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ABSTRACT  
Increasingly, new hardware and software are embedded within ecosystems that include a 

platform and modules. Ideally these ecosystems perform reliably. However, if an ambiguously 

sourced failure occurs within one of these ecosystems, users are left to distribute blame across 

the various components of the ecosystem. The actual distribution of this blame, however, can be 

difficult to predict. This study investigates attribution of blame and discontinuance 

recommendations for ecosystem components after an ambiguously sourced failure. To extend 

platform ecosystems and attribution theory, we conducted a scenario-based experiment 

investigating the negative consequences of failure for platform and module components and the 

contingent effects from design elements (border strength) and contextual factors (task goal-

directedness, disruption severity). Results demonstrated a diffusion of negative consequences for 

failure across ecosystem components, but ecosystem modules (apps) received the majority of the 

blame and highest discontinuance recommendations. High border strength shifted negative 

consequences for failure away from the OS to the device. Low goal-directedness resulted in 

users taking more of the blame for the failure, and higher disruption severity resulted in higher 

discontinuance recommendations for the OS and device. Importantly, the amount of blame 

attributed to one component in an ecosystem predicted discontinuance recommendations for 

other components.  
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Blame Attribution after Failures within Platform Ecosystems  
 

INTRODUCTION 
As platform-based ecosystems become increasingly common, owners of components of 

those ecosystems are finding it important to understand how to manage their products within 

these ecosystems successfully. Given the interdependency among components, the function of 

any one component can be tied to the success and proper functioning of other components. 

Similarly, and central to our study, failure on the part of one component may affect end-user 

perceptions of other components. With this complex set of relationships and related risk in mind, 

these ecosystems present a major challenge for a component’s sponsor to influence how the 

sponsor is perceived.  

Although the nature and consequences of failures vary, previous research suggests that 

when a system fails, users search for someone or something to hold accountable for their 

frustration and any related negative consequences [56]. When users have a clear idea regarding 

responsibility for failure, this accountability is relatively straightforward to assess. However, 

within a platform ecosystem, where interdependence is the norm and responsibility among 

platform components may be unclear, understanding which component to hold accountable and 

to what degree becomes more complicated as the source of failure may be ambiguous and/or 

undiscernible by end users.  

For example, consider a motorist using the Waze app running on the Android OS on an 

HTC smartphone to navigate the streets in a foreign city. At a crucial intersection, the operation 

of the system stops entirely, leaving the motorist confused as to where to go, or, worse, in a 

dangerous traffic situation. Which component of the ecosystem does the motorist hold 

accountable and consider discontinue using? Similarly, a user interacting with the Hulu 

application on a Roku device may encounter sub-optimal functioning (e.g., content that should 
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be available cannot be found). Again, which component of the ecosystem is held accountable and 

how does that affect the user’s perception and continued use of that component? 

In such situations, it is possible that multiple components are considered similarly 

culpable, multiple components are considered culpable by the user but in unequal amounts, or a 

single component could be considered the primary source of the problem. Within a complex 

enivornment, however, this assessment may or may not correspond with actual culpability. Thus, 

when platform ecosystem failures of an ambiguous nature occur, negative assessment assigned 

for the failure may spread over ecosystem components regardless of whether or not they are 

actually at fault.  

In this study, we address two broad research issues. First, we examine how users 

distribute blame among platform ecosystem components when they encounter a failure from an 

ambiguous source. Second, we consider how components within such ecosystems may be able to 

reduce the negative implications of such failures. In doing this, we use concepts from the 

platform ecosystems and platform markets literature [17, 57] to help understand the tight 

coupling within a platform ecosystem. We then integrate the concepts of digital borders and 

border strength [14] with attribution theory [20] to theorize the manner in which users choose to 

apportion blame after the occurrence of an ambiguous failure. 

Using the context of the smartphone platform, we conducted a scenario-based experiment 

in which we focused on how border strength, or the extent to which the boundaries around 

objects (in this case, the device, its OS, and an application), affects user blame attribution and 

discontinuance recommendations given an ambiguous failure. We also tested the effects of 

different types of task (goal-directed vs. less goal-directed) being conducted when the failure 

occurred and differences in the severity of the failure. Our findings show that while negative 



 

 

4 

consequences for failure are shared across components, apps receive the majority of the blame 

and the highest discontinuance recommendation. Increasing the border strength between 

platform components, we found, shifted blame away from the OS and toward the device. 

Importantly, the amount of blame attributed to one component in an ecosystem predicted 

discontinuance recommendation for other components.  

 

THEORETICAL BACKGROUND 

Failure and Attribution 

While the complexity inherent in a platform ecosystem can create coordination and 

governance challenges [e.g., 28, 51], users still expect technology systems to function properly 

[56]. The context discussed here, of consumer-facing product-based ecosystems, aligns strongly 

with the concept of product failures. In simple (non-ecosystem) products, these failures have 

been found to result in negative consequences for the party deemed responsible, including 

refund-seeking [20], negative brand evaluation [51], distrust toward related products [10], and 

brand sabotage [29]. Therefore, understanding how the user identifies and attributes blame 

within a complex ecosystem, where the source of the failure may be particularly unclear, is vital 

to understanding how ecosystem failures affect user perceptions of the platform components’ 

sponsors. 

According to attribution theory, identifying the party to be held responsible occurs based 

on the user’s perception of situations and events [18]. In other words, an actor that purposefully 

exerted effort resulting in a negative outcome accrues more negative sentiment (e.g., blame) than 

one that was not capable of preventing the action from occurring. Therefore, for individuals to 

make meaningful attributions, the intentionality behind actions leading to the negative event 
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must be clear [50]. This intentionality has been further decomposed into attribution theory’s 

three key dimensions: locus, controllability, and stability. 

The locus of a failure captures the extent to which the action that caused the failure was 

internal or external to the individual making the assessment [60].  

Platform Ecosystems  

Platform ecosystems are systems that require both a core platform as well as modules 

built around the platform [58]. The platform supplies core functionality, such as access to input 

and output devices, data processing, and accesses to sensors. Modules, on the other hand, extend 

the functionality of the platform. Together, the platform and the modules that run on the platform 

form the platform ecosystem [57].  

Such platform ecosystems are becoming increasingly common. For example, consider the 

streaming video ecosystem where the hardware device (e.g., a Roku box or properly-equipped 

television) is the platform through which modules, in this case streaming service applications 

(e.g., Netflix, Amazon Prime Video, YouTube), provide access to content. Video game consoles 

provide another example, wherein the devices (e.g., the PlayStation or Xbox console) are the 

platform through which game modules provide content and interactivity. As another example, 

smartphones and mobile devices form a platform ecosystem, whereby the handset and operating 

system together form the platform upon which applications (the modules) extend the 

functionality.  

This form of ecosystem is attractive to both module creators and end users in that it 

facilitates easier adoption. For instance, a video game studio does not have to produce the system 

itself, input/output devices, or other protocols, but instead can focus on developing the 

entertainment content. Or, from the user perspective, the user does not have to purchase multiple 
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devices or learn multiple interfaces to receive the benefits of differing applications. 

Platform ecosystems can vary in complexity. In some cases, software alone can be 

considered to comprise the platform. For instance, Microsoft Word facilitates access to many 

different plug-ins (modules), while an internet browser can be considered the platform that 

provides access to numerous website modules. However, platforms can also be considerably 

more complex and consist of a combination of both hardware and software [57]. In such cases, 

the software component of the platform runs on top of the hardware, forming a sort of “stack” 

that together comprises the full platform. This more-complex form of ecosystem is common in 

every day computing devices such as PCs (which require both the computer hardware as well as 

an operating system) and smart phones (which require both a handset as well as an operating 

system). 

With this added complexity, the necessary coordination and governance to facilitate 

proper function becomes more challenging [e.g., 28]. This may be particularly true for 

application developers who develop for a given operating system (e.g., developing apps for 

Android), but must also understand that there can be considerable variance with regard to the 

hardware part of the platform — for instance, the devices may have various screen sizes, 

memory capacity, and clock speeds. Further, in such complex platforms, both the software and 

hardware components of the platform must work together successfully, again while considering 

that the other components of the platform may vary (e.g., there are multiple versions of Android 

that may eventually appear on a handset and there are multiple different handsets that run 

Android). 

Such interaction and interdependence are a key characteristics of platform ecosystems 

[57]. Given the variability possible among components, there are increased opportunities for 
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failures to occur due to the interdependence among the components. Even if one component fails 

on its own, the performance of the other components is nevertheless tied to the failure of the one. 

To date, however, antecedents and consequences of user perceptions specific to the components 

in such ecosystems have not been widely considered despite the fact that qualities of a user’s 

experience have been shown to be crucial to the formation of user attitudes toward technology 

[e.g., 27, 37, 43].  

Failure and Attribution 

While the complexity inherent in a platform ecosystem can create challenges with 

coordination and governance, users still expect these ecosystems to function properly. When the 

system fails to perform to expectations, users will search for something to blame [56]. Various 

forms of failure have long been studied within the information systems field. Scholars define a 

system failure as any occurrence in which an information system fails to meet expectations or 

requirements [e.g., 19, 38, 56]. Using this definition, much research has addressed organization-

wide information systems that failed to satisfy their intended purpose to deliver value [3, 11, 15, 

47]. Causes of failure include project escalation [30, 31], organization-system fit [55], and user 

resistance [4, 23, 33]. While important as avenues of inquiry, these studies consider failure in a 

way different from that proposed in our research. In particular, these studies focus on 

organization-wide systems (vs. personal technology) and consider known sources of failure (vs. 

ambiguous sources). 

The failure of personal products used by individuals, however, has been studied at length 

in the marketing field, where it has been termed product failure. These failures have been found 

to result in negative consequences for the party responsible for the failure itself [5, 20, 39]. But 

the assignment of blame has been shown to be contingent on characteristics of the failure and the 
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entities (individuals, organizations) involved [50]. According to attribution theory, finding a 

given party to be responsible for a product failure — in other words, blaming a given party —

occurs based on the user’s perception of situations and events [18]. What the user perceives in 

terms of causality and responsibility for failure influences the user’s attribution of blame [50]. 

The party to whom blame is attributed has been found to suffer negative consequences as a 

result, such as anger and refund-seeking [20], negative brand evaluation [51], distrust toward 

related products [10], and brand sabotage [29].   

Early theory on attribution focused on ordinary individuals understanding the meaning 

behind the actions of others [22]. For individuals to make meaningful attributions about others’ 

dispositions based on observable actions, intentionality behind the actions must be clear [50]. In 

other words, one who purposefully exerted effort resulting in harmful actions would accrue more 

blame than one who was forced to perform harmful actions or unable to prevent harmful actions. 

In subsequent research, intentionality necessary to attribute blame was further decomposed into 

three characteristics: locus, controllability, and stability dimensions [60, 61]. 

In interpersonal attribution research, the locus of a failure captures whether the action that 

caused failure was internal or external to the individual [60]. When considering product failures, 

the locus has been conceptualized as an evaluation of direct culpability when a product fails to 

provide its intended function and is estimated on a continuum between the product and the 

consumer [20, 49]. When locus for a failure is estimated to be near the product, consumers 

perceive that the product is directly responsible and therefore subject to more blame. For 

example, failure experienced while using a product outside of its intended purpose (e.g., the car 

stops running after the user continued driving despite seeing the gas gauge on empty) may result 

in locus near the consumer and minimal blame attributed to the product. However, blame 
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attributed to the product would be much higher for failure experienced during appropriate 

product use (e.g., the car stops running despite normal maintenance and use). 

The controllability dimension captures the degree to which failure was the result of 

volitional or non-volitional action and is also traditionally conceptualized along a continuum 

[20]. Controllability indicates the degree to which an entity has the capacity to carry out an 

intended action. When controllability in product failure is high, individuals are likely to perceive 

that the negative consequences of the failure could have been avoided. Therefore, blame for the 

failure is also likely to be high. Alternatively, failure caused by unanticipated factors or lack of 

ability may not accrue as much blame because there was little control over the nature of the 

failure [60]. Although controllability often coincides with an internal locus, these dimensions can 

differentially affect blame. For example, a product manufacturer may contractually control the 

actions of a partner and therefore receive more blame for the partner’s actions in a failure even 

though the partner is external. The extent to which a party is perceived to have had control over a 

failure outcome is a key determinant of the product user’s adverse reaction [20]. 

Finally, the stability dimension is the degree to which the cause of the failure is 

temporary (e.g., could fluctuate over time) or permanent (e.g., is relatively stable) [20]. 

Perceptions of stability provide individuals making attributions in response to failure an estimate 

of how expected the failure was and how likely it will be in the future. For example, in the 

course of making attributions, one might consider: Is the failure the result of repeated action that 

is likely to continue or is it the result of transitory actions unlikely in the future? When the causes 

for failure are relatively stable, blame attributions tend to be more severe. 

Together, locus, controllability, and stability have successfully explained a host of 

attributions that lay people make in response to observable actions of [32, 60]. However, 
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applying attributions within platform ecosystems, where components are interdependent, 

presents a new challenge. The stability of each component within the ecosystem will likely 

remain observable. For example, users will notice repeated failures involving the ecosystem 

components. However, controllability and locus will likely be much more difficult to assess and 

may be more fluid. For example, in ecosystems with multiple components, the locus can be 

shared among the components (and the user). Additionally, the resources over which each 

component has control in the ecosystem are often unclear and consumers might have difficulty 

determining if a failure was avoidable. Given the interdependence in a platform ecosystem, this 

fault ambiguity would be highly likely any time a failure occurs — even error messages 

purporting to explain the failure may miss the mark or mislead the user, who has few resources 

available (and likely lacks the time, patience, and necessity) to research root causes of 

ambiguous failures. 

HYPOTHESES AND MODEL 

To explore ambiguously sourced failures in mobile platform ecosystems, we first 

consider how locus, controllability, and stability can be used to attribute blame to ecosystem 

components and ultimately affect discontinuance recommendations. We then introduce a new 

characteristic, border strength, which we argue can alter the locus and controllability and thereby 

affect blame attribution and discontinuance recommendations. Finally, we explore contextual 

contingencies of disruption severity and goal-directedness and how they can influence blame and 

discontinuance.  

Platform Ecosystem Components 

To understand how components within a platform ecosystem may be perceived 

differently by users, it is important to revisit each component’s position in the ecosystem. 
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Specifically, we draw a distinction between platforms (e.g., the device and OS working together) 

and modules (e.g., apps) in the ecosystem. When individuals experience failure within a platform 

ecosystem, they may not be aware of technical reason for the failure, thus possibly obscuring 

actual locus and controllability. However, users are aware of their actions as they interact with 

ecosystem components and these actions make apps the most likely target for blame attribution 

and recommended discontinuance should a failure occur. Any ambiguously sourced failure will 

occur during operation of an app, and, prior to that failure, users will have deliberately opened 

and used the app. Therefore, the app and its potential role in the failure would be highly salient 

and locus for the failure would likely be closer to the app. Further, the operating environment of 

the platform is likely to be common and accessible to all developers who create apps. Therefore, 

app developers will be attributed a greater degree of control over the unique experience their 

apps provide. If failure occurs, users will likely contrast the failure with successful operation of 

other apps in the same ecosystem (which ostensibly had similar control). Since platform 

components provide similar resources to all apps, the increased locus and controllability for the 

app would lead to higher blame attributed to app than to other components in the ecosystem 

stack.   

Finally, the purpose of platform components is to create a stable operating environment 

that facilitates access to and management of the digital resources available in the platform [57]. 

In comparison to experience with apps, users likely will have had many more interactions with 

platform components during which failure did not occur. In fact, one of the distinguishing 

characteristics of platforms and an important reason why developers create apps for the platform 

is stability [57]. With modules of the ecosystem being ascribed greater locus and controllability 

and less stability than platform components, we anticipate greater blame and recommended 
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discontinuance in response to ambiguous system failures. Therefore,   

H1: Mobile platform modules (i.e., apps) will be attributed (a) greater blame and 
(b) higher discontinuance recommendation after an ambiguously sourced system 
failure than platform components (i.e., device, OS). 
 

Border Strength 

To consider how attributions of blame and discontinuance recommendations may be 

altered by organizations supporting ecosystem components, we draw on the concept of the digital 

border. A digital border is the specific boundary around a digital artifact such as a website or an 

application [14]. The prominence of a digital border has predicted recognition of websites, with 

consequences resulting from recognition (or non-recognition). These findings have particular 

salience for branding on the Web; websites with higher borders are more likely recognized and 

credited for their contributions to a task, potentially leading to greater user loyalty and brand 

recognition. In the Web context, border recognition and attribution can be influenced by border 

strength, or the extent to which a virtual location is indicated and reinforced (e.g., through 

notifications, visual cues, or instructions) [14].  

Given the findings regarding the effects of border strength in the Web context, we expect 

that border strength will exhibit a similar effect within more complex mobile platform 

ecosystems by making the potential locus of the failure more evident and raising awareness of 

potential sources of controllability. Each component within a platform ecosystem, whether part 

of the platform or module, has opportunity to better differentiate itself and, thus, strengthen the 

border between itself and the remainder of the ecosystem. These borders, for instance, might be 

strengthened through stronger, better-differentiated, and potentially interrupting design choices. 

An application, for instance, can include a branded “splash screen” to raise the user’s awareness 

regarding the app’s identity and features within the app may reinforce this identity. Similarly, 
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through design choices, the OS and device may raise greater awareness of themselves. Such 

designs have been found to strengthen borders within a multi-site Internet session context [14], 

and we expect that stronger borders will play a similar role within the mobile platform 

ecosystem. Strengthening of borders in this way will make apparent and distinguish the multiple 

components that could appear monolithic to users. Increasing the prominence of ecosystem 

components that could potentially be at fault should an failure occur will facilitate the generation 

and direct perceptions of locus and controllability. For example, increasing border strength will 

increase salience of the boundaries of controllability for each component. Strengthened borders 

will also make more clear which components are in operation at the time of failure and, thus, will 

likely alter perceptions of locus. Therefore,  

H2: The border strength separating components within the mobile platform 
ecosystem will significantly affect (a) the amount of blame assessed the 
component and (b) the discontinuance recommendation of the component after an 
ambiguously sourced system failure. 
 

Goal-Directedness 

Among contextual factors, the objective of the task being performed by a user interacting 

with an ecosystem is critical to consider. A user may perceive the components differently 

depending on the user’s specific activity: finding an answer to a closed-ended question, 

researching a topic of interest to form an opinion, or passing time in pursuit of hedonic interests. 

The range of potential activities that can be performed within a digital environment has been 

described by several typologies. These include hedonic vs. instrumental/utilitarian [e.g., 9, 34, 

37, 59], telic vs. paratelic [12], hedonic vs. intrinsic vs. extrinsic system proposed by Lowry et 

al. [36], and the multi-dimensional task complexity spectrum originally introduced by Campbell 

[7].  
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In this work, we conceptualize task using a binary categorization of experiential vs. goal-

directed [e.g., 25, 42, 44, 62]. This conceptualization is among the most commonly used and 

permits exploration of task performance failure in some degree of structure. Further, the 

conceptualization captures the greatest dichotomy among potential task types that are widely 

performed using mobile platform ecosystems. Past research using this dichotomy has shown not 

only its usefulness, but also its effects on user perceptions and intentions related to information 

systems. Deng and Poole [12] found varying levels of pleasantness were perceived due to 

interactions between a user’s meta-motivational state and the goal-directedness of a task. 

Nadkarni and Gupta [42] found that goal-directedness affected user satisfaction with an online 

system when considered along with the system’s visual complexity. Finally, Novak et al. [44] 

found that goal-directedness affected the amount of flow (immersion in an activity) experienced 

by Web users.  

In a similar vein, we anticipate that goal-directedness of a task will also alter the blame 

and discontinuance recommendations for ecosystem components after an ambiguously sourced 

failure. Blame occurs in response to actions for which individuals will suffer negative 

consequences [50]. In contrast to experiential tasks, when failure occurs during goal-directed 

tasks users are denied achieving a defined their aims and must suffer anticipated consequences. 

Therefore, when goal-directedness is high, blame attributions based on locus, controllability, and 

stability are likely to be stronger. For example, in a focused task with a concrete objective, users 

will be more likely to take note of obstacles and who placed them (i.e., locus, controllability) that 

prevent them from reaching their objectives. If failure within a platform ecosystem makes goal 

achievement impossible, users will likely respond negatively by attributing blame. In contrast, 

users engaged in more experiential tasks would be less likely to note the failure as an obstacle 
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and be more likely to simply move on to other tasks. Therefore,  

H3: The goal-directedness of the interaction with a mobile platform ecosystem 
will significantly affect (a) the amount of blame assessed the component and (b) 
the recommended discontinuance of the component after an ambiguously sourced 
system failure. 

Disruption Severity 

Ecosystem failures can result in a variety of consequences for the user. For example, 

some failures may cost the user only a few moments of inconvenience, while others may require 

considerably more time and effort to resolve. Indeed, Galletta et al. [21] found that delay within 

a website context was a cost which negatively impacted a user’s future intentions. Other studies 

have yielded similar findings, where perceived and actual delays negatively impacted the quality 

of an experience [16, 54], increased user frustration [8, 48], and hampered system success [45]. 

As the negative consequences for failure increase we expect to see blame attributions as the 

result of locus, controllability, and reliability increase. These attributions should also be evident 

in discontinuance recommendations. Therefore,  

H4: The disruption severity caused by an ambiguously sourced system failure will 
(a) increase the amount of blame assessed to components of a mobile platform 
ecosystem and (b) increase the recommended discontinuance of components. 

Blame Attribution and Continuance 

Finally, within the context of a user’s interaction with information technology, we expect 

blame resulting from failure within a mobile platform ecosystem to have important 

consequences. Indeed, in the ecommerce context and as noted by Tan et al. [56], service failures 

result in negative consequences for the sites where the failures transpired. A substantial literature 

has found significant relationships between negative perceptions of a technology and future 

intentions with regard to that technology [e.g., 27, 37, 43]. We expect a similar relationship to 

emerge with mobile platform ecosystems. Therefore: 
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H5: The greater the blame assessed a mobile platform ecosystem component after 
an ambiguously sourced system failure, the greater the recommended 
discontinuance of that component.  
 

Model 

As described above, our exploration consists of the evaluation of the model shown in 

Figure 1. We examined blame attribution to and discontinuance recommendations for the device, 

OS, and app. Consistent with our conceptualization of blame, we also captured blame of self.  

Goal-Directedness

Border Strength H2a

Disruption Severity

H3a

H4a

H2b

H3b

H4b

H5

Blame:
Self

Device
OS

App

Discontinue:
Device

OS
App

H1a

H1b

 

Figure 1. Experimental model for blame and discontinuance  

METHOD 

To test our hypotheses, we conducted two scenario-based experiments within the mobile 

platform ecosystem. The first experiment (n = 142) confirmed how attributions are made after 

failures and explored effects of border strength on discontinuance recommendations for platform 

components (H1, H2). The second experiment (n = 367) revisited border strength and examined 

additional effects from goal-directedness and disruption severity on discontinuance (H1-H4). 

Four pilot studies, including over 500 participants, tested the scenarios and measurement prior to 

the main experiments. Data were collected in a single session for each participant via the 

Qualtrics survey system. After providing consent, participants were randomly assigned a 
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condition and were asked to complete a pre-survey including control variables. They were then 

presented a multi-part scenario (customized by condition) in which they had been given a 

smartphone (device and OS) with an app that they were expected to use for a new job. While 

using the smartphone and app, a failure occurred which resulted in the temporary inoperability of 

the smartphone. After finishing the scenario and completing attention checks, participants then 

answered questions about components in the mobile platform ecosystem. Appendix A contains 

the items that were used in the experiments. Appendix B includes the full text and treatment 

conditions in the scenarios. 

Experiment 1 

Experiment 1 checked manipulations, revealed attributions in response to failure, and 

examined the effects of border strength (weak border vs. strong border-unfamiliar app developer 

vs. strong border-familiar app developer) on discontinuance recommendations (H1, H2).  

Participants 

Participants were recruited through Amazon’s Mechanical Turk (MTurk) service, which 

has been found to provide participants similar in quality to other frequently-used sources, such as 

university students and commercial panel recruiting services [e.g., 6, 35, 53]. Participation was 

limited to United States residents who had completed more than 100 MTurk assignments, but 

fewer than 1,000 [46]. Participants were compensated $1.00 to complete the experiment. We 

sourced 200 participants, but 58 participants failed attention checks and comprehension tests. 

Therefore, our final sample included 142 participants. The mean age of participants was 33.8 

(SD = 10.7); 60.0% were female, and 59.1% completed at least a bachelor's degree. Every 

participant reported owning a smartphone and 96.5% of participants reported using their 

smartphones several times each day. 
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Independent Variables 

Border strength was manipulated in the beginning of the scenario. Participants were 

given some background about a job they had just started and the expectation of using a company-

assigned smartphone and app. As a robustness check for border strength, we tested both familiar 

and unfamiliar app developers. Teleduke is a fictitious company created for this experiment and 

Oracle is an established company that is widely known. In the strong borders conditions the 

brands of the device, OS, and app were named in the scenario, which read: 

Imagine you have started a job for a new company working in the service 
department. The company has given you a new smartphone that they expect you to 
use as your primary mobile device. This particular smartphone is made by 
Motorola and is the Moto E model. The phone uses the Android operating system 
developed by Google (version 4.4). Your company has also required you to install 
and use a third-party app called ComMentor from the Google Play store. This 
app allows you to monitor and collect data regarding customer comments and 
was developed by a company called [Teleduke (Unfamiliar app developer)/ 
Oracle (Familiar app developer)].  
The identity of these brands was then reinforced through attention-check questions, 

which asked participants to name the smartphone manufacturer, the operating system, and the 

name of the app developer (only responses where the participant correctly answered these 

questions were included in the analysis). In the weak borders condition, the background omitted 

brand names and was followed by questions asking participants to name the department where 

they worked, where the company’s headquarters was located, as well as the kind of building in 

which the job took place. 

Dependent and Control Variables 

Following the scenario, participants were given the following prompt: 
Your company is considering making changes to the smartphone, smartphone 
operating system, and the app that you used in the scenario. This change would 
affect you and all other employees in your department. Each of these components 
could be changed separately (i.e., the company could change smartphone devices, 
but retain the same operating system and app). 
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Following this prompt, participants were asked to recommend whether the company should 

change the device, the OS, and the app. This recommendation was on a seven-point scale, 

ranging from strongly recommend against (changing the component) to strongly recommend. 

Our investigation also considered several control variables that were included based on 

past literature indicating that they may affect user attribution of failure with an ambiguous source 

as well as discontinuance recommendation. Since we used actual brands, we captured attitudes 

about those brands. Prior to starting the scenario, participants provided their impressions of the 

smartphone manufacturer, OS, and app brands that would be referenced in the scenario to come. 

Impressions were captured on a seven-point scale ranging from very negative to very positive 

[e.g., 13]. The four scenario brands were randomly mixed with eight additional brands to 

ameliorate priming effects for the scenario brands. Participants then completed scales for 

propensity to blame, mobile device self-efficacy [1, 41], product involvement [63], and 

normative and informational susceptibility to interpersonal influence (SII) [2].  

Results 

To check the theoretical rationale for how borders function to alter attributions following 

ambiguous failure, we first examined perceptions of locus, controllability, and stability (see 

Table 1).1 In the rationale for H1, we argued that perceptions of stability would differ between 

modules (i.e., app) and the platform (e.g., OS, device). Consistent with this argument, within-

subjects comparisons from a repeated analysis of variance (ANOVA) demonstrated differences 

in the level of stability attributed to the app, OS, and device, F(2, 280) = 4.126, p = .017. 

Furthermore, in the rationale for H2, we argued that making borders salient within the platform 
                                                 

1 Prior to reporting discontinuance recommendations, participants rated the app, OS, and device using the following 
items taken from <<CITE>>. “The following questions concern the [app, OS, device]. The problem you read about 
above is something…” Locus: “That reflects an aspect about the [app, OS, device]” … “That reflects something 
about the situation”; Controllability: “That the [app, OS, device] can regulate” … “That the [app, OS, device] cannot 
regulate”; Stability: “That is stable over time” … “That varies over time”. All items were on a 7-pt scale. 
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ecosystem would alter locus and controllability. Consistent with this argument, between-subjects 

comparisons from a repeated ANOVA demonstrated that border strength significantly affected 

locus, F(2, 139) = 4.304, p = .015. However, border strength did not affect controllability, F(2, 

139) = 1.605, p = .205. Therefore, effects from border strength were associated with locus, not 

controllability. 

 Component 
Border 
Conditions 

Attributions Device Mean (SD) OS Mean (SD) App Mean (SD) 

Weak Border Stability 4.93 (1.52) 4.63 (1.43) 5.24 (1.37) 
Locus 3.90 (1.84) 3.71 (1.42) 2.71 (1.42) 
Controllability 3.98 (1.59) 3.22 (1.28) 3.17 (1.55) 

Strong Border – 
Teleduke 

Stability 4.69 (1.49) 4.78 (1.45) 5.24 (1.24) 
Locus 4.73 (1.62) 4.58 (1.64) 2.75 (1.60) 
Controllability 4.49 (1.67) 4.00 (1.82) 2.84 (1.63) 

Strong Border – 
Oracle 

Stability 5.15 (1.33) 4.80 (1.52) 4.98 (1.42) 
Locus 4.93 (1.61) 3.89 (1.72) 2.76 (1.61) 
Controllability 4.33 (1.78) 3.74 (1.72) 3.13 (1.71) 

Table 1. Experiment 1 stability, locus, and controllability mean values. 

Following checks of attribution, we then examined our hypotheses by testing effects of 

borders on discontinuance. Means of discontinuance recommendations are shown in Table 2. To 

test H1, we performed a repeated ANOVA to compare the discontinuance recommendations for 

the app, OS, and device. The repeated ANOVA accounted for the nonindependence of 

observations and demonstrated significant differences between ecosystem components, F(2, 278) 

= 38.342, p < .001, ηp2 = 0.22. In support of H1, post-hoc tests with a Bonferroni correction for 

repeated tests demonstrated that discontinuance recommendations were higher for the app than 

they were for the OS and device (both at p < .001).  

Treatment Conditions N Mean Device 
Discontinuance 
(SD) 

Mean OS 
Discontinuance 
(SD) 

Mean App 
Discontinuance 
(SD) 

Borders Weak Border 46 3.89 (1.55) 4.41 (1.57) 5.76 (1.10) 
Strong Border – 
Teleduke 

55 4.65 (1.61) 4.69 (1.67) 5.84 (1.21) 

Strong Border – 
Oracle 

41 4.56 (1.52) 5.17 (1.36) 5.51 (1.05) 
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Total 143 4.38 (1.59) 4.74 (1.57) 5.72 (1.13) 
Table 2. Experiment 1 discontinuance recommendation model mean values. 

To test H2, we performed a multivariate analysis of covariance (MANCOVA) with 

border strength as the independent variable, discontinuance recommendations for each 

component as dependent variables, and control variables as covariates. Since discontinuance 

recommendations among ecosystem components are conceptually related, MANCOVAs are 

appropriate analysis techniques [40]. The complete results from the MANCOVA are presented in 

Appendix C. Multivariate tests, F(6, 258) = 2.083, p = .056, indicated a significant effect for 

border strength. Consistent with H2, follow up univariate tests demonstrated significant effects 

from borders on continuance recommendations for the OS, F(2, 130) = 4.027, p = .020, ηp2 = 

0.06, and for the device, F(2, 130) = 3.127, p = .047, ηp2 = 0.05. Post hoc tests with a Bonferroni 

correction revealed that strong borders resulted in higher discontinuance recommendations the 

OS (Strong Border-Oracle compared with Weak Boarder: p = .014) and device (strong border-

teleduke compared with weak boarder: p = .057).  

Several covariates demonstrated a significant influence on the dependent variables; 

therefore, abbreviated significant results are reported next. Brand impressions of the device (p = 

.017) and the app developer (Teleduke: p = .008) influenced discontinuance of the app. 

Propensity to blame (p = .021), product involvement (p = .036), and SII (normative) (p = .044) 

influenced discontinuance of the OS. Full results are reported in Appendix C.   

Experiment 2 

Experiment 2 expanded on Experiment 1 and tested H1 – H4 and followed a 3 (border 

strength: weak border vs. strong border-teleduke vs. strong border-oracle) × 2 (goal-directedness: 

experiential vs. goal-directed) × 2 (disruption severity: low vs. high) factorial design 

 Participants 
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Participants were recruited through Amazon’s Mechanical Turk (MTurk) service. We 

sourced 480 participants via MTurk with the same restrictions and incentive as in Experiment 1. 

Removing participants who did not complete the experiment and those who failed these attention 

checks resulted in n = 367, with 29 or more participants in each cell. The mean age of 

participants was 33.2 (SD = 8.8), 61.3% were female, and 52.4% completed at least a bachelor's 

degree. Every participant reported owning a smartphone and 94.0% of participants reported 

using their smartphones several times each day.  

Independent Variables 

In Experiment 2, border strength was manipulated in the same manner as in Experiment 1 

and participants who failed to correctly identify the app developer, OS developer, or device 

manufacturer were excluded. Following border strength, goal-directedness was manipulated and 

included two conditions: goal-directed or experiential [42, 44]. In the goal-directed condition, the 

scenario continued by describing a circumstance in which the participant was asked to use the 

smartphone and app to complete a goal-directed task (finding examples of an employee’s work 

as part of an award nomination process as in Experiment 1). In the experiential condition, the 

scenario continued by describing a circumstance in which the participant looked for entertaining 

exchanges between customers and support employees. Participants in the goal-directed condition 

reported that in the scenario they had more of a distinct, identifiable purpose (M = 6.27, SD = 

.91; t(362) = 15.20, p < 0.001) and looked up more specific information (M = 6.31, SD = .96; 

t(365) = 16.15, p < 0.001) than participants in the experiential condition (purpose M = 4.24, SD = 

1.56; specific information M = 4.03, SD = 1.65).2 These significant differences indicated a 

successful manipulation for goal-directedness.  

                                                 
2Manipulation check items for goal-directedness and disruption severity were measured on a 7-point Likert type 
scale with Strongly Disagree and Strongly Agree as endpoints. 
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Lastly, participants were also assigned to either a low or high disruption severity 

condition. In both conditions, the scenario described an ambiguous failure in the mobile platform 

ecosystem during which the app, OS, and device froze and became unresponsive during the task. 

In the low disruption severity condition, participants were told that after freezing, they restarted 

the smartphone and it became operable again. In the high disruption severity condition, however, 

participants were told: 

You cannot get the phone to turn off and restart. After taking the phone to your 
company’s IT group, it takes three days to get your phone back in working order, 
during which time you miss several important calls from your boss, who is out of 
the country. 
Indicating a successful manipulation, participants in the high disruption severity 

condition reported their disruption as more severe (M = 5.75, SD = 1.15; t(365) = 13.15, p < 

0.001) and serious (M = 5.88, SD = 1.18; t(365) = 13.00, p < 0.001) than participants in the low 

disruption condition (severe M = 3.82, SD = 1.61; serious M = 3.95, SD = 1.63). 

Dependent Variables 

The dependent variables and control variables in Experiment 2 mirrored those from 

Experiment 1 and included continuance recommendations as the dependent variable and attitudes 

about the smartphone manufacturer, OS, and app brands, propensity to blame, mobile device 

self-efficacy [1, 41], product involvement [63], and normative and informational SII [2] 

comprised the control variables.  

Analysis 

The analysis approach for Experiment 2 mirror the approach for Experiment 1. 

Descriptive statistics discontinuance recommendations are shown in Table 3. 

Treatment Conditions n Mean Device 
Discontinuance 
(SD) 

Mean OS 
Discontinuance 
(SD) 

Mean App 
Discontinuance 
(SD) 
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Borders Weak Border 123 4.04 (1.339) 4.48 (1.276) 5.59 (1.145) 
Strong Border 
– Teleduke 

123 4.64 (1.466) 4.07 (1.524) 5.60 (1.122) 

Strong Border 
– Oracle 

121 4.53 (1.461) 4.28 (1.629) 5.49 (1.239) 

Goal-
Directedness 

Experiential 184 4.33 (1.340) 4.36 (1.434) 5.56 (1.172) 
Goal-Directed 183 4.48 (1.540) 4.19 (1.541) 5.56 (1.165) 

Disruption 
Severity 

Low  182 4.30 (1.411) 4.18 (1.462) 5.34 (1.289) 
High  185 4.50 (1.471) 4.37 (1.513) 5.77 (.990) 

Total 367 4.40 (1.443) 4.28 (1.489) 5.56 (1.167) 
Table 3. Experiment 2 discontinuance recommendation model mean values. 

To test H1, we conducted a repeated ANOVA comparing the discontinuance 

recommendations among the three components (device, OS, and app). Results demonstrated that, 

like in Experiment 1, discontinuance recommendations in Experiment 2 also differed across 

components, F(2, 365) = 113.469, p < .001, ηp2 = 0.38. Post-hoc tests with a Bonferroni 

correction indicated that discontinuance recommendations for device and OS did not differ from 

each other (p = .480). However, as shown by the total means in Table 2, discontinuance 

recommendations for the app were higher than recommendations for the device (p < .001) and 

for the OS (p < .001). These findings replicate support for H1.  

To test H2, H3, and H4, a MANCOVA was performed using border strength, goal-

directedness, and disruption severity as independent variables, discontinuance recommendations 

for the device, OS, and app as the dependent variables, and control variables as covariates. The 

complete results from the both MANCOVAs are presented in Appendix C.  

Multivariate tests indicated significant main effects for border strength, F(6, 690) = 

3.745, p = .001, and for disruption severity, F(3, 344) = 3.897, p = .009. The lack of significant 

effects from goal-directedness failed to support H3. Univariate tests indicated a significant main 

effect of border strength on recommended discontinuance for the manufacturer, F(2, 346) = 

4.264, p = .015, ηp2 = 0.02, and for the OS, F(2, 346) = 3.770, p = .024, ηp2 = 0.02. These 

findings are consistent with H2. Additionally, there was a significant main effect of disruption 
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severity on discontinuance recommendations for the app, F(1, 346) = 10.537, p = .001, ηp2 = 

0.03. Post hoc tests with a Bonferroni correction revealed that those in the weak border condition 

reported lower manufacturer discontinuance recommendations than those in both strong border 

conditions (Oracle: p = .054; Teleduke: p = .023). But, those in the strong border Teleduke 

condition reported lower OS discontinuance recommendations than those in the low border 

condition (p = .019). Finally, consistent with H4, those in the severe disruption condition 

reported higher discontinuance recommendations for the app (p = .001).  

Abbreviated significance tests are reported for significant covariates. Higher impressions 

of Android decreased the discontinuance recommendations for the OS (p = .001). SII 

(informational) increased the discontinuance recommendations for manufacturer (p = .036) and 

OS (p = .011). Full results are reported in Appendix C.  

DISCUSSION 

The objective of this paper was to explore the attribution of responsibility after an 

ambiguous failure in a platform ecosystem as well as understand the consequences from such 

attributions. The results (see Table <<REF>>) provide several important theoretical and practical 

advances regarding attribution and discontinuance recommendations. We discuss each below. 

Hypotheses Experiment 1 
Results 

Experiment 2 
Results 

H1: Mobile platform modules (i.e., apps) will be attributed 
higher discontinuance recommendation after an ambiguously 
sourced system failure than platform components (i.e., 
device, OS). 

Supported Supported 

H2: The border strength separating components within the 
mobile platform ecosystem will significantly affect the 
discontinuance recommendation of the component after an 
ambiguously sourced system failure. 

Supported Supported 

H3: The goal-directedness of the interaction with a mobile 
platform ecosystem will significantly affect the recommended 
discontinuance of the component after an ambiguously 
sourced system failure. 

- Not Supported 

H4: The disruption severity caused by an ambiguously 
sourced system failure will increase the recommended 

- Supported 
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discontinuance of components. 
 

Contributions to Theory 

 First among the contributions of this paper is the formalization of ambiguous failures in 

platform ecosystems. Although previous research has explored consequences related to IT 

systems failure [e.g., 26, 56], none to our knowledge has explored the effects of failure in 

platforms where the source of the failure is unclear. Platforms and modules are designed to 

integrate seamlessly, but it is critical to understand the consequences should integration fail. 

Platform ecosystems are becoming increasingly prevalent for both consumers and organizations 

[57] . More and more, companies must compete within the context of their platform membership 

[58]. With the interconnectedness of components within such an ecosystem, responsibility for 

ecosystem function is distributed across multiple components, including both platform 

components and modules. Prior work [24] has treated in isolation perceptions of the form and 

function of various components in digital ecosystems. Our study provides evidence that a focus 

on a single ecosystem component may neglect critical aspects regarding how consumers actually 

use and experience mobile platform ecosystems.  

Second, with the prevalence of mobile platform ecosystems and their attempts at tight 

integration, ambiguous failure of one or more components of the ecosystem is likely to be a 

recurring issue. When failures arise, how do users attribute responsibility? Both Experiment 1 

and Experiment 2 demonstrated that when ecosystem failure occurs, the app was recommended 

much more strongly than other platform components for discontinuance. Yet, this finding was 

also was intriguing because the app was also attributed much less locus and controllability than 

the OS or device (see Table 1). According to attribution theory, greater locus and controllability 

are typically needed for assignment of greater responsibility. Yet, this was not the case with 
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ambiguous failure within platform ecosystems. Instead, the last dimension of attribution theory 

offers clues to how responsibility is assigned to the app. Users perceived the app as less stable 

than other components in the ecosystem and on this basis, were more likely to assign greater 

responsibility for failure. The implications of this finding suggest that the three dimensions of 

attribution theory are not equally weighted when determining fault for ambiguous ecosystem 

failure. In this case, stability may be more important than locus or controllability.  

Although the app bears the brunt of negative consequences during ecosystem failure, we 

show that the OS and device are not absolved of culpability. Results suggest that following 

ambiguous failure, multiple parties share in the perceived responsibility. Across conditions, 

discontinuance recommendations were at or above the midpoint for all ecosystem components, 

implying that failure of the ecosystem, regardless of the component originating the failure, will 

have a negative impact on all components in the ecosystem. These findings suggest that digital 

ecosystems may often be at the mercy of the weakest component used by the consumer.   

Third, we find that design elements (e.g., borders) and contextual factors (e.g., disruption 

severity) are important contingencies in the attribution of responsibility for failure subsequent 

discontinuance recommendations. Although the app remained the most likely to be discontinued 

regardless of border condition, results of both experiments demonstrated that borders altered 

discontinuance recommendations for the digital platform itself (not ecosystem modules). In 

Experiment 1, salient borders increased discontinuance for the OS and device. Experiment 2 

replicated the findings for the device, but border salience was shown to decrease discontinuance 

for the OS. These findings support the idea that the digital platform (e.g., OS, device) is most 

susceptible to the effects of borders and that the device manufacturer faces greater negative 

consequences from failure when borders are salient. However, the effects of borders for the OS 
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are complex and warrant additional attention. Results regarding how attributions are made may 

offer clues to a potential explanation: Experiment 1 demonstrated that the effect of borders was 

most closely associated with locus (and not controllability). In other words, the effect of borders 

appears to operate more through estimates of direct culpability and less through estimates of the 

capacity and intention to avoid failure. Other researchers have argued that the OS is the central 

component of platform [57] and its boundaries may be obscured. Positioning of the locus in 

response to failure may be a more difficult (and ambiguous) task for the OS than for the other 

components in an ecosystem, but this speculation requires additional research.  

Among the two contextual factors we examined, effects from disruption severity were 

more pronounced. We uncovered no effects on discontinuance recommendations from goal-

directedness, which suggests individuals are likely to harbor similar attitudes about 

discontinuance regardless of the task they were performing at the time of failure. Consistent with 

our expectations, disruption severity increased discontinuance recommendations for the app, but 

the effect did not spread to the OS or device. This finding implies that, in addition to the 

tendency for the app to be most likely discontinued following failure, the consequences from 

severity of the disruption (as tested here) also fall disproportionately on the app.  

Implications for Practice 

Should ambiguous failure of a mobile platform ecosystem occur, blame is shared among 

all components of the ecosystem. A better integrated system that experiences fewer faults, 

therefore, benefits all members of the ecosystem. This finding supports a tighter integration 

among all components of the stack to create a more functionally problem-free system where 

good apps run confidently on an easy-to-develop-for OS that is then run on hardware devices 

well equipped to handle the requirements of both the OS and the apps that may be available for 
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it. In fact, some operating systems may already be taking pains to ensure this occurs, for instance 

Microsoft has reportedly created specific hooks within its Windows PC OS to facilitate 

successful interaction with certain software and hardware vendor products [52]. 

When ambiguous failures arise, app developers should be aware that their products are 

most likely to be held responsible and other components of the ecosystem (e.g., OS and device) 

are more insulated from responsibility. Apps are perceived as less stable compared to other 

components in the ecosystem and the worse the disruption, the greater the likelihood users will 

opt to discontinue using the app. Therefore, in the eyes of users, app developers are likely to bear 

the largest portion of responsibility for delivering a problem-free experience. As the level of 

attributed responsibility grows, so too will a disproportionate incentive for tight and robust 

integration between apps and platform components. Fortunately for app developers, the type of 

app or what users are doing with the app (experiential or goal-directed) seems to matter less than 

other failure contingencies.  

Finally, design decisions that make borders between ecosystem components salient alter 

discontinuance recommendations. Salient borders prior to failure will harm attitudes toward the 

device, but its effects are mixed toward the OS. Thus, device manufacturers and OS developers 

may be incentivized to obscure borders in situations where probability of failure is high. App 

developers, on the other hand, may be incentivized to promote borders to differentiate 

themselves from other app developers and other components in the ecosystem, but also to spread 

responsibility should failure occur. 

Limitations and Future Research 

There are some important limitations to our findings. First, we chose one of several 

ecosystems (mobile) and taxonomies for understanding goal-directedness. While this enabled us 



 

 

30 

to ground our scenarios in familiar contexts and have distinct differentiation between 

experimental conditions, other ecosystems and taxonomies could present different outcomes in 

response to failure. Therefore, replication with other ecosystems and task taxonomies is 

recommended. Additionally, while we found significant main effects for border strength, our 

manipulation was simplified as a result of the scenario-based data collection approach. Other, 

real-world attempts at creating border strength may have amplified effects on the results and 

should be a subject for future inquiry. Finally, our data collection was based entirely on a 

scenario-based experiment in which participants had to pretend to have participated in the events 

described to them. While we found significant results, we expect that these results were 

dampened by the requirement to imagine the experience. Future research may find even more 

pronounced results from an experimental or archival dataset based on actual failure experienced 

by participants. 

Conclusion 

Platform ecosystems continue to grow in prominence both for organizations and 

consumers. The markets created by these ecosystems also continue to grow, despite possible 

complications caused by an increased level of interconnectedness among components within 

these systems. Our study has made significant contributions to the understanding of such 

systems, particularly when ambiguous failures occur within them. Further, we have uncovered 

interesting results regarding the nature of user perceptions of components within mobile platform 

ecosystems in the context of a system failure. As such ecosystems proliferate, the relevance and 

importance of this research for component creators and consumers will increase.  
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