brm") 

  } 

  list3 <- vector("list", length=F) 

  for (i in 1:F) { 

    list3[[i]] <- subset(list2[[i]][["resp"]]-1)       

  }  

  # Fitting the GGUM model to the generated GRM data #   

  list4 <- vector("list", length=F) 

  for (i in 1:F) { 

    list4[[i]] <- GGUM(list3[[i]], 3, N.nodes = 60, max.outer = 

200, max.inner = 30)   

  }  

  # Estimating model fit using adjusted chi-square indices for 

item singles, double, triples #   

  list5 <- vector("list", length=F) 

  for (i in 1:F) { 

    list5[[i]] <- MODFIT(list4[[i]])  

  } 

  # Indexing values of results and tabulating the proportion of 

Type I error & power #  

  x <-

data.frame("sin"=double(),"Dob"=double(),"Tri"=double(),"SinT"=d

ouble(),"DobT"=double(),"TriT"=double()) 

  for (i in 1:F) { 

    x[i,1]<- list5[[i]][["Summary.table"]][1,8] 

  } 

  for (i in 1:F) { 

    x[i,2]<- list5[[i]][["Summary.table"]][2,8]  

  } 

  for (i in 1:F) { 

    x[i,3]<- list5[[i]][["Summary.table"]][3,8] 
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  } 

  x[,4:6] <- ifelse(x[,1:3]>= 3,1,0) 

  y<-

data.frame("Singlets"=mean(x[,4]),"Doublets"=mean(x[,5]),"Triple

ts"=mean(x[,6])) 

  list_final <- list(list1, list2, list3, list4, x, y) 

  return(list_final) 

} 

 

Fitting the GGUM model to GGUM polytomous data and testing for Q1, S – X2, G2, and SRMSR 

fit statistics via the mirt Package.  

# First, make sure to run the source code for GEN.D1, which is 

an edited code from the GGUM package utilizing a different delta 

distribution (Tendeiro & Castro-Alvarez, 2020) # 

mirt_fit_GGUM_Poly_Data <- function(F, N, I) 

{ 

  # F = # of replications, N = sample size, I = number of items. 

Also, manually adjusting the code under list3 for the number of 

items is required # 

  # Seed number can be edited in the set.seed command under 

list1 

  library(mirt)     

  library(GGUM) 

  # C = # of response categories - 1 # 

  C <- 3 

  # Generating item parameters and GGUM response data #   

  list1 <- vector("list", length=F) 

  set.seed(2875) 

  for (i in 1:F) { 

    list1[[i]] <- GEN.D1(N, I, C, "GGUM", seed = sample(1:50000, 

1, replace = FALSE)) 
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  }  

  # subsetting the GGUM data into a list # 

  list2 <- vector("list", length=F) 

  for (i in 1:F) { 

    list2[[i]] <- subset(list1[[i]][["data"]])       

  }  

  # Fitting the GGUM model to GGUM data with 20 items. for x 

number of items, replace  Model.Dich<-'F1=1-x' & paste0("Item", 

1:x) # 

  list3 <- vector("list", length=F) 

  for (i in 1:F) { 

    Model.Poly<-'F1=1-20' 

    colnames(list2[[i]]) <- paste0("Item", 1:20) 

    list3[[i]]<-mirt(list2[[i]], model = Model.Poly,itemtype = 

"ggum", method = "EM", dentype = 'empiricalhist', TOL = 0.001, 

quadpts = 60, technical = list(NCYCLES = 10000)) 

  } 

  # SRMSR Statistic ----------- # 

  list4 <- vector("list", length=F) 

  for (i in 1:F) { 

    list4[[i]] <- M2(list3[[i]])       

  }  

  # Q1 Statistic -------------- # 

  list5 <- vector("list", length=F) 

  for (i in 1:F) { 

    list5[[i]] <- itemfit(list3[[i]], 'X2', group.bins = 10)       

  }  

  list6 <- vector("list", length=F) 

  for (i in 1:F) { 

    list6[[i]] <- ifelse(list5[[i]][,5]<= 0.05,1,0)        

  }   
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  # S-X2 Statistic -------------- # 

  list7 <- vector("list", length=F) 

  for (i in 1:F) { 

    list7[[i]] <- itemfit(list3[[i]], 'S_X2')       

  } 

  list8 <- vector("list", length=F) 

  for (i in 1:F) { 

    list8[[i]] <- ifelse(list7[[i]][,5]<= 0.05,1,0) 

  } 

  # G2 Statistic -------------- # 

  list9 <- vector("list", length=F) 

  for (i in 1:F) { 

    list9[[i]] <- itemfit(list3[[i]], 'G2')       

  } 

  list10 <- vector("list", length=F) 

  for (i in 1:F) { 

    list10[[i]] <- ifelse(list9[[i]][,5]<= 0.05,1,0) 

  } 

  # Tabulation and proportions ---------- # 

  x <-data.frame("SRMSR"=double(),"Q1"=double(),"S-

X2"=double(),"G2"=double(),  

                 "SRMSR_P"=double()) 

  for (i in 1:F) { 

    x[i,1]<- list4[[i]][1,7] 

  } 

  for (i in 1:F) { 

    x[i,2]<- mean(list6[[i]]) 

  } 

  for (i in 1:F) { 

    x[i,3]<- mean(list8[[i]]) 
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  } 

  for (i in 1:F) { 

    x[i,4]<- mean(list10[[i]]) 

  } 

  x[,5] <- ifelse(x[,1]>= 0.05,1,0) 

  y<-data.frame("SRMSR"=mean(x[,5]),"Q1"=mean(x[,2], na.rm = 

TRUE),"S-X2"=mean(x[,3], na.rm = TRUE), "G2"=mean(x[,4], na.rm = 

TRUE)) 

  list_final <- list(list1, list2, list3, list4, list5, list6, 

list7, list8, list9, list10, x, y) 

  return(list_final) 

} 

 

Fitting the GGUM model to GRM data and testing for Q1, S – X2, G2, and SRMSR fit statistics 

via the mirt Package.  

mirt_fit_GRM_Data <- function(K, N, I) 

{ 

  # K = # of replications, N = sample size, I = number of items. 

Also, manually adjusting the code under list4 for the number of 

items is required # 

  # Seed number can be edited in the set.seed command under 

list1 

  library(mirt) 

  library(catIrt) 

  # Generating item parameters #   

list1_GRM <- vector("list", length=K) 

set.seed(2875) 

for (i in 1:K) { 

  list1_GRM[[i]] <- cbind(a = (rlnorm(I, meanlog = 0, sdlog = 

0.5))/1.702, b1 = runif(I, -2, -0.5), b2 = runif(I, -0.5, 0.5), 

                          b3 = runif(I, 0.5, 2)) 
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} 

# Simulating GRM IRT response data using the catIRT package and 

subsetting the data into a list by adjusting the responses to 

range form category 0 to 3 # 

list2_GRM <- vector("list", length=K) 

for (i in 1:K) { 

  list2_GRM[[i]] <- simIrt(theta = rnorm(N),  params = 

list1_GRM[[i]], mod = "grm") 

} 

list3_GRM <- vector("list", length=K) 

for (i in 1:K) { 

  list3_GRM[[i]] <- subset((list2_GRM[[i]][["resp"]])-1)       

}  

# Fitting the GGUM model to 3PL data with 20 items. for x number 

of items, replace  Model.Dich<-'F1=1-x' & paste0("Item", 1:x) # 

list4 <- vector("list", length=K) 

for (i in 1:K) { 

  Model.Poly<-'F1=1-20' 

  colnames(list3_GRM[[i]]) <- paste0("Item", 1:20) 

  list4[[i]]<-mirt(list3_GRM[[i]], model = Model.Poly,itemtype = 

"ggum", method = "EM", dentype = 'empiricalhist', TOL = 0.001, 

quadpts = 60, technical = list(NCYCLES = 10000)) 

} 

# SRMSR Statistic ----------- # 

list5 <- vector("list", length=K) 

for (i in 1:K) { 

  list5[[i]] <- M2(list4[[i]])       

}  

# Q1 Statistic -------------- # 

list6 <- vector("list", length=K) 

for (i in 1:K) { 

  list6[[i]] <- itemfit(list4[[i]], 'X2', group.bins = 10)       
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}  

list7 <- vector("list", length=K) 

for (i in 1:K) { 

  list7[[i]] <- ifelse(list6[[i]][,5]<= 0.05,1,0)        

} 

# S-X2 Statistic -------------- # 

list8 <- vector("list", length=K) 

for (i in 1:K) { 

  list8[[i]] <- itemfit(list4[[i]], 'S_X2')       

} 

list9 <- vector("list", length=K) 

for (i in 1:K) { 

  list9[[i]] <- ifelse(list8[[i]][,5]<= 0.05,1,0) 

} 

# G2 Statistic -------------- # 

list10 <- vector("list", length=K) 

for (i in 1:K) { 

  list10[[i]] <- itemfit(list4[[i]], 'G2')       

} 

list11 <- vector("list", length=K) 

for (i in 1:K) { 

  list11[[i]] <- ifelse(list10[[i]][,5]<= 0.05,1,0) 

} 

# Tabulation and proportions ---------- # 

x <-data.frame("SRMSR"=double(),"Q1"=double(),"S-

X2"=double(),"G2"=double(),  

               "SRMSR_P"=double()) 

for (i in 1:K) { 

  x[i,1]<- list5[[i]][1,7] 

} 
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for (i in 1:K) { 

  x[i,2]<- mean(list7[[i]]) 

} 

for (i in 1:K) { 

  x[i,3]<- mean(list9[[i]]) 

} 

for (i in 1:K) { 

  x[i,4]<- mean(list11[[i]]) 

} 

x[,5] <- ifelse(x[,1]>= 0.05,1,0) 

y<-

data.frame("SRMSR"=mean(x[,5]),"Q1"=mean(x[,2],na.rm=TRUE),"S-

X2"=mean(x[,3],na.rm=TRUE), "G2"=mean(x[,4],na.rm=TRUE)) 

list_final <- list(list1, list2, list3, list4, list5, list6, 

list7, list8, list9, list10, list11, x, y) 

return(list_final) 

} 

 

Simulation Codes for Relative Fit Indices 

AIC & BIC fit indices for dichotomous data. 

# Open required files in the global environment and save the 

following lists containing AIC and BIC indices in the working 

directory # 

saveRDS(list3, "GGUM.rds") 

saveRDS(list4, "2PL.rds") 

saveRDS(list4, "3PL.rds") 

# read the following files in the global environment only # 

GGUM_D <- readRDS("GGUM.rds") 

twoPL <- readRDS("2PL.rds") 

threePL <- readRDS("3PL.rds") 
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# specify the number of rows in the dataframe for subsequent 

indexing # 

K <- 100 

# Tabulation and indexing using ifelese statements # 

w <-

data.frame("AIC_GGUM"=double(),"AIC_2PL"=double(),"AIC_3PL"=doub

le(), 

               

"BIC_GGUM"=double(),"BIC_2PL"=double(),"BIC_3PL"=double(), 

               "AIC_GGUM_T"=double(), "AIC_2PL_T"=double(), 

"AIC_3PL_T"=double(),  

               "BIC_GGUM_T"=double(), "BIC_2PL_T"=double(), 

"BIC_3PL_T"=double()) 

for (i in 1:K) { 

  w[i,1]<- GGUM_D[[i]][["InformationCrit"]][1,3] 

} 

for (i in 1:K) { 

  w[i,2]<- twoPL[[i]][["InformationCrit"]][1,3] 

} 

for (i in 1:K) { 

  w[i,3]<- threePL[[i]][["InformationCrit"]][1,3] 

} 

for (i in 1:K) { 

  w[i,4]<- GGUM_D[[i]][["InformationCrit"]][1,4] 

} 

for (i in 1:K) { 

  w[i,5]<- twoPL[[i]][["InformationCrit"]][1,4] 

} 

for (i in 1:K) { 

  w[i,6]<- threePL[[i]][["InformationCrit"]][1,4] 

} 
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w$AIC_GGUM_T <- ifelse(w$AIC_GGUM < w$AIC_2PL & w$AIC_GGUM < 

w$AIC_3PL, 1,0) 

w$AIC_2PL_T <- ifelse(w$AIC_2PL < w$AIC_GGUM & w$AIC_2PL < 

w$AIC_3PL, 1,0) 

w$AIC_3PL_T <- ifelse(w$AIC_3PL < w$AIC_GGUM & w$AIC_3PL < 

w$AIC_2PL, 1,0) 

w$BIC_GGUM_T <- ifelse(w$BIC_GGUM < w$BIC_2PL & w$BIC_GGUM < 

w$BIC_3PL, 1,0) 

w$BIC_2PL_T <- ifelse(w$BIC_2PL < w$BIC_GGUM & w$BIC_2PL < 

w$BIC_3PL, 1,0) 

w$BIC_3PL_T <- ifelse(w$BIC_3PL < w$BIC_GGUM & w$BIC_3PL < 

w$BIC_2PL, 1,0) 

y<-data.frame("AIC_GGUM"=mean(w$AIC_GGUM_T), 

"AIC_2PL"=mean(w$AIC_2PL_T), "AIC_3PL"=mean(w$AIC_3PL_T), 

              "BIC_GGUM"=mean(w$BIC_GGUM_T), 

"BIC_2PL"=mean(w$BIC_2PL_T),"BIC_3PL"=mean(w$BIC_3PL_T)) 

 

AIC & BIC fit indices for GGUM generated data using different delta ranges. 

# Open required files in the global environment and save the 

following lists containing AIC and BIC indices in the working 

directory # 

# These lists contain AIC and BIC results for GGUM datasets 

utilizing different delta ranges for response generation # 

saveRDS(list3, "GGUM.rds") 

saveRDS(list3, "G.rds") 

# read the following files in the global environment only # 

GGUM_D <- readRDS("GGUM.rds") 

G <- readRDS("G.rds") 

# specify the number of rows in the dataframe for subsequent 

indexing # 

K <- 100 

# Tabulation and indexing using ifelese statements # 

x <-data.frame("AIC_GGUM"=double(),"AIC_G"=double(), 
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               "BIC_GGUM"=double(),"BIC_G"=double(), 

               "AIC_GGUM_T"=double(), "AIC_G_T"=double(),  

               "BIC_GGUM_T"=double(), "BIC_G_T"=double()) 

for (i in 1:K) { 

  x[i,1]<- GGUM_D[[i]][["InformationCrit"]][1,3] 

} 

for (i in 1:K) { 

  x[i,2]<- G[[i]][["InformationCrit"]][1,3] 

} 

for (i in 1:K) { 

  x[i,3]<- GGUM_D[[i]][["InformationCrit"]][1,4] 

} 

for (i in 1:K) { 

  x[i,4]<- G[[i]][["InformationCrit"]][1,4] 

} 

x$AIC_GGUM_T <- ifelse(x$AIC_GGUM < x$AIC_G, 1,0) 

x$AIC_G_T <- ifelse(x$AIC_G < x$AIC_GGUM, 1,0) 

x$BIC_GGUM_T <- ifelse(x$BIC_GGUM < x$BIC_G, 1,0) 

x$BIC_G_T <- ifelse(x$BIC_G < x$BIC_GGUM, 1,0) 

y<-data.frame("AIC_GGUM"=mean(x$AIC_GGUM_T), 

"AIC_G"=mean(x$AIC_G_T), 

              "BIC_GGUM"=mean(x$BIC_GGUM_T), 

"BIC_G"=mean(x$BIC_G_T)) 

 

AIC & BIC fit indices for polytomous data. 

# Open required files in the global environment and save the 

following lists containing AIC and BIC indices in the working 

directory # 

saveRDS(list3, "GGUM.rds") 

saveRDS(list4, "GRM.rds") 

# read the following files in the global environment only # 



118 
 

 

GGUM_D <- readRDS("GGUM.rds") 

GRM <- readRDS("GRM.rds") 

# specify the number of rows in the dataframe for subsequent 

indexing # 

K <- 100 

# Tabulation and indexing using ifelese statements # 

x <-data.frame("AIC_GGUM"=double(),"AIC_GRM"=double(), 

               "BIC_GGUM"=double(),"BIC_GRM"=double(), 

               "AIC_GGUM_T"=double(), "AIC_GRM_T"=double(),  

               "BIC_GGUM_T"=double(), "BIC_GRM_T"=double()) 

for (i in 1:K) { 

  x[i,1]<- GGUM_D[[i]][["InformationCrit"]][1,3] 

} 

for (i in 1:K) { 

  x[i,2]<- GRM[[i]][["InformationCrit"]][1,3] 

} 

for (i in 1:K) { 

  x[i,3]<- GGUM_D[[i]][["InformationCrit"]][1,4] 

} 

for (i in 1:K) { 

  x[i,4]<- GRM[[i]][["InformationCrit"]][1,4] 

} 

x$AIC_GGUM_T <- ifelse(x$AIC_GGUM < x$AIC_GRM, 1,0) 

x$AIC_GRM_T <- ifelse(x$AIC_GRM < x$AIC_GGUM, 1,0) 

x$BIC_GGUM_T <- ifelse(x$BIC_GGUM < x$BIC_GRM, 1,0) 

x$BIC_GRM_T <- ifelse(x$BIC_GRM < x$BIC_GGUM, 1,0) 

y<-data.frame("AIC_GGUM"=mean(x$AIC_GGUM_T), 

"AIC_GRM"=mean(x$AIC_GRM_T), 

              "BIC_GGUM"=mean(x$BIC_GGUM_T), 

"BIC_GRM"=mean(x$BIC_GRM_T)) 
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Additional Codes 

This code provides an example of how to test for model fit using segmented runs (i.e., 

replications) for polytomous items when performed under a supercomputer. In this particular 

example, the Adjusted Chi-square χ2 fit statistic is presented. However, the same process can be 

performed to test for the other fit indices in mirt.  

# Open required files in the global environment and save the 

following lists for subsequent model fit computation # 

saveRDS(list4A, "GGUM_A.rds") 

saveRDS(list4B, "GGUM_B.rds") 

saveRDS(list4C, "GGUM_C.rds") 

saveRDS(list4D, "GGUM_D.rds") 

saveRDS(list4E, "GGUM_E.rds") 

saveRDS(list4F, "GGUM_F.rds") 

# read the following files in the global environment only # 

L_A <- readRDS("GGUM_A.rds") 

L_B <- readRDS("GGUM_B.rds") 

L_C <- readRDS("GGUM_C.rds") 

L_D <- readRDS("GGUM_D.rds") 

L_E <- readRDS("GGUM_E.rds") 

L_F <- readRDS("GGUM_F.rds") 

F <- 100 

# Index the read files into a single list # 

list4 <- vector("list", length = 100) 

list4<- c(L_A, L_B, L_C, L_D, L_E) 

library(GGUM) 

# Estimating model fit using adjusted chi-square indices for 

item singles, double, triples #   

list5 <- vector("list", length=F) 
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for (i in 1:F) { 

  list5[[i]] <- MODFIT(list4[[i]])  

} 

# Indexing values of results and tabulating the proportion of 

Type I error & power #  

x <-

data.frame("sin"=double(),"Dob"=double(),"Tri"=double(),"SinT"=d

ouble(),"DobT"=double(),"TriT"=double()) 

for (i in 1:F) { 

  x[i,1]<- list5[[i]][["Summary.table"]][1,8] 

} 

for (i in 1:F) { 

  x[i,2]<- list5[[i]][["Summary.table"]][2,8]  

} 

for (i in 1:F) { 

  x[i,3]<- list5[[i]][["Summary.table"]][3,8] 

} 

x[,4:6] <- ifelse(x[,1:3]>= 3,1,0) 

y<-

data.frame("Singlets"=mean(x[,4]),"Doublets"=mean(x[,5]),"Triple

ts"=mean(x[,6])) 

 

This code tests for the fit indices from both the GGUM and mirt packages when simulating 

GGUM data from the ‘simdata’ syntax in mirt. The comparison goes through 5 replications. 

Table 14 values are directly obtained from this code. 

library(mirt) 

library(GGUM) 

# F = # of replications, N = sample size, I = number of items, C 

= # of response categories - 1 # 

F <- 5 
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N <- 2000 

I <- 20 

C <- 3 

# Generate discrimination parameters from a uniform distribution 

# 

lista <- vector("list", length=F) 

for (i in 1:F) { 

  lista[[i]] <- round(runif(I, 0.5, 2), 4) 

} 

# Generate item location parameters from a uniform distribution 

# 

listb <- vector("list", length=F) 

for (i in 1:F) { 

  listb[[i]] <- sort(round(runif(I, -3, 3), 4)) 

} 

# Generate GGUM data seperately to using the GGUM package to 

obtain generated taus # 

list_GGUM_Gen <- vector("list", length=F) 

for (i in 1:F) { 

  list_GGUM_Gen[[i]] <- GEN.D1(N, I, C, "GGUM", seed = 

sample(1:50000, 1, replace = FALSE)) 

} 

# subset the positive taus from the previous list # 

list_tau <- vector("list", length=F) 

for (i in 1:F) { 

  list_tau[[i]] <- list_GGUM_Gen[[i]][["taus.gen"]][,7:5] 

} 

# generate GGUM data in mirt using generated item discrimination 

from lista, item location from listb, and generated taus from 

the GGUM package # 

list_dat <- vector("list", length=F) 

for (i in 1:F) { 
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  list_dat[[i]] <- simdata(lista[[i]], listb[[i]], N, 'ggum', 

t=list_tau[[i]]) 

} 

# Calibrate the GGUM model using mirt # 

list_mirt <- vector("list", length=F) 

for (i in 1:F) { 

  Model.Poly<-'F1=1-20' 

  colnames(list_dat[[i]]) <- paste0("Item", 1:20) 

  list_mirt[[i]] <- mirt(list_dat[[i]], model = Model.Poly, 

'ggum', dentype = 'empiricalhist', TOL = 0.001, quadpts = 60, 

technical = list(NCYCLES = 10000)) 

} 

# calculate SRMSR fit statistic from the mirt package # 

list_M2 <- vector("list", length=F) 

for (i in 1:F) { 

  list_M2[[i]] <- M2(list_mirt[[i]]) 

} 

# calibrate the GGUM model using the the genrared data above # 

list_GGUM_Fit <- vector("list", length=F) 

for (i in 1:F) { 

  list_GGUM_Fit[[i]] <- GGUM(list_dat[[i]], C) 

} 

# calculate the adjusted chi-sqaure statistics from the GGUM 

package # 

list_MODFIT <- vector("list", length=F) 

for (i in 1:F) { 

  list_MODFIT[[i]] <- MODFIT(list_GGUM_Fit[[i]]) 

} 


	INVESTIGATING THE FIT OF THE GENERALIZED GRADED UNFOLDING MODEL (GGUM) WHEN CALIBRATED TO IRT GENERATED DATA FROM DOMINANCE AND IDEAL POINT MODELS
	

	tmp.1627005298.pdf.ARW0f

