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Abstract
In recent years, cosmic-ray neutron sensing (CRNS) has shown a large potential

among proximal sensing techniques to monitor soil moisture noninvasively, with

high frequency and a large support volume (radius up to 240 m and sensing depth

up to 80 cm). This signal is, however, more sensitive to closer distances and

shallower depths. Inherently, CRNS-derived soil moisture is a spatially weighted

value, different from an average soil moisture as retrieved by a sensor network. In

this study, we systematically test a new profile shape correction on CRNS-derived

soil moisture, based on additional soil moisture profile measurements and vertical

unweighting, which is especially relevant during pronounced wetting or drying

fronts. The analyses are conducted with data collected at four contrasting field sites,

each equipped with a CRNS probe and a distributed soil moisture sensor network.

After applying the profile shape correction on CRNS-derived soil moisture, it is

compared with the sensor network average. Results show that the influence of the

vertical sensitivity of CRNS on integral soil moisture values is successfully reduced.

One to three properly located profile measurements within the CRNS support

volume improve the performance. For the four investigated field sites, the RMSE

decreased 11–53% when only one profile location was considered. We therefore

recommend to install along with a CRNS at least one soil moisture profile in a radial

distance <100 m and a measurement depth down to 50 cm. Profile-shape-corrected,

CRNS-derived soil moisture is an unweighted integral soil moisture over the support

volume, which is easier to interpret and easier to use for further applications.

ABBREVATIONS: AHP, additional hydrogen pools; CRNS, cosmic-ray
neutron sensing; HOAL, Hydrological Open Air Laboratory; KAT,
Katharinentaler Hof; KGE, Kling–Gupta efficiency; MAE, mean absolute
error; NSE, Nash–Sutcliffe efficiency; SEL, Selhausen; SRER, Santa Rita
Experimental Range.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
work is properly cited.
© 2020 The Authors. Vadose Zone Journal published by Wiley Periodicals LLC on behalf of Soil Science Society of America

1 INTRODUCTION

Soil moisture is an important hydrological state variable to
assess the energy balance and the partitioning of hydrologic
fluxes at the land surface (Corradini, 2014). For this reason,
there are wide hydrologic applications for soil moisture data
(Brocca, Ciabatta, Massari, Camici, & Tarpanelli, 2017).
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Antecedent soil moisture states are used for flood and land-
slide forecasting (Brocca et al., 2012; Koster, Mahanama,
Livneh, Lettenmaier, & Reichle, 2010) and to study the
interactions in soil–atmosphere processes (Seneviratne et al.,
2010). The soil moisture state is important for drought pre-
diction (Pendergrass et al., 2020) and can be decisive for the
occurrence of heat waves (Wehrli, Guillod, Hauser, Leclair,
& Seneviratne, 2019). Irrigated agriculture can especially
benefit from soil moisture monitoring data (Barker, Franz,
Heeren, Neale, & Luck, 2017; Finkenbiner, Franz, Gibson,
Heeren, & Luck, 2019). Hydrologic and land surface models
require the input of intermediate scale soil moisture data of
the integrated active layer (Shrestha & Simmer, 2020).

In the last decade, cosmic-ray neutron sensing (CRNS)
has evolved to a well-established, noninvasive method for
monitoring soil moisture at high temporal resolution (hourly
to daily values), and it is now applied in several monitoring
networks and at many research stations around the world
(Andreasen, Jensen, Desilets, Zreda, et al., 2017; Baatz
et al., 2014; Evans et al., 2016; Fersch et al., 2020; Hawdon,
McJannet, & Wallace, 2014; Zreda et al., 2012). Cosmic-ray
neutron sensing uses the natural occurring background
neutron flux and its inverse proportional relationship with
hydrogen abundance (present mainly as soil moisture) at the
land surface (Zreda, Desilets, Ferré, & Scott, 2008; Zreda
et al., 2012). Its outstanding features are the noninvasive
installation aboveground and the large support volume with a
radius of ≥150 m around the sensor and integration depth of
12–80 cm (Köhli et al., 2015; Schrön et al., 2017). Because
of these features, CRNS proves to be useful for soil moisture
monitoring at the field scale and in validating remote sensing
products (Duygu & Akyürek, 2019; Montzka et al., 2017).

Cosmic-ray neutron sensing has been successfully applied
in contrasting environments, ranging from drylands (Franz,
Zreda, Rosolem, & Ferre, 2012) to temperate humid con-
ditions (Baatz et al., 2014), forests (Andreasen, Jensen,
Desilets, Franz, et al., 2017; Bogena, Huisman, Baatz, Hen-
dricks Franssen, & Vereecken, 2013; Heidbüchel, Güntner,
& Blume, 2016), and urban areas (Schrön, Zacharias, et al.,
2018). In addition to fixed installation, it can also be used
in mobile applications (Chrisman & Zreda, 2013; Dong,
Ochsner, Zreda, Cosh, & Zou, 2014; Fersch, Jagdhuber,
Schrön, Völksch, & Jäger, 2018; Jakobi, Huisman, Vereecken,
Diekkrüger, & Bogena, 2018; Jakobi et al., 2020; Schrön,
Rosolem, et al., 2018). Because of its noninvasive installation,
it is especially suited for agricultural field sites (Barker et al.,
2017; Baroni & Oswald, 2015; Finkenbiner et al., 2019;
Franz, Wang, Avery, Finkenbiner, & Brocca, 2015; Jakobi
et al., 2018; McJannet, Hawdon, Baker, Renzullo, & Searle,
2017; Ragab, Evans, Battilani, & Solimando, 2017; Rivera
Villarreyes, Baroni, & Oswald, 2011; Wang et al., 2018),
as traditional point sensors often have to be removed during
management operations. At the field scale, CRNS delivers an

Core Ideas
∙ Soil moisture derived from cosmic-ray neutron

sensing is inherently weighted.
∙ Few additional soil moisture profile measurements

should complement the method.
∙ A profile shape correction unweights cosmic-ray-

derived soil moisture.
∙ Corrected cosmic-ray soil moisture is a better inte-

gral average of the support volume.

integrated value of soil moisture, whereas a large number of
point sensors is needed to deliver a comparable result, over-
coming small-scale heterogeneity within the field (Ochsner
et al., 2013; Robinson et al., 2008; Teuling, Uijlenhoet,
Hupet, van Loon, & Troch, 2006). For better understanding
and validation of the CRNS signal, many studies tested the
performance of CRNS in comparison with networks of point
sensors, which can reach a similar extent to the CRNS sup-
port volume (Baatz et al., 2014; Baroni, Scheiffele, Schrön,
Ingwersen, & Oswald, 2018; Bogena et al., 2013; Franz,
Zreda, Rosolem, & Ferre, 2012; Franz et al., 2016; Iwema,
Rosolem, Baatz, Wagener, & Bogena, 2015; Jakobi et al.,
2018; Schreiner-McGraw, Vivoni, Mascaro, & Franz, 2016).

A drawback of the CRNS method within this compari-
son is the higher sensitivity to upper soil layers and closer
distances. This needs to be considered during calibration of
the sensor and when comparing soil moisture time series.
Early studies set up sensor networks with locations represent-
ing the exponential decrease in sensitivity with distance from
the CRNS, which made a horizontal weighting unnecessary
(Franz, Zreda, Rosolem, & Ferre, 2012; Zreda et al., 2012),
and even better comparability could be achieved when the
point sensors were vertically weighted (Franz, Zreda, Ferre,
et al., 2012). Early on it was recognized that better calibration
results are achieved when other hydrogen pools are considered
(e.g., water in the crystal lattice of minerals or water equiva-
lent stored in soil organic material, see Hawdon et al., 2014;
Zreda et al., 2012). Köhli et al. (2015) and Schrön et al. (2017)
further improved the understanding of the sensitivity of the
sensor with the help of neutron transport modeling. They
refined the procedures of vertical and horizontal weighting
of point soil moisture information to better mimic the signal
detected by CRNS. Therefore, CRNS represents a weighted
total water content, which hinders its easy interpretation and
use for application in hydrologic models and other practical
data products (Franz et al., 2020). For data assimilation pur-
poses, the COSMIC operator was developed (Shuttleworth,
Rosolem, Zreda, & Franz, 2013), which deals with the inher-
ent weighting by directly using the neutron counts and not the



SCHEIFFELE ET AL. 3 of 25Vadose Zone Journal

CRNS-derived soil moisture. Different studies tried to tackle
the problem by extending the measurement depth of CRNS to
the root zone with the use of an exponential filter (Dimitrova-
Petrova et al., 2020; Franz et al., 2020; Peterson, Helgason, &
Ireson, 2016), or merging CRNS information with data from
point sensors of deeper layers (Nguyen, Jeong, & Choi, 2019).
However, they assumed CRNS to be representative for the
upper most soil layer (down to 15-to-30-cm depth) and did not
specifically consider the decreasing sensitivity with depth.

A previous study assessed the uncertainty in CRNS-derived
soil moisture when compared with an unweighted sensor
network (Baroni et al., 2018). It was found that the sensitivity
of CRNS on the depth-dependent distribution of soil mois-
ture was an important source of uncertainty, increasing with
pronounced wetting or drying fronts within the profile. This
was also assessed with numerical tests and synthetic derived
soil moisture profiles. Based on this finding, a simple profile
shape correction to apply on CRNS-derived soil moisture was
outlined there, which reduces the influence of the vertical sen-
sitivity. The profile shape correction includes an “unweight-
ing” of CRNS-derived soil moisture by using the vertical
weighting of point soil moisture measurements. Profile-
shape-corrected, CRNS-derived soil moisture should then be
better representative of the volumetric average soil moisture
within the support volume. To apply such a correction, CRNS
measurements need to be accompanied by installation of addi-
tional soil moisture profile measurements. As this is a draw-
back in terms of noninvasive installation, the question arises
how to best install additional point sensors to balance installa-
tion effort and performance with the profile shape correction.
An ideal location would be the one representative of the areal
mean soil moisture, as could be identified by using the concept
of temporal stable soil moisture locations (Vereecken et al.,
2014). There are studies comparing CRNS with temporal
stable soil moisture locations (Nguyen, Kim, & Choi, 2017;
Nguyen et al., 2019; Peterson et al., 2016; Zhu et al., 2017).
However, these locations cannot be determined beforehand
(Vanderlinden et al., 2012), and the methods are therefore less
feasible for the use of CRNS as a soil moisture monitoring
method.

In our study, we systematically test the application of the
profile shape correction (developed based on results from
numerical tests) on comprehensive experimental datasets and
address issues that arise with it: (a) do we improve CRNS-
derived integral soil moisture by a procedure correcting for
the profile shape, in comparison with a sensor network;
(b) how many additional soil moisture profiles would be
required to achieve satisfactory results; (c) down to which
depth and (d) at which distance from CRNS should the
additional measurements be installed? Additionally, we test
different vertical weighting options. To address these ques-
tions, we use data from four field sites, where a sensor network
and CRNS were operated simultaneously. The field sites

show pronounced differences in soil and climatic conditions,
absolute values of their soil moisture regimes, and setup of
sensor networks and thus provide a broad basis for testing the
procedure.

2 MATERIALS AND METHODS

2.1 From neutron counts to soil moisture

The neutrons measured by the CRNS sensor are generated as
part of a secondary particle cascade from cosmic radiation.
Hydrogen is the element most effective in moderating
neutrons of this specific energy range (∼1 MeV), and at the
land surface it is mostly present as soil moisture. Neutrons
entering the soil are moderated to lower energy levels and
partly reflected back to the atmosphere. Thus, an inverse
relationship between neutrons detected aboveground and the
soil moisture can be established (Desilets, Zreda, & Ferré,
2010; Zreda et al., 2008). Due to the interaction physics of
neutrons, the neutrons are traveling at very high velocities
and mix nearly instantaneously within the air horizontally
above the soil and also probe deeper soil layers. This leads to
the large support volume of the sensor of up to 240-m radius
and an effective measurement depth of up to 80 cm in dry
soils (for details, see Köhli et al., 2015; Zreda et al., 2012).
Cosmic-ray neutrons are sensitive to changes in atmospheric
pressure, absolute humidity, and incoming cosmic radiation.
In this study, we applied those three standard correction
procedures, which can be found in Appendix A.

The corrected neutron counts can be converted to soil
moisture (θCRNS, m3 m−3) following the calibration proposed
by Desilets et al. (2010), for volumetric water content (Rivera
Villarreyes et al., 2011):

θCRNS =
(

𝑎0
𝑁∕𝑁0 − 𝑎1

− 𝑎2

) ρb
ρw

(1)

where ρb and ρw are the soil bulk density (g cm−3) and the
density of water (assumed to be 1 g cm−3), respectively; ai
have been derived from neutron simulations and are usually
kept constant (a0 = 0.0808, a1 = 0.372, and a2 = 0.115),
whereas N0 is the single site-specific parameter to be
calibrated.

As the sensor is sensitive not only to soil moisture but to
all hydrogen within its support volume, better results can be
achieved when additional hydrogen pools are accounted for
in the calibration (Hawdon et al., 2014). In soil, hydrogen is
stored in organic matter and within the crystal lattice of clay
minerals (for details about measurements and calculations,
refer to Appendix B). These pools can be assumed static
for the timescale of soil moisture observations dealt with in
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this study and are combined to one pool of additional soil
hydrogen pools (AHP, m3 m−3). Also, hydrogen in biomass is
important to consider when using CRNS (Baatz et al., 2015;
Baroni & Oswald, 2015; Coopersmith, Cosh, & Daughtry,
2014; Franz, Zreda, Rosolem, Hornbuckle, et al., 2013;
Jakobi et al., 2018). For this study, we neglect the influence
of biomass change as it is a small water pool within the
footprint compared with soil moisture. Research on how to
include biomass influence in calibration or correction of the
CRNS signal is ongoing (see Franz et al., 2015, for correc-
tions on N0 for growing maize [Zea mays L.] and soybeans
[Glycine max (L.) Merr.]) but can be easily implemented in
the correction framework proposed here, once a standard is
established.

2.2 Horizontal and vertical sensitivity of
the signal

The CRNS signal is more sensitive to areas closer to the
detector and to shallower soil depths. In early studies, the
horizontal placing of calibration locations was chosen to
represent the horizontal exponential decrease in sensitivity.
For the vertical sensitivity, a weighting procedure was
introduced (Franz, Zreda, Ferre, et al., 2012), calculating the
weights for each depth as follows:

wt (𝑑) = 𝑎

[
1 −

(
𝑑

𝑑∗

)𝑏
]

(2a)

𝑎 = 1
/{

𝑑∗ −
[

𝑑∗𝑏+1

𝑑∗𝑏 (𝑏 + 1)

]}
(2b)

with d being the depth (cm), and b being 1 for a linear
weighting. d* (cm) is the effective measurement depth of
the sensor (86% of neutrons detected by the sensor originate
from above this depth) determined as

𝑑∗ = 5.8
θtot + AHP + 0.0829

(3)

where θtot (= θv + AHP) is the total water content including
volumetric soil moisture (θv, from calibration soil samples or
an accompanying sensor network) and additional hydrogen
pools (AHP, Franz, Zreda, Rosolem, & Ferre, 2013).

More recently, Köhli et al. (2015) and Schrön et al. (2017)
revised the understanding of the support volume properties
and adjusted the weighting functions. The vertical weights
follow an exponential decrease:

wt (𝑑) = 𝑒−2𝑑∕𝐷86 (4)

where the effective penetration depth D86 (cm) is dependent
on the distance of the location to the CRNS expressed as
rescaled radius r* (dependent on air pressure, absolute
humidity, and vegetation height; Appendix C):

𝐷86 = ρ−1b

[
𝑝0 + 𝑝1

(
𝑝2 + 𝑒𝑝3𝑟

∗
) 𝑝4 + θtot
𝑝5 + θtot

]
(5)

for parameter values refer to Schrön et al. (2017).
For both vertical weighting methods the resulting water

content is calculated by

θtot(wt) =
∑

θtot ⋅ wt∑
wt

(6)

This is also represented in the calibration function as follows:

θCRNS = θtot(wt) =

(
𝑎0

𝑁
/
𝑁0 − 𝑎1

− 𝑎2

)
ρb
ρw

(7)

with θtot(wt) = (θv + AHP)wt and θCRNS also representing
a total weighted water content. These two options for the
vertical weighting will also be compared within our study
and will be called DF (following Franz, Zreda, Ferre, et al.,
2012) and DK (following Köhli et al., 2015) hereafter.

The complete weighting procedure for point soil moisture
data as proposed by Köhli et al. (2015) and Schrön et al.
(2017) further includes a horizontal weighting (Appendix C).
This weighting leads to an improved estimate of the spatial
sensitivity of the sensor (Cai, Pang, & Fu, 2018). Considering
additional hydrogen pools and applying a weighting on soil
samples delivers best calibration results. Point measurements
from a sensor network can also be used to assess CRNS
(e.g., simply to compare time series dynamics, to calibrate
CRNS with sensor network data, and to determine CRNS
support volume). For this reason, these two steps should also
be applied to point measurements from distributed sensor
networks when compared with CRNS-derived soil moisture
(Schrön et al., 2017).

For comparing CRNS-derived soil moisture with other soil
moisture measurements, the bias introduced by the included
AHP is widely recognized, and within many studies, AHP
are subtracted from CRNS-derived soil moisture after proper
calibration (Hawdon et al., 2014; Jakobi et al., 2018) to derive
a “volumetric” CRNS-derived soil moisture and thus better
comparability with a standard average from a sensor network.
The inherent weighting, however, is not treated within these
experimental studies.

Within the present study, θCRNS represents a total weighted
water content as best calibration result. The bias of the AHP
contained in θCRNS is considered within the profile shape
correction.
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F I G U R E 1 Different options to compare soil moisture from the distributed sensor network θSN with water content derived from cosmic-ray
neutron sensing (CRNS) θCRNS, as applied within this study for the root mean square error (RMSE). Option 1 is the baseline comparison using
the arithmetic mean from the sensor network θSN(avg) to compare with θCRNS, resulting in a baseline performance (RMSEbase). Option 2 is the bias
comparison assessing the systematic deviation introduced by the additional hydrogen pools (AHP) that are subtracted from θCRNS resulting in a
volumetric CRNS-derived soil moisture θCRNS(vol) that is compared with θSN(avg) in a bias performance (RMSEbias). Option 3 is the standard procedure,
where AHP are added to θSN and the sensor network is weighted θSN(wt) to better represent the water content sensed by CRNS. Comparison results in
a reference performance (RMSEref) expected to be low compared with Option 1. Option 4 is showing the analysis conducted within this study, where
CRNS-derived soil moisture is “unweighted” with a profile shape correction factor fpc, AHP are removed, and profile shape corrected CRNS-derived
soil moisture θCRNS(pc) is compared with θSN(avg) resulting in the profile shape correction performance (RMSEpc). This approach is tested for different
numbers of locations, radial distances, and depths of the locations present in the sensor networks

2.3 Profile shape correction procedure

Baroni et al. (2018) proposed a simple profile shape correc-
tion to apply to CRNS-derived soil moisture. It accounts for
the sensitivity of the sensor to the depth-dependent distribu-
tion of soil moisture within the profile. The shape of the soil
moisture profile can be estimated only with additional infor-
mation (e.g., observations or hydrologic modeling; Baatz
et al., 2017; Han et al., 2016; Iwema, Rosolem, Rahman,
Blyth, & Wagener, 2017; Rosolem et al., 2014). For the use
of CRNS as a soil moisture monitoring method, this could
be more practically achieved by few additional soil moisture
measurements to determine the profile shape.

The procedure of the profile shape correction includes
the following steps. A profile shape correction factor (fpc) is
calculated based on the simple arithmetic mean of a soil mois-
ture profile [θp(avg)] and the vertically weighted soil moisture
profile [θp(vwt), Equation 6]. The CRNS-derived soil moisture
(total weighted water content) is corrected (“unweighted”)
with this factor and in a final step AHP (i.e., lattice water and

soil organic carbon water equivalent) are subtracted:

𝑓pc =
θp(avg)
θp(vwt)

(8a)

θCRNS(non−wt) = 𝑓pc ⋅ θCRNS (8b)

θCRNS(pc) = θCRNS(non−wt) − AHP (8c)

The CRNS-derived soil moisture delivers and integral
soil moisture value for its support volume; however, θCRNS
represents a total weighted water content. Compared with
the weighting procedure of point measurements (Sec-
tion 2.2), the profile shape correction follows the reverse
order. First, the soil moisture product is “unweighted,” and
second, the AHP are subtracted (compare also Figure 1).
With this, the resulting θCRNS(pc) represents an easier to
interpret integral soil moisture over the CRNS support
volume.
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2.4 Assessment of CRNS-derived soil
moisture and of the profile shape correction

To evaluate the difference between the soil moisture products
from the sensor network and the CRNS and to evaluate
the performance of the profile shape correction, different
performance measures can be used. A well-established stan-
dard approach is the root mean square error (RMSE). It is a
measure of the difference between two data series that can be
prone to a biased dataset and outliers. A systematic bias can
be shown by the more simple mean absolute error (MAE) that
is the average absolute difference between the datasets (Chai
& Draxler, 2014). Other performance measures in hydrology
focus more on the ability of a model to simulate the observed
time series dynamics—for example, the Nash–Sutcliffe
efficiency (NSE) (ranging from –∞ to 1, with 1 being the
perfect match), and the Kling–Gupta efficiency (KGE) with
the same range, including statistics of linear correlation,
variability, and bias (Knoben, Freer, & Woods, 2019). To
allow comparison of the results presented in this study with
those of other literature, we use the common RMSE for the
main analysis and also discuss results using the KGE (results
for all performance measures and a detailed analysis for one
field site are presented in Appendix D).

Soil moisture from the sensor networks and CRNS-derived
soil moisture are compared for different processing steps.
Figure 1 gives a graphical overview of the different compar-
isons and steps involved in the calculation (RMSE is listed
as an exemplary measure). For a baseline comparison, the
CRNS-derived soil moisture (θCRNS) is compared with the
simple arithmetic mean of the distributed sensor network
[θSN(avg)] leading to a RMSEbase. Since CRNS-derived soil
moisture represents a total weighted water content including
additional hydrogen pools (AHP), deviations are expected
to be high (Figure 1, Option 1). The systematic deviation
introduced by the AHP can be assessed by subtracting them
from θCRNS [resulting in θCRNS(vol)] and comparing with
θSN(avg), resulting in RMSEbias. We call this comparison bias
performance (Figure 1, Option 2). When AHP are added
to the distributed sensor network and it is weighted after
Schrön et al. (2017), θSN(wt) mimics the CRNS behavior. We
use this as a reference performance and expect the lowest
achievable deviations given by RMSEref (Figure 1, Option
3). Applying the profile shape correction (i.e., unweighting
and the removal of the AHP) on CRNS-derived soil moisture
[θCRNS(pc)] and comparing it with the sensor network θSN(avg)
results in a profile shape correction performance measure,
called RMSEpc (Figure 1, Option 4).

The θCRNS(pc) is obtained in three different ways: (a) using
all soil moisture profile measurement locations and measure-
ment depths; (b) using a reduced number of soil moisture
profile measurement locations, based on distance to the
CRNS; and (c) using the first and second approach with an

incrementally reduced maximal measurement depth of the
profile locations.

The analysis is repeated for all possible combinations of
soil moisture measurement locations, based on the availability
at each experimental site. Namely, a sensor network consists
of n locations of profile measurements θp. This is sampled
for different numbers of locations (sample size k), resulting in
different amounts of possible combinations of locations. For
example, a sensor network of n = 16 locations and a sample
size of k = 3 profile locations results in 560 possible combi-
nations. All cases are calculated when possible combinations
are <800. A random sample of 800 cases are calculated when
possible combinations >800. For larger samples, no change
in results could be observed. This procedure is applied for all
locations and depths of the sensor network.

The depth analysis is applied by reducing the depth
stepwise to a minimum of the two shallowest measurements
(to still be able to do a weighting), and the spatial analysis
is applied by decreasing the number of considered locations
n with the radial distance around the CRNS. The selected
profile locations k of within a certain radius around the CRNS
sensor r, down to the considered depth d, are then averaged for
each depth to present an average field profile θp(k,r,d), which
is used to calculate the profile shape correction factor fpc.

2.5 Field sites

The analyses are performed based on data collected at
four experimental sites previously published. All four field
sites used in this study were equipped with a CRNS and
a distributed sensor network, and only periods when both
measurements are available were considered in the analysis.
The following paragraphs give a brief description of the field
sites and previous work. Table 1 gives an overview of the
main features and differences between the field sites, and
Figure 2 outlines the different setups of their point sensor
networks. The raw CRNS neutron counts for all sites were
corrected for variations in air pressure, incoming radiation,
and humidity; details on the procedure and the methods for
the determination of additional hydrogen pools AHP and cal-
ibration are described in the original publications. Presented
in this study is a 12-h moving average of CRNS-derived soil
moisture to reduce statistical noise.

The dataset of Katharinentaler Hof (KAT) was used in a
previous study by Baroni et al. (2018) to estimate the uncer-
tainty and sensitivity of different parameters on the CRNS
product. Based on their results, the profile shape correction
tested in this study was proposed. The field site is located
in southern Germany, close to Pforzheim (48.9285˚ N,
8.7028˚ E), at an elevation of 319 m asl. The soils are classi-
fied as silt loam (USDA soil texture classification), with soil
textures in upper soil layers consisting of 3.4, 81.1, and 15.4%
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T A B L E 1 Main features of the four field sites showing measurement period, land use during the experiment, soil bulk density (ρb) and
additional hydrogen pools (AHP), and the soil moisture regimes expressed as median and range from the respective sensor network [θSN(avg)]

Field sitea
Original
publication

Measurement
period

Mean annual
precipitation

Annual mean
temperature Land use ρb AHP

θSN(avg) median
(min.–max.)

mm ˚C g cm−3 cm3 cm−3

KAT Baroni et al.
(2018)

4 Apr. 2013–
31 July 2013

780 9.5 Winter wheat 1.48 0.015 0.34 (0.20–0.41)

HOAL Franz et al.
(2016)

12 Dec. 2013–
26 Aug. 2014

823 9.5 Agriculture,
diverse crops

1.38 0.061 0.34 (0.18–0.40)

SEL Jakobi et al.
(2018)

14 May 2016–
24 Oct. 2016

714 10.2 Sugar beet 1.35 0.050 0.16 (0.10–0.33)

SRER Franz, Zreda,
Rosolem, &
Ferre
(2012b)

1 July 2011–
31 July 2013

364 20.0 Creosote bush 1.41 0.018 0.04 (0.02–0.12)

aKAT, Katharinentaler Hof; HOAL, Hydrological Open Air Laboratory; SEL, Selhausen; SRER, Santa Rita Experimental Range.

F I G U R E 2 Setup of the distributed sensor network at the four field sites. Bars show the number of locations (right axis) at the specific radial
distance (x axis) from the cosmic-ray neutron sensor (CRNS) in 5-m increments, and the colored dots show the depths of measurements (left axis) at
these locations. Gray numbers in the bottom right of the panels show total number of locations within the sensor networks. HOAL, Hydrological Open
Air Laboratory; KAT, Katharinentaler Hof; SEL, Selhausen; SRER, Santa Rita Experimental Range

of sand, silt, and clay, respectively (Imukova, Ingwersen,
Hevart, & Streck, 2016). The 14-ha field was cropped with
winter wheat (Triticum aestivum L.) during the study period.
Plant height measurements were available on a weekly
basis. The soil moisture monitoring network consists of 15
randomly distributed locations with profiles from 10-cm
down to 90-cm depth at depth increments of 10 cm (Figure 2).

A standard weather station recorded pressure, temperature,
humidity and precipitation on the field. For details on the
dataset, refer to Imukova et al. (2016) and Baroni et al. (2018).

The dataset of the Hydrological Open Air Laboratory in
Petzenkirchen (HOAL) was used by Franz et al. (2016), who
studied the performance of CRNS as representative of land-
scape average in a heterogeneous agricultural landscape; data
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are available from the COsmic-ray Soil Moisture Observ-
ing System (COSMOS) website (http://cosmos.hwr.arizona.
edu/). It is an agricultural field site in northeast Austria close
to Petzenkirchen (48.1547˚ N, 15.1483 ˚E) at an elevation of
277 m asl. The soils are mainly silt loam with average tex-
tures of 8.4% sand, 71.3% silt, and 20.3% clay (Picciafuoco
et al., 2019). The field footprint of the CRNS at HOAL cov-
ers diverse land use parcels with individual soil cultivation
and main crops being winter wheat, barley (Hordeum vulgare
L.), maize, and rape (Brassica napus L.) (for details refer to
Table 1 in Franz et al., 2016). The influence of the vegetation
on the CRNS signal is assumed to be small, as the landscape
average fresh standing biomass is expected to be low (<2 kg
m−2; Franz et al., 2016). The distributed sensor network con-
sists of 16 locations within the CRNS footprint; however,
most locations are far from the sensor (>100 m), with sen-
sors installed at depths of 5, 10, 20, and 50 cm (Figure 2).
Due to agricultural management, several of the sensors had to
be removed during the study period. A weather station on the
field recorded pressure, temperature, relative humidity, and
precipitation. Weather data were updated and are now com-
pletely available, in contrast with the data presented in Franz
et al. (2016). This improved the humidity correction, and
therefore slight differences in the presented CRNS-derived
soil moistures can be observed (compare also with Franz et al.,
2020).We should also note the longer time series used in the
present study. During the vegetation season, greater hetero-
geneity within the footprint is expected, leading to overall
higher RMSE values between soil moisture from CRNS and
sensor network than those reported by Franz et al. (2016).

The data set of Selhausen (SEL) was used in the study of
Jakobi et al. (2018) to investigate the influence of biomass on
the CRNS signal and evaluate the usage of the ratio of bare
and moderated neutron detectors to quantify the biomass and
correct the CRNS signal accordingly. This field site is part
of the TERrestrial Environmental Observatories (TERENO)
network (Bogena et al., 2018). It is located in western Ger-
many about 40 km west of Cologne (50.8666˚ N, 6.4561˚ E)
at an elevation of 105 m asl. The soil is silt loam with 8–15%
gravel and a particle size distribution of 12–18% sand, 52–
63% silt, and 13–17% clay (Rudolph et al., 2015). In this study,
five CRNS probes were pooled in the center of a 2.77-ha large
agricultural field, and hourly neutron counts of all sensors
were summed up. The field was cropped with sugar beet (Beta
vulgaris L.) during the study period, and biomass measure-
ments were taken on a monthly basis. A linear relationship
was assumed to derive plant height from biomass water equiv-
alent (Jakobi et al., 2018). Pressure, temperature, and relative
humidity were recorded at the field site. The distributed sensor
network is a SoilNet wireless sensor network (Bogena et al.,
2010). Eighteen locations were distributed within the field to
cover the heterogeneity of electromagnetic conductivity and
thus water-holding capacity of the field and were equipped

with sensors at 5-, 20-, and 50-cm depth. Three additional
locations within 3-m distance and five additional locations
within 11-m distance with sensors at 5-, 10-, and 20-cm depth
were installed, based on the assumption that the CRNS is more
sensitive to hydrogen sources at shorter distances (Figure 2).

The research site Santa Rita Experimental Range (SRER)
is part of the COSMOS network (Zreda et al., 2012) and was
published in several research papers already. One of the first
studies was by Franz, Zreda, Rosolem, & Ferre (2012), who
compared the CRNS to an accompanying distributed sensor
network and tested the understanding of the effective sensor
depth (Franz, Zreda, Ferre, et al., 2012). It is located ∼35 km
south of Tucson, AZ (31.9085˚ N, 110.8394˚ W) at an eleva-
tion of 989 m asl. The vegetation at the site is sparse (∼24%
cover) with low biomass (<2.5 kg m−2; Huang, Marsh,
McClaran, & Archer, 2007), mainly consisting of creosote
bush [Larrea tridentata (DC.) Coville] and to a lesser extent
of grasses, forbid, cacti, and mesquite. Biomass is also con-
stant and is assumed to have a minor effect at this field site.
The soil is sandy loam, with 5–15% gravel in the top meter
and average particle size distribution of 72.5% sand, 13.0%
silt, and 5.2% clay (Franz, Zreda, Rosolem, & Ferre, 2012;
Schreiner-McGraw et al., 2016). Weather data were collected
onsite, associated with an eddy covariance station, and several
rain buckets were distributed in the catchment. The distributed
sensor network consists of 18 locations within the footprint
of the CRNS, with sensors installed at 10-, 20-, 30-, 50-, and
70-cm depth and from January 2012; data from sensors at 5-
cm depth are also available (Figure 2). At each location, there
were paired sensors beneath the canopy and in the intercanopy
space, which were treated as one location within this study.

3 RESULTS AND DISCUSSION

3.1 Application of the profile shape
correction

The CRNS and the sensor network were compared using the
different options as described in Section 2.4 and summarized
in Figure 1 for baseline performance, bias performance,
reference performance, and the profile shape correction.
Table 2 lists the resulting performance measures RMSE and
KGE for all field sites. The profile shape correction was
based on all data available from the sensor networks (i.e., soil
moisture values at all the radial distances and depths and at
all available locations). For SEL, the closest eight locations
were excluded, as the sensors were not installed down to the
maximum depth (Figure 2).

The RMSEbase of HOAL and SEL are high, KAT shows
an intermediate value, and SRER has the lowest RMSEbase,
which is also a consequence of the generally low soil
moisture at this site (Table 1). For all field sites, the

http://cosmos.hwr.arizona.edu/
http://cosmos.hwr.arizona.edu/
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T A B L E 2 The performance measures RMSE (m3 m−3) and
Kling–Gupta efficiency (KGE) for the four different field sites. For the
baseline comparison (base), the averaged sensor network is compared
with cosmic-ray neutron sensing (CRNS)-derived soil moisture. With
the bias performance (bias), the effect of dealing only with additional
hydrogen pools (AHP) is assessed by subtracting them from
CRNS-derived soil moisture and comparing with the averaged sensor
network. For the reference performance (ref), the weighted sensor
network including AHP is compared with CRNS-derived soil moisture;
this is assumed to lead to best possible comparability between the
datasets. To measure the performance of the profile shape correction
(pc), the averaged sensor network and the profile-shape-corrected,
CRNS-derived soil moisture are compared. The vertical weighting
follows the Köhli approach (DK)

Field sitea Measure base bias ref pcb

KAT RMSE 0.047 0.038 0.032 0.031

KGE 0.59 0.60 0.86 0.80

HOAL RMSE 0.064 0.059 0.054 0.059

KGE 0.44 0.45 0.54 0.23

SEL RMSE 0.066 0.046 0.046 0.041

KGE 0.58 0.66 0.70 0.70

SRER RMSE 0.037 0.026 0.019 0.016

KGE −0.17 -0.03 0.68 0.60

aKAT, Katharinentaler Hof; HOAL, Hydrological Open Air Laboratory; SEL, Sel-
hausen; SRER, Santa Rita Experimental Range.
bProfile shape correction is based on different measurement depths, radial dis-
tances, and sample sizes (d, r, and k) for the field sites: KAT (90, 150, and 15),
HOAL (50, 320, and 16), SEL (50, 100, and 18), and SRER (70, 200, and 18).

weighting of the sensor network leads to better comparability
(RMSEref < RMSEbase). However, the level of improvement
varies between field sites. For KAT, the RMSEref is well in
range with other studies of similar setups (Coopersmith et al.,
2014; Tian, Li, Liu, Li, & Ren, 2016), and an improvement
of 0.016 m3 m−3 compared with RMSEbase is achieved.
Similarly, for SEL, considering AHP and the weighting
improves the comparison by 0.020 m3 m−3, and the RMSEref
is still within an acceptable range as compared with results
from other studies for humid environments and low elevation
(Rivera Villarreyes et al., 2011). The SRER site shows an
already low RMSEbase value, and RMSE is further reduced
by 0.018 m3 m−3 when weighting the sensor network in the
reference performance. Within previous studies, the accuracy
of CRNS at this field site was already shown to be high
(Franz, Zreda, Ferre, et al., 2012; Franz, Zreda, Rosolem, &
Ferre, 2012). At HOAL, the RMSEref shows an improvement
of 0.010 m3 m−3 compared with the RMSEbase value. The
low RMSE value as reported in Franz et al. (2016) could
not be reproduced within this study, because the CRNS
data are based on different weather data for the humidity
correction, and a longer time series with higher heterogeneity
of in situ soil moisture during the vegetation season is used
here. For all field sites, the profile shape correction leads to

RMSEpc values lower than the RMSEbase when using all the
information available from the distributed sensor network.
The values are even lower than the RMSEref, except for
HOAL. The performance at this field site can be explained by
point soil moisture measurements being located farther from
the CRNS probe, which will be shown within the sections
below. The proposed profile shape correction can thus be
assumed to lead to equally good results as the weighting
of the distributed sensor network. The systematic deviation
introduced by AHP, as assessed by RMSEbias, explains about
half of the improvement between RMSEbase and RMSEref for
the field sites of KAT, HOAL, and SRER. At these field sites,
the consideration of AHP is as important as considering the
weighting. For SEL, the subtraction of AHP explains a larger
share of the improvement in the performance measures.

Results for KGE in Table 2 show a similar trend as the
RMSE values. In all cases, better performance is reached
with higher KGEref compared with KGEbase, with the clearest
improvement (0.85) for SRER. The consideration of the bias
from AHP does not lead to a large improvement compared
with the baseline performance (≤0.01) in the case of KAT and
HOAL., For SEL and SRER, the improvement in KGEbias is
0.08 and 0.14, respectively. For SEL, KGEpc does reach ref-
erence performance, whereas for the other field sites, KGEpc
remains lower than KGEref. This is especially true for HOAL,
the only field site with lower KGEpc than KGEbias. Similar
to the performance of RMSEpc at HOAL, this is attributed
to point soil moisture measurements being located farther
from the CRNS probe. Although the weighting of the sensor
network includes a horizontal weighting (represented by low
values in KGEref), the profile shape correction is based on a
vertical weighting only and is thus stronger affected by less
representative soil moisture profiles of distant locations and
results improve when only closer locations are used. For the
profile shape correction at HOAL, d ≤ 50 cm, r ≤ 100 m, and
k = 3 results in KGEpc of 0.046. This is in agreement with the
performance improvement for the other field sites. The KGE
emphasizes the match of the soil moisture dynamics between
the two time series. The weighting introduces a dynamic on
sensor network data [θSN(wt)] closely matching the higher
variability observed in CRNS-derived soil moisture time
series θCRNS (high KGE values for the reference perfor-
mance). In contrast, the profile shape correction is based on
the ratio of the simple average and the weighted soil moisture
profile, and higher variability remains within θCRNS(pc) com-
pared with variability in θSN(avg). Consequently, the KGEpc
does not reach the reference performance. Considering the
weighting is more important for the improvement of KGE
for three of the four field sites (KAT, HOAL, and SRER)
than addressing the systematic deviation from AHP. The
following results are discussed considering only the RMSE
as a performance measure. However, the results found using
the RMSE also apply for the other considered performance
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F I G U R E 3 Results of the analysis conducted within this study, performance is assessed using the root mean square error (RMSE). For the
maximum radial distance (r) and maximum depth (d), the number of locations to apply the profile shape correction (x axis, k) is changed. This results
in RMSEpc (profile shape correction performance) values (y axis) for all possible location combinations (numbers given in gray below the box plots,
a maximum of 800 combinations was set). The black line marks the RMSEbase (baseline performance), the dashed the RMSEbias (bias performance),
and the red line the RMSEref (reference performance). HOAL, Hydrological Open Air Laboratory; KAT, Katharinentaler Hof; SEL, Selhausen; SRER,
Santa Rita Experimental Range

measures (see Appendix D with a table also showing MAE
and NSE for all field sites and a more detailed analysis with
all four performance measures for the field site KAT).

Figure 3 gives an overview of RMSEpc for varying the
number of soil moisture profiles k used to calculate the
profile shape correction. The box plots shown in the graph
consist of different numbers of samples due to combinatorics;
the actual number of samples is given in numbers below the
boxes. It is shown that the use of more locations to derive the
field mean soil moisture profile θp(k,r,d) decreases the median
of the RMSEpc and the range of the results. The RMSEpc for
using all available locations at the field sites for maximum
radial distance and depth is the same as presented in Table 2.
Similar results were found by Brocca, Melone, Moramarco,
and Morbidelli (2010) when comparing time series of
randomly sampled locations to the mean of a sensor network.

3.2 Influence of the measurement depth of
the sensor network

We analyzed the depth to which information of a distributed
sensor network is needed to deliver good results. For HOAL
and SEL, only measurements down to 50 cm were available,
whereas for SRER and KAT, point measurements extend

down to 70 and 90 cm, respectively (Figure 2). For all field
sites, the depth of the point measurements was reduced to
the two shallowest depths for applying the profile shape cor-
rection, and deeper measurements were added subsequently
for the analysis. Reduced measurement depth influences the
estimation of the penetration depth and the calculation of
vertical weights.

Figure 4 shows the results of considering different maximal
measurement depths for the profile shape correction for all
field sites. All available locations of the sensor networks
were used to achieve most stable results (Section 3.1).

The RMSEpc values decrease using depths down to 50 cm
for KAT, SEL, and SRER. For SEL and HOAL, only mea-
surements down to 50-cm depth are available, and for SEL,
different measurement depth were available at different loca-
tions. Considering depths down to 50 or 60 cm leads to best
RMSEpc values for KAT, and values increase with more shal-
low or deeper depths. For SRER a slight improvement can be
observed using depth down to 70 cm, which can be attributed
to the generally higher penetration depth of the CRNS at the
field site due to low soil moisture values. At SEL also, using a
depth down to 50 cm leads to better results, even though only
the locations farther away are equipped with sensors to this
depth. Comparable results were found by Ragab et al. (2017),
where CRNS was shown to be representative for soil moisture
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F I G U R E 4 RMSEpc (profile shape correction performance using the root mean square error [RMSE]) for considering different depth for the
profile shape correction using all available locations of the sensor networks. The red line marks the RMSEref (reference performance), the black line
marks the RMSEbase (baseline performance), and the dashed line marks the RMSEbias (bias performance). Note for SEL that not all depths were available
at each of the measurement locations (10-cm depth only available for the closest locations, Figure 2). HOAL, Hydrological Open Air Laboratory; KAT,
Katharinentaler Hof; SEL, Selhausen; SRER, Santa Rita Experimental Range

averaged over a depth of 10–60 cm, which was different from
the shallower theoretical effective penetration depth.

At HOAL, however, lower RMSEpc values could be
achieved when using only measurements down to 20 cm,
compared with using measurements down to 50 cm. At this
field site, the question of which measurement depth leads to
good results cannot be separated from the question of which
radial distance we use to achieve good results from the profile
shape correction, which is discussed in the section below.

3.3 Influence of the radial distance of point
locations to the CRNS

To analyze the effect of the radial distance on the resulting
RMSEpc, an analysis was conducted considering only loca-
tions within a certain radius. The radius and thus the number
of point locations was subsequently increased. Figure 5 shows
the results for all field sites using all available locations for
the profile shape correction (gray numbers below bars) and
measurement depth of 50 cm. At SEL, only the 18 locations
with depth down to 50 cm are included in the analysis.

For KAT, SEL, and SRER, RMSEpc values are below
RMSEref for all distances. The radial distances of sensor
network locations at these field sites approximately equals
the minimum horizontal footprint radius at these field sites

(110 m for KAT and SEL, 180 m for SRER). Only at HOAL
locations are also located at greater distances than the mini-
mum horizontal footprint radius (120 m). For HOAL, using
only locations within a radius of 150 m leads to RMSEpc
values below the RMSEref. Using point information of
locations with a larger radial distance increases the RMSEpc
values. This is also the reason for the higher RMSEpc value
compared with RMSEref, as presented in Table 2, where
all point locations of the sensor network were used for the
profile shape correction. The better performance of the
20-cm measurement depth in the section above is explained
by considering that the penetration depth of the CRNS sensor
decreases with increasing distance from the sensor. Thus,
using measurement depths down to 20 cm improves the result
for locations farther away, because shallow measurements
are more representative of the areal average sensed by CRNS
(Köhli et al., 2015; Schrön et al., 2017).

At SEL, improved results from locations within a close
range to the CRNS sensor were expected, because of the sen-
sitivity response of the sensor (Köhli et al., 2015). However,
these locations only had reference measurements down to
20-cm depth, and the RMSEpc for using all locations within
a radius of 11 m from the sensor is 0.047 m3 m−3 (higher
than the RMSEref), showing the importance of the measure-
ment depth to be representative of the effective penetration
depth.
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F I G U R E 5 RMSEpc (profile shape correction performance using the root mean square error [RMSE]) considering different radial distances of
the point soil moisture locations from the cosmic-ray neutron sensor (CRNS). With increasing radii, the number of available locations used for the
profile shape correction increases (gray numbers below boxes). The red line marks the RMSEref (reference performance), and the black line marks
the RMSEbase (baseline performance), and the dashed line marks the RMSEbias (bias performance). HOAL, Hydrological Open Air Laboratory; KAT,
Katharinentaler Hof; SEL, Selhausen; SRER, Santa Rita Experimental Range

3.4 Optimum number of point locations for
profile shape correction

The sections above show the influence of the number of
profiles, the measurement depth, and the distance of point
locations on RMSEpc. The best results can be achieved by
using a measurement depth of at least 50 cm and using
locations within the minimum effective radius. When more
locations are considered, more stable and lower RMSEpc val-
ues are obtained. However, the goal for pragmatic monitoring
is to be as parsimonious as possible with the additional profile
measurements accompanying a CRNS. Figure 6 shows the
results of using up to three point locations (k) for the profile
shape correction for a radial distance r ≤ 75 m (only HOAL
r ≤ 100 m, to get a sufficient number of locations at all) and
a depth d ≤ 50 cm for all field sites.

The results show that one location used for the profile
shape correction already leads to improvement and RMSEpc
values below the RMSEbase, except for HOAL with a median
even below the RMSEbias. The median decreases from
RMSEbase to RMSEpc by 0.018 (38%), 0.022 (33%), 0.007
(11%), and 0.019 (53%) at the field sites KAT, SEL, HOAL,
and SRER, respectively. Using three locations to derive
the field mean soil moisture profile and apply the profile
shape correction leads to median RMSEpc values below the
RMSEref for all field sites.

Brocca et al. (2010) also found a maximum of four loca-
tions of their sensor network cluster to lead to sufficiently
low RMSE to validate remote-sensing products. At the field
scale, the same number of locations was found to correctly
represent the average temporal variability of the soil moisture
with high accuracy.

In some cases, the profile shape correction gives even bet-
ter results than the weighting of a complete sensor network.
For a sensor network, many locations are necessary to obtain
a representative absolute value of the spatial mean, and
different wetness conditions can still lead to different patterns
of soil moisture within the field (Baroni, Ortuani, Facchi,
& Gandolfi, 2013). The weighting of the sensor network is
based on the absolute soil moisture values, and the influence
of less representative measurements might increase through
the weighting procedure (Brocca et al., 2010; Nguyen et al.,
2017). Cosmic-ray neutron sensing, on the other hand, always
senses an integral value independent of the small-scale het-
erogeneity, even though changes in horizontal footprint and
effective measurement depth are observed. Only a few mea-
surement locations are representative of the field-scale soil
moisture profile and wetting or drying states that influence
the CRNS vertical sensing depth. The correction factor is
solely based on the ratio of the weighted and nonweighted soil
moisture profile. Because only the ratio is used, the influence
of absolute soil moisture values is reduced, and generally
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F I G U R E 6 Results in RMSEpc (profile
shape correction performance using the root
mean square error [RMSE]) for using one to
three locations (k) for the profile shape
correction for all field sites (depth d ≤ 50 cm,
radial distance r < 75 m for Katharinentaler Hof
[KAT], Santa Rita Experimental Range
[SRER], and Selhausen [SEL] and r ≤ 100 m
for Hydrological Open Air Laboratory
[HOAL]). The black line marks the RMSEbase

(baseline performance), the dashed line marks
the RMSEbias (bias performance), and the red
line marks the RMSEref (reference
performance). Numbers below the boxes show
the amount of location combinations contained
in the boxes

wetter or dryer locations sufficiently characterize the profile
shape.

3.5 Influence of the vertical weighting
method

Within this study, it was also tested whether the choice of the
vertical weighting method influences the results. The results
presented above are based on DK (Section 2.2).

Using DF for the profile shape correction produces similar
results. The general trend as shown in Figure 3 for the analysis
of the profile shape correction is the same for both weighting
methods—using more locations gives lower and more stable
results (data not shown). Also, the use of a measurement
depth of up to 50 cm and a radial distance of <75 m (100 m
for HOAL), as well as the number of locations needed to
achieve results as good as the RMSEref, is confirmed using
DF (data not shown). In Figure 7, the weighting options are
compared using k ≤ 3, d ≤ 50 cm, and r ≤ 75 m (for HAOL,
r ≤ 100 m). Median RMSEpc values differ by a maximum
of 0.002 m3 m−3 for the field sites KAT and SEL (Figure 7),
with DK performing better at KAT and DF performing better
at SEL. However, the range of RMSEpc tends to be greater
when using the Franz weighting approach. For HOAL and
SRER, the differences are even smaller.

For the calibration and weighting of a sensor network to
compare water content with CRNS measurements, the Köhli
nonlinear vertical and horizontal weighting approach outper-

forms the Franz approach in the studies of Schrön et al. (2017)
and Cai et al. (2018), whereas Nguyen et al. (2017) found that
a linear weighting leads to better results. Dimitrova-Petrova
et al. (2020) could not find a difference using either of the
vertical weighting options on the estimated near-surface
water storage used in rainfall-runoff modeling. This was
also confirmed for the vertical weighting in the study of
Sigouin, Dyck, Si, and Hu (2016). Although this might also
depend on site-specific characteristics, to define the general
profile shape within the profile shape correction, linear and
nonlinear vertical weighting options seem to be equally
applicable. We also conclude that both vertical weighting
options can be used for the profile shape correction.

3.6 Example of applying the profile shape
correction

Figure 8 shows the time series of soil moisture and the
application of the profile shape correction for the field site
KAT in relation to precipitation (Panel a). Panel b shows
θCRNS, θSN(avg), and the standard weighting of the sensor
network θSN(wt). Because of the sensitivity of CRNS to upper
soil layers, precipitation events and resulting wetting fronts
θCRNS show higher variability within the soil moisture time
series compared with θSN(avg) (Franz, Zreda, Ferre, et al.,
2012), and the systematic deviation of AHP contained in
θCRNS leads to an offset between the two time series. The
inclusion of AHP and the weighting in θSN(wt) accounts well
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F I G U R E 7 Results in RMSEpc (profile
shape correction performance using the root
mean square error [RMSE]) of using the
different vertical weighting options DK

(following Köhli et al., 2015) and DF (following
Franz, Zreda, Ferre, et al., 2012) for all field
sites. The correction is based on locations k ≤ 3
profiles with depth d ≤ 50 cm, radial distance
r ≤ 75 m (except for HOAL r ≤ 100 m). The
total number of possible combinations of
locations is given in gray numbers below the
boxes. The red line marks the RMSEref

(reference performance), the black line marks
the RMSEbase (baseline performance), and the
dashed marks the RMSEbias (bias performance).
HOAL, Hydrological Open Air Laboratory;
KAT, Katharinentaler Hof; SEL, Selhausen;
SRER, Santa Rita Experimental Range

for this, and differences from θCRNS and are small. Deviations
between θSN(wt) and θCRNS in the second part of June can be
observed as a consequence of precipitation events that are
reflected in the CRNS water content but are not visible in the
time series of the sensor network because of the loamy soils
and the shallowest point sensor installed at 10-cm depth only.
Also, during the drying period after the large precipitation
event at the beginning of June, θSN(wt) and θCRNS deviate.
We observed periods for other field sites where the weighting
did not account well for CRNS in cases of a drying soil
moisture profile (data not shown). Deviations between θCRNS
and θSN(avg) are shaded in red in Panel b. For this example,
the profile shape correction factor (Panel c) is based on the
median of the results as presented in Figure 6 [field mean
profile θp(k,r,d) with k = 3, r ≤ 75 m, and d ≤ 50 cm] to
calculate θCRNS(pc) (Panel d). The θCRNS(pc) better matches
the absolute values of θSN(avg) in comparison with θCRNS, and
only for the driest time of the time series after middle of July,
higher deviations occur (shaded in blue) and θCRNS(pc) under-
estimates θSN(avg) clearly. The θCRNS(pc) still shows a greater
dynamic than observed in data from the sensor network. This
is, to a minor degree, a consequence of statistical variability in
the neutron signal but is also due to the high sensitivity of the
CRNS to upper soil layers (Franz, Zreda, Ferre, & Rosolem,
2013; Lv, Franz, Robinson, & Jones, 2014), whereas the
shallowest measurements of the sensor network are at
10-cm depth.

Deviations between θSN(wt) and θCRNS as well as the
deviations between θCRNS(pc) and θSN(avg) are shown as

time series in Panel e for better comparison. They are very
similar until the middle of June, showing that the profile
shape correction performs as well as the weighting of the
sensor network. From the middle of June on, the deviations
differ as a consequence of using three locations for the
profile shape correction, compared with using all locations
for weighting the soil moisture network. During this drying
period, soil moisture sensors at these three locations have
a drift compared with the field average soil moisture. The
deviations are similar during the entire season, when the
profile shape correction is based not on three, but all avail-
able locations (data not shown). The drift when using three
locations, however, does not generally lead to worse results,
the profile shape correction performs better until the second
week of June (deviations closer to 0), and only afterwards the
deviations of the profile shape correction are higher.

Time series of the other three field sites confirm the
applicability of the profile shape correction (data not shown).
As soon as θSN(wt) mimics the dynamics of θCRNS well, the
correction also leads to θCRNS(pc) values close to θSN(avg).
For SRER, for example, θSN(wt) follows θCRNS dynamics
very well during precipitation events. During dry times
however, the time series deviate clearly, and accordingly the
profile shape correction and resulting θCRNS(pc) do not match
θSN(avg). A similar case was found for another field site with
heavy clay soils, influence of shallow groundwater, and thus
a very strong soil moisture gradient within the profile during
dry periods (0.2 m3 m−3 at 5-cm depth to 0.5 m3 m−3 at
20-cm depth, data not shown). For such periods, we observed
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F I G U R E 8 Example of the profile shape correction at the field site Katharinentaler Hof (KAT). Panel a shows the daily precipitation. Panel b
shows the time series of soil moisture derived from cosmic-ray neutron sensing (θCRNS), the volumetric average soil moisture from the sensor network
[θSN(avg)], and the weighted soil moisture following the standard approach [θSN(wt)]. Panel c shows the correction factor fpc based on a field mean
profile θp(k ,r ,d) with locations k = 3, radial distance r ≤ 75 m, depth d ≤ 50 cm. Panel d again shows θCRNS and θSN(avg) and the profile shape corrected
cosmic-ray neutron sensing [θCRNS(pc)]. Panel e shows the deviations between soil moisture time series as shown in shaded areas in Panels b and d

the weighting function and resulting θSN(wt) not being
able to reproduce θCRNS. In contrast, Franz, Zreda, Ferre,
et al. (2012) found lower deviations during evaporation and
drainage periods than for infiltration fronts from simulation
results. The systematic deviations we observe might be an
issue of how to obtain the CRNS effective penetration depth
for the weighting (d* or D86, depending on weighting option,
see Section 2.2 and equations therein), which is calculated

from the average water content of a profile. The average might
not be sufficient to represent how deep the neutrons actually
travel. A consideration of the depth-dependent distribution
of soil moisture to derive the effective penetration depth of
the sensor might be necessary. To assess the correct working
of the weighting function was not the aim of this study, but
this should be investigated in future research with the help
of numerical analyses and similar modeling frameworks as
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studied by Franz, Zreda, Ferre, et al. (2012), including soil
moisture and neutron simulations.

There might be further reasons for deviations between
CRNS and a sensor network. The latter detects only soil
moisture, whereas CRNS potentially also detects biomass,
interception, and ponding water (Baroni & Oswald, 2015).
Also, a change in bulk density, as it might occur with changing
wetness conditions or during a season within agricultural field
sites or changes in organic carbon stocks, might influence the
CRNS measurements (Avery et al., 2016; Wuest, 2014, 2015).
Cosmic-ray neutron sensing is very sensitive to the shallow
soil layers, where often no point sensors are installed (Lv et al.,
2014), and the point sensors cover only specific installation
depths, which can lead to a mismatch in vertical representa-
tiveness and differences between θCRNS and θSN(wt).

3.7 Selection of the locations to measure the
soil moisture profile

The analyses conducted showed that a profile shape cor-
rection based on one to three additional point soil moisture
sensor profiles achieves good performance in addressing
the vertical sensitivity of the CRNS signal. The analyses
also showed that soil moisture profiles should be located
relatively close to the probe where the CRNS signal is more
sensitive to soil moisture dynamics. These conclusions are
supported by the results obtained at four experimental sites
that represent different soil hydrological conditions. For this
reason, we recommend installing soil moisture sensor profiles
along with a standard CRNS and applying the profile shape
correction. The additional point locations, however, should
be carefully positioned based on site characteristics and
additional considerations. First of all, when recommending
additional profile measurements, it is important to underline
that the goal of these additional measurements is not to find
the absolute soil moisture values or the time-stable locations
that best represent the average soil moisture of the field site.
Of course, having a single time-stable location to comple-
ment the CRNS measurements (as determined in Nguyen
et al., 2017, 2019; Zhu et al., 2017) could be an advantage.
However, this would require additional prior survey because
it is not possible to determine such a location before the
installation of the point sensors (Vanderlinden et al., 2012).

In contrast, the aim of the additional profile measurements
is to characterize the shape of the soil moisture profile follow-
ing infiltration fronts (e.g., by precipitation) and drying events
(by atmospheric forcing or soil moisture redistribution) within
the CRNS footprint. Since these are similar throughout a field
site, even though some locations might be generally wetter
or dryer than the average of the field (Hupet & Vanclooster,
2002), the selection of the location should be less critical.

We also addressed this issue with the data collected at the
field site SEL, where a detailed map of geophysical properties
(z-transformed electromagnetic conductivity distribution) is
available (Rudolph et al., 2015). Therefore, we separated the
sensor network locations into coarse grained areas (“dry”)
and areas with fine material fillings (“wet”). Results showed
that, probing only “wet” or “dry” locations, RMSEpc differed
by only 0.002 cm3 cm−3 from results presented above
(Table 2, Section 3.1) and thus can be neglected based on
our results. Similar conclusions were obtained by a modeling
study from Franz, Zreda, Ferre, and Rosolem (2013) and
Baroni et al. (2018), where it was shown that CRNS signal
was not sensitive to horizontal soil heterogeneity.

Significant differences might be found, however, when
vegetation types or soil management (e.g., tillage and irriga-
tion) lead to heterogenic profile shapes. For field sites with
known and pronounced heterogeneities within the CRNS
footprint, we suggest to cover those areas with the additional
point measurements to derive a representative profile shape
(Brocca et al., 2010; Sigouin et al., 2016). Another option
could be to use soil hydrological models instead of measure-
ments to predict the soil moisture profile shape. This would
avoid the need of invasive measurements and would also
have the advantage to be able to predict the shallow parts
of the root zone, where CRNS is very sensitive but is often
not monitored with point sensors (Lv et al., 2014). However,
we also acknowledge that a model comes with uncertainties
regarding input and parameters (Sigouin et al., 2016). Addi-
tionally, time and expertise are required for setting up and
evaluating the model. For this reason, it might be easier to use
complementary measurements as shown in this study, and
we suggest further research on developing simple modeling
approaches to predict the soil moisture profiles.

4 SUMMARY AND CONCLUSIONS

Cosmic-ray neutron sensing-derived soil moisture within this
study represents a total water content, including additional
hydrogen pools (AHP) and an inherent weighting resulting
from the sensitivity of the method. When comparing CRNS-
derived soil moisture to the simple average retrieved from a
soil moisture sensor network, great deviations occur (baseline
performance), because of the inherent weighting and AHP
contained in CRNS-derived soil moisture. To achieve high
levels of accordance (reference performance), the CRNS-
derived soil moisture is evaluated against a CRNS-specific
weighted average from a soil moisture sensor network that
accounts for this sensitivity and also includes AHP. The
systematic deviation of AHP is assessed with AHP subtracted
from CRNS-derived soil moisture and a comparison with the
simple average of the sensor network (bias performance). On
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the contrary, the weighting effect so far could only be consid-
ered when a forward operator (Shuttleworth et al., 2013) is
coupled to a soil–hydrological model providing considerable
limitations on the direct use of CRNS-derived soil moisture.

Within this study, a new and simple profile shape correc-
tion (Baroni et al., 2018) to account for the vertical sensitivity
of CRNS-derived soil moisture by correcting for the depth-
dependent distribution of soil moisture within the profile was
systematically tested based on four datasets of CRNS-derived
soil moisture and an accompanying distributed sensor net-
work. The sensor network was randomly sampled for different
numbers of locations and different distances and depths.
Different vertical weighting options were also considered.

The results show that the profile shape correction on
CRNS-derived soil moisture leads to a similar “reference per-
formance” when compared with the averaged sensor network.
Thus, the correction effectively reduces the influence of the
CRNS vertical sensitivity and resulting soil moisture time
series. The performance and stability of the results decreases
with decreasing number of locations. However, if the depth
and distance of the point sensor locations used for the profile
shape correction extend down to at least 50 cm and are
located within the minimum effective radius of the CRNS,
one profile location can already improve results considerably
(better than baseline performance), and with three profile
locations, the reference performance is met. Between a linear
vertical weighting and a more refined exponential vertical
weighting (also depending on other field site conditions), no
clear difference could be found.

When looking in detail at the soil moisture dynamics, the
results confirm the satisfactory performance of the profile
shape correction. However, we also identified periods, when
the weighting approach does not improve the comparison,
neither when using soil moisture network nor profile shape
correction. The reason is attributed to a strong soil moisture
gradient within the drying profile during these periods. Fur-
ther research should be conducted to better understand these
deviations and evaluate the performance of the weighting
function for these cases.

Finally, results from the bias performance show that consid-
ering both the weighting and AHP is equally important. The
former is especially important when considering performance
measures assessing the time series dynamics. The latter can
become more important for long-term experiments or cropped
fields where AHP dynamics should be expected as well.

In conclusion, when CRNS is intended to be used as a
method to monitor soil moisture, we recommend to addi-
tionally install a small measurement cluster with one to three
additional point soil moisture sensor profiles and apply the
profile shape correction as demonstrated in our study. Results
from the four experimental datasets lead to the recommenda-
tion to install the additional soil moisture profiles down to a
depth of 50 cm and within a radius of 100 m around the CRNS.

Although this additional installation may decrease the
practical advantage of using CRNS as a noninvasive and
stand-alone method, the corrected CRNS-derived soil mois-
ture as deprived of the inherent weighting in the signal is more
straightforward to interpret. The corrected CRNS-derived
soil moisture better represents the mean soil moisture of its
support volume and should perform better when used as direct
input (e.g., top soil storage) for hydrologic models or for esti-
mation of water fluxes (Dimitrova-Petrova et al., 2020; Franz
et al., 2020; Nguyen et al., 2019; Peterson et al., 2016). These
hypotheses should be tested in future studies. Deploying a
few additional in situ soil moisture sensors that accompany
the CRNS have additional advantages, as the contribution
of biomass, interception, and ponding can be better assessed
by using a simple scaling function (Baroni & Oswald, 2015;
Nguyen et al., 2017). Further, the profile measurements might
be used to derive depth-specific estimates from the integral
CRNS soil moisture, which could be of interest for specific
model applications. The proposed profile shape correction
method might also be applicable for other proximal soil
moisture sensing methods, such as gamma-ray spectroscopy
(Baldoncini et al., 2018; Strati et al., 2018), because its signal
is governed by a similar sensitivity as that of CRNS. Further
research could also be conducted to identify alternative, less
invasive approaches to estimate the soil moisture profile and
use them to implement the profile shape correction.
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APPENDIX
A Corrections of raw neutron counts
The raw neutron counts (Nraw, counts per hour) as detected
by the probe have to be corrected for variations in pressure
(Patm, mbar), incoming radiation (Ninc, counts per hour), and
air humidity (hair, g cm−3):

𝑁 = 𝑁raw ⋅ exp
(

𝑃atm−𝑃 ref
atm

Λ

)
⋅
(

𝑁 ref
inc

𝑁inc

)
⋅
[
1 + 0.0054

(
ℎair − ℎrefair

)] (A1)

where Λ is the attenuation length (mbar; for calculation, refer
to Dunai, 2000) and the reference values for air pressure and
incoming radiation (𝑃 ref

atm, 𝑁 ref
inc ) are usually the mean over the

measurement period and the reference value for air humidity
(ℎrefair ) is set to 0 g m−3 (Bogena et al., 2013; Rosolem et al.,
2013; Zreda et al., 2012).

B Additional soil hydrogen pools
Organic matter consists of different compounds like humic
acids and celluloses or lignin. The ratio of oxygen and
hydrogen contained in organic matter is approximately the
same as in a water molecule, and the weight fraction of
this soil water equivalent (SOW) is approximately the same
weight percentage as the carbon fraction (Cabaniss, Madey,
Leff, Maurice, & Wetzel, 2005; Nelson & Sommers, 1996;
Pribyl, 2010). Thus, either organic carbon can be determined
(e.g., with dry combustion; Chatterjee, Lal, Wielopolski,
Martin, & Ebinger, 2009), or organic matter (OM) of a soil
can be determined by the loss-on-ignition method (400 ˚C,
16 h; Davies, 1974; Jensen, Christensen, Schjønning, Watts,
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equivalent (SOW, g g−1) can be determined by

SOW = OM
2

The traditional conversion factor of 1.724 is not appropriate
and should not be used anymore (Pribyl, 2010).

Lattice water (LW, g g−1) is determined by loss-on-ignition
by heating soil samples to 1,000 ˚C (after having removed
organic matter to avoid measuring the decomposition of
both) for 12 h (Zreda et al., 2012). In this study, the two
additional soil hydrogen pools are assumed to be static and
are converted to volumetric additional soil hydrogen pools
AHP (m3 m−3) by multiplying them with the bulk density ρb
(g cm−3) of the soils.

C Rescaled radius and horizontal weighting
The rescaled radius used for the calculation of the penetration
depth D86 and used in the horizontal weighting is calculated
by applying a pressure and a vegetation correction:

𝑟∗ = 𝑟

𝑓p
/
𝑓veg

𝑓p = 0.5
0.86 − 𝑒−𝑃atm∕𝑃ref

𝑓veg = 1 − 0.17
(
1 − 𝑒−0.41ℎveg

)(
1 + 𝑒−9.25θp

)

Pref is the standard atmospheric pressure at sea level
(1,013.25 mbar), Patm the measured atmospheric pressure.
hveg is the vegetation height (cm). The θp is the equally
weighted soil moisture for the calculation of D86, and for the
calculation of horizontal weights, it is the depth-weighted
soil moisture of each location.

The horizontal weighting of depth weighted profile soil
moisture follows the procedure described in Köhli et al.
(2015) and Schrön et al. (2017)

wt (𝑟) =
{

𝐹1𝑒
−𝐹2𝑟∗ + 𝐹3𝑒

−𝐹4𝑟∗ , 1m < 𝑟 ≤ 50m
𝐹5𝑒

−𝐹6𝑟∗ + 𝐹7𝑒
−𝐹8𝑟∗ , 50m < 𝑟 < 600m

For parameter functions Fi and parameter values refer
to Schrön et al. (2017). They also describe a weighting for
distances 0 m < r ≤ 1 m, which is not applicable within this
study, as no soil moisture sensors were placed this close to
the CRNS.

D Analysis using other performance measures
Table D1 lists all performance measures using maximum
available locations and measurement depth for the four field
sites. Results for RMSE and KGE are discussed in the main
text (Section 3.1). In the same way as RMSE values are
calculated within the main analysis, MAE, NSE, and KGE

are calculated for a baseline performance [comparing θSN(avg)
and θCRNS], assessing the bias introduced by AHP [bias
performance, by comparing θCRNS(vol) with θSN(avg)], for a
reference performance [comparing θSN(wt) with θCRNS] and
assessing the results from the profile shape correction for
each of the measures (RMSEpc, MAEpc, NSEpc, and KGEpc).

Results for the MAE closely follow the results from RMSE,
with MAEbias ranging between MAEbase and MAEref and,
except for HAOL, even further improvement in the measure
for MAEpc. For HOAL, the MAE for all comparisons are
within a close range, different from MAEs at the other field
sites. This is likely explained with a general shift between
θSN and θCRNS over the measurement period that is attributed
to biomass change and influence of agricultural management
operations. The HOAL site also shows worse performance
than the other field sites for the measures dealing with time
series dynamics (NSE and KGE) for the reference perfor-
mance and the profile shape correction. For HOAL, taking
only the three locations within a radial distance d ≤ 100 m
leads to improved performance of the profile shape correction
with 0.023 and 0.046 for NSEpc and KGEpc, respectively.
Clearly NSE and KGE show that dealing with the weighting
either of the sensor network [θSN(wt)] as in the reference
performance or the unweighting of CRNS as in the profile
shape correction improves the time series dynamics.

Shown in Figures D1–D4, analogous to the analysis on
RMSE in the main text, is a complete analysis of the profile
shape correction using other performance measures for the
field site KAT

For all performance measures, the same trend can be
observed (Figure D1). Better and more stable values of the
measures are achieved with increasing sample size. The
systematic deviation due to the AHP is assessed with the bias
performance, and according to the RMSE, the MAE explains
approximately half of the improvement of the reference
performance. The NSE and KGE show less and almost
no improvement, respectively, for the bias performance
compared with the baseline performance at this field site.
Especially for the KGE, the improvement in performance is
mostly explained by dealing with the weighting. Results from
the profile shape correction reach the reference performance
for RMSE and MAE. For KGE and NSE, the results of the
profile shape correction stay between the reference and the
bias performance.

As for the analysis for RMSE, best MAEpc and NSEpc are
achieved for 50- to 60-cm depth. For KGEpc, better results
can be achieved for using measurement depth down to 70 cm
(Figure D2).

Results from the analysis for radial distance for the other
performance measures confirms results from the main
analysis (Figure D3) for this field site.

Figure D4 shows the results of using one to three locations
(k) within a distance of r ≤ 75 m around the CRNS and
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F I G U R E D 1 Comparison of the complete analysis for the performance measures for depth d = 90 cm, radial distance r = 150 m, and decreasing
sample size k at the field site Katharinentaler Hof (KAT). Panels show the profile shape correction performance for root mean square error, mean
absolute error, Kling–Gupta efficiency, and Nash–Sutcliffe efficiency (RMSEpc, MAEpc, KGEpc, and NSEpc). Baseline performance for each measure
is marked as a black line, the reference performance is marked as a red line, and the bias performance is marked with a black and dashed line. The
RMSEpc is the same as presented in Figure 2

F I G U R E D 2 Results from the analysis for the influence of the measurement depth (d) for sample size k = 15 and radial distance r = 150 m
at the field site Katharinentaler Hof (KAT). Panels show the profile shape correction performance for root mean square error, mean absolute error,
Kling–Gupta efficiency, and Nash–Sutcliffe efficiency (RMSEpc, MAEpc, KGEpc, and NSEpc). Baseline performance for each measure is marked as
a black line, the reference performance is marked as a red line, and the bias performance is marked with a black and dashed line. The RMSEpc is the
same as presented in Figure 4.
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F I G U R E D 3 Results from the analysis for the influence of the radial distance (r) for d = 50 cm at the field site Katharinentaler Hof (KAT).
Number of point locations (k) within the considered distances are given in grey numbers. Panels show the profile shape correction performance for
root mean square error, mean absolute error, Kling–Gupta efficiency, and Nash–Sutcliffe efficiency (RMSEpc, MAEpc, KGEpc, and NSEpc). Baseline
performance for each measure is marked as a black line, the reference performance is marked as a red line and the bias performance with a black and
dashed line. The RMSEpc is the same as presented in Figure 5.

F I G U R E D 4 Comparison of the analysis for the performance measures for depth d = 50, radial distance r = 75, and sample size k = 1, 2, and
3 at the field site Katharinentaler Hof (KAT). Panels show the profile shape correction performance for root mean square error, mean absolute error,
Kling–Gupta efficiency, and Nash–Sutcliffe efficiency (RMSEpc, MAEpc, KGEpc, and NSEpc). Baseline performance for each measure is marked as
a black line, the reference performance is marked as a red line, and the bias performance is marked with a black and dashed line. The RMSEpc is the
same as presented in Figure 6.
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T A B L E D 1 The performance measures for all field sites. Baseline performance (base) compares average soil moisture from the sensor network
[θSN(avg)] and soil moisture derived from cosmic-ray neutron sensing (CRNS) (θCRNS). The bias performance (bias) assesses the influence of only
subtracting additional hydrogen pools (AHP) from CRNS-derived soil moisture resulting in θCRNS(vol) (volumetric CRNS-derived soil moisture) and
compares it with θSN(avg). For the reference performance (ref), the weighted sensor network, including AHP [θSN(wt)] is compared with θCRNS, and the
performance of the profile shape correction (pc) is assessed by comparing corrected CRNS-derived soil moisture [θCRNS(pc)] with θSN(avg)

Sitea Performance RMSE MAEb NSEc KGEd

–m3 m−3–

KAT base 0.47 0.037 0.12 0.59

bias 0.038 0.031 0.40 0.60

ref 0.032 0.025 0.86 0.86

pce 0.031 0.024 0.62 0.80

HOAL base 0.064 0.050 −0.13 0.44

bias 0.059 0.049 0.02 0.45

Ref 0.054 0.045 0.32 0.54

pce 0.059 0.048 0.04 0.23

SEL base 0.066 0.059 0.17 0.58

bias 0.046 0.036 0.52 0.66

ref 0.046 0.036 0.58 0.70

pce 0.041 0.034 0.67 0.70

SRER base 0.037 0.029 −4.07 −0.17

bias 0.026 0.019 −1.50 −0.03

Ref 0.019 0.013 0.47 0.68

pce 0.016 0.011 0.68 0.60

aKAT, Katharinentaler Hof; HOAL, Hydrological Open Air Laboratory; SEL, Selhausen; SRER, Santa Rita Experimental Range.
bMAE, mean absolute error.
cNSE, Nash–Sutcliffe efficiency.
dKGE, Kling–Gupta efficiency.
eProfile shape correction is based on different measurement depths, radial distances, and sample sizes (d, r, and k) for the field sites: KAT (90, 150, and 15), HOAL (50,
320, and 16), SEL (50, 100, and 18), and SRER (70, 200, and 18).

measurement depth d ≤ 50 cm. As for the RMSEpc, the
MAEpc reaches reference performance. For KGEpc and
NSEpc, the results stay above reference performance but are
clearly lower performance than only handling the systematic
deviation of the AHP. Although the weighting introduces
very similar dynamics in the sensor network [θSN(wt)], as
observed for the CRNS time series, the profile shape cor-
rection on CRNS-derived soil moisture does diminish some
but not all of these dynamics in θCRNS(pc) (see Section 3.6

and Figure 8). This explains why the performance measures
dealing with the time series dynamics (KGE and NSE) do
not reach reference performance. However, in particular,
results from KGE show that in terms of time series dynamics,
dealing with the inherent weighting can be more important
than subtracting AHP. Thus, even with slight differences as
observed for measurement depth with the KGE (Figure D2),
the analysis using other performance measures confirms
results drawn from the RMSE analysis.
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