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Abstract Croplands are highly productive ecosys-

tems that contribute to land–atmosphere exchange of

carbon, energy, and water during their short growing

seasons. We evaluated and compared net ecosystem

exchange (NEE), latent heat flux (LE), and sensible

heat flux (H) simulated by a suite of ecosystem models

at five agricultural eddy covariance flux tower sites in

the central United States as part of the North American

Carbon Program Site Synthesis project. Most of the

models overestimated H and underestimated LE

during the growing season, leading to overall higher

Bowen ratios compared to the observations. Most

models systematically under predicted NEE, espe-

cially at rain-fed sites. Certain crop-specific models

that were developed considering the high productivity

and associated physiological changes in specific crops

better predicted the NEE and LE at both rain-fed and

irrigated sites. Models with specific parameterization
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for different crops better simulated the inter-annual

variability of NEE for maize-soybean rotation com-

pared to those models with a single generic crop type.

Stratification according to basic model formulation

and phenological methodology did not explain signif-

icant variation in model performance across these sites

and crops. The under prediction of NEE and LE and

over prediction of H by most of the models suggests

that models developed and parameterized for natural

ecosystems cannot accurately predict the more robust

physiology of highly bred and intensively managed

crop ecosystems. When coupled in Earth System

Models, it is likely that the excessive physiological

stress simulated in many land surface component

models leads to overestimation of temperature and

atmospheric boundary layer depth, and underestima-

tion of humidity and CO2 seasonal uptake over

agricultural regions.

Keywords Carbon and energy fluxes � Cropland

ecosystems � Land–atmosphere exchange � Model-

data comparison � Cropland carbon and energy

exchange

Abbreviations

CO2 Carbon dioxide

GPP Gross primary productivity

H Sensible heat flux

LAI Leaf area index

LE Latent heat flux

MARE Mean absolute relative error

NACP North American Carbon Program

NCDC National Climate Data Center

NEE Net ecosystem exchange

R Ecosystem respiration

RMSE Root mean square error

STD Standard deviation

Introduction

Croplands are highly productive ecosystems that take

up a significant amount of carbon dioxide (CO2) from

the atmosphere during their short but intense growing

seasons. In the US, cropland ecosystems occupy about

one fifth of the total land area (Boryan et al. 2011).

Maize, soybean, and wheat are the main crops, each

occupying over 20 % of the total harvested cropland

area (Lokupitiya et al. 2012) of the country. Maize has

much higher growing season CO2 uptake compared to

the other two crops. The US has 40 % of global maize

production (FAO 2010), and 20 % of the country’s

production is exported (ERS USDA 2010). With
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increasing CO2 and other greenhouse gases, the

Earth’s climate is changing, creating a challenge in

predicting the impacts of future climate change on

food production and overall CO2 uptake and energy

exchanges (i.e. latent and sensible heat fluxes) by

agricultural ecosystems. Thus having more realistic

models of crop performance under any given climatic

and environmental conditions is needed, and the

reliability of the existing models to predict land–

atmosphere carbon and energy exchanges by crop-

lands is important in evaluating the contribution of

these ecosystems towards global food production,

carbon cycling, surface energy budgets, land-surface

climate, and atmospheric circulation.

Models of land–atmosphere interaction and carbon

cycling are primarily based on natural ecosystems,

which have developed complex strategies for con-

serving scarce resources like water and nutrients, and

can become stressed by heat and aridity during the

growing season. Crop plants, by contrast, are bred for

maximum productivity without the need to conserve

resources at the end of the growing season. They are

intensively managed to avoid resource constraints, for

example by tilling, irrigation, fertilization, and weed-

ing. Eddy covariance measurements over growing

maize show net ecosystem exchange (NEE, expressed

as ecosystem respiration minus photosynthesis) of

CO2 as high as 75 lMol m-2 s-1 at midday (Lokupi-

tiya et al. 2009), more than three times the typical rate

over the Amazon rainforest (Saleska et al. 2003). As a

result, seasonal drawdown of about 35 ppm of CO2 in

the atmospheric boundary layer was observed by a

network of instrumented towers in the central US Corn

Belt; it was the strongest seasonal CO2 cycle ever

observed (Miles et al. 2012). Atmospheric inverse

models using these data found that uptake rates had to

be substantially increased relative to Bayesian prior

estimates from ecosystem models (Schuh et al. 2013;

Ogle et al. 2015). The physiological resilience of crop

ecosystems has likely contributed to the observed

amplification of the seasonal cycle of CO2 at back-

ground stations since 1960 (Graven et al. 2013),

especially due to enhanced technology, irrigation and

high yielding varieties (Zeng et al. 2014). Production

of maize, wheat, rice, and soybean within the Northern

Hemisphere grew by 240 % between 1961 and 2008,

leading to a significant increase in the net carbon

uptake by croplands during their short growing season

by 0.33 petagrams, with maize alone accounting for

two-thirds of this change (Gray et al. 2014). Models

developed to represent natural ecosystems may strug-

gle to achieve the very high rates of photosynthesis

and transpiration in managed crop ecosystems. A

recent study using space-based monitoring of sun-
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induced chlorophyll fluorescence (SIF) from terres-

trial vegetation found that SIF-based crop gross

primary productivity (GPP) estimates over regions

such as the US Corn Belt are 50–75 % higher than

those from state-of-the-art carbon cycle models

(Guanter et al. 2014). Gross primary production and

transpiration are physiologically linked via stomatal

conductance, so models that underestimate GPP are

also likely to simulate warmer temperatures and a drier

atmosphere over agricultural regions when linked to

climate models.

Many model-data and inter-model comparison

studies have been carried out for different ecosystems

or vegetation types concerning different spatial

domains. Previous model comparison studies mostly

focused on forested (e.g. Ryan et al. 1996; Amthor

et al. 2001; Grant et al. 2005), and agricultural (e.g.

Semenov et al. 1996; Frolking et al. 1998; Ciais et al.

2010; Asseng et al. 2013, 2015; Bassu et al. 2014;

Martre et al. 2015) ecosystems. Semenov et al. (1996)

compared the performance of five wheat models at two

sites in Europe: Rothamsted, United Kingdom, and

Seville, Spain. The aim of the study was to compare

the model predictions under several climate change

scenarios and investigate the effects of changes in

climatic variability on model predictions; Semenov

et al. (1996) compared grain yields simulated by the

five models, but the study did not address any model

limitations or errors. Frolking et al. (1998) compared

nitrous oxide (N2O) fluxes simulated by four models

against field measurements from five agricultural sites

in three countries (United States, Scotland, and

Germany). The field sites included sites with different

fertilizer treatments. Model performance varied

depending on site characteristics and the model output

had a daily resolution for majority of the parameters

simulated. It was concluded that for better model

performance, the models should have algorithms for

special characteristics corresponding to different

cropping systems such as cover-crops, underseeds,

mulches, reduced tillage, different organic fertilizers,

etc. Ciais et al. (2010) evaluated the performance of

crop productivity by several models on croplands in

Europe. They identified certain limitations within the

models including the lack of detail on management

practices and structural limitations.

The North American Carbon Program (NACP)

covers the United States, Canada, and Mexico. The

objectives of NACP are to measure, understand,

predict and explain the sources and sinks of CO2,

methane, and carbon monoxide in North America and

in adjacent ocean regions (Denning et al. 2005). The

NACP has organized several synthesis activities to

evaluate and compare ecosystem models and obser-

vations at local and regional scales. The NACP Site-

Level Interim Synthesis (Site Synthesis) compared the

simulated and observed fluxes at 47 eddy covariance

flux towers across North America that included conifer

and deciduous forests, grasslands, peatlands, tundra,

and both irrigated and rain-fed crop lands, to deter-

mine how well the models agreed with observations.

Out of the models that participated in the Site

Synthesis 20 ecosystem models simulated the five

agricultural sites considered.

Previous model-data comparisons conducted under

NACP Site Synthesis focused mostly on carbon

dynamics. For instance, Schwalm et al. (2010)

analyzed the CO2 exchange simulated by 22 terrestrial

biosphere models at 44 eddy covariance flux towers in

North America and found that few models simulating

different biomes and sites, the mean model ensemble,

and a model that used data assimilation for parameter

optimization showed high consistency with observa-

tions. Dietz et al. (2012) used spectral analyses to

determine the performance of 21 ecosystem models at

multiple time scales considering 9 eddy covariance

flux tower sites; this study found that the model

performance was related to model time step, soil

hydrology, and the representation of photosynthesis

and phenology in the models. Stoy et al. (2013) used

wavelet coherence to analyze the model performance

of 20 ecosystem models at 10 different eddy covari-

ance research sites in simulating NEE at different time

scales and identified the need for better parameteriza-

tion and mechanistic improvement of models for more

accurate predictions. Schaefer et al. (2008) compared

the daily average GPP simulated by 26 models against

estimated GPP at 39 eddy covariance flux tower sites

across the United States and Canada, and highlighted

seasonal differences in GPP based on ecosystem types

and moisture availability in soil.

Recent studies by Asseng et al. (2013, 2015) and

Martre et al. (2015) compared the performance of

multiple wheat models (27–30 models) in simulating

crop yields and growth variables and highlighted the

better performance shown by the ensemble mean or

median compared to individual models. Similarly,

Bassu et al. (2014) highlighted the better accuracy of

56 Biogeochemistry (2016) 129:53–76
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the ensemble mean in evaluating the performance of

23 models simulating maize yields at four sites.

In this study, we consider model simulations of

carbon and energy fluxes at four selected agricultural

sites with maize, soybean, and wheat crops in central

North America against eddy covariance flux tower

measurements as observations. The specific variables

evaluated in the comparison were net ecosystem

exchange of CO2 (NEE, the difference between

ecosystem respiration and photosynthesis) and turbu-

lent fluxes of latent and sensible heat (LE and H,

respectively). Most of the models in the intercompar-

ison are intended for general application in simulating

ecosystem-atmosphere interactions, and were not

developed specifically for agroecosystems, although

some of them had the parameterization for certain

crops. Since only a few models incorporate parame-

terizations to simulate crop yields, we did not evaluate

yields. The specific objectives of this study were to

(a) evaluate the overall model performance against the

observed carbon and energy fluxes at the eddy

covariance flux tower sites considered under the

NACP Site Synthesis, (b) assess the model perfor-

mance for individual crops and sites based on the

current parameterization and capabilities of the mod-

els, and (c) identify potential changes needed to

improve model performance.

Materials and methods

Site description and observed fluxes

Table 1 shows the five eddy covariance flux tower

sites that were identified as agricultural sites under the

NACP Site Synthesis. Four sites had maize and

soybean crops and the remaining site (i.e. Southern

Great Plains eddy covariance flux tower site (Fischer

et al. 2007) under the Atmospheric Radiation Mea-

surement (ARM) program in Oklahoma; US-ARM)

had winter wheat and occasional summer crops (maize

and soybean). All these sites were located in the US

Midwest agricultural plains and varied by location

(Fig. 1), soils and weather, presence of a single crop or

crops in rotation, management (e.g. tillage and fertil-

izer levels, use of irrigation), and other site specific

parameters (Table 1).

We used measured hourly or half-hourly carbon

and energy fluxes for the above sites in evaluating

model performance. Although the gaps in observed

NEE data were filled using the modified Fluxnet-

Canada Method (Barr et al. 2004, 2013), the gap-

filling methodology occasionally eliminated certain

years that had sparse NEE data. Therefore in the

current analyses, we used only non-gap filled,

observed flux data.

Models and simulation details

Output from ecosystem models that participated in the

model simulations of CO2 and energy fluxes at the

agricultural sites under the NACP Site Synthesis were

analyzed and compared against the observed fluxes.

Of the 20 models, five were agricultural models

(Table 2), simulating only agroecosystems, while the

rest of the models simulated other ecosystems as well.

The five agricultural models and a few other ecosys-

tem models had parameterization corresponding to the

specific crops considered in this study (maize, soy-

bean, and wheat), while the rest of the models had a

generic crop (i.e. universal crop parameterization).

Most of the models calculated changes in leaf area

index (LAI) using a prognostic method using a

combination of climate, photosynthesis, and carbon

allocation. Five models used diagnostic phenology, in

which LAI was prescribed from remotely sensed

monthly Global Inventory Modeling and Mapping

Studies (GIMMS) Normalized Difference Vegetation

Index data (Tucker et al. 2005).

Table 2 briefly describes each model and outlines

the inputs required for estimating the variables ana-

lyzed in this study. The models varied in temporal

resolution: 12 models had hourly or sub-hourly

temporal resolution and 6 had daily resolution

(Table 3); one model (ECLUE EDCM) had monthly

resolution and one model (ISAM) had weekly resolu-

tion. The models were spun up to steady-state initial

conditions using site-specific, gap-filled observed

weather data as input (Ricciuto et al. 2009, 2013).

The meteorological variables used in the model

simulations included air temperature, specific humid-

ity, wind speed, precipitation, atmospheric pressure,

surface incident shortwave and longwave radiation,

and CO2 concentration. The three sites at Mead,

Nebraska (US-NE), had hourly weather data and the

Fermi agricultural site, Illinois (US-IB1), and the US-

ARM sites had half-hourly weather data. Gaps in

weather data were initially filled using the available

Biogeochemistry (2016) 129:53–76 57
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weather data from a nearby flux tower site within

30 km distance and 150 m elevation and any remain-

ing gaps were filled using National Climate Data

Center (NCDC) climate station data, using any hourly

data from the nearest station first and then using the

daily NCDC data or DAYMET (http://www.daymet.

org/) daily data. When a choice of daily datasets was

available, the daily dataset that had better correlation

with observations was used for gap-filling, and was

temporally downscaled to sub-daily values using an

average diurnal cycle (Ricciuto et al. 2009).

For the model simulations, site-specific ancillary

data provided by the principal investigators at the eddy

covariance flux tower sites were used. These included

(1) site location (latitude and longitude), (2) soil

properties (soil texture, %age of silt, clay, and sand,

soil depth and nutrient (C and N) content, water

holding capacity, etc.), (3) crop rotation and manage-

ment (planting and harvesting times, disturbance and

land use history information), and (4) measured LAI

and biomass in different plant pools. Descriptions of

basic model characteristics and simulation output for

the variables NEE, LE, and H were provided by

participating modelers.

Model comparison

Although there is considerable variation in the model

parameterization and characteristics among the mod-

els, analyses relating model formulation to

Fig. 1 Site locations within the US Midwest region (US-NE:

three Mead sites at Saunders County, Nebraska; US-IB1: Fermi

agricultural site in DuPage and Kane Counties in Illinois; US-

ARM: Atmospheric Radiation Measurement (ARM) program

Central Facility site in Grant County, Oklahoma)

Table 1 Site characteristics

Site Code Location Latitude Longitude Rain-fed/

irrigated

Main crop/s Reference

Mead irrigated US-NE1 Mead,

Nebraska

41.1651 -96.4766 Irrigated Maize Suyker and Verma

(2008), Verma et al.

(2005)

Mead irrigated rotation US-NE2 Mead,

Nebraska

41.1649 -96.4701 irrigated Maize and

soybean in

rotation

Suyker et al. (2004),

Verma et al. (2005)

Mead rain-fed US-NE3 Mead,

Nebraska

41.1797 -96.4396 Rain-fed Maize and

soybean in

rotation

Suyker et al. (2004),

Verma et al. (2005)

Fermi agricultural site US-IB1 Illinois 41.8593 -88.2227 Rain-fed Maize and

soybean in

rotation

Xiao et al. (2008)

Atmospheric Radiation

Measurement (ARM)

program Central

Facility site

US-ARMa Oklahoma 36.6058 -97.4888 Rain-fed Wheat Fischer et al. (2007)

a This site was the only site with wheat. Thus the main crop (i.e. wheat) was considered for the analyses

58 Biogeochemistry (2016) 129:53–76
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performance could be performed only to the extent

feasible based on the limited basic information

provided by the modelers under a predetermined

common format designed for the Site Synthesis

participants. Similar to some previous analyses done

under the NACP Site Synthesis (Schwalm et al. 2010;

Table 2 Overview of ecosystem models based on the information provided by the modeling teams

Model Photosynthesis (GPP and/or NPP) Phenology and LAI Presence of generic/specific

crops

Agro-IBISa Enzyme Kinetic Model Prognostic; LAI based on leaf

carbon and SLA

Specific crops

BEPS Enzyme Kinetic Model Diagnostic; depends on remote

sensing

No crop specificity; distinct C3

versus C4 vegetation

Biome-BGC Stomatal Conductance Model Prognostic; LAI based on leaf

carbon and SLA

No crop specificity; distinct C3

versus C4 vegetation

Can-IBIS Enzyme Kinetic Model Prognostic No crop specificity; distinct C3

versus C4 (grass)

CN-CLASS Enzyme Kinetic Model Prognostic Crop specific parameters can

be applied

DLEM Stomatal Conductance Model Prognostic Specific crops

DNDCa Light Use Efficiency Model Prognostic Specific crops

ECLUE EDCM Statistical Prognostic Specific crops

Ecosys Enzyme Kinetic Model Prognostic; LAI based on leaf

carbon growth, senescence

Specific crops

ED2 Enzyme Kinetic Model Prognostic; LAI based on leaf

carbon and SLA

C3 (soybean) and C4 (maize)

crops

EPICa Light Use Efficiency model Prognostic Specific crops

ISAM Stomatal Conductance Model Diagnostic; LAI based on remote

sensing

No crop specificity

LOTEC Enzyme Kinetic Model prognostic No crop specificity; C3 versus

C4 parameters tuned to match

observations

ORCHIDEE –

STICSa
Enzyme Kinetic Model Prognostic; LAI has a specific

phenology calculated by STICS

crop model with parameters of

two French Maize (DK604) and

Wheat (Soisson) varieties

Specific crops (maize and

wheat)

SiB3 Enzyme Kinetic and Stomatal

Conductance Models

Diagnostic; depends on remote

sensing

C3 versus C4 grasses and

generic crops

SiBCASA Enzyme Kinetic and Stomatal

Conductance Models

Diagnostic; depends on remote

sensing

C3 versus C4 grasses and

generic crops

SiBcropa Enzyme Kinetic and Stomatal

conductance Models

Prognostic; LAI based on leaf C

and SLA

Specific crops

SSiB2 Stomatal Conductance Model Diagnostic; depends on remote

sensing

TECO Stomatal Conductance Model Prognostic No crop specificity

TRIPLEX-Flux Stomatal Conductance Model LAI –measured or calculated as a

function of leaf biomass and

SLA

No crop specificity

Model summaries emphasize controlling factors and mechanism relevant to NEE and energy fluxes. The information provided in this

table and the model output used in the analyses correspond to November 2009, and do not include any subsequent model

modifications. Description of the abbreviations:

LAI leaf area index, SLA specific leaf area
a Agricultural models
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Dietz et al. 2012; Schaefer et al. 2008; Stoy et al.

2013), the output from those models that simulated

agricultural sites was analyzed at a monthly time scale,

to account for the variation in the temporal resolution

among the models (hourly, daily, weekly, and

monthly). Taylor diagrams based on modeled flux

standard deviation (STD), root mean square error

(RMSE), and correlations with the observed data were

used to evaluate the model output against the

observed, non-gap filled fluxes of carbon (NEE), and

energy (LE, and H).

Analyses of model performance by site and by crop

We evaluated model skill by site considering each crop

separately, and by crop with all sites having a given

crop combined, using Taylor skill (Taylor 2001):

S ¼ 4ð1 þ RÞ4

r̂f þ 1
r̂f

� �2

ð1 þ R0Þ4
ð1Þ

where S is Taylor skill, R is the correlation coefficient,

r̂f is the normalized standard deviation of the model

output (i.e. model standard deviation/observed stan-

dard deviation), and R0 is the maximum, potentially

realizable correlation. Taylor skill indicates the

model’s accuracy in reproducing both the magnitude

and the phase of observed variability. Taylor skill

scores could vary between zero (least skillful) and one

(most skillful) (Taylor 2001). For the analyses by site,

we compared monthly averaged model output for

NEE, LE, and H fluxes corresponding to each crop at

each site against observed values. For the analyses by

crop, we compared the monthly averaged model

output for NEE, LE, and H fluxes from each crop with

all the sites and years combined against observed

values. In our analyses, we considered those models

with a skill score greater than 0.8 to have high

performance, and those with a skill score of\ 0.5 to

have poor performance.

We also calculated mean absolute relative error

(MARE):

MARE ¼ 1

N

XN
i¼1

yi � xi

xi

����
����; ð2Þ

where N is total number of observations, yi is ith model

estimate, and xi is the ith observation (de La Casinie‘re

et al. 1997).

We calculated MARE for the peak crop growth

period (July and August for maize and soybean, and

April and May for wheat) to evaluate model perfor-

mance when each crop is in its highest productivity.

We combined the output from all the sites with the

relevant crop. MARE increases as the absolute

difference between the observations and model output

increases. A MARE of *1 indicates that the differ-

ence between the observations and the predictions is

about the same magnitude as the observed flux. Thus

the model with the lowest MARE has the best

performance.

Annual and diurnal cycles of the carbon and energy

fluxes

Out of the three fluxes (i.e. NEE, LE, and H), the one

that was consistently simulated by the models was

NEE or the carbon flux, and NEE at US-NE3 site that

had maize and soybean in rotation was simulated by

the majority of the models. Therefore, the carbon

fluxes at this site was analyzed to evaluate the ability

of the models to simulate the pattern of variation and

magnitude of crop annual cycles and overall inter-

annual variability that depend on the physiology and

type of crop present in the field; for studying the

variability in annual cycles, monthly mean NEE at

US-NE3 site was used.

Although the main analyses of the study were done

at a monthly scale, diurnal cycles were also evaluated

for those models that had sub-daily (i.e. hourly and

half-hourly) resolution, to have a better understanding

on their performance in simulating carbon and energy

fluxes in croplands. The diurnal cycles of NEE, LE,

and H were analyzed for the crop sites at Mead,

Nebraska, for model performance under rain-fed and

irrigated management practices; the output from 12

models with hourly/half-hourly temporal resolution

were used (Table 2). The amplitude and phase of

diurnal variation simulated by each model (and the

overall model mean) during the peak growing season

were studied and compared against the observed mean

and standard deviation for the same period. In the

analyses, NEE was defined as (R–GPP), and thus

negative values in the diurnal cycle would indicate a

net uptake of CO2 from the atmosphere. The same sign

convention was used for the diurnal fluxes of energy

(i.e. flux to the atmosphere indicated as ‘?’ and the

reverse indicated as ‘-‘).
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The monthly NEE simulated by the models were

grouped and statistically compared to relate model

performance to the basic model formulation, consid-

ering 1) method of GPP calculation and 2) prognostic

versus diagnostic phenology and LAI (Table 2). For

each group, a mean bias (mean of observed minus

predicted NEE) was calculated first and then either

one-way ANOVA (for the multiple groups based on

GPP calculation) or two sample t test with 95 percent

confidence level (for the two groups based on

phenology) was used on those biases to test the

statistical significance of differences among model

groups. These analyses were performed separately for

C4 (maize) and C3 (soybean and wheat) crops.

Results and discussion

According to our findings, there was no single model

that could perform equally well with regard to all three

Table 3 Model details and simulation specifics

Model Referencea Temporal

Resolution

No. of crop sites

simulatedb
Model

applicability

Simulation

specifics

Agro-IBIS Kucharik (2003), Kucharik and Twine

(2007)

Half-hourly 5 (All) Crop sites only

BEPS Chen et al. (1999), Liu et al. (1999) Daily 1 (US-NE3) Soybean only

Biome-BGC Running and Hunt (1993), Thornton

et al. (2002)

Daily 5 NEE and LE

only

Can-IBIS Foley et al. (1996), El Maayar et al.

(2002)

Half-hourly 1(US-NE3) NEE and LE

only

CN-CLASS Arain et al. 2006; Kothavala et al.

2005

Half-hourly 4 (sites excluding

US-ARM)

DLEM Ren et al. 2007; Tian et al. 2008 Daily 4 (sites excluding

US-ARM)

NEE only

DNDC Li et al. 1992 Daily 5 Crop sites only

ECLUE

EDCM

Liu et al. 2003 Monthly 1(US-NE3) NEE only

Ecosys Grant et al. (2007a, b) Hourly 5 all terrestrial

ecosystems

ED2 Moorcroft et al. (2001), Medvigy et al.

(1995)

Half-hourly 5 NEE and LE

only

EPIC Williams (1995), Izaurralde et al.

(2006)

Daily 1(US-NE3) Crop sites only NEE and LE

only

LOTEC Hanson et al. (2004) Hourly 1(US-NE3) NEE and LE

only

ISAM Jain et al. (2005) Weekly 2 (US-NE3 and US-

ARM)

Energy fluxes

only

ORCHIDEE-

STICS

De Noblet-Ducoudré et al. 2004,

Krinner et al. (2005)

Half-hourly 5 Crop sites only maize and

wheat only

SiB3 Baker et al. (2008) Half-hourly 1(US-ARM)

SiBCASA Schaefer et al. (2008) Half-hourly 5

SiBCROP Lokupitiya et al. (2009) Half-hourly 5 Crop sites only

SSiB2 Xue et al. 1991, Zhan et al. (2003) Half-hourly 5

TECO Weng and Luo (2008) Hourly 5 NEE and LE

only

TRIPLEX Sun et al. (2008), Zhou et al. (2008) Daily 1(US-NE3) NEE only

a Only up to two references are given
b Models either simulated all the sites or only one (i.e. Mead, NE rain-fed site for all the other models excepting SiB3 and ISAM,

which simulated US-ARM site only)
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fluxes (i.e. NEE, LE, and H) analyzed in the current

study, and the models showed significant variability in

simulating both seasonal and diurnal cycles of the

different fluxes. However, certain general trends could

be identified, as discussed below.

Model performance for individual fluxes

Net ecosystem exchange

Performance by site At all three US-NE sites, the

majority of the models underestimated NEE during the

growing season for both maize and soybean crops,

which led to lower Taylor skills. Depending on the

site, only 20–30 % of the models that simulated maize

and 10–20 % of the models that simulated soybean at

US-NE sites showed high performance with skills of

greater than 0.8 (Fig. 2). The site that was simulated

by the largest number of models (i.e. 17 out of 20

models) was US-NE3 rain-fed site, while the irrigated

US-NE1 and US-NE2 sites were simulated by a lower

number (i.e. 14) of models. With regard to maize, the

majority of the models and the overall model mean

had higher skills at the irrigated sites, compared to the

rain-fed site (Fig. 2), showing poorer model

performance at the rain-fed site. However, the model

performance for soybean was not much different

between the rain-fed (US-NE3) and irrigated (US-

NE2) sites. Only a few models (less than 20 %)

consistently simulated both crops well at the rain-fed

and irrigated sites (Fig. 2).

The above findings could be related to the way the

models address irrigation and the fact that some

models do not have adequate parameterization to

simulate soil moisture or drought stress under rain-fed

conditions. Only a few models had parameterizations

to represent irrigation. For instance, in ORCHIDEE–

STICS, the water requirements for optimal crop

growth on irrigated land is calculated as the difference

between maximum transpiration and available water

(defined as the difference between precipitation and

total runoff); irrigation in Ecosys is handled explicitly

through the addition of selected amounts of water (in

mm) during selected hours on selected dates for

irrigation events. These values are typically those

reported from the field site, and may follow an

automated protocol if field values are not available; in

SiBcrop, the irrigation is represented by restricting the

moisture availability between the field capacity and

saturation in response to irrigation, thus minimizing

drought stress. The problems in simulating drought

stress were mostly obvious in rain-fed sites, especially

for maize, and the majority of the models showed a

bias for drought stress at rain-fed sites. The tendency

of most models to overestimate drought stress may

reflect their heritage as simulators for natural ecosys-

tems rather than crops.

The overall model performance for NEE was the

lowest at US-IB1 site, as depicted by the skills of

individual models and overall model mean (Fig. 2).

About 60 % of the models and the model mean had

skills of less than 0.4, and this was true for both maize

and soybean crops.

At the US-ARM site, the majority of the models

had a skill of less than 0.6, and the model mean had a

skill of about 0.7. Thus the model mean showed

greater skill at US-ARM compared to most of the

individual models, indicating that the mean skill has

been elevated by the very high skills of a few models

when the ensemble mean is taken for the comparison

against the observations (Fig. 2).

Performance by crop The Taylor diagrams in Fig. 3

illustrate the model performance by each crop when all

the sites were combined. Since the normalized

standard deviation in the Taylor diagrams was

calculated without removing the seasonal cycle, the

distance from the origin to each radial curve was

essentially the ratio of simulated to observed NEE

amplitude. Therefore those models that had a

normalized standard deviation close to 1.0 produced

a seasonal amplitude very close to the observed. The

overall best model performance was shown by the

models that also had the highest correlation and lowest

RMSE (Fig. 3).

For maize, there was a significant difference in the

phasing and the amplitude of seasonal carbon uptake

among different models, as shown by the correlation and

normalized standard deviation (and RMSE) in the Taylor

diagram (Fig. 3). The amplitude and timing of the

seasonal cycle of the observed maize NEE was more

closely simulated by the models corresponding to the

points B, I, and Q in the Taylor diagram, which had higher

correlations and RMSE values closer to the reference

point that corresponded to the observed data (indicated by

the letter A in Fig. 3). The above three models had a crop

specific parameterization for maize with model skills

of *0.9 and the lowest MARE (\0.2) during the peak
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growing season. The majority (60 %) of the models had a

skill of more than 0.5 in predicting the maize NEE (when

all the irrigated and rain-fed sites combined). The model

mean had a skill of 0.8 and a MARE of 0.3 during the

peak growing season.

For soybeans, the magnitude of NEE and standard

deviation were quite different among the models,

leading to significant differences between model skills.

Model skills of *0.8 were found for the models

corresponding to I, P, and Q in the Taylor diagram

Fig. 2 Comparison of the model skill values for net ecosystem exchange (monthly means) simulated by different models for the

different sites against the observed data
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(Fig. 3), showing the best model performance com-

pared to the observations (Fig. 3). Models represented

by points B and K had a skill of 0.7, while the model

mean and rest of the models had lower skills. In general

the models’ ability to simulate both the magnitude and

timing of NEE seasonal cycle was poor for soybean, as

shown by the pattern of distribution of the points

corresponding to different models in Fig. 3. MARE

during the peak growing season for most of the models

was higher for soybean than that for maize, indicating

more deviation of the estimated NEE from the

observed NEE for soybean. For instance, B, I, and Q

had a MARE of less than 0.2 for maize, but had a

MARE of 0.4, 0.5, and 0.3, respectively, for soybean.

Soybean was simulated by altogether 17 models, and

70 % of the models had MARE greater than 0.5,

showing poorer performance compared to maize.

As mentioned above, wheat at the US-ARM site

was best simulated by the ensemble mean followed by

the individual models represented by O, P, and R

(Fig. 3). The lowest MARE during peak growth was

obtained for O and P (both having MARE = 0.2),

followed by model mean (MARE = 0.3). Wheat crop

was simulated by 11 models, and 8 of them (70 %) had

MARE greater than 0.5, again showing poorer perfor-

mance compared to maize. Therefore, when we

consider the skill scores and MARE among the crops,

the overall highest model performance by crop was

found for maize, followed by the C3 crops, soybean

and wheat, respectively. However, when we consider

the performance by the model mean, the best perfor-

mance was shown by the ensemble mean for wheat,

implying a random distribution of the models about the

true value.

Fig. 3 Taylor diagrams for crop wise model performance in simulating monthly mean NEE against the observations
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Inter-annual variability of NEE There was

considerable variation in the model performance with

regard to the inter-annual variability of net carbon

uptake. Inter-annual variability in NEE is mostly driven

by crop rotation. During the years with maize crop

(2001 and 2003) there was much higher net uptake of

CO2 (maximum uptake 24 ± 0.11 lmol m-2 s-1)

compared to the years with soybean (2002 and 2004;

maximum uptake 14 ± 2.7 lmol m-2 s-1) in the

observations at US-NE3 site. Soybean has LAI and

gross primary productivity compared to maize, and

during the years with soybean, there is lower net carbon

uptake due to lower GPP and higher respiration from

decomposition of the crop residues from the previous

year’s maize crop. By contrast, during the years with

maize crop there is higher GPP and lower respiration

from decomposition of the lower amounts of residue

inputs from the previous year’s soybean crop. Thus

higher NEE is found in the years with maize crop

compared to the years with soybean in the field. The

lower carbon uptake during soybean years was

predicted to varying degrees by the models and the

model mean.

Models that used crop specific parameterizations

for maize and soybean better predicted the pattern

of inter-annual variability in maize-soybean rotation

with maize crop showing larger CO2 uptake despite

the significant variation in the magnitude in the

predicted uptake by the different models. Although

some of the models were not specifically crop

models, using crop-specific parameterization for

soybean and maize in these models helped in

getting the expected inter-annual variability. Those

models with a generic crop (Table 2) could not

capture the difference in the amplitude of annual

carbon uptake between maize and soybean well,

leading to approximately the same amplitude of

NEE for both crops in rotation.

Diurnal cycles of NEE for maize and soybean The

observed average diurnal cycle during the growing

season (from the beginning of July to beginning of

September, as considered in this analysis) for US-NE2

and US-NE3 sites is illustrated in Fig. 4. At both sites,

the models showed significant variation in the overall

magnitude of the diurnal cycle of carbon uptake by

maize and soybean.

At rain-fed US-NE3, the average observed

diurnal cycle for carbon uptake peaked around

40 lmol m-2 s-1 for maize. The amplitude of uptake

was closely simulated by only two models, while the

remaining models simulated 65 % or less of the

observed carbon uptake (Fig. 4a). The models differed

in the algorithms used in the calculation of the

components of NEE (i.e. GPP and R); the influence

of the differences in model structure and parameteri-

zation were also evident. For instance, certain models

had much higher ecosystem respiration leading to

greater positive NEE during night time and less carbon

uptake during daytime. Similarly, the daytime carbon

uptake by maize was weaker than the observations in

models with a generic crop with C3 physiology. The

diurnal cycle of NEE for soybean at US-NE3 was

poorly simulated by the models. Only two models and

the model mean had a performance falling within one

standard deviation of the observations (Fig. 4b).

The irrigated US-NE2 site had much larger diurnal

carbon uptake by maize in both the observations and

the model estimates, compared to the rain-fed site;

three models had an amplitude of carbon uptake very

close to the observations, while most of the remaining

models simulated less than half the uptake compared

to the observed diurnal cycle (Fig. 4c). For soybean at

US-NE2, the majority of the models had lower

amplitudes in the diurnal cycle, compared to the

observations (Fig. 4d). Because so many of the models

substantially underestimated NEE, the few models

actually parameterized for crop physiology outper-

formed the ensemble mean.

Latent heat flux

Performance by site At the US-NE sites, overall

model performance for LE was better for maize and

soybean at irrigated sites compared to the rain-fed US-

NE3 site, as indicated by the skills of individual

models and the overall model mean (Fig. 5). At US-

NE1, US-NE2, and US-NE3 sites, the %age of the

models with a skill of over 0.8 for maize was 60, 70,

and 50 %, respectively, with a larger %age at the two

irrigated sites. The %age of models showing a skill

score of over 0.8 for soybean crop at US-NE2 and US-

NE3 was 20 and 30 %, respectively (Fig. 5).

At the Fermi agricultural site, US-IB1, the models

had far better skills for maize LE compared to

soybean. Skills greater than 0.8 were observed for

the models B, I, N, Q and the model mean, in

simulating maize. Soybean crop was poorly simulated
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with a very low skill for the model mean and the

individual models (i.e. skills\0.5). Of all the sites,

models and model mean showed the poorest perfor-

mance for US-IB1 site during soybean years.

At the US-ARM wheat site, the model mean and a

majority of the models had a skill greater than 0.6,

with only two models having a skill of 0.8 (Fig. 5).

Thus no consistent pattern could be observed across

the sites for model performance in simulating LE,

except the better performance at irrigated sites com-

pared to the rain-fed site at Mead, NE.

Performance by crop Although the majority of

models had a correlation of over 0.8 for each crop,

there was significant variation in the magnitude of the LE

fluxes, as illustrated by RMSE in the Taylor diagrams in

Fig. 6. The closest performance to the observed LE for

maize was found in I, K, N, and Q, all of which had model

skills of over 0.9. They also had minimum MARE (\0.2)

during the peak growing season for maize, indicating a

close performance to the observations. I, K, and Q had the

lowest MARE (\0.2) during the peak growing season of

soybean as well. In general, MARE values were larger for

wheat LE, indicating poorer model performance

compared to the other two crops, with the majority of

the models having MARE greater than 0.3.

The pattern shown by models within the Taylor

plots revealed more about model performance

(Fig. 6). For maize, although the correlations were

high, the standard deviations varied widely for

majority of the models, indicating that the models

got the timing of the seasonal cycle right, but the

Fig. 4 Diurnal cycles of NEE: model performance against the

site level observations at Mead rain-fed and irrigated sites

during maize (left) and soybean (right) years, considering the

average NEE over the growing season. The vertical error bars

correspond to one standard deviation from the observed mean

across the years that had observed data (i.e. 2001 and 2003 for

maize and 2002 and 2004 for soybean)
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seasonal amplitude was wrong. For soybean, all the

models had standard deviations close to one, with a

wide range of correlations, indicating that the models

got the magnitude of the seasonal cycle correct, but not

the timing. For wheat, the models showed a large

spread in both standard deviation and correlation,

Fig. 5 Comparison of the model skill values for latent heat (monthly means) simulated by different models for the different sites

against the observed data

Biogeochemistry (2016) 129:53–76 67

123



indicating that they got neither the seasonal amplitude

nor the timing correct.

Diurnal cycles of LE The model estimates of LE had

significant differences in amplitude and pattern of

variation compared to the observed diurnal cycle of

LE. Overall, the majority of models had lower LE

values compared to the observations at US-NE3 rain-

fed site. Models had better performance at the irrigated

US-NE2 site; most of the models fell within one

standard deviation from the observed curve for most of

their diurnal cycles; this was true for both maize and

soybean (Fig. 7). Thus similar to NEE, most models

substantially underestimated LE at the rain-fed site.

Because both NEE and LE are linked to stomatal

conductance, this result is consistent with our

interpretation that most models overestimate drought

stress in crop ecosystems.

Sensible heat flux

Performance by site Compared to NEE or LE,

simulated monthly H values at the US-NE sites (US-

NE1, US-NE2, US-NE3) had smaller skill levels

(Fig. 8). The majority of the models had a skill of less

than 0.3; the highest skill observed at individual sites

fell within the range 0.6–0.7. The skill of the overall

model mean was also relatively low (i.e. 0.2-0.5) for

all three sites, showing poor overall model

performance for H (Fig. 8). There was not much

difference in the model skills observed for irrigated

versus rain-fed sites either.

Sensible heat flux was overestimated by most of the

models during the growing season. Productive crop

ecosystems typically do not experience significant

drought stress and they exhibit high rates of transpi-

ration and relatively low sensible heat flux, making the

Fig. 6 Taylor diagrams showing the model performance against observations with regard to crop wise latent heat flux simulations
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denominator in Eq. 2 smaller compared to the situa-

tion for NEE or LE fluxes and therefore giving rise to

larger MARE.

At Fermi agricultural site, US-IB1, overall model

performance was poor, but similar to LE, it was better

for maize compared to soybean; half of the models had

a skill of greater than 0.3 for maize; the skill for

soybean was less than 0.1 for the majority of the

models (Fig. 8). Overall, the site-level model perfor-

mance was lower for H, compared to NEE or LE, and

the model skills did not exceed 0.8 at any given site.

The maximum model skills observed ranged between

0.7 and 0.75, as shown by three of the models and the

model mean at US-ARM wheat site (Fig. 8). Thus a

higher model performance was found at US-ARM site

compared to the rest of the sites (Fig. 8), with

ensemble mean having the highest skill.

Performance by crop For maize, the estimated

MARE during peak growth was over 1.0 for all the

models and the overall model mean, indicating that the

difference between the observed and predicted H was

more than twice the magnitude of observed H during

the peak growth; the same was true for soybean.

However, for wheat there were comparatively lower

relative errors during the peak growth; the majority (5

out of 8) had MARE of less than 0.4 for H, while the

rest of the models that simulated wheat H had MARE

of over 0.8.

The RMSE and overall model performance for

different models in simulating H of different crops is

given in Fig. 9. For maize and soybean crops, both the

correlation and standard deviation significantly varied

among the models, indicating that timing and ampli-

tude of the seasonal cycle of the H flux from these

Fig. 7 Latent heat flux average diurnal cycle across the time series for Mead rain-fed (US-NE3; top) and irrigated (US-NE2; bottom)

sites
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crops were poorly simulated by the models. The most

poorly simulated crop H across all the sites was found

for soybean, with low skills, very low correlations and

a wide range of standard deviations in the Taylor

diagrams. However, for the wheat crop, better corre-

lations and a range of standard deviations were shown

by a majority of the models, indicating better timing

(but not the amplitude) of the seasonal cycle,

Fig. 8 Comparison of the model skill values for sensible heat

(monthly means) simulated by different models for the different

sites against the observed data. DNDC (not shown here due to

estimated near-zero skill), a model with daily temporal

resolution had also simulated sensible heat flux
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compared to the H flux predicted for the other two

crops. This might be due to model performance based

on noticeable weather changes at the site during the

growth of wheat crop, as the wheat crop starts greening

up when soils warm up after the winter dormancy

period. The models seem to capture the timing of this

warming in soils better compared to the two summer

crops involved in this study.

Overall, most of the models showed a strong

positive bias in simulating H fluxes, with larger

RMSE, lower correlation and overall lower skills,

compared to the other two variables. This is consistent

with the results for NEE and LE, and with our

interpretation that most ecosystem models in this

study systematically overestimate drought stress for

crop ecosystems. At the site level, better model

performance could be found for US-ARM site,

yielding higher performance by the model mean for

wheat crop, compared to the other two crops; several

models showed better performance for wheat, show-

ing better skills and correlations in the Taylor

diagrams.

Diurnal cycles of H There was a substantial

variation in the diurnal cycle of H simulated by

different models during the peak growing season at

both rain-fed and irrigated sites. Sensible heat flux at

the Mead irrigated site was lower compared to the

rain-fed site in observations and the majority of the

model estimates (Fig. 10). For both crops, the number

of models that fell within one standard deviation of the

observed mean was quite low (Fig. 10).

The majority of the models had much higher H and

lower LE compared to the observed values for the

diurnal cycles, showing higher Bowen ratios. There

are several possible reasons for the poor model

Fig. 9 Taylor diagrams showing model performance by crop (i.e. combined sites) of sensible heat flux against the observations

Biogeochemistry (2016) 129:53–76 71

123



performance with regard to the energy fluxes at diurnal

scale. Observed surface energy fluxes at eddy covari-

ance flux tower sites do not conserve energy (the

energy budget does not ‘‘close’’ or sum to zero)

(Twine et al. 2000; Wilson et al. 2002; Foken 2008),

producing a bias in the fluxes mostly due to under

measured latent and sensible heat fluxes. Alterna-

tively, there could be a mismatch in energy partition-

ing in the models, compared to that of the observations

(a Bowen Ratio bias). For instance, Grant et al. (2005)

found larger partitioning to H in the models used for

boreal forest simulations. However, systematic over-

estimation of H, and underestimation of both LE and

NEE across most models in our study strongly suggest

a problem in simulating excessive drought stress

relative to the observations. Thus, improving the

simulation of drought stress would lead to more

accurate and better predictions of carbon and energy

fluxes from croplands.

Performance based on basic model formulation

There was no statistical difference in model perfor-

mance for NEE based on model grouping according to

the GPP calculation (enzyme kinetic, stomatal con-

ductance, light use efficiency, or statistical model).

Based on one-way ANOVA, all the groups had similar

performance (p[ 0.05). Overall, there were no

statistically significant patterns among model perfor-

mance when stratifying models according to phenol-

ogy (prognostic versus diagnostic) or model structure

and formulation.

We have identified errors in crop seasonal and

diurnal cycles of the fluxes during the peak growth of

crops: the models were able to capture seasonality

better compared to the diurnal variation. When there

was poor performance in the diurnal cycle by the

majority of the models, the model mean was more

deviant (beyond one standard deviation) from the

Fig. 10 Sensible heat flux average diurnal cycle across the time series for maize and soybean at Mead rain-fed (US-NE3; top) and

irrigated (US-NE2; bottom) sites
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observations. This was especially evident for NEE and

LE for rain-fed maize at US-NE3, rain-fed soybean

LE, and overall diurnal cycles of H.

Unlike in some other previous studies (e.g. Asseng

et al. 2013, 2015; Bassu et al. 2014; Martre et al. 2015)

the ensemble mean did not generally outperform the

individual models, which was especially true for the

sites with maize and soybean crops, which had few

models with crop specificity that had better skills

compared to the ensemble mean.

Conclusion

Overall higher H, lower LE, and lower NEE compared

to the observations were produced by the majority of

the models that simulated the agricultural sites consid-

ered in this study. Our analyses revealed that having

crop-specific parameterization within the models could

help better simulation of the inter-annual variability of

fluxes under crop rotation. However, only a few models

that had crop specificity could accurately simulate the

magnitude of the carbon flux. Overall, there was no

difference in model performance based on the basic

model formulation for photosynthetic calculation or on

diagnostic versus prognostic phenology.

The greater productivity and evapotranspiration by

croplands as dynamic artificial ecosystems could not

be simulated accurately by the majority of the models,

the parametrization of which are mostly based on

natural ecosystems. The main reason for this seems to

be that the models overestimate drought and heat

stress which could be handled effectively by the

improved crop varieties in the field, yielding higher

productivity in reality. Thus to get the magnitude of

the fluxes (especially the energy fluxes) right, the

models should improve the simulation of physiolog-

ical stress. The improved technology, management

practices, and high yielding and drought-tolerant crop

varieties found in reality, makes it a difficult challenge

for the existing models to accurately simulate the

correct magnitude of net carbon uptake and energy

exchange found in these man-made ecosystems. The

systematic tendency toward excessive drought stress

exhibited by these models is also likely to lead to

overestimation of air temperature and atmospheric

boundary layer depth, and to underestimation of

atmospheric humidity and clouds over agricultural

regions when such models are coupled in Earth

System Models.
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