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ABSTRACT 

Injection Of Iodoacetic Acid Into Pre-Rigor Bovine Muscle Simulates Dark Cutting Conditions 

by 
 

Jared Buhler, Master of Science 
 

 Utah State University, 2021  
 

Major Professor: Dr. Sulaiman K. Matarneh 
Department: Nutrition, Dietetics, and Food Sciences 
 
The purpose of this study was to develop an in situ model for dark cutting beef. Iodoacetic acid 

(IAA) was injected at different concentrations (0, 0.625, 1.25, 2.5, 3.75, 5, or 10 µmol/g of muscle) 

into pre-rigor bovine longissimus thoracis et lumborum (LTL) muscle samples, and pH and color 

were evaluated over a 48 h period. Injection of IAA blunted muscle pH decline and lowered (P ≤ 

0.05) lightness (L*), redness (a*), and yellowness (b*) values in a concentration dependent 

fashion. In a follow-up study, LTL muscle samples were injected with 5 µmol IAA/g of muscle to 

test whether IAA maintains its effect over a 336 h post-mortem storage period. In addition to 

inhibiting pH decline and decreasing color values, IAA increased (P ≤ 0.05) LTL muscle water 

holding capacity (WHC) and firmness throughout the 336 h post-mortem storage period. 

Collectively, these data suggest that pre-rigor injection of IAA generates beef with dark cutting-

like characteristics. 

(50 pages) 
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PUBLIC ABSTRACT 

Injection Of Iodoacetic Acid Into Pre-Rigor Bovine Muscle Simulates Dark Cutting Conditions 

Jared Buhler 

Following the harvest of an animal, muscle will continue to produce energy in an attempt to stay 

alive, primarily through the pathway of glycolysis. This occurs in the form of anaerobic (oxygen-

free) metabolism of glucose and glycogen, which causes the meat to acidify. This acidification 

process is important for proper meat quality development and when insufficient glycolysis occurs 

it can cause a meat defect known as dark cutting. This defect causes the color of the muscle to 

become very dark, increases the water-holding capacity of the meat, and causes it to feel firm and 

dry on the surface because the water is held tightly within. This defect usually occurs when the 

animal is stressed prior to harvest, causing the animal to deplete glycogen stores and limiting the 

glycolysis that can occur after harvest. Fortunately, this defect rarely occurs in the US, but it occurs 

frequently in many other parts of the world. Consequently, US-based researchers are often 

interested in studying the properties of dark cutting meat, but are often unable to do so because 

they cannot obtain dark cutting samples. Therefore, the objective of this research was to develop 

a model to simulate dark cutting meat. This was achieved by injecting iodoacetic acid (an inhibitor 

of glycolysis) into the muscle immediately after the harvest of the animal to mimic the effects of 

glycogen depletion. Color, water-holding capacity, and firmness of the meat were then tested to 

ensure that the properties of the meat were similar to those of naturally-occurring dark cutting 

meat. The results suggested that injection of iodoacetic acid produced meat with dark cutting 

characteristics and this model may be used to study dark cutting meat when naturally-occurring 

samples are not available. 
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1. INTRODUCTION1 

During the conversion of muscle to meat, glycogen is degraded through glycogenolysis and 

glycolysis to yield lactate and ATP; the subsequent hydrolysis of ATP generates hydrogen ions 

(H+) that accumulate in the muscle, leading to its acidification (Matarneh, England, Scheffler, & 

Gerrard, 2017). The extent of post-mortem pH decline is one of the most important factors 

affecting the development of meat quality attributes. In general, pH of post-mortem muscle drops 

from approximately 7.2 to an ultimate pH around 5.6. However, post-mortem muscle may exhibit 

limited pH decline (pH > 6), which usually leads to the development of the dark, firm, and dry 

(DFD) meat condition, also known as dark cutting in beef (Hall, Latschar, & Mackintosh, 1944). 

Dark cutting meat is characterized as having an abnormally dark color, firm texture, and dry, sticky 

feel. This defect is usually associated with limited muscle glycogen reserves owing to prolonged 

ante-mortem stress, thus causing early termination of post-mortem metabolism (England, 

Matarneh, Scheffler, & Gerrard, 2017; Matarneh et al., 2017). 

As the name implies, dark cutting meat is unsavory from a visual perspective, which often 

results in its rejection by consumers (Ponnampalam et al., 2017). Additionally, this defective meat 

is more susceptible to microbial spoilage due to its elevated pH and water content (Ramanathan, 

Kiyimba, Gonzalez, Mafi, & DeSilva, 2020; Shange, Gouws, & Hoffman, 2019). These 

undesirable traits are causes for downgrading of dark cutters, resulting in large financial losses for 

the meat industry worldwide. For instance, it is estimated that the Australian beef industry loses 

about AU $36 million each year due to dark cutting carcasses (Ponnampalam et al., 2017). 

However, the incidence of dark cutters is relatively low in the US at ~ 1.9% (Boykin et al., 2017), 
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but is more prevalent in other countries such as Brazil (up to 5%) (Rosa et al., 2016), Australia and 

China (up to 10%) (Ponnampalam et al., 2017; Ijaz et al., 2020). The low incidence rate of dark 

cutters in the US makes it challenging for US-based researchers to find dark cutting samples for 

their research. Moreover, dark cutting often occurs in clusters (Ponnampalam et al., 2017), with 

significantly less incidence in certain months of the year (Tarrant & Sherington, 1980). Due to the 

difficulty of obtaining dark cutting samples, researchers have attempted to induce dark cutting 

conditions by injecting animals with epinephrine before harvest in order to deplete muscle 

glycogen (Penny, Voyle, & Lawrie, 1963; Tarrant & Sherington, 1980; Watanabe, Daly, & 

Devine, 1996). However, the effectiveness of epinephrine injection in simulating dark cutting 

conditions is muscle dependent (Tarrant & Sherington, 1980), and may be difficult to be approved 

by an animal care and use committee. Thus, alternative methods should be developed to simulate 

dark cutting characteristics in order to facilitate future dark cutting related research. 

Iodoacetic acid (IAA) is a cell permeable, active site-directed inhibitor of glyceraldehyde-3-

phosphate dehydrogenase (GAPDH), the enzyme that catalyzes the sixth step of glycolysis (Foxall, 

Brindle, Campbell, & Simpson, 1984; Mulvany, 1975). IAA has long been utilized in the area of 

meat science to inhibit glycolysis and pH decline in muscle homogenates, which allows for 

measuring post-mortem muscle pH at specific time points (Bendall, 1973). Additionally, IAA has 

been shown effective in inhibiting post-mortem metabolism when injected intravenously prior to 

harvest (De Fremery, 1966). Yet, this method entails many of the same issues associated with 

epinephrine injection. Therefore, the objective of this study was to develop an in situ model of 

dark cutting conditions through injecting IAA into pre-rigor bovine muscle samples. We 

hypothesized that pre-rigor injection of IAA would inhibit anaerobic glycolysis and result in meat 

with high ultimate pH and characteristics similar to dark cutting beef. 
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2. LITERATURE REVIEW  

 2.1. Post-mortem metabolism 
 
Following the slaughter of an animal, several biochemical changes occur in the muscle that leads 

to its transformation into meat. These changes are essential to imparting a unique set of attributes 

on fresh meat, including its color, water holding capacity (WHC), and textural properties. Among 

these changes, the decline in pH resulting from post-mortem metabolism is the most significant. 

Even after exsanguination, energy metabolism pathways continue to function in the dying tissue 

in a futile effort to maintain ATP homeostasis. These metabolic pathways include mitochondrial 

oxidative phosphorylation, the phosphagen system, and anaerobic glycolysis. 

2.1.1. Oxidative phosphorylation 
 
Mitochondria are known for their essential role in ATP production through cellular respiration. 

Substrates such as pyruvate and fatty acids are transported into the mitochondrial matrix where 

they are converted to acetyl-CoA. Citrate synthase catalyzes the condensation of acetyl-CoA and 

oxaloacetate to citrate, which is sequentially metabolized through the tricarboxylic acid (TCA) 

cycle (2 acetyl groups + 6 NAD+ + 2 FAD + 2 ADP + 2 Pi → 4 CO2 + 6 NADH + 6 H+ + 2 

FADH2 + 2 ATP). Electrons donated from NADH and FADH2 are then transported down the 

electron transport chain to drive ATP synthesis. 

At the death of an animal, oxygen is no longer transported to the muscle, leaving it with 

diminishing oxygen availability. Because mitochondrial respiration is hindered by the lack of 

oxygen, mitochondria are often considered irrelevant to post-mortem metabolism. Yet, recent 

studies suggest that mitochondria may play a larger role than previously thought (England et al., 

2018; Matarneh, Beline, de Luz e Silva, Shi, & Gerrard, 2018a; Matarneh et al., 2017b; Matarneh, 

Yen, Bodmer, El-Kadi, & Gerrard, 2021b; Scheffler, Matarneh, England, & Gerrard, 2015) 
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England et al. (2018) found that post-mortem muscle oxygen concentration is gradually depleted 

during the first two hours post-mortem, suggesting residual mitochondrial respiration. In support 

of this notion, Matarneh et al. (2021b) showed that mitochondria are capable of mobilizing part of 

the pyruvate generated through glycolysis in an in vitro model simulating post-mortem 

metabolism. Using the same in vitro model, it was shown that mitochondria can extend anaerobic 

metabolism by increasing the rate of ATP hydrolysis (Matarneh et al., 2018a). 

 2.1.2. The phosphagen system 
 
While ATP is the primary energy currency of the cell, it is stored in a relatively low concentration 

in the muscle (5-8 µmol/g of tissue), which is only sufficient for a few seconds of high energy 

demands (England et al., 2017). During the early post-mortem period, cellular ATP levels are 

maintained at or near ante-mortem levels by utilizing phosphocreatine. Phosphocreatine contains 

a high-energy phosphate bond that can be broken to supply the energy and inorganic phosphate 

required to phosphorylate ADP to ATP, in a reaction catalyzed by creatine kinase. However, the 

ability of phosphocreatine to maintain ATP levels is also limited, and as soon as phosphocreatine 

has been depleted, ADP begins to accumulate in post-mortem muscle (Matarneh et al., 2017a). 

The enzyme adenylate kinase is able to make use of this ADP by catalyzing the transfer of a 

phosphate group from one ADP to another to form ATP and AMP. To shift the equilibrium of this 

reaction toward the formation of ATP, AMP is removed from the product pool by the enzyme 

AMP deaminase, which irreversibly deaminates AMP to IMP. This reaction is beneficial in the 

short term because it increases the activity of adenylate kinase. At the same time, however, it 

reduces the total adenonucleotide pool (ATP, ADP, AMP) available for muscle metabolism post-

mortem (England, Matarneh, Scheffler, Wachet, & Gerrard, 2015; Hamm, 1977). While the 

phosphagen system plays an important role in ATP homeostasis, its ability to maintain ATP 
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concentrations is limited (Bogdanis, Nevill, Boobis, & Lakomy, 1996). Therefore, another 

pathway is necessary to continue producing ATP when the phosphagen system has been exhausted. 

2.1.3. Glycogenolysis and glycolysis 

As post-mortem muscle attempts to maintain ante-mortem concentrations of ATP, glycogenolysis 

and glycolysis become the primary energy producing pathways (England et al., 2017). Glycogen 

is the storage macromolecule form of glucose, a highly branched polymer of glucose monomers 

bound with α-1,4-glycosidic bonds and α-1-6 bonds at branching points. Glycogen is broken down 

by glycogen phosphorylase and glycogen debranching enzymes to yield glucose-6-phosphate and 

glucose, which may then enter glycolysis to yield two pyruvate molecules, a net of three ATP, two 

NADH, one H+, and two H2O molecules. In the absence of oxygen, cellular respiration is arrested, 

and pyruvate is converted to lactate by the enzyme lactate dehydrogenase (Pyruvate + NADH + 

H+ ↔ Lactate + NAD+). This reaction is essential to regenerate NAD+, allowing glycolysis to 

continue running under post-mortem anaerobic conditions. It is important to note that the lactate 

dehydrogenase reaction consumes one H+ for each pyruvate converted to lactate, and thus, a net 

of one H+ is consumed for each glucose molecule metabolized through anaerobic glycolysis. 

However, oxidation of glucose through glycolysis produces 3 ATP for each glucose molecule, and 

the hydrolysis of ATP by muscle ATPases releases H+ (ATP + H2O → ADP + Pi + H+ + energy). 

Therefore, the net H+ production from the conversion of glucose to lactate coupled with ATP 

hydrolysis is 2 H+ per glucose molecule (Robergs, Ghiasvand, & Parker, 2004). Due to the lack of 

circulation, these H+ accumulate in post-mortem muscle, resulting in its acidification. During the 

post-mortem period, muscle pH gradually drops from 7.2 to a final (ultimate) pH of 5.5-5.7 in 

most meat species. This pH decline pattern is extremely important for proper meat quality 

development (Scheffler & Gerrard, 2007). 



 6 

 2.2. pH and meat quality 

The rate and extent of post-mortem pH decline are among the most significant factors influencing 

the development of meat quality characteristics. Changes in pH strongly correlate with changes in 

meat color (Swatland, 2008), WHC (Bouton, Harris, & Shorthose, 1971), and tenderness (Beltrán 

et al., 1997), and even small deviations from normal pH decline can negatively influence the 

characteristics of the meat. 

The ability of meat to retain water is an important characteristic for both quality and 

economic reasons. Water loss from a meat product is detrimental to its juiciness after cooking, and 

any water loss prior to packaging is a financial loss for the industry. Water is a dipolar molecule 

and, therefore, is attracted to electrically charged groups such as proteins. Ultimate pH is a major 

determinant of meat WHC as it determines the ionization state of muscle proteins (den Hertog-

Meischke, van Laack, & Smulders, 1997). The average isoelectric point (pI) of major muscle 

proteins is achieved at pH 5.1-5.2 (Matarneh et al., 2017a). At this pH, minimum charges are 

available for water to interact with, and thus, the meat has minimal WHC. On the other hand, 

moving away from the pI increases the net charge of muscle proteins as well as the ability to hold 

water. Additionally, as the net charge increases (negatively or positively), there are greater like 

charges. This causes a repulsion between muscle structures, thereby expanding the space within 

the muscle fiber and allowing it to hold more water (Purslow, Warner, Clarke, & Hughes, 2020). 

In some cases, WHC may be impacted by an abnormally fast rate of pH decline as well, especially 

when this occurs while the carcass is still warm. This rapid decline in pH causes excessive protein 

denaturation, leading water to be expelled from the muscle fiber into the extracellular space (Huda, 

2011). 
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As one of the characteristics that the consumer can judge when making purchasing 

decisions, meat color is an important quality determinant of retail sale value (Suman & Joseph, 

2013). Meat color is highly correlated with pH, in which meat with low pH has a lighter color than 

meat with high pH (Abril et al., 2001). As mentioned previously, pH has a significant impact on 

the WHC of meat, and it is largely through WHC that meat color is affected by ultimate pH. WHC 

impacts meat color by changing how the muscle interacts with light (Hughes, Oiseth, Purslow, & 

Warner, 2014). At low WHC, the muscle fiber size is reduced, which promotes light scattering and 

reflection (Purslow et al., 2020). Light scattering and reflection are also caused by protein 

denaturation that occurs as a result of rapid pH decline. In contrast, meat with high WHC has 

enlarged muscle fibers and minimal protein denaturation, which causes light to penetrate deeper 

and be absorbed (Swatland, 2008). Meat color is also determined by myoglobin content, which is 

the major meat pigment. Muscles with elevated myoglobin content tend to be darker in color and 

redder than muscles with little myoglobin content (Vestergaard, Oksbjerg, & Henckel, 2000). As 

a water-soluble protein, myoglobin is lost during storage through purge and drip. Thus,  WHC can 

impact the myoglobin content of the meat, as more myoglobin is retained in meat with high WHC 

(Mahmood et al., 2017; Çelen, Sögüt, Zorba, Demirulus, & Tekeli, 2016).   

Additionally, pH can impact the textural properties of both raw and cooked meat. In raw 

meat, firmness is positively correlated with pH, where low pH meat is soft while high pH meat is 

firm. This phenomenon occurs due to the WHC of the meat; in meat with high WHC, the muscle 

is filled with water, causing it to feel firm to the touch (Hughes et al., 2014). pH can affect 

tenderness of cooked meat by influencing the activity of endogenous proteases during meat aging. 

Proteolysis of structural proteins within the muscle is often described as the main factor 

determining meat tenderness (Kemp, Sensky, Bardsley, Buttery, & Parr, 2010), and the calpain 
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protease system is usually considered the major contributor to post-mortem tenderization 

(Koohmaraie & Geesink, 2006). Calpains are more active at higher pH, and thus, high pH meat is 

often found to be more tender (Beltrán et al., 1997; Silva, Patarata, & Martins, 1999).  

2.3. Factors controlling the rate of post-mortem pH decline 
 

While the rate of pH decline is influenced by a number of factors (Hamoen, Vollebregt, & 

Van Der Sman, 2013), Scopes (1974) concluded that the rate of post-mortem pH decline is 

primarily dictated by the rate of ATP hydrolysis by muscle ATPases. The activity of muscle 

ATPases itself is generally enhanced with increasing muscle temperature and cytosolic calcium 

levels (Savell, Mueller, & Baird, 2005). Therefore, meat harvesting facilities must tightly monitor 

temperature as a strategy to control the rate of pH decline, and thus meat quality (Hannula & 

Puolanne, 2004). Insufficient cooling of the carcass may cause the rate of pH decline to accelerate 

and adversely influence the quality of the meat (Hammelman et al., 2003). In contrast, meat that 

is chilled quickly may exhibit “cold shortening,” a phenomenon that occurs when the carcass 

reaches cold temperatures prior to rigor mortis (Locker & Hagyard, 1963). At low temperature, 

the ability of the muscle to sequester calcium is impaired, causing a sharp increase in cytosolic 

calcium concentration. This causes severe muscle contraction, a rapid decline in pH, and 

toughening of the meat (Savell et al., 2005).  

Because post-mortem muscle acidification is driven by anaerobic glycolysis, the rate of pH 

decline reflects the intensity of post-mortem glycolysis. As such, the rate of pH decline tends to 

be faster in muscles with more glycolytic fibers compared to those containing more oxidative 

fibers (Matarneh et al., 2017a). The incentive to produce animals that grow faster and larger has 

caused an increased proportion of glycolytic muscle fibers in domesticated animals (Barbut et al., 

2008). This has resulted in an increased rate of post-mortem pH decline and meat defects 
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associated with it, particularly in pork and poultry (Wilson, 1990). One of these defects is pale, 

soft and exudative (PSE) meat, named for its excessively pale color, soft texture, and poor WHC. 

This defect occurs when the rate of pH decline is faster than normal, causing the meat to reach 

ultimate pH well before carcass cooling has occurred (Molette, Rémignon, & Babilé, 2003). The 

rapid acidification at high temperature results in excessive protein denaturation, which drastically 

lowers the WHC of the muscle and changes its light scattering characteristics (Huda, 2011). PSE 

meat occurs most commonly in pork and has been associated with porcine stress syndrome, a 

condition analogous to human malignant hyperthermia (Louis, Galbrit, Remple, & Mickelson, 

1990). This syndrome occurs as a result of a genetic mutation in the ryanodine type 1 (RYR1) 

gene, which encodes the calcium-releasing channels in the muscle. RYR1 mutant pigs are unable 

to control cellular calcium levels under stressful conditions, which dramatically increases muscle 

contraction, increases body temperature, and occasionally causes death (Ball & Johnson, 1993). 

While this unfortunate mutation was initially favored due to its enhancements of growth 

characteristics (Lockley, Bruce, Franklin, & Bardsley, 1996), it has nearly been erradicated from 

herds through DNA testing, and does not account for the incidence of PSE pork anymore (Ritter 

et al., 2008). PSE meat may occur due to poor animal handling that causes acute stress to the 

animal immediately prior to harvest, improper cooling, or as a result of other genetic 

predispositions (Nonneman, Brown-Brandl, Jones, Wiedmann, & Rohrer, 2012).  

In contrast to pork and poultry, ruminant animals have a higher proportion of oxidative 

fibers, and consequently, their rate of pH decline tends to be slower. While this leaves ruminants 

animals less prone to PSE, their slow rate of post-mortem acidification may be detrimental to meat 

quality as well (Adeyemi & Sazili, 2014). This can be mitigated by electrical stimulation, which 

is widely used in beef processing plants. Electrical stimulation accelerates the release of calcium, 



 10 

muscle contraction, and pH decline. This is particularly beneficial for reducing the incidence of 

cold shortening because it helps the carcass reach rigor mortis before cold temperatures are reached 

(Savell et al., 2005). Moreover, ruminants have more mitochondria, and recent evidence suggests 

that mitochondria play a role in modulating the rate of pH decline as well (Hudson, 2012; Matarneh 

et al., 2018a, 2021b). While the mechanisms involved remain somewhat unclear, this is likely 

caused by increased ATP hydrolysis through “mitochondrial treason,” a phenomenon that occurs 

when ATP synthase runs in reverse and hydrolyzes ATP (Hudson, 2012; Matarneh et al., 2018a). 

2.4. Factors controlling the extent of post-mortem pH decline 
 
Despite the differences between species, the ultimate pH of all meat animals tends to fall into a 

similar range (5.5-5.7). This suggests that factors controlling the extent of pH decline are 

conserved across species. Perhaps the first determining factor for the extent of post-mortem 

metabolism is the amount of substrate present in the muscle at the time of harvest; if glycogen 

concentration is less than 53 µmol/g of muscle then substrate availability becomes a limiting factor 

(Henckel, Karlsson, Jensen, Oksbjerg, & Petersen, 2002). When glycogen is not limiting, a 

combination of other factors terminates post-mortem glycolysis and stops pH decline. One of these 

factors is the activity of phosphofructokinase (PFK), the key regulatory enzyme of glycolysis. PFK 

controls the extent of pH decline as it begins to lose activity at pH 5.9 and inactivates completely 

at pH 5.6 (England, Matarneh, Scheffler, Wachet, & Gerrard, 2014), which brackets the ultimate 

pH of most meat species into a fairly consistent range around 5.6. In some cases, however, muscle 

pH may decline below 5.6 if more substrate passes PFK before inactivation (i.e., increased 

glycolytic flux). This is clearly evident in the AMPKγ3R200Q mutant pigs, which often produce 

meat with extremely low ultimate pH (pH < 5.4). This is the cause of a meat defect known as “acid 

meat” that has characteristics similar to PSE meat (England et al., 2015; Matarneh, England, 
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Scheffler, Oliver, & Gerrard, 2015). Additionally, these pigs serve as an example of how buffering 

capacity can impact ultimate pH, as muscle of AMPKγ3R200Q mutant pigs has decreased buffering 

capacity that allows it to reach a lower pH with less H+ production (Matarneh et al., 2015). In 

contrast, there are cases where glycogen may not be limiting, but post-mortem metabolism 

terminates prematurely (pH > 5.9). This occurs in chicken muscle because the PFK found in 

chicken is less active than other species (Matarneh et al., 2018b). Furthermore, muscles containing 

a high proportion of oxidative fibers may terminate glycolysis prematurely while PFK is still 

functioning because the oxidative fiber type promotes faster depletion of adenosine nucleotides 

(England et al., 2016). In the absence of adenosine nucleotides, glycolysis is inhibited as ATP is 

required for PFK while ADP is required for phosphoglycerate kinase and pyruvate kinase 

reactions. On the other hand, maintaining the adenosine nucleotide pool for a longer period post-

mortem through inhibiting AMP deaminase has been shown to extend post-mortem glycolysis and 

pH decline (England et al., 2015).  

2.5 Dark cutting meat 

Dark, firm, and dry is a meat defect that occurs when the ultimate pH stops at a higher than normal 

value (pH > 6). DFD meat is most easily recognized by its abnormally dark color, and as such, the 

term “dark cutting” is used to describe DFD conditions in cattle. The high ultimate pH of dark 

cutting meat also increases its WHC, causing it to exude very little water and feel dry and firm to 

the touch. Dark cutting is generally considered a defect because the dark color reduces the retail 

sale value, and the elevated pH provides a more hospitable environment for microbial growth 

(Newton & Gill, 1981). 

 Dark cutting is usually caused by the depletion of muscle glycogen prior to slaughter, 

which causes early termination of glycolysis due to lack of substrate (Matarneh, Silva, & Gerrard, 
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2021a). This is generally attributed to long-term ante-mortem stress such as inclement weather 

during transportation and holding, long travel times, rough handling processes, or mixing 

unfamiliar animals (Huda, 2011). These stressful events cause the release of catecholamines 

(epinephrine and norepinephrine) that stimulate glycogenolysis and lipolysis. When glycogen 

depletion occurs, insufficient lairage (time between transport and harvest) to restore glycogen can 

increase the risk of dark cutting. Replenishment of muscle glycogen is a slow process, especially 

for ruminants, as they absorb very little glucose from their gastrointestinal tract (Pethick et al., 

1999). For this reason, ruminants tend to produce DFD meat more frequently than monogastric 

animals. 

Although glycogen depletion is traditionally attributed to stress, there are other potential 

causes for low glycogen prior to slaughter (Ramanathan et al., 2020).  In some cases, glycogen 

stores may be low due to feed restriction or a low energy diet, and consistently, glycogen 

concentrations are generally lower in grass-fed cattle than grain-fed cattle (Immonen, Ruusunen, 

Hissa, & Puolanne, 2000). McKeith et al. (2016) found elevated abundance of mitochondria in 

dark cutting carcasses, and mitochondria from dark cutters were less efficient. Therefore, it was 

hypothesized that less energy-efficient mitochondria may consume more glycogen prior to the 

harvest of the animal and thus contribute to glycogen depletion. Moreover, there are factors other 

than pH that may contribute to dark-colored meat. For instance, grass-fed cattle typically produce 

beef with a darker color than their grain-fed counterparts, even when the pH is normal (Wicks et 

al., 2019). This is due to an increased proportion of oxidative muscle fibers that typically contain 

more myoglobin. Vestergaard et al. (2000) found that an increase in oxidative muscle fibers 

increases proportion of muscle pigmentation, and this contributed to darker meat color. It is 

important to note that animals with a higher proportion of oxidative muscle fibers were darker in 
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color, but were still not classified as dark cutters. However, even a slight elevation in pH may 

cause their meat to classify as dark cutting; as the meat is already dark, any further darkening may 

push the meat into dark cutting classification (Mahmood et al., 2017). The inverse of this is seen 

in chicken, which typically has higher ultimate pH than other species but appears light in color 

because it contains so little pigmentation (Matarneh et al., 2018b; Qiao, Fletcher, Smith, & 

Northcutt, 2001). 

Beyond the dark color and spoilage concerns, dark cutting beef is comparable in quality to 

normal beef. Taste panel evaluation of dark cutting beef often finds that it is equally acceptable 

when compared to normal beef, but the flavor is sometimes reported to be different (Holdstock et 

al., 2014; Viljoen, De Kock, & Webb, 2002). Instrumental analysis of dark cutting beef often finds 

it is more tender than normal beef (Franco et al., 2015; Silva et al., 1999), and therefore, dark 

cutting does not necessarily need to be thought of as a defect. 

As a result of optimized handling procedures, the incidence rate of dark cutting is low 

within the US at approximately 1.9% (Boykin et al., 2017). Unfortunately, dark cutting occurs 

more frequently in many other parts of the world, such as Brazil (up to 5%) (Rosa et al., 2016), 

Australia and China (up to 10%) (Ponnampalam et al., 2017; Ijaz et al., 2020). Accordingly, 

researchers put appreciable effort into studying the properties of dark cutting meat and developing 

methods to improve its properties, even within the US. However, due to the low incidence rate, it 

is often difficult for US-based researchers to obtain dark cutting samples.  

Objective: to create a model that simulates the dark cutting condition to allow researchers to study 

dark cutting when samples are unavailable. 

Hypothesis: Pre-rigor injection of IAA inhibits anaerobic glycolysis and results in meat with high 

ultimate pH and characteristics similar to dark cutting beef. 
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3. MATERIALS AND METHODS 

3.1 Muscle sampling and treatments 

All cattle used in this study were raised at the Utah State University South Farm under the same 

feeding and management conditions. Five young steers (12-13 months old; 327.1 ± 5.6 kg live 

weight) of similar genetic background were harvested at the Utah State University harvest facility 

according to standard commercial practices and USDA inspection guidelines. Within 30 min of 

exsanguination, the longissimus thoracis et lumborum (LTL) muscle was excised from the left side 

of the carcass and fabricated into seven 2.5-cm steaks. Steaks were weighed and then randomly 

injected with one of six different IAA solutions (200, 100, 75, 50, 25, 12.5 mM; adjusted to pH 

7.0 with 1 M NaOH; dissolved in water) or water (0 mM IAA; control) using a 25-gauge needle 

attached to a 15 ml syringe. Treatments were injected at 0.05 ml/g of muscle to achieve a final 

concentration of 10, 5, 3.75, 2.5, 1.25, 0.625, or 0 µmol IAA/g of muscle for the 200, 100, 75, 50, 

25, 12.5, or 0 mM IAA solutions, respectively. To ensure even distribution throughout each steak, 

several sites spaced ~1 cm apart were injected with ~200 µl of treatment solution. Injections were 

given through the top, bottom, and sides of the steaks. Then, an approximately 10 g sample was 

collected from each steak (subsequently referred to as 0 h sample), snap frozen in liquid nitrogen, 

and immediately stored at −80 °C for pH analysis. Color measurements were then collected before 

steaks were vacuum packaged and stored at 4 °C.  The pouches (20 × 30 cm; LK Plastics, Los 

Angeles, CA, USA) used were 76-µm thick, with an oxygen permeability of 0.6 cm3/100 m2/24 h 

at 0 ℃, and a water vapor transmission rate of 0.6 g/100 m2/24 h at 38 ℃ and 100% relative 

humidity. Additional pH samples and color measurements were collected from each steak at 3, 6, 

24, and 48 h post-mortem in the same manner described above, in which vacuum packages were 
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opened prior to pH sample collection and color measurements and resealed afterward. The study 

was conducted over a period of 5 days, with one animal harvested each day.  

 In a follow-up study, eight young steers (12-13 months old; 321.6 ± 10.8 kg live weight) 

were harvested in the same manner as the previous study. The LTL muscle was excised within 30 

min of exsanguination and fabricated into eight 2.5-cm steaks. Steaks were randomly injected at 

0.05 ml/g of muscle with either 100 mM IAA solution (adjusted to pH 7.0 with 1 M NaOH; 

dissolved in water) to achieve a final concentration of 5 µmol IAA/g of muscle or water (as 

control). One steak from each treatment was immediately used (0 h storage) while the remaining 

steaks were vacuum packaged and stored at 4 °C for 24, 168 (7 d), and 336 h (14 d) (one steak per 

treatment for each storage period). At the end of each storage period, steaks were removed from 

their packages and color was evaluated. Then, each steak was cut into two portions. One portion 

was used for drip loss, cook loss, and texture profile analysis (TPA) determination, while the other 

portion was snap frozen in liquid nitrogen and stored at −80 °C for further analysis. Samples were 

collected over 8 days, with one animal harvested each day. 

In a third study, the LTL muscle of four out of the eight animals used in the previous study 

was collected from the right side of the carcass at 48 h postmortem. The muscle was fabricated 

into two 2.5-cm steaks. One steak was injected with 100 mM IAA (pH = 7.0; dissolved in water) 

to achieve a final concentration of 5 µmol IAA/g of muscle while the other was injected with water 

(control) following the protocol as above. Steaks were vacuum packaged and stored at 4 °C for a 

period of 14 d. Color and pH measurements were collected at 0 (right after injection), 24, 168, and 

336 h. 
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 3.2 Muscle pH 

Frozen samples collected at 0, 3, 6, 24, and 48 h from the first experiment and 0, 24, 168, and 336 

h from the second experiment were prepared for pH measurement as described by Bendall (1973) 

with modifications. In brief, samples were powdered under liquid nitrogen and then homogenized 

at 1:8 (w/v) in ice-cold buffer containing 5 mM IAA and 150 mM KCl (adjusted to pH 7.0 with 1 

M NaOH) using a bead-beating homogenizer (TissueLyser LT, Qiagen, Hilden, Germany). 

Homogenates were then centrifuged at 17,000 ×g for 5 min, equilibrated to 25 ºC, and measured 

directly using an Orion Ross Ultra pH electrode coupled to an Orion Star A214 pH/ISE benchtop 

meter (Thermo Scientific, Pittsburgh, PA, USA). 

3.3 Color analysis 

Instrumental color measurements were performed using a Konica Minolta chromameter (CR-

400, Konica Minolta Sensing Inc., Osaka, Japan) with illuminant D65, 2° observer angle, and 8 

mm aperture diameter. Prior to color measurements, the instrument was calibrated with a white 

standard plate provided by the manufacturer. Steaks were removed from their packages, allowed 

to bloom for 20 min at room temperature, and at least four random measurements were collected 

over locations free of any noticeable color defects. Obtained values were averaged and expressed 

in terms of Commission Internationale de l’Éclairage (CIE) L* (lightness), a* (redness), and b* 

(yellowness). 

3.4 Cook loss and texture profile analysis 

Texture profile analysis was performed on both raw and cooked meat samples using a 75-mm 

diameter stainless steel plate connected to a TMS-Pro Texture Analyzer (Food Technology Co., 

Sterling, VA, USA) following the methods outlined by Dang et al. (2020a) with a minor 

modification. One slice from each steak was immediately used for raw TPA, while cooked TPA 
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was evaluated on a different slice. Slices designated for cooked TPA were weighed and cooked on 

a clamshell grill to an internal temperature of 71 °C. Temperature was monitored using a digital 

scanning thermometer with the probe placed in the geometric center of the steak. Samples were 

allowed to cool to room temperature, blotted dry, weighed again, and stored overnight at 4 °C. 

Cook loss was calculated as a percentage loss from the initial weight of the sample. The next day, 

samples were brought to room temperature prior to TPA analysis. Two 2-cm thick cubes of raw 

and cooked samples were obtained using a knife. Each cube was placed under the compression 

plate with the muscle fibers oriented perpendicular to the plate. Cubes were then compressed to 

30% of their original height. After the initial compression, the plate returned to its original zeroed 

position before the start of the second cycle. The plate was set to move at 100 mm/min. Kilogram 

of force per mm was recorded throughout the compression process. Calculations for hardness, 

cohesiveness, springiness, gumminess, and chewiness were based on equations described by 

Bourne (2002). 

3.5 Drip loss 

Drip loss was determined using the method described by Rasmussen & Stouffer (1996). Drip loss 

was only evaluated on the 24 h samples from the second study. Briefly, two cores (~ 10 g each) 

were collected from each steak with a 2.5-cm-diameter coring device, weighed, and then placed 

individually in a drip loss tube. Tubes were stored for 48 h at 4 °C. Following, samples were 

removed from the tube, blotted dry with paper towels to remove any surface moisture, and weighed 

again. Drip loss was calculated as a percentage loss from the original weight of the sample. 

3.6 Myoglobin abundance determination 

Myoglobin abundance was determined using western blot analysis as described previously by 

Dang, Buhler, Thornton, Legako, & Matarneh (2020b). Muscle samples were homogenized in a 
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solubilization buffer (8 M urea, 2 M thiourea, 3% SDS [w/v], 75 mM dithiothreitol, 50 mM Tris-

HCl, pH 6.8) at 100 mg of muscle/ml of buffer (Warren, Krzesinski, & Greaser, 2003) using a 

bead-beating homogenizer. Samples were then heated at 90 °C for 5 min, centrifuged at 10,000 ×g 

for 10 min, and the supernatants were transferred to new tubes. Protein concentration was 

determined using the RC DC protein kit according to manufacturer's directions (BioRad 

Laboratories, Hercules, CA, USA). Muscle samples were then diluted to 3 mg protein/ml using 

the same solubilization buffer supplemented with 0.05% bromophenol. Samples were subjected to 

95 °C for 5 min prior to separation by SDS-PAGE. A 14% polyacrylamide resolving gel (46.7% 

[vol/vol] 30% acrylamide/0.8% bisacrylamide, 0.37 M Tris, pH 8.8, 0.1% [wt/vol] SDS, 0.13% 

[wt/vol] ammonium persulfate, and 0.07% [vol/vol] TEMED) was used for separation of proteins. 

The gels were ran using a 60 V current for 20 min, followed by 120 V for 80 min. Separated 

proteins were transferred to nitrocellulose membranes and reversibly stained with Ponceau S to 

determine total protein within each lane using a UVP ChemStudio Imaging System and software 

(Analytik Jena, Upland, CA, USA). Membranes were blocked with 3% casein in PBS and 0.1% 

Tween-20 for 1 h at room temperature and immunoblotted for 16 h with a primary antibody 

specific for myoglobin (SC393020, Santa Cruz Biotechnology, Dallas, TX, USA). The membranes 

were then incubated with a fluorescent secondary antibody and imaged using the same imaging 

system and software. Band intensities were quantified and normalized to the intensity of total 

protein as measured by the Ponceau S image within each lane.  

3.7 Metabolite analysis 

Glycogen samples were prepared by adding 1 ml of 1.25 M HCl to ~ 0.1 g powdered muscle 

samples. The resulting mixture was then incubated for 2 h at 90 °C, centrifuged at 17,000 ×g for 5 

min at room temperature, and supernatants were neutralized with 1.25 M KOH. Muscle lactate, 
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glucose, and glucose-6-phosphate were measured on ~ 0.1 g samples homogenized in 1 ml of 0.5 

M perchloric acid. Samples were incubated on ice for 20 min, centrifuged at 17,000 ×g for 5 min, 

and supernatants were neutralized with 0.5 M KOH (Bergmeyer, 1984). Concentrations (µmol/g 

of muscle) of glycogen, lactate, glucose, and glucose-6-phosphate were measured 

spectrophotometrically at 340 nm with enzymatic methods modified for a 96-well plate 

(Hammelman et al., 2003). All measurements were performed in triplicate. 

3.8 Statistical analysis 

Color and pH data from the first experiment was analyzed using the mixed model of JMP (SAS 

Institute Inc., Cary, NC, USA) for repeated measures with steak as the experimental unit. The 

statistical model included the fixed effects of treatment, time, and their interaction and the random 

effect of steak. The slice function was used to determine treatment effect at individual time points 

and time effect within each treatment. For the second experiment, data were analyzed as a 2 × 4 

factorial arrangement including treatment (0 or 5 µmol IAA/g of muscle) and time (0, 24, 168, or 

336 h) using the mixed model of JMP. The statistical model included the fixed effects of treatment, 

time, and the 2-way interaction and the random effect of steak. If no significant interaction 

was found, only significant main effects were reported. Post hoc analysis for all experiments was 

performed using a Student's t-test and considered significant at P ≤ 0.05. All data are expressed as 

least-squares means ± SE. 

4. RESULTS AND DISCUSSION    
 
4.1 First experiment 

During the post-mortem period, skeletal muscle pH drops due to the accumulation of H+ generated 

from ATP hydrolysis by muscle ATPases (England, Scheffler, Kasten, Matarneh, & Gerrard, 

2013). The two ATP-generating reactions of glycolysis, phosphoglycerate kinase and pyruvate 
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kinase, are downstream to that of GAPDH. Therefore, inhibiting GAPDH activity arrests 

glycolytic ATP production, and ultimately, pH decline. In our first experiment, different 

concentrations of IAA were injected into pre-rigor bovine LTL muscle samples to test whether 

IAA is capable of inhibiting glycolysis in “intact” steaks and to find the minimum IAA 

concentration for creating dark cutting-like beef. Because muscle pH continues to drop as post-

mortem time progresses, we chose to use muscle that was excised shortly after harvest to ensure 

that pH was still elevated. 

4.1.1. Effect of different concentrations of IAA on the pH of LTL muscle 

No differences were observed between treatments for pH at 0, 3, or 6 h post-mortem (Table 1). At 

24 and 48 h, however, the pH increased (P < 0.0001) with increasing the concentration of IAA 

from 0 to 1.25 µmol/g of muscle and plateaued at 2.5 µmol/g of muscle. In the 0 and 0.625 µmol 

IAA/g of muscle treatments, muscle pH gradually declined (P < 0.0001) within the first 24 h post-

mortem. In contrast, the decline in pH plateaued (P ≤ 0.05) at 3 h in the 2.5, 3.75, and 5 µmol 

IAA/g of muscle treatments, whereas no time effect for pH was detected in the 10 µmol IAA/g of 

muscle. No additional reduction in pH was observed between 24 and 48 h in any treatment. These 

data indicate that IAA successfully inhibited pH decline in pre-rigor bovine LTL muscle samples. 

De Fremery (1966) and Bouton et al. (1971) reported similar pH results in animals injected with 

IAA or epinephrine prior to harvest. The inhibitory effect of IAA on pH decline seems to be 

concentration dependent, at least between 0 and 2.5 µmol/g of muscle. Curiously, a 0.2-0.3-unit 

decrease in pH of the LTL muscle was observed within the first 6 h in all treatments, suggesting 

that H+ continued to accumulate in the muscle early post-mortem. This reduction in pH is likely 

due to the presence of glycolytic intermediates beyond GAPDH at the time of treatment injection, 

which were completely metabolized through anaerobic glycolysis to lactate and contributed to pH  
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Table 1. Effect of different iodoacetic acid (IAA) concentrations on pH, L*, a*, and b* of the LTL muscle at 0, 3, 6, 24, and 48 h 
post-mortem. Data are least-squares means ± SE. a-d Means lacking a common superscript letter differ significantly within the same 
row. x-z Means lacking a common superscript letter differ significantly within the same column for each variable. 

Item 
Treatment (µmol IAA/g of muscle) 

SE P-value 
0 0.625 1.25 2.50 3.75 5 10 

pH          
     0 h 6.54x 6.57x 6.56x 6.54x 6.67x 6.61x 6.56 0.16 0.94 

     3 h 6.46x 6.37xy 6.46x 6.39xy 6.47xy 6.38y 6.36 0.18 0.93 

     6 h 6.21y 6.25y 6.25y 6.36xy 6.35y 6.47xy 6.27 0.16 0.36 

     24 h 5.53c,z 5.84b,z 6.07b,yz 6.36a,xy 6.39a,y 6.35a,y 6.33a 0.22 < 0.0001 

     48 h 5.60d,z 5.82cd,z 5.98bc,z 6.20ab,y 6.34a,y 6.33a,y 6.37a 0.20 < 0.0001 

     SE 0.14 0.19 0.18 0.15 0.15 0.12 0.14 - - 

     P-value < 0.0001 < 0.0001 < 0.0001 0.03 0.01 0.05 0.09 - - 

L*          

     0 h 33.8y 33.6yz 33.1yz 33.7xy 33.1x 33.7x 33.3 1.57 0.99 

     3 h 32.3z 31.8z 31.9z 31.6z 30.8y 31.5z 32.7 1.77 0.78 

     6 h 31.9z 32.4z 32.2z 31.4z 30.7y 32.0yz 32.4 1.70 0.77 

     24 h 38.4a,x 34.3b,y 33.7bc,xy 32.6bc,yz 31.9c,xy 32.2c,xyz 32.6bc 2.04 < 0.0001 

     48 h 39.6a,x 36.2b,x 35.0bc,x 34.3bc,x 32.7c,x 33.2c,xy 33.0c 2.27 < 0.0001 

     SE 1.36 1.40 1.92 1.55 1.73 1.32 1.41 - - 

     P-value < 0.0001 < 0.0001 0.0002 0.0001 0.001 0.01 0.79 - - 

a*          

     0 h 14.9y 14.7 14.8 14.7 13.8 15.4x 15.0 1.49 0.79 

     3 h 14.8y 15.5 14.9 14.0 13.4 14.5xy 13.8 1.38 0.36 

     6 h 15.6a,y 14.3abc 15.2ab 14.1abc 13.6bc 13.1c,y 13.0c 1.38 0.05 

     24 h 18.0a,x 15.6b 15.0b 14.9b 14.3b 13.8b,xy 14.6b 1.51 0.001 

     48 h 17.6a,x 15.7bc 16.7ab 15.9abc 14.6c 15.2bc,x 14.3c 1.78 0.01 

     SE 1.38 1.59 1.47 1.06 0.99 1.03 0.98 - - 

     P-value < 0.0001 0.24 0.07 0.07 0.42 0.01 0.07 - - 

b*          

     0 h 4.5z 4.7y 4.6z 4.6z 4.3y 5.5 5.3 1.13 0.35 

     3 h 4.9yz 5.6y 5.6yz 5.2yz 5.1x 5.8 5.5 0.64 0.71 

     6 h 5.8y 5.6y 5.9y 5.6yz 5.3x 5.5 5.4 0.66 0.96 

     24 h 8.9a,x 6.8b,x 6.1bc,xy 5.9bc,xy 5.8bc,x 5.6c 6.4bc 0.86 < 0.0001 

     48 h 8.7a,x 6.9bc,x 7.0b,x 6.8bc,x 5.8c,x 6.2bc 6.4bc 1.31 0.0004 

     SE 0.70 1.00 0.89 0.61 0.49 0.78 0.86 - - 

     P-value < 0.0001 0.0002 0.0006 0.002 0.04 0.63 0.08 - - 



 22 

decline. On the other hand, the additional drop in pH observed in the lower IAA treatments (0.625 

and 1.25 µmol/g of muscle) seems to be a function of incomplete inhibition of GAPDH resulting 

from insufficient IAA. 

4.1.2. Effect of different concentrations of IAA on the color of LTL muscle 

To further test the effectiveness of the IAA treatment in generating dark cutting-like beef, color 

coordinates were also compared between treatments (Table 1). Although no treatment effect was 

observed at 0, 3, and 6 h post-mortem, L* decreased (P < 0.0001) at 24 and 48 h as IAA 

concentration increased from 0 to 0.625 µmol/g of muscle and plateaued at 1.25 µmol/g of muscle. 

L* values decreased (P ≤ 0.01) from 0 to 3 h in the 0, 2.5, 3.75, and 5 µmol IAA/g of muscle 

treatments, while no changes were observed in any treatment from 3 to 6 h post-mortem. Following 

this initial reduction, L* values increased by 48 h in all treatments except the 5 and 10 µmol IAA/g 

of muscle. A treatment effect (P ≤ 0.05) for a* was observed at 6, 24, and 48 h. The control 

treatment had greater a* value (P = 0.05) at 6 h post-mortem than those of 3.75, 5, and 10 µmol 

IAA/g of muscle, while the 0.625, 1.25, and 2.5 µmol IAA/g of muscle were intermediate. At 24 

h post-mortem, greater a* (P = 0.001) was observed in the control steaks in comparison to all their 

IAA-treated counterparts. Compared to 0 and 1.25 µmol IAA/g of muscle at 48 h, steaks injected 

with 3.75 and 10 µmol IAA/g of muscle had lower a* values (P = 0.01), while the remaining 

treatments were intermediate. No time effect was detected for a* in the 0.625, 1.25, 2.5, 3.75, and 

10 µmol IAA/g of muscle treatments. On the other hand, an increase (P < 0.0001) from 6 to 24 h 

in a* was observed in the control treatment. In steaks injected with 5 µmol IAA/g of muscle, a* 

decreased from 0 to 6 h and increased again (P = 0.01) at 24 h to a value comparable to the initial 

value. Greater b* value (P ≤ 0.0004) was observed for the control steaks at 24 and 48 h compared 

to those injected with IAA, regardless of the concentration. Overall, b* increased (P ≤ 0.04) over 
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the first 24 h post-mortem across all treatments except for the 5 and 10 µmol IAA/g of muscle. 

There were no changes in b* from 24 to 48 h. Taken together, our results show that IAA was able 

to decrease L*, a*, and b* values of the LTL muscle in a concentration dependent manner. Similar 

to our results, previous studies have also shown decreased L*, a*, and b* values in dark cutting 

beef (Abril et al., 2001; Zhang et al., 2018). The greatest difference in L* (6.9 units) was obtained 

at 48 h between the control steaks (L* = 39.6) and the 3.75 µmol IAA/g-injected steaks (L* = 

32.7), a difference comparable to previously reported values between dark and normal-colored 

beef (Hughes, Clarke, Li, Purslow, & Warner, 2019). Indeed, Norman, Berg, Heymann, & 

Lorenzen (2003) indicated that a 5-unit difference in L* value is enough for consumers to 

distinguish dark-colored meat and to influence their purchasing decisions. In addition to L*, 

reduction in redness also contributes to the dark appearance of dark cutters (Suman & Joseph, 

2013). In the current study, > 3-unit difference in a* was detected at 48 h between steaks injected 

with 10 µmol IAA/g of muscle and controls.   

Differences in color between treatments were not surprising, given the intimate relationship 

between pH and meat color; in general, the intensity of meat color decreases with increasing 

ultimate pH (Abril et al., 2001). Meat with high ultimate pH is further away from the average 

isoelectric point of muscle proteins (pH 5.1-5.2), which enhances its ability to retain water. 

Consequently, the size of the fiber is increased, allowing more light to penetrate deeply and be 

absorbed (Purslow et al., 2020). Additionally, less myoglobin is lost through purge and drip, 

resulting in a darker color. Although there is no single accepted pH cut-off point for dark cutting 

beef, it is generally agreed upon that beef with a pH value of > 6 is regarded as dark cutter 

(Mahmood et al., 2017; Ponnampalam et al., 2017; Rosa et al., 2016). By this criterion, steaks 
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injected with 2.5 µmol IAA/g of muscle or more would be classified as dark cutter. Regardless, 

these data provide a wide range of pH and color values in which researchers can choose from.  

4.2. Second experiment  

Following the first study, a second experiment was conducted to test whether the observed effect 

can be maintained over an extended storage time, and to evaluate other dark cutting related 

characteristics that were not tested in the first experiment. In the second experiment, two treatments 

were tested, control and 5 µmol IAA/g of muscle, at 0, 24, 168, and 336 h post-mortem. Although 

no differences in pH and color measurements were observed in the first study between steaks 

injected with 2.5 µmol IAA/g or more, we chose to use 5 µmol IAA/g of muscle to ensure that 

IAA is not limiting. This is because IAA is light-sensitive and degrades over time, which reduces 

its inhibitory effect on GAPDH (Carne, 1994). 

4.2.1. pH and color 

Treatments differentially affected (P < 0.0001) the pH of the LTL muscle over time (treatment × 

time, Fig. 1). At 24 h post-mortem, the average pH of the treated steaks was about 0.6 pH units 

higher (P < 0.0001) than that of the control steaks. This difference in pH between the two 

treatments was maintained over the 336 h post-mortem storage period.  
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Fig. 1. pH of iodoacetic acid (IAA; 5 µmol/g of muscle)-injected and control steaks at 0, 24, 168, 
and 336 h post-mortem. Data are least-squares means ± SE. a-d Means lacking a common 
superscript letter differ significantly (P ≤ 0.05). 
 
In addition to pH, color measurements were also collected in this study (Fig. 2). Color differences 

between treatments are evident in representative images of steaks that were taken at 0, 24, 168, 

and 336 h post-mortem (Fig. 2A). A significant treatment × time interaction (P < 0.0001) was 

detected for L*, a*, and b* (Fig. 2B, C, and D, respectively). Treated steaks had lower (P £ 0.0009) 

L*, a*, and b* values than control steaks at 24 h, and these differences were maintained for the 

duration of the study. Between 24 and 168 h, a slight increase (P < 0.05) in L*, a*, and b* values 

was observed in both treatments. 
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Fig. 2. Images (A), L* (B), a* (C), and b* (D) of iodoacetic acid (IAA; 5 µmol/g of muscle)-
injected and control steaks at 0, 24, 168, and 336 h post-mortem. Data are least-squares 
means ± SE. a-e Means lacking a common superscript letter differ significantly (P ≤ 0.05). 

 

This is probably due to a reduction in mitochondrial respiration at 168 h. It has been shown that 

mitochondria lose functionality and structural integrity post-mortem (Tang et al., 2005), which 

impairs their capacity for respiration (England et al., 2018). This, in turn, allows for more oxygen 

to bind to myoglobin, thereby contributing to a larger percent oxymyoglobin and lighter meat 

(Ramanathan, Mancini, & Konda, 2009). Alternatively, it is possible that more water expelled into 

spaces between muscle fibers by 168 h, which increases light reflectance at the meat surface 

(Matarneh et al., 2017a). In agreement with these results, Wu et al. (2020) observed an increase in 

L*, a*, and b* value of dark cutting beef over a 7 days storage period. However, Zhang et al. 

(2018) did not find any changes in color coordinates of vacuum packaged dark cutting steaks stored 

for 20 days. Collectively, these data confirm the results of the first experiment and indicate that 

the effect of IAA on pH and color is maintained over 336 h when injected at 5 µmol/g of muscle. 
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Further, differences in color coordinates between the two treatments are more a function of 

increased L*, a*, b* values in the control steaks (Fig 2), as IAA-treated steaks maintained their 

initial color values (at 0 h post-mortem) throughout the duration of the experiment. 

4.2.2. Glycolytic metabolites 

To better understand the impact of IAA on glycogenolysis and glycolysis, we compared glycogen 

and glycolytic metabolites between control and IAA-injected steaks. Glycogen is degraded during 

post-mortem metabolism by glycogen phosphorylase and debranching enzyme to yield glucose 6-

phosphate and glucose. Glucose 6-phosphate then enters glycolysis and is converted to lactate, 

whereas glucose is either converted to glucose 6-phosphate or accumulated in post-mortem muscle 

(Matarneh et al., 2017). A treatment × time interaction (P £ 0.01) was observed for glycogen, 

glucose, glucose 6-phosphate, and lactate (Fig. 3). Steaks injected with IAA had greater glycogen 

(P £ 0.02, Fig. 3A) at 24, 168, and 336 h post-mortem and greater glucose (P < 0.0001, Fig. 3B) 

at 336 h than their control counterparts. On the other hand, lower glucose 6-phosphate (P £ 0.01, 

Fig. 3C) at 24 and 168 h and lower lactate (P < 0.0001, Fig. 4D) at 24, 168, and 336 h was detected 

in the treated steaks. Data reported herein clearly demonstrate that injection of IAA inhibits post-

mortem glycolysis in pre-rigor bovine LTL muscle, as evidenced by lower glycogen degradation 

and lactate accumulation. Further, lower lactate values in the treated steaks strongly suggests that 

blunted pH decline in the same steaks (Fig. 1) was due to inhibition of glycolytic flux. Lactate 

values obtained from the IAA-injected steaks at 24 h or later are similar to those previously 

reported in dark cutters by McKeith et al. (2016). However, unlike naturally-occurring dark 

cutters, in the current study glycogen and glycolytic intermediates remained abundant over the 

entire storage period. This discrepancy is due to the different mechanism through which elevated 
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ultimate pH is achieved in the naturally-occurring dark cutters (insufficient glycolysis due to 

substrate exhaustion) and our model (inhibition of glycolysis by IAA).  

 
Fig. 3. Glycogen (μmol/g of muscle; A), glucose (μmol/g of muscle; B), glucose-6-phosphate 
(G6P; μmol/g of muscle; C), and lactate (μmol/g of muscle; D) of iodoacetic acid (IAA; 5 µmol/g 
of muscle)-injected and control steaks at 0, 24, 168, and 336 h post-mortem. Data are least-squares 
means ± SE. a-e Means lacking a common superscript letter differ significantly (P ≤ 0.05). 
 
4.2.3. Water holding capacity 

Increased WHC is one of the major characteristics of dark cutting meat (den Hertog-Meischke et 

al., 1997). To evaluate WHC of control and IAA-injected steaks, drip and cook loss (%) were 

tested in this study (Fig. 4). Drip loss (%), measured on the 24 h samples, was decreased (P < 
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and cook loss (%) values obtained from steaks injected with IAA are comparable to those 

previously reported for epinephrine injected muttons (Bouton, et al., 1971) and dark cutters 

(Holdstock et al., 2014; Ijaz et al., 2020).  

 
Fig. 4. Drip loss (%; A) at 24 h post-mortem and cook loss (%; B) at 0, 24, 168, and 336 h post-
mortem of iodoacetic acid (IAA; 5 µmol/g of muscle)-injected and control steaks. Data are least-
squares means ± SE. *Indicates significant difference (P ≤ 0.05). a-d Means lacking a common 
superscript letter differ significantly (P ≤ 0.05). 

In addition to drip and cook loss (%), WHC was indirectly evaluated through measuring myoglobin 

content on the 24 h samples (Fig. 5). WHC has a direct effect on myoglobin content of meat; as a 

water-soluble protein, myoglobin is subjected to loss during storage through purge and drip. Thus, 

increased WHC of meat limits the post-mortem loss of myoglobin, thereby increasing its content 

in the meat. As expected, myoglobin content was greater (P = 0.01) in the IAA-treated steaks than 

their control counterparts, which indicates enhanced WHC (Hunt & Hedrick, 1977; Mahmood et 

al., 2017). Further, increased myoglobin levels in the treated steaks may have partially contributed 

to their darker color (Fig. 2). Enhanced WHC in the IAA-injected steaks is most likely due to their 

elevated pH values (Fig. 1). At high pH, there is a net negative charge on most muscle proteins, 

which provides more charged groups available for water binding. Additionally, as net charge is 
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increased, electrostatic repulsion between myofibrils increases, resulting in more interfilament 

space for water to be trapped. 

 
Fig. 5. Representative western blot (top) and relative band intensity (bottom) of myoglobin of 
iodoacetic acid (IAA; 5 µmol/g of muscle)-injected and control steaks at 24 h post-mortem. Data 
are least-squares means ± SE. *Indicates significant difference (P ≤ 0.05). 

4.2.5. Texture profile analysis 
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of cooked meat often finds that dark cutters are more tender than normal beef (Franco et al., 2015; 
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the interaction of treatment × time, and therefore, only significant main effects for all other TPA 

parameters are presented in Fig. 6 and 7.  

 

Fig. 6. Effect of treatment on raw LTL muscle hardness (N; A); effect of time on raw LTL 
muscle cohesiveness (B); effect of treatment on raw LTL muscle gumminess (N; C); springiness 
(mm; D) of iodoacetic acid (IAA; 5 µmol/g of muscle)-injected and control steaks at 0, 24, 168, 
and 336 h post-mortem; effect of treatment on raw LTL muscle chewiness (N.mm; E); effect of 
time on raw LTL muscle chewiness (N.mm; F). Data are least-squares means ± SE. * Indicates 
significant difference (P ≤ 0.05). a–e Means lacking a common superscript letter differ 
significantly (P ≤ 0.05). 

A significant treatment effect (P ≤ 0.01) was observed for raw samples hardness, gumminess, 

and chewiness (Fig. 6A, C, and E, respectively), in which they were all greater in steaks injected 

with IAA. On the other hand, a time effect was found for raw samples cohesiveness and 

chewiness (Fig. 6B and F, respectively). Lower (P = 0.02) cohesiveness was detected at 168 and 

336 h than that at 0 h, while 24 h was intermediate. Similarly, chewiness value was greatest (P = 

0.004) at 0 h post-mortem in comparison to the other time points. The effect of treatment on raw 

springiness varied over time (treatment × time, P = 0.009, Fig. 6D). Steaks injected with IAA 
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had lower springiness at 0 h than that of control, however, no differences between treatments 

were observed at 24, 168, and 336 h. Hardness, gumminess, springiness, and chewiness of the 

cooked samples were all significantly affected by treatment (Fig. 7A, C, E, and F, respectively).  

 
Fig. 7. Effect of treatment on cooked LTL muscle hardness (N; A); effect of time on cooked LTL 
muscle cohesiveness (B); effect of treatment on cooked LTL muscle gumminess (N; C); effect of 
time on cooked LTL muscle gumminess (N; D); effect of treatment on cooked LTL muscle 
springiness (mm; E); effect of treatment on cooked LTL muscle chewiness (N.mm; F); effect of 
time on cooked LTL muscle chewiness (N.mm; G). Data are least-squares means ± SE. *Indicates 
significant difference (P ≤ 0.05). a,b Means lacking a common superscript letter differ significantly 
(P ≤ 0.05).  

Compared to control, steaks injected with IAA had lower (P ≤ 0.05) hardness, gumminess, and 

chewiness and greater springiness. A significant time effect was observed for cooked steaks 

cohesiveness, gumminess, and chewiness (Fig. 7B, D, and G, respectively). Cohesiveness value 

measured at 168 h was greater (P = 0.006) than those collected at 0, 24, 336 h. Greater (P ≤ 0.02) 

gumminess and chewiness were observed at 168 h than 0 and 24 h, while 336 h was 

intermediate. Our raw TPA data indicate that samples injected with IAA had a firmer texture 

than their control counterparts, as evidenced by their greater hardness, gumminess, and 

chewiness values. This increase in firmness is likely due to greater WHC in the IAA-treated 
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samples (Ponnampalam et al., 2017). The opposite effect of IAA was observed in the cooked 

steaks, where hardness, gumminess, and chewiness were lower in the treated steaks. This effect 

is consistent with other studies that performed TPA on dark cutting steaks (Franco et al., 2015; 

Apple et al., 2011). The enhancement in meat texture of the IAA-injected steaks is likely due to 

enhanced proteolysis as high pH provides a more favorable environment for calpain-1 

functionality, thereby enhancing proteolysis (Beltrán et al., 1997).  

4.3 Third experiment 

While the characteristics of the treated steaks in experiment 1 and  2 were consistent with dark 

cutters, a final experiment was performed to ensure that observed effects were due to inhibition of 

glycolysis and not due to “other” effects of IAA. In this experiment, IAA (5 µmol/g of muscle) 

was injected into steaks collected 48 h postmortem. We chose to use post-rigor steaks for this 

experiment to ensure that muscle ultimate pH was achieved (Fig. 1). No treatment effect on pH or 

color was observed  (Fig. 8), which indicates that IAA does not influence the color or pH of the 

meat when injected into post-rigor steaks. This provides further evidence that the blunted pH 

decline of treated steaks from the previous experiments was most likely due to the inhibition of 

glycolysis and not any other effect of IAA. 
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Fig. 8. pH of iodoacetic acid (IAA; 5 µmol/g of muscle)-injected and control steaks treated at 48 
h post-mortem at 0, 24, 168, and 336 h post-injection (A);  Effect of time on L* of steaks treated 
at 48 h (B); a* (C) and b* (D) of steaks treated at 48 h post-mortem. Data are least-squares 
means ± SE. a-b Means lacking a common superscript letter differ significantly (P ≤ 0.05). 

5. CONCLUSIONS 

The results of this research demonstrate that injection of IAA into pre-rigor bovine LTL muscle 

generates beef with dark cutting-like characteristics. Similar to dark cutting beef, injection of 

IAA limits muscle’s ability to perform glycolysis, resulting in meat with elevated ultimate pH 

and dark color. Based on the results of the first experiment, testing different concentrations of 

IAA indicated that 2.5 µmol IAA/g of muscle or more is enough to generate dark cutting-like 

beef. Moreover, the second experiment demonstrated that injection of IAA at 5 µmol/g of muscle 
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maintained dark cutting-like characteristics, including increased firmness and WHC, for a 336 h 

storage period. Therefore, this in situ model could be useful in facilitating dark cutting related 

research when it is challenging to obtain naturally-occurring dark cutters.  While a step forward, 

one of the limitations of this model is that it cannot be used for sensory evaluation studies, as 

IAA is a toxic compound.  
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