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ARTICLE

Plant-soil feedbacks help explain biodiversity-
productivity relationships
Leslie E. Forero 1, Andrew Kulmatiski 1✉, Josephine Grenzer 1 & Jeanette M. Norton 2

Species-rich plant communities can produce twice as much aboveground biomass as

monocultures, but the mechanisms remain unresolved. We tested whether plant-soil feed-

backs (PSFs) can help explain these biodiversity-productivity relationships. Using a 16-spe-

cies, factorial field experiment we found that plants created soils that changed subsequent

plant growth by 27% and that this effect increased over time. When incorporated into

simulation models, these PSFs improved predictions of plant community growth and

explained 14% of overyielding. Here we show quantitative, field-based evidence that diversity

maintains productivity by suppressing plant disease. Though this effect alone was modest, it

helps constrain the role of factors, such as niche partitioning, that have been difficult to

quantify. This improved understanding of biodiversity-productivity relationships has impli-

cations for agriculture, biofuel production and conservation.
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P lant productivity typically increases with species
richness1–3. Efforts to understand this fundamental aspect
of ecosystem function (i.e. overyielding) have under-

standably focused on mechanisms of overyielding, such as com-
plementarity and selection effects4,5. Complementarity effects are
often attributed to niche partitioning, which allows species-rich
communities to capture more resources than species-poor
communities6. Selection effects occur when more productive
species are over-represented in species-rich relative to species-
poor communities. However, niche complementarity and selec-
tion effects do not fully explain biodiversity-productivity
relationships7–9. For example, while most plant communities
overyield, some communities underyield and niche-partitioning
and selection effects generally do not help explain this wide range
of responses2.

Plant-soil interactions offer the potential to explain both
overyielding and underyielding10–12. For example, species-
specific soil pathogens can be expected to be more abundant
and decrease plant growth more in monocultures than species-
rich communities resulting in overyielding3,13–15. Conversely,
species-specific soil mutualists can be expected to be more
abundant and increase plant growth more in monocultures than
species-rich communities resulting in underyielding16,17.
Although it is near-impossible and likely inappropriate to indi-
vidually characterize the effect of each species-specific soil
pathogen and mutualist on plant productivity, it is possible to
summarize the net effect of negative and positive plant-soil
interactions using plant-soil feedback (i.e. PSF) experiments18.
Thus, PSFs offer the potential to help explain both overyielding
and underyielding in biodiversity-productivity relationships10,14.

Several experimental approaches have been used to explore the
role of plant-soil interactions in biodiversity-productivity
relationships5,14,19–23. Perhaps the best support comes from
field and potted studies that used fungicide13 and microbial
inoculations24 to demonstrate soil organism effects on
biodiversity-productivity relationships, but these types of ster-
ilization and inoculation experiments have been found to exag-
gerate PSF effects24,25. Several studies have used greenhouse
experiments10,14,22,26, but greenhouse experiments have been
found to produce PSFs that are not correlated with field-
measured PSF27.

Two-phase, factorial field experiments remain the preferred
approach for describing PSF28–31. In these experiments, plant
species are grown on soils trained by other plant species. Due to
the sample sizes required by factorial designs, these experiments
have rarely been performed with more than a few species in the
field19,32. We are not aware of any two-phase, field experiments
that have tested the effects of PSF in biodiversity-productivity
relationships.

Our goal was to test whether field-measured PSFs could help
predict plant growth in experimental plant communities with
1–16 plant species. To do this, we measured PSFs in the field
using a two-phase experiment in which each species was grown
on soils trained by each other species in the experiment. This
produced growth rates for each species on each soil training type
that were used in plant-community simulation models to predict
how much biomass each species would produce in a plant
community. Plant communities with a range of species richnesses
(1–16 species) were grown separately. Model prediction were
compared to observed species biomass. To better understand how
PSFs affected model predictions, the model was executed either
with (PSF simulation model) or without (Null simulation model)
PSF effects. To better understand the mechanisms determining
how community biomass changes across species richness levels,
we separated net biodiversity effects in each dataset (observed,
Null, PSF) into complementarity and selection effect

components11,33. Because this experiment produced 240 PSF
values, it was also possible to test if PSF changed with phyloge-
netic distance which, if found, would help generalize PSF effects
in the biodiversity-productivity relationship34,35.

Results
PSF experiment. The PSF experiment was performed, primarily,
to produce plant growth rates on different soil training types to be
used in plant-community simulation models, but we also report
PSF index values because they are a common metric that provide
a simple summary of plant-soil interactions29. PSF index values
are the biomass on ‘self’ soils minus biomass on ‘other’ soils
divided by the maximum of biomass on ‘self’ or ‘other’ soil. After
a two-year training phase, plants created soils that changed
subsequent plant growth by 27% (i.e. the mean absolute value of
the PSF index was 0.27 in 2018). However, because most PSFs
were negative but some were positive, the net effect of all PSFs
was that plants created soils that decreased plant growth by 10%
(i.e. a PSF index value of −0.10 in 2018). These effects increased
over time during Phase II. The absolute value of the PSF index
increased from 0.23 in 2017 to 0.27 in 2018 (T239=−3.1, P=
0.002). The net value of PSF index values increased from 0.00 in
2017 to −0.10 in 2018 (T239= 5.4, P < 0.001).

At the species*soil-level, 23 PSF index values were negative,
and 13 were positive (i.e. 95% confidence interval did not overlap
zero; Fig. 1a). These 36 PSF index values occurred across species
so that 14 of 16 species demonstrated a PSF on at least one soil
cultivation type (Fig. 1b). For conciseness, only 2018 species*soil-
level PSF index values are shown in Fig. 1a. PSF index values
among C3 grasses (T1,59= 5.30, P < 0.001) and forbs (T1,59=
3.65, P < 0.001) were negative, but PSF index values among C4
grasses (T1,59= 0.65, P= 0.26) and legumes (T1,59= 0.73, P=
0.23) were neutral. However, there was no difference among
functional groups (F3,224= 1.58, P= 0.19). There was also no
correlation between species*soil-level PSF index values and
phylogenetic distance (F1,239= 0.01, P= 0.91).

When species*soil-level PSF index values were averaged across
soil cultivation types to produce one PSF index value for each
species, there were five negative and three positive species-level
PSF index values in 2017 and five negative and one positive
species-level PSF index values in 2018 (Fig. 1b).

Biodiversity-productivity experiments. After 4 years, community
biomass in the 2014 biodiversity-productivity experiment increased
with species richness (Fig. 2; F1,59= 36.4, P < 0.001) from 55.6 gm−2

in monocultures to 187.3 gm−2 in 16-species communities (Fig. 2).
This 131.8 gm−2 difference represented a 237% increase in biomass
production. Complementarity effects explained 172.5 gm−2 over-
yielding and selection effects explained 40.8 gm−2 underyielding in
16-species communities (Fig. 3a). Results were similar in the 1997
experiment where, after 4 years growth, biomass increased with
species richness (F1,59= 12.66, P < 0.001) from 78.5 gm−2 in
monocultures to 183.4 gm−2 in 16-species communities (Fig. 2).
This 104.8 gm−2 difference represented a 133% increase in biomass
production. Complementarity effects explained 84.5 gm−2 over-
yielding and selection effects explained 10.5 gm−2 overyielding
(Fig. 3b). Summarizing these two experiments, 16 species produced
118 gm−2 more than monoculture plots due to 129 gm−2 com-
plementarity and −30.3 gm−2 selection effects.

Model predictions. Plant-community simulation models that
included a different growth rate for each soil training type (i.e.
PSF simulation models) predicted that biomass would increase
with species richness (F1,59= 7.81, P= 0.007), from 60.1 g m−2 in
monocultures to 76.1 g m−2 in 16-species communities (Fig. 2).
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Fig. 1 Plant-soil feedbacks (PSF) for 16 plant species. PSF values from 2018 for each plant, on each soil-cultivation type shown in panel a. Orange and
green highlighted values indicate negative and positive PSFs, respectively, and values with confidence intervals that do not overlap zero are bolded and
underlined. Sample sizes derived from 27–35 replicates on ‘self’ soils and 5–9 replicates on each ‘other’ soil for each species. Exact sample sizes reported in
Supplementary Table 1. Averaging across the 15 soil-cultivation type PSFs, produced one ‘species-level’ PSF value for each plant species (b). These species-
level PSF values are shown for data from 2017 (grey) and 2018 (black). Each value represents the mean and standard error associated with the 15 soil-
cultivation-specific PSF values. Asterisks indicate values that differed from zero in a one-sample t-test at (α= 0.05).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02329-1 ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:789 | https://doi.org/10.1038/s42003-021-02329-1 | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


This 16.0 g m−2 difference represented a 27% increase in biomass
production and 14% of the overyielding observed in the two
biodiversity-productivity experiments. Complementarity effects
explained 15.0 g m−2 overyielding. Selection effects explained 1.0
g m−2 overyielding (Fig. 3c).

Null simulation models predicted that biomass would increase
with species richness (F1,59= 7.33, P= 0.009) from 60.7 g m−2 in
monocultures to 70.7 g m−2 in 16-species communities (Fig. 2).
This overyielding was caused by selection effects (11.8 g m−2) and
not complementarity effects (−1.5 g m−2; Fig. 3d).

Both PSF and Null simulation model predictions were
correlated with community biomass in the 2014 biodiversity-
productivity experiment, though PSF simulation model predic-
tions were closer to 1:1 (Observed biomass= 0.97 × PSF predicted
biomass+ 47.3) and had a stronger predictive ability (R2= 0.20,
P < 0.001, RMSE= 77.6) than Null simulation model predictions
(Observed biomass= 0.81 × Null predicted biomass+ 61.5, R²=
0.14, P= 0.003, RMSE= 81.6). Removing two outlier commu-
nities with large biomass further improved correlations and
resulted in R2 values of 0.24 and 0.16 for PSF and Null simulation
model predictions, respectively (Supplementary Fig. 1). Neither
PSF nor Null simulation model predictions were correlated with
biomasses from the 1997 biodiversity-productivity experiment (P
> 0.05; Supplementary Fig. 1).

Discussion
PSFs improved understanding of the magnitude and mechanism of
the biodiversity-productivity relationship. In experimental commu-
nities, plants grew 118 gm−2 more in diverse communities than in
monocultures. This occurred because most plants grew better than

expected from monocultures (i.e. complementarity effects) and not
because dominant species were over-represented in communities
(i.e. selection effects)11. PSFs helped explain this pattern because
most plants created soils that decreased their own growth. Conse-
quently, plants grew faster in communities, where they were sur-
rounded by ‘other’ soils than in monocultures, where they were
surrounded by ‘self’ soils10,13,24. This increased complementarity
effects. Further, in Null simulation models, plants that grew most in
monoculture were predicted to be over-represented in communities
due to competition (i.e. selection effects). Negative PSF decreased
these selection effects because dominant plants encounter higher
proportions of ‘self’ soils than subdominant plants. The net effect of
these changes was that PSF simulation models predicted 16.0 gm−2

more biomass in diverse communities than monocultures, due to
complementarity effects. This 16.0 gm−2 represented 14% of the
118 gm−2 overyielding observed in experimental communities. PSF
effects increased from 2017 to 2018 suggesting that PSF effects are
likely to increase over time, though it is unlikely that PSFs would
become a dominant determinant of overyielding. While 14% is a
small portion of observed overyielding, results are important because
they demonstrate diversity can increase productivity by suppressing
plant disease. Results are also important because they help constrain
the importance of other factors such as niche partitioning, which
remain difficult to quantify23.

The magnitude and direction of PSFs in this study were
broadly consistent with those from across the literature25,30,32,36,
suggesting that PSFs likely play a similar role in other systems.
The absolute value of PSFs (0.27) indicated that 2 years of plant
growth created soils that changed subsequent plant growth by
27%. However, because PSFs were both positive and negative, the
net PSF effect was smaller (i.e., a PSF value of −0.10 in 2018).
Absolute PSF values reported across the literature tend to be
larger (0.53)36, but are mostly measured in greenhouse conditions
that are known to exaggerate PSF values27,36,37. This research and
previous modeling efforts suggest a direct negative relationship
between PSF and overyielding10. In other words, PSFs that
decrease plant growth by 10% on ‘self’ soils are expected to
produce 10% overyielding. Because PSFs often change plant
growth by 10–50% and overyielding often changes plant growth
by 100–200%, we expect that PSFs will often explain 5–50% of
overyielding2,10,32,36.

PSF experiments are often performed by comparing plant
growth on ‘self-trained’ soils to plant growth on soil trained by a
non-specific mix of ‘other’ species29,31. At this species, or ‘mixed-
other’ level, six species in 2018 realized significant PSFs. This
‘mixed-other’ approach has been criticized for overestimating PSF
effects31. Our large factorial experiment allowed us to examine
both ‘mixed-other’ and species*soil-level PSFs31,38. At the spe-
cies*soil-level, 14 of 16 plant species realized a significant PSF on
at least one soil type. While most species realized either positive
or negative PSFs, three plant species demonstrated significantly
positive PSFs on one soil type and significantly negative PSFs on a
different soil type. For example, A. canescens PSF values ranged
from −0.4 to +0.5. For this species, ‘self vs. other’ PSF experi-
ments could be expected to report strongly positive, strongly
negative or neutral PSF depending on the soil types used31.
Variations in PSF, from positive to negative, were important for
improving predictions of plant growth in communities. For
example, positive PSFs helped improve correlations between
predicted and observed community biomass by correctly
decreasing the biomass of species with positive PSFs in com-
munities (Supplementary Fig. 1)10. For example, a positive PSF
for L. perennis on S. nutans soil, correctly resulted in less L.
perennis biomass in L. perennis/S. nutans bicultures than pre-
dicted by the Null model. It should not be surprising that PSF
vary as a function of the plant that trained a soil, but use of the

Fig. 2 Observed and predicted plant biomass in experimental plant
communities with one to 16 plant species. Plant-community growth
simulation models either with (PSF) or without (Null) plant-soil feedback
effects predicted that biomass would increase with species richness (i.e.
overyield). However, PSF simulation models correctly predicted this effect
was caused by complementarity effects and Null models incorrectly
predicted this effect was caused by selection effects (Fig. 3). The
overyielding predicted by PSF simulation models represented 14% of the
overyielding observed in the two biodiversity-productivity experiments.
Each point represents total aboveground biomass in one community type
(n= 55 or 63 for the 1997 and 2018 experiments, respectively). Large
values from six outlier plots are not shown but were included in analyses.
Lines represent the best-fit curves and shaded areas indicate the 95%
confidence intervals. In each dataset, biomass increased with species
richness (P < 0.05; see Results for details).
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factorial designs needed to demonstrate this pattern remain
rare32. Thus, results provide a clear example of how broad
species-level assessments of PSF can hide important soil-type-
specific PSFs17,31,38.

PSFs in this and other studies tend to be negative, suggesting
that plants accumulate species-specific pathogens. It is reasonable
to expect that the negative effects of these pathogens would
decrease with species relatedness, though evidence is mixed34,35.
As the largest, factorial PSF experiment of which we are aware,
this study provided a good opportunity to test for a phylogenetic
effect, but we found no correlation between phylogenetic distance
and PSF. This suggests that pathogen effects were highly species-
specific and that phylogenetic distance beyond the population
level may be inappropriate for generalizing PSF relationships39.

In previous biodiversity-productivity experiments, species
richness explained 18–46% of variation in biomass among
communities8,40,41. In our 2014 experiment, richness explained
12% of the variation in community biomass, suggesting large
variability among communities, likely due to smaller plots and a
shorter experiment duration. Despite this variability, our Null
plant-community model explained 12% of the variation in plant
species biomass and our PSF model improved this correlation to
20%. Removing data from two large outlier communities
improved these correlations to explain 16 and 24% of variation
(Null and PSF simulation model predictions, respectively).
Although correlations were not large, results demonstrate that it
is possible to predict species biomass in communities with similar
accuracy reported for higher levels of organization (i.e.

community biomass vs. community richness) that are generally
assumed to be easier to describe42–44.

While promising in the short-term, our models were not cor-
related with plant-community composition in the 1997 experi-
ment. Because factors from climate to anthropogenic nitrogen
deposition to soil microbial community composition have likely
changed in the 20 years between these two experiments, it is
impossible to pinpoint why community biomass differs between
the two experiments45. An implication of the poor correlation
between the new and old data is that inference about the effects of
PSF on plant-community development are likely to be time- or
site-dependent46–49. However, despite a lack of correlation
between predicted and observed biomass for specific commu-
nities, the general pattern of increasing aboveground biomass
with species richness was consistent across both experiments and
PSF simulation model predictions.

Conclusion
Biodiversity-productivity experiments were developed as a test of
niche-partitioning effects, yet it remains difficult to quantify the
extent to which niche partitioning determines biodiversity-
productivity relationships7,50,51. Here, we report that PSFs
explained 14% of the net biodiversity effect. Even though this effect is
likely to increase over time, it is likely to remain modest relative to
100–200% increases in productivity across species richness treat-
ments. Yet, demonstrating a 14% PSF effect is important because it
quantifies how diversity can increase productivity in communities by

Fig. 3 Observed and predicted plant-community biomass responses to species richness. Data from experiments performed in 2014 and 1997 are shown
in panels a and b, respectively. Data from simulation models that either included or excluded plant-soil feedback effects shown in panels c and d,
respectively. Data from Net effects (black symbols) were separated mathematically into complementarity effects (red) and selection effects (blue). Plant-
community simulation models that included plant-soil feedbacks correctly predicted that plant growth would increase with richness due to
complementarity effects (c; red line) while the same models without plant-soil feedback effects incorrectly predicted positive selection effects (d; blue line)
and negative complementarity effects (d; red line). Shaded areas indicate the 95% confidence intervals. Data from 63 (a) or 55 (b) different replicated
plant communities. In each dataset, the net biodiversity effect increased with species richness (P < 0.05; see Results for details).
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suppressing plant disease. It is also important because it helps con-
strain the role of other factors (i.e. niche partitioning) in biodiversity-
productivity relationships25,52,53. Future research that quantifies and
integrates niche partitioning with PSF and other effects can be
expected to improve predictions of the effects of species loss on plant-
community productivity and resilience with implications for biofuel
production and conservation6,54.

Methods
Two-phase PSF experiments have become the standard approach to measuring
PSF, though they are typically performed in greenhouse conditions using plant
monocultures, and their effects on plant growth in communities are rarely tested
explicitly32. Here, we used a two-phase field experiment to measure the growth rate
of each of 16 plant species on soils trained by each of the 16 species in the
experiment (i.e. a factorial PSF experiments). The plant growth rates from this
experiment allowed us to simulate the growth of any combination of species. We
used these growth rates to simulate the growth of 63 unique plant communities
that were grown separately. We then compare model predictions to observed plant
growth. To better understand the mechanisms determining biodiversity-
productivity relationships, we used a standard mathematical approach to parse the
net change in community biomass with species richness into complementarity and
selection effect components11.

Research was conducted in the Cedar Creek Ecosystem Science Reserve Long
Term Ecological Research site, East Bethel, Minnesota, USA (45.403290 N,
93.187411W). Previous research at the study site demonstrated large increases in
community biomass with species richness (i.e. biodiversity-productivity relation-
ships) that increase over time and are caused by complementarity55. Soils are sandy
and of the Nymore series: mixed, frigid, Typic Udipsamment. During the four years
of the study, mean annual precipitation and temperature were 723.0 mm and 6.5 °
C, which is consistent with the 1963–2019 records at the site (769.3 mm and 6.6 °C,
respectively).

We performed two experiments: a PSF experiment and a biodiversity-
productivity experiment. Each experiment included 16 species used in an existing
biodiversity-productivity experiment at the site (the Biodiversity II experiment;
Table 1)40. Five species that together represented less than 3% of the biomass in the
biodiversity-productivity experiment from 1997 (henceforth, BP1997) were excluded
from our PSF and biodiversity-productivity experiments due to seed availability
(Asclepias tuberosa L., Dalea villosa Nutt., Dalea candida Michx) and poor growth
in previous experiments (Quercus macrocarpa Michx., Quercus ellipsoidalis E. J.
Hill). Seeds were purchased from Prairie Moon Nursery (Minnesota, USA), Granite
Seed (Utah, USA), Prairie Restorations Inc. (Minnesota, USA) and Minnesota
Native Landscapes (Minnesota, USA).

In October 2014, a 1750-m2 fallow area adjacent to the BP1997 experiment was
sprayed with a 5% glyphosate solution (Monsanto, Missouri, USA) and disc-
harrowed to 15 cm to incorporate vegetation and homogenize soils. For the PSF
experiment, 2720 plots (0.75 × 0.35 m) were established. For the biodiversity-
productivity experiment, 232 plots (1.5 m by 1.5 m) were established. Plots were
immediately adjacent to one another, but for all plots, a 35-cm deep by 4-cm wide
trench was dug and lined with a root barrier to ensure that plant roots grew in
target soil conditions (1-mm thick high-density polyethylene; Global Plastic

Sheeting, California, USA). Throughout the PSF and biodiversity-productivity
experiments, non-target plants were removed by hand several times each year.

PSF experiment. A two-phase, factorial PSF experiment was used28,29. Phase I
began in April 2015. For each of the 16 target species, 10 g live seed m−2 was
planted by hand in 170 replicate plots. During 2015, plots were watered weekly to
promote establishment, and during the first 2 years plots were weeded once every
2 weeks to ensure the conditioned soils were monospecific. Seeded plant species
grew in 2608 of the 2720 plots in Phase I. It is critical that Phase I plants do not re-
establish from roots in Phase II because this growth would appear as a positive PSF.
To prevent re-sprouting, vegetation was killed with a 5% glyphosate treatment and
aboveground biomass removed, plots were then hand-tilled with a garden claw
(~75% of plots) or rototiller as necessary (~25% of plots; Stihl Inc., Delaware,
USA), November 2016. Finally, plots were again treated with herbicide in April
2017, prior to Phase II seeding, which replicated Phase I seeding rates. Glyphosate
application may affect mycorrhization and therefore decrease positive PSF56, but it
was critical to ensure that all Phase I plants were killed because re-sprouting plants
have the potential to create large, false positive PSFs.

For Phase II, each target species was to be planted in 35 replicate plots with ‘self’
soils and nine replicated plots with each of the 15 ‘other’ soils. Because some target
species failed to establish in Phase I, actual replication ranged from 27 to 35
replicates on ‘self’ soils and five to nine replicates on each ‘other’ soil
(Supplementary Table 1). Further, each target species was randomly assigned to
five to nine replicate plots that had no Phase I growth. These ‘control’ plots had no
plant growth during Phase I and were used to parameterize one of the Null models.
During Phase II, plots were weeded once per month.

Plant cover in every plot was assessed by visual estimation in August 2017 and
September 2018 and plant aboveground biomass was clipped, dried and weighed in
October 2018. The 2017 percent cover data was converted to biomass values using
the 2018 percent cover to biomass relationship.

Biodiversity-productivity experiment. In April 2015, 63 plant communities
containing 1–16 plant species were planted in 232 plots. Plant communities with 1,
2, 4, 8, 14, and 16 species were established with 16, 14, 9, 9, 14, and 1 unique
community compositions for each richness level, respectively (Supplementary
Data 1). Each unique community composition was planted in three replicate plots,
except monocultures which were each planted in four replicates plots, and 16-
species communities which were planted in 30 replicate plots. Community com-
positions were designed to replicate those in the BP1997 experiment (Supplementary
Data 1)55,57. For 40 of 63 communities, species composition in the new and
existing experiments were identical. The remaining 23 communities differed in that
they did not include the five species described above, but again, these species
represent less than 3% total biomass in BP1997.

Each plot received 10 g live seed m−2, with each seeded species in the
community representing equal proportions of the seed mix. Plots were watered in
the first year of the study (2015) and were weeded every two weeks for the first 2
years of the study. Thereafter, plots were weeded once per month. In August 2017,
percent plant cover by species was assessed by visual estimation to the nearest
percent. Rather than removing thatch by burning (as in BP1997), total biomass was
harvested and removed to prevent melting the plastic root barrier. In August 2018,
plant cover in each plot was assessed by visual estimation, then randomly selected
15 cm by 150 cm strips were clipped, sorted to species, dried to constant weight at
60 °C and weighed to the nearest 0.1 g. The remaining biomass was then clipped,
dried and weighed. Percent cover to dry biomass correlations were used to
transform percent cover values to biomass values.

To provide an additional test of the role of PSF in the BP relationship, we also
used published data from the fourth year of the BP1997 experiment (https://www.
cedarcreek.umn.edu/research/data). Cover to biomass relationships reported for
2007 were used to convert species-level cover data to species-level biomass that
were then scaled to match observed community biomass40.

Statistics and reproducibility
Calculating and testing PSF values. PSF index values were calculated from above-
ground biomass data as follows: PSF= (S-O)/max(S,O) where S is the aboveground
biomass produced in Phase II on ‘self’ soils, O is the aboveground biomass pro-
duced in Phase II on ‘other’ soils, and max(S,O) selects the larger of S and O. This
calculation and the commonly used log response ratio have been found to be
superior to other calculations, but the calculation we use has the added benefit that
it produces values that are bound by −1 and 1 and are easily interpretable as the
proportion change in growth among soil types29. The mean and error associated
with these values was estimated using bootstrapped confidence intervals calculated
using the sample_n command from the R package ‘dplyr’. Because PSFs were
measured for 16 species on 15 soil types, analyses yielded 240 species*soil-level PSF
values. Because the mean of large positive and large negative PSF values can be
zero, and therefore ‘mask’ PSF effects, we also calculated the absolute value of PSF
values.

The 240 species*soil-level PSF values were considered positive or negative when
their 95% confidence interval did not overlap zero. Variation in species*soil PSF values
is derived from the 27–35 replicate “self” and 5–9 replicate “other” field plots. Species-

Table 1 Plant species and functional groups used in the
plant-soil feedback and biodiversity-productivity
experiments.

Species Functional group Code

Amorpha canescens Legume Ac
Andropogon gerardii C4 Ag
Achillea millefolium Forb Am
Dalea purpurea Legume Dp
Elymus canadensis C3 Ec
Koeleria macrantha C3 Km
Liatris aspera Forb La
Lespedeza capitata Legume Lc
Lupinus perennis Legume Lp
Monarda fistulosa Forb Mf
Poa pratensis C3 Pp
Pascopyrum smithii C3 Ps
Panicum virgatum C4 Pv
Sorghastrum nutans C4 Sn
Solidago rigida Forb Sr
Schizachyrium scoparium C4 Ss
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level PSF values were then calculated as the mean PSF value across 15 soil training
types. Variation in species-level PSF is derived from the 15 soil types. To determine if
species-level PSF values differed from zero, one-way t-tests were used. Species-level
PSF were considered different from zero when P < 0.05. To test whether or not PSF
values changed between the first and second year of Phase II, a one-way ANOVA with
year as a factor was used (‘aov’ and ‘TukeyHSD’ in R programming). Differences
among years were considered significant when P < 0.05. Differences among functional
groups were tested with a t-test and effects of phylogenetic distance were tested using a
correlation between phylogenetic distance and species*soil-level PSF values58.

Plant-community growth simulation models. PSF experiments describe plant growth
on soils trained by different species, but do not describe how plants grow in com-
munities. To assess how these PSFs are likely to affect plant growth in communities, we
use plant-community simulation models with and without PSF effects to predict plant
biomass and we compare model predictions to plant biomass observed in experimental
plant communities. Broadly, these models allow each plant in a community to grow
from seed at rates determined from the PSF experiment. Plant growth is eventually
limited by a carrying capacity. The best-performing discrete plant-community simu-
lation models in a similar previous study were used (i.e. the ‘logistic species-level-K
model’ and the ‘logistic constant-K model’)59,60. In this logistic growth simulation
model, species-conditioned soils ‘grow’ as a function of plant biomass, plant species
growth rates, and a plant-to-microbe conversion factor. Plant growth rates are a
function of the proportion of different soil training types present. To prevent run-away
growth, biomass is limited by a carrying capacity, which can be either unique to a
species or to the community. Null model simulations are the same except that they
include only one soil training type and one plant growth rate (Supplementary Note 1).
The Null version of these models does not include a complementarity mechanism, but
they can produce selection effects.

Growth rates were derived from (a) growth on control soils (control Null
model), (b) growth on ‘self’ soils (self Null model), or (c) growth on each soil type
(PSF model). Competition coefficients were assigned a value of ‘1’, but each species
could affect the growth of other species due to community-level carrying
capacities60. Each of these three model parameterizations (i.e. growth on control,
growth on self, or growth on each soil type) was run with five different carrying
capacities: (1) the maximum observed growth in any plot in the community
experiment, (2) the maximum mean observed growth in any community, (3) the
maximum species-specific growth in community plots, (4) the maximum observed
growth in any PSF plot, and (5) the maximum species-specific growth in any PSF
plot. Mean Null model predictions of community biomass were calculated from the
10 model simulations (Control Null, Self Null each with five carrying capacities).
Mean PSF-model predictions were calculated from the five simulations with
different carrying capacities.

Because growth rates were derived from the second year of growth, we assumed
that growth rates represented 2 years of growth. To simulate the four years of
growth in the biodiversity-productivity experiment, model simulations were
executed for 52 timesteps, after which plant biomass was reduced to 1% of the
previous timestep and allowed to run for another 52 timesteps. Model simulations
for 52 or 208 timesteps produced qualitatively similar results but only results from
the 104 timestep approach described immediately above are reported since they
best represented conditions in the field. Mean model output for the sum of species
growth from the suite of Null or PSF-model simulations are reported.

Parsing selection and complementarity effects. To better explain why biomass changes
with species richness in each dataset (observed or predicted), the net change in com-
munity biomass with species richness was parsed into complementarity and selection
effect components, using the modified Price equation (R package ‘partitionBEFsp”)11,33.
Complementarity effects can be positive or negative, depending on whether species on
average have higher or lower yields than the expected relative yield. Selection effects can
be either positive or negative, depending on whether species have a positive or negative
covariance between relative yield and biomass. This method is easily interpretable,
comparable to other results, and remains the standard practice. Data from outlier
communities with total biodiversity effects greater than five times the interquartile range
were removed. Because S. rigida, D. purpurea, D. villosa, and D. candida did not grow in
monoculture communities in BP1997, when partitioning biodiversity effects for BP1997,
monoculture growth for these species was assumed to be twice biculture growth.

Testing PSF and biodiversity-productivity data. Patterns in the observed and pre-
dicted biomass with species richness were described with simple, best-fit log linear
regressions (Proc Reg; SAS V9.4). The relationship between predicted and observed
biomass in different plant communities was assessed by ordinary least squares
regression. Plant-community biomass was the response variable that was predicted
by either Null-or PSF-model-predicted biomass.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used to prepare this manuscript can be found deposited at USU Digital
Commons: https://doi.org/10.26078/52k0-jr94.
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