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ABSTRACT 

Phytochrome Physiology and Plant Perception of Far-red Photons 

by 

Paul Kusuma, Doctor of Philosophy 

Utah State University, 2021 

 
 

Major Professor: Dr. Bruce Bugbee 
Department: Plant, Soils and Climate 

 
 
Plants evolved in the natural environment where resources are often scarce. 

Photons within the range of photosynthetically active radiation (PAR) are a critical 

resource that can be blocked by neighboring vegetation. As plants are shaded, they adjust 

their shape (stem length and leaf area) to either reach for the light and/or maximize 

photon capture. These responses are modulated through an array of photoreceptors that 

have evolved to perceive the photon flux from 280 to 800 nm.  

One spectral region with significant impacts on plant shape is far-red (FR), which 

is barely visible to the human eye. Photons in this range are minimally absorbed by 

chlorophyll, and are therefore transmitted through leaves and relatively enriched in 

canopy shade. Plants sense this enrichment through the photoreceptor phytochrome, 

which has two primary states: Pfr, which inhibits elongation in sunlight; and Pr, which 

cannot inhibit elongation and is abundant in the shade. The dynamic relationship between 

Pfr and Pr has been described by the phytochrome photoequilibrium (PPE), which is the 

ratio of Pfr/(Pr+Pfr). PPE is often predicted with photoconversion coefficients that are 



iv 

used to estimate the rates of Pr and Pfr conversion under a given spectral photon 

distribution. I describe shortcomings of this technique and provide a modified approach 

that incorporates spectral distortions in leaves.  

Due to the complexity of PPE, environmental metrics may be preferable for 

predicting morphology. The R:FR ratio is often used as an environmental metric, but it 

has shortcomings. Instead, the FR fraction [FR/(PAR+FR)] integrates plant responses to 

blue, green, red and far-red photons. Blue photons reduce plant size through 

cryptochrome, while green photons are hypothesized to induce shade avoidance 

responses by reversing this blue photon response. However, I show that green photons 

have minimal effects on morphology. The FR fraction is an intuitive metric and appears 

to be well correlated with morphology.  

Total photon intensity interacts with the FR fraction to predict morphology, 

especially leaf area – a crucial component of plant development that determines how 

many photons can be captured for photosynthesis. Under high photon intensities, FR 

increased lettuce leaf area, but under low intensities, FR decreases leaf area. 

(318 pages) 
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PUBLIC ABSTRACT 

Phytochrome Physiology and Plant Perception of Far-red Photons 

Paul Kusuma 
 

 
Photons are the primary energy source for most life on Earth, as they drive 

photosynthesis, a process that turns the CO2 in air into food. One crucial parameters for 

the optimization of growth is leaf area, which determines the ability of a plant to capture 

photons for photosynthesis. In order to gain access to photons in shaded environments, 

plants have evolved unique sensors, called photoreceptors, which respond to changes in 

the color and intensity of light.  

 Far-red photons (photons at the edge of human vision that appear as dim red light) 

hold particular promise in regulating plant shape and photon capture. These photons are 

minimally absorbed by chlorophyll, and are thus enriched in the shade – making them a 

potent signal of the presence of shade. These photons have been shown to increase leaf 

area and stem elongation, which increase access to photons, and thus increase plant 

growth. Additionally, the lower energy of far-red photons make them particularly useful 

for reducing the massive requirement for electrical power in indoor agriculture.  

 Here, I describes how far-red interacts with blue, green, and red photons to affect 

plant morphology. I compare traditional and newly developed models/metrics that predict 

the action of far-red through a photoreceptor called phytochrome. Additionally, I discuss 

their interactions with total photon intensity.   
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

 Introduction 

Photons are both an energy source for plant growth and a signal for plant 

development. Through photosynthesis, plants convert photon energy into chemical energy, 

which drives most life of Earth. However, in the natural environment, availability of photons 

can be highly limited, as they are absorbed by overhead vegetation. Plants have thus evolved 

photoreceptors that sense the changes in the photon environment and guide plant 

development to maximize fitness.  

In plant photobiology, the photo-biologically active region of radiation (280 to 800 

nm) can be divided into six useful categories. These include ultraviolet-B (UV-B; 280 to 320 

nm), UV-A (320 to 400 nm), blue (400 to 500 nm), green (500 to 600 nm), red (600 to 700 

nm) and far-red (700 to 800 nm). In shaded environments, UV-B, UV-A, blue and red are 

selectively filtered, while green and far-red are relatively enriched – a phenomenon driven by 

both the preferential absorption of blue and red photons by chlorophyll for photosynthesis 

and absorption of UV-B, UV-A and blue photons by photoprotective pigments (e.g. 

anthocyanin). Photoreceptors have therefore evolved to be sensitive to the relative 

enrichment of green and far-red photons and the relative depletion of UV-B, UV-A, blue and 

red photons. In response to shade, some plant species bend their leaves upward (hyponasty) 

and elongate their stems (which occurs in concert with an increase in biomass partitioning to 

stems); these responses are commonly referred to as shade avoidance. Other plant species 

will not elongate stems in response to shade, and instead they reduce chlorophyll a:b ratios, 
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increase PSII:PSI ratios, and increase specific leaf area (SLA, which is the leaf area divided 

by leaf mass); these responses are commonly referred to as shade tolerance. Notably 

however, these shade tolerance responses can occur in both shade tolerant and shade avoidant 

species (Gommers et al., 2013).  

Light-emitting diode (LED) technology has improved rapidly over the past two 

decades and is now far more efficient than other electric lighting technologies (Appendix A 

to C). In addition to this improved efficiency, LED technology provides a high degree of 

control over spectral output, which can be utilized to manipulate plant photoreceptors in 

order to optimize growth. But, manipulation requires a comprehensive understanding of the 

photoreceptor activity and resulting whole-plant responses. 

  

 Literature review 

1.2.1 General Effect of Specific Wavelengths 

1.2.1.1 Blue Photons  

Blue photons are well absorbed by pigments within leaves and are thus filtered out in 

the shaded environments. Plants modulate their shape in response to the total flux of 

photosynthetically active radiation (PAR), and this response to the intensity of PAR has long 

been suspected to be sensed through the blue photon receptors (Smith, 1982). This does 

appear to partially be the case (de Wit et al., 2016), but there are likely other contributing 

factors (Millenaar et al., 2009).  

In general, studies conducted in controlled environments have shown that increasing 

the fraction of blue photons in the spectrum, especially when the percent blue (percent of 
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PPFD) is increased between 10% to 50%, causes leaf area and stem length to decrease, thus 

leading to decreases in photon capture and yield (Hernández and Kubota, 2016; Kang et al., 

2016; Meng et al., 2019, 2020; Snowden et al., 2016; Son and Oh, 2013, 2015; Wang et al., 

2016). Less commonly, studies have found no effect on yield from increasing the fraction of 

blue photons (Li and Kubota, 2009; Snowden et al., 2016).   

 

1.2.1.2 Green Photons  

The green color of leaves is caused by a slightly lower absorptance (higher 

reflectance) of green photons relative to blue and red photons. In canopy shade the B:G ratio 

decreases (Smith et al., 2017), and therefore it has been suspected that an increase in green 

photons (especially relative to blue) is perceived as a shade signal in plants. Studies over the 

past two decades have revealed that shade avoidance occurs in response to green photons in 

the model plant species Arabidopsis thaliana (Bouly et al., 2007; Zhang et al., 2011). This 

has led to the suggestion that green photons may be a beneficial addition to controlled 

environment plant growth (Smith et al., 2017). In an early study, leaf area and fresh/dry mass 

of lettuce was observed to increase in response to an increase in green photons (Kim et al. 

2004), but subsequent studies in horticultural species have shown minimal responses to green 

photons (Hernández and Kubota, 2016; Kang et al., 2016; Snowden et al., 2016; Son and Oh, 

2015), and in some cases, plant diameter/leaf area actually decrease (Meng et al., 2020; 

Snowden et al., 2016). Overall, increasing the fraction of green photons has been observed to 

minimally affect leaf area and stem/petiole elongation in horticultural species. 
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1.2.1.3 Red Photons  

Red photons are highly absorbed by leaves for photosynthesis, causing their relative 

depletion in canopy-shade light. Studies investigating plant responses to red photons led to 

the discovery of the photoreceptor phytochrome (Bothwick et al., 1952; Borthwick, 1972; 

Sage, 1992), the most studied plant photoreceptor. The effect of red photons is often 

discussed in tandem with far-red, either through the R:FR ratio (the flux of red photons 

divided by the flux of far-red photons), or phytochrome photoequilibrium (PPE), which is an 

estimated ratio of active phytochrome (PFR) to total phytochrome (PR+PFR).  

 

1.2.1.4 Far-red Photons  

Far-red is a plant specific categorization of photon wavelengths that was created due 

to absorbance of the phytochrome photoreceptor. Far-red is at the very edge of human vision 

and these photons appear as dim red light to the human eye. 

Despite minimal effects on human vision, these photons have large effects on plant 

morphogenesis through the photoreceptor phytochrome (Casal, 2012). In species that are 

adapted to high photon fluxes like tomato and cucumber, far-red tends to increase stem 

and/or petiole elongation (Kalaitzoglou et al., 2019; Meng et al., 2019; Park and Runkle, 

2017).  

Despite these increases in stem elongation, which are often considered undesirable in 

agriculture, far-red photons have promise in sole-source lighting environments because these 

photon are low energy and have been shown to increase fresh and dry mass of lettuce by 

increasing leaf area (Lee et al., 2016; Meng and Runkle, 2019). However, the ability of far-



5 

red photons to induce photosynthesis, and thus increase growth rates, must be considered 

when assessing the effect of far-red on leaf expansion. Studies that substitute far-red rather 

than supplement far-red have still shown an increase in leaf expansion and dry mass (Zhen 

and Bugbee, 2020). In contrast, ornamental species geranium and snapdragon were shown to 

increase leaf area with far-red substitution but without an increase in dry mass (Park and 

Runkle, 2017). Although lettuce has been shown to increase leaf area in response to far-red, a 

decrease in leaf area is often reported in shade-avoiding species (Casal, 2012). 

In addition to these effects on morphology, one recent study found that supplemental 

far-red increased fruit yield of tomatoes; possibly through increased fruit sink strength and 

dry mass partitioning to the fruits (Ji et al., 2020).  

Far-red can be applied near the end of the day to mimic the relative increase in far-red 

under natural conditions (Kasperbauer, 1971). These end-of-day far-red treatments are still 

used to this day as an energy saving method to alter development in greenhouse and indoor 

crop production, but it tends to be less effective than far-red applied over the entire 

photoperiod (Kalaitzoglou et al., 2019; Morgan and Smith, 1978).  

1.2.2 Photoreceptors 

There are three well-studied classes of photoreceptors that modulate development. These are 

1) the phytochromes, which have peak absorbance in the red and far-red regions, although 

they can absorb from 300 to 800 nm; 2) the cryptochromes, which primarily absorb in the 

UV-A, blue, and green regions; and 3) the phototropins, which primarily absorb in the UV-A 

and blue regions (Fig. 1-1). Plants also contain other photoreceptors including UV 

RESISTANCE LOCUS8 (UVR8), which responds to UV-B photons; and zeitlupes, which 
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respond to blue and UV-A photons, but these are less well studied (Folta and Carvalho, 2015; 

Galvão and Fankhauser, 2015). 

 

1.2.2.1 Phototropins and Zeitlupes 

Phototropins control plant development through association with cell membranes, 

while zeitlupes act through modulation of gene expression (Galvão and Fankhauser, 2015; 

Lin, 2000). Responses mediated by phototropins include phototropism, stomatal opening, 

chloroplast reorientation and leaf movement (Christie, 2007). Zeitlupes play a role in 

flowering and the circadian clock (Galvão and Fankhauser, 2015). Both of these 

photoreceptors contain flavin mononucleotide chromophores (FMN), and thus have similar 

absorbance (Fig. 1-1a) 

 

1.2.2.2 Cryptochromes 

The chromophore within cryptochrome is a flavin adenine dinucleotide (FAD), which has 

three states: FADox, the oxidized state; FADHo, the semi-reduced neutral radical state; and 

FADH–, the fully reduced state. Of these three states, FADHo is the active form, while FADox 

and FADH– are both inactive (Ahmad, 2016). FADox absorbs most prominently in the blue 

region, converting it into active FADHo (Fig. 1-1b). As the active form, FADHo inhibits stem 

extension. The absorption spectrum of FADHo shows a high absorbance of green photons, 

which leads to the inactivation of cryptochrome (to FADH–). Green photons induce shade 

avoidance responses (reversing blue photon responses) by this mechanism (Bouly et al., 

2007). Both FADHo and FADH– can only revert back to FADox by thermal reversion.  
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Fig. 1-1. Absorption coefficients of three major families of photoreceptors that modulate 
plant development. (a) Phototropins and zeitlupes (data from Ahmad et al., 2002 and 
Salomon et al., 2000). (b) Absorption coefficients for the cytochrome chromophore (FAD) in 
the oxidized (FADox) and neutral radical (FADHo) states [data was kindly provided by Dr. 
Pavel Müller, see Müller et al. (2014) for more detail]. (c) Absorption coefficients for the PR 
and PFR forms of phytochrome (curves redrawn from data by Kelly and Lagarias, 1985 and 
Lagarias et al., 1987). Straight colored arrows indicate photoreceptor activation or 
deactivation upon photon absorption and curved black arrows indicate dark (meaning light-
independent) reversion; Dark reversion rate in cryptochrome is dependent on the 
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concentration of oxygen (Müller and Ahmad, 2011) and that of phytochrome on temperature 
(Klose et al., 2020).   
 
 

1.2.2.3 Phytochromes 

Phytochromes primarily exist in two photoreversible states: phytochrome-red (PR), 

which is most sensitive to red photons and phytochrome-far-red (PFR), which is most 

sensitive to far-red photons (Fig. 1-1c). PR accumulates in the cytosol in the dark and is 

activated into PFR upon photon absorbance. PFR is then transported into the nucleus where it 

modulates gene expression, but it is converted back into inactive PR both upon photon 

absorbance and by dark reversion (Legris et al., 2019). In addition to these nuclear roles of 

phytochrome, it may also have cytoplasmic roles (Hughes, 2013), but this is poorly studied 

by comparison.  In the natural environment, reflection from neighboring vegetation can 

increase the flux of far-red before a decrease in PAR is detected. In severe shade, the flux of 

far-red and PAR are both decreased, but far-red remains enriched relative to PAR (Casal, 

2012). In this way, far-red perception thorough phytochrome is the primary signal of shade.  

Plant responses to far-red interact with temperature, as reversion of active PFR back to 

inactive form of PR can occur independent of light in a temperature-dependent manner, with 

faster reversion rate at higher temperature.  This is known as thermal reversion of 

phytochromes, and the effect is more pronounced under lower fluxes of PAR (Sellaro et al., 

2019; Klose et al., 2020). This effect means that plant responses to far-red (elongation) are 

expected to be more significant at both higher temperatures and lower fluxes of PAR.  



9 

Both phytochrome and cryptochrome exist as dimers within plant cells, but the 

importance of this is still being elucidated (Klose et al., 2015; Liu et al., 2016; Sellaro et al., 

2019; Legris et al., 2019).  

 

1.2.2.4 Signaling Partners 

Both phytochromes and cryptochromes interact with a family of transcription factors 

called PHYTOCHROME INTERACTING FACTORS (PIFs). PIFs control the expression of 

genes related to cell wall expansion and the hormones auxin, gibberellin and brassinosteroids 

(de Lucas and Prat, 2014; Leivar and Monte, 2014). Photon-activated phytochromes (PFR) 

and cryptochromes both inhibit the activity of PIFs, leading to an inhibition of genes and 

hormones that induce elongation. Therefore, relative enrichment of far-red and depletion of 

blue photons inactivate the phytochrome and cryptochrome photoreceptors lifting this 

inhibition of PIFs and allowing elongation to progress.  

In addition to PIFs, photomorphogenesis is regulated by the E3 ubiquitin ligase 

formed by CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and SUPRESSOR OF 

PHYA-105 (SPA) proteins. This COP1/SPA complex inhibits the activity of transcription 

factors that promote photomorphogenesis (Legris et al., 2019; Podolec and Ulm, 2018), such 

as LONG HYPOCOTYL IN FAR-RED 1 (HFR1). Because HFR1 and related transcription 

factors promote the expression of genes that inhibit elongation, they act antagonistically to 

PIFs. Photon-activated phytochromes and cryptochromes inhibit the activity of the 

COP1/SPA complex, allowing the accumulation of HFR1 and related transcriptions factors. 
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These downstream signaling components have primarily been studied in the species 

Arabidopsis thaliana, and many of the signaling pathways appear to be generally conserved 

across species, but this is not always the case (Legris et al., 2019). 

This gene-eye view of photoreceptor control of plant growth and development only 

begins to explain the complex interaction between these proteins, as there are many complex 

feedback loops (Legris et al., 2019).  

 

1.2.3 Photoconversion Coefficients  

Photoconversion coefficients are probability functions for photoreceptors that 

estimate the likelihood of photon absorbance at a given wavelength and subsequent 

conversion of the photoreceptor into a different form (Holmes and Fukshansky, 1979). These 

coefficients are usually referred to as photoconversion/photochemical cross-sections, but 

cross-section is an obscure term, so I use the term coefficient, which has historically had a 

different meaning (see below).  It is common to use photoconversion coefficients to predict 

the dynamics of the plant photoreceptor phytochrome, specifically the ratio of active to total 

phytochrome. The active form of phytochrome is often considered to be PFR, thus this ratio is 

equal to PFR/(PR+PFR), where PFR is the active, far-red (FR) absorbing form of phytochrome 

and PR is the inactive red (R) absorbing form of phytochrome. But, active to total 

phytochrome has been more recently considered to be D2/(D0+D1+D2), where D2 is the fully 

active homodimer (PFR-PFR), D0 is the fully inactive homodimer (PR-PR) and D1 is the half 

activated heterodimer (PR-PFR). This ratio is commonly called phytochrome photoequilibrium 

(PPE) or the photostationary state (PSS) of phytochrome. These terms (PPE and PSS) are 
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regularly used interchangeably, especially in horticulture, but distinctions have been made; 

PPE refers to equilibrium assuming only photoconversions, while PSS refers to 

photoconversions and thermal reversions (Mancinelli, 1994; Sage, 1992).  

 

1.2.3.1 Derivation of Photoconversion Coefficients  

Phytochrome photoconversion coefficients were first determined by Butler et al. 

(1964) soon after the discovery of the photoreceptor. The 1980s saw improvements in the 

methodology for determining the photochemical properties of phytochrome (absorbance 

spectra [AR,λ andAλ
m,R], PPER, εR,λmax, ɸR and ɸFR – described below) required to calculate the 

photoconversion coefficients. Here I describe the step-by-step process for deriving the 

photoconversion coefficients, primarily using data from Kelly and Lagarias (1985). 

Extraction/purification is the first step in determining the photochemical properties 

of phytochrome in vitro because it eliminates other absorbing molecules within a sample. 

Inadequate extraction can lead to partial degradation, which will result in inaccurate values. 

From the 1960s through the 1980s the reports of the molecular weight of phytochrome 

increased from 60 kDa to 118/114 kDa to 120 kDa to finally 124 kDa as purification 

techniques improved. In the literature, these different purifications were referred to as small, 

large and native phytochrome (Sage, 1992). It was for this reason that Mancinelli (1986) 

suggested avoiding using the original photoconversion coefficients from Butler et al. (1964), 

instead it is most appropriate to use values that report on 124 kDa phytochrome.  
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Absorbance spectra are determined for both forms of phytochrome. Saturating doses 

of either red or far-red photons are applied to the extracted phytochrome sample within a 

spectrophotometer and the absorbance spectrum is measured following Eq. [1.1].  

Aλ =  −log10(Tλ)     

       [1.1] 

Where Tλ is equal to the fractional transmission of photons at wavelength, λ. It is important 

to note that Aλ is calculated with a base 10 logarithm. 

 Absorbance measurements under saturating doses of red and far-red photons provide 

Aλ
m,Rand AR,λ, respectively, where AR,λ is the absorbance spectrum of PR, while Aλ

m,R is the 

absorbance spectrum of a mixture of both PR and PFR. This is because only PFR absorbs in 

the far-red regions while both forms absorb in the red region (see below). Here, a 

superscripted ‘R’ indicates a parameter determined under saturating red photons. 

Solvents can affect the absorption spectra of molecules (Harris and Zscheile, 1943), 

but Lagarias et al. (1987) saw no difference between the absorbance spectra of phytochrome 

between two solvents used in their study. This provides confidence that the solvent did not 

alter these spectra.  

The saturating doses of red and far-red used by Kelly and Lagarias (1985) were at 

648 and 738 nm. From the absorbance data (Fig. 1-2), it can be seen that at 738 nm PR has 

minimal absorbance. Thus, under the saturating dose of far-red (738 nm) the 

spectrophotometer will output the absorbance spectrum of PR (AR).  
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By contrast, a saturating dose of 648 nm photons is absorbed by both forms of 

phytochrome. Thus, when the saturating dose of R (648 nm) is applied, the 

spectrophotometer provides the absorbance spectrum of a mix of PR and PFR (Aλ
m,R). 

Therefore, to obtain the absorbance spectrum of just PFR (AFR) the solid dark red line in Fig. 

1-2 must be corrected. 

 
Fig. 1-2. Absorbance spectra and extinction coefficients of PR and PFR. Left axis, Absorbance 
spectra are provided in Kelly and Lagarias (1985), but because these values depend on the 
concentration of the sample, they are arbitrary. The arrows point to the wavelength of 
saturating red (648 nm) and far-red (738 nm) used to measure the absorbance spectrum of 
Aλ
m,R and AR,λ, respectively. Aλ

m,R is then corrected to provide AFR assuming that 87.6% of the 
total phytochrome is in the PFR form under a saturating dose of 648 nm photons (dashed dark 
red line). The right axis shows the extinction coefficients. These values use a εR,668 nm of 121 
L mmol-1 cm-1. 

This correction uses a calculated value of PPER, which is the estimate of PPE under 

the saturating dose of 648 nm photons. The theory and equation used to calculate PPER are 
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thoroughly described in Butler (1972). One of the parameters required to calculate PPER is 

the quantum yield ratio (ɸR/ɸFR), which can be calculated following two approaches:  

1) Initial rate analysis. This method is also thoroughly described in Butler (1972). It 

uses the initial rates of change in the absorbance at 730 nm (representative of the 

PFR concentration) given a dose (intensity) of either red or far-red photons. 

2)  Approach to equilibrium analysis. This method is described in Kelly and 

Lagarias (1985), who modify equations/methods from Johns (1969). Kelly and 

Lagarias (1985) point out that initial rate analysis extrapolates the rate of change 

from a tangent line using little data. Furthermore, initial rate analysis does not 

account for the impact of forward and reverse cycling between the two pools of 

phytochrome (PR and PFR). Instead, it assumes that the reaction goes to 

completion without a reverse reaction. Approach to equilibrium analysis accounts 

for both of these shortcomings by measuring absorbance across a full range of 

applied photons, and considering the reverse reactions in their calculations. 

Although not part of approach to equilibrium technique specifically, Kelly and 

Lagarias (1985) performed careful actinometry and instrument calibrations to 

obtain more exact absorbance values than previous studies.  

Values for PPER have been reported as low as 0.75 (Pratt 1975), but most 

publications in the 1980s working with native phytochrome determined that PPER is between 

0.86 and 0.89 (Vierstra and Quail 1983a; Kelly and Lagarias 1985; Mancinelli 1986; 

Lagarias et al. 1987; Holdsworth and Whitelam 1987). Most of the variation between earlier 

and later studies is due to the altered photochemistry in partially degraded phytochrome 

caused by impure extraction. However, even using similar purification methods, PPER can 
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vary depending on the species. Lagarias et al. (1987) reported a PPER value of 0.875 for 

Avena (oat) phytochrome, but a value of 0.887 for Secale (rye) phytochrome (these values 

are the average of two buffers/solvents reported in this study). The differences between 

species are small.  

A PPER value of 0.876 (Kelly and Lagarias, 1985) indicates that the solid dark red 

line is a mixture of 87.6% PFR and 12.4% PR. Therefore the Aλ
m,Rspectrum can be correct AFR 

with the following equation: 

Aλ
m,R = (1 − PPER) AR,λ  +   PPERAFR,λ 

          [1.2] 

Therefore,  

AFR,λ  =  
Aλ
m,R −  (1 − PPER) AR,λ

PPER  

          [1.3] 

AFR,λ, calculated following this equation, is shown in Fig. 1-2 as a dashed dark-red 

line.  

Extinction coefficients (ε), also called molar absorption coefficients, provide 

absorbance values at a fixed concentration of the pigment (εR and εFR for phytochrome). 

Absorbance is dependent on the concentration, thus extinction coefficients are normalized 

absorbance. This means that an extinction coefficient spectrum will have the same shape as 

an absorbance spectrum with different absolute values. Converting between absorbance 

measurements and concentrations follows:  

Aλ =   ελ 𝑐𝑐 ℓ 

          [1.4] 
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Where c is the molar concentration (M) of the absorbing molecule and ℓ is the path-length 

through which the photons pass. ℓ is usually equal to 1 cm (although in some cases path-

length is corrected to apparent path-length due to the non-ideal geometry of absorbance 

measurements). Therefore, extinction coefficients have units of L mol-1 cm-1 or M-1 cm-1. 

Converting an absorbance spectrum to an extinction coefficient spectrum only 

requires knowledge of the extinction coefficient at a single wavelength, which can be 

calculated from absorbance data of a known sample concentration. For the derivation of 

photoconversion coefficients, this is usually accomplished with a value of εR,λmax which is the 

extinction coefficient of PR at the absorbance peak, which has generally been measured to be 

666 or 668 nm. Values of εR,λmax vary significantly, with some reported values approximately 

double others. This is in part due to differences in the methods of determining the 

concentration of the sample. Total protein assays via colorimetric methods were reported to 

overestimate concentrations, leading to underestimates of εR,λmax (Roux et al. 1982). Thus, 

amino acid analysis was suggested as a superior method (amino acid analysis counts the 

amino acids regardless of proteolysis). Vierstra and Quail (1983a) appear to agree with this 

conclusion, although they used a total protein assay.  

Using amino acid analysis in a sample with (mostly) native phytochrome, Litts et al. 

(1983) determined that a sample of phytochrome with an AR,668 of 0.385 had a concentration 

of 3.19×10-6 M. εR,668 can then be calculated from Eq. [1.4] to result in 120,690 M-1 cm-1 or 

roughly 121 mM-1 cm-1 (L per mmol per cm) as used by Kelly and Lagarias (1985).  

The absorbance values are converted to extinction coefficients following Eq. [1.5] 

and [1.6]: 
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ε𝑅𝑅,𝜆𝜆 = 𝐴𝐴𝑅𝑅,𝜆𝜆 ×
ε𝑅𝑅,𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆

𝐴𝐴𝑅𝑅,𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆
 

[1.5] 

ε𝐹𝐹𝑅𝑅,𝜆𝜆 = 𝐴𝐴𝐹𝐹𝑅𝑅,𝜆𝜆 ×
ε𝑅𝑅,𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆

𝐴𝐴𝑅𝑅,𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆
 

          [1.6] 

Where AR,λmax is the value of absorbance at the same wavelength as εR,λmax. This is 

shown in the right y-axis in Fig. 1-2. In addition to raw absorbance spectra, εR,λ and εFR,λ are 

also provided in the supplementary material in Kelly and Lagarias (1985), but it is important 

to note that these values are calculated (and rounded) using the same photochemical 

properties discussed here. Different values of PPER and/or εR,668 would result in different 

calculated values for εR,λ and εFR,λ.  

Using amino acid analysis, εR,λmax has been calculated to equal 121, 128 and 132 L 

per mmol per cm in three different studies (Kelly and Lagarias, 1985; Lagarias et al., 1987; 

Mancinelli, 1986). Lagarias et al. (1987) suggests that these discrepancies may be caused by 

impurities within a sample. In addition to accurately measuring the concentration of a 

sample, εR,λmax requires accurate measurements of the absorbance of a sample. Partially 

degraded phytochrome (118/114 kDa) shows differences in its spectral properties compared 

to 124 kDa (native) phytochrome including shifts in the absorbance maxima to shorter 

wavelengths and a decrease in the ratio of PFR/PR peaks (Vierstra and Quail 1983b). These 

changes in the spectral properties of phytochrome as it degrades indicates that partial 

degradation of phytochrome can lead to inaccurate absorbance measurements for a given 

concentration of phytochrome. The sample of extracted phytochrome that provided an εR,λmax 

of 121 mM-1 cm-1 had a significantly greater amount of 118 kDa phytochrome compared to 
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the sample used to provide 132 mM-1 cm-1. It seems likely that the proteolysis of the 124 kDa 

to the 118 kDa species led to a decrease in absorbance within the sample, but measurements 

of the concentration still remain accurate (due to “counting” the amino acids). This leads to 

an underestimation of εR,λmax (Eq. [1.4]). Additionally, because the same value (132 mM-1    

cm-1) was obtained for both oat and rye phytochrome in Lagarias et al. (1987) there is a 

higher degree of confidence in an εR,λmax of 132 mM-1 cm-1 compared to other values.  

Quantum yields of PR to PFR conversion (ɸR) and PFR to PR conversion (ɸFR) are the 

final parameters required to calculate the photoconversion coefficients (σR and σFR). 

Quantum yields values must be back-calculated from other measurements. The quantum 

yield ratio (ɸR/ɸFR) is calculated following the initial rate or approach to equilibrium analysis 

described above. The first photoconversion coefficients (Butler et al. 1964) back-calculated 

ɸR and ɸFR from measured rates of change in absorbance for a given dose of photons at a 

specific wavelength. This analysis resulted in values of εR,λɸR and εFR,λɸFR, from which ɸR 

and ɸFR could be calculated for a given value of εR,λ or εFR,λ (Equations in Butler et al. 1964). 

This is also the method used by Vierstra and Quail (1983a). 

Kelly and Lagarias (1985) back-calculate values of ɸR and ɸFR from their approach to 

equilibrium analysis, obtaining ɸR = 0.152 and ɸFR = 0.069. Unsurprisingly, like with PPER 

and εR,λmax, ɸR and ɸFR can vary. Initial rate analysis predicts higher values than approach to 

equilibrium analysis. Furthermore, Lagarias et al. (1987) determined that these values were 

both greater in rye compared to oat under the same conditions and analysis. 

Finally, the photoconversion coefficients are calculated as follows (Mancinelli, 1986, 

1988, 1994):  

σR,λ = ln(10) εR,λ ɸR 
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          [1.7] 

σFR,λ = ln(10) εFR,λ ɸFR 

          [1.8] 

 
The reason to include the natural logarithm of ten, about 2.303, in this equation is 

because spectrophotometers provide absorbance values using a base 10 logarithm, but 

photons are attenuated naturally, thus ln(10) converts the base 10 logarithm into a natural 

logarithm. Eq. [1.7] and [1.8] without the ln(10) term is what has historically been called 

photoconversion coefficients, while these equations with the ln(10) term has been called the 

photoconversion cross-section. As mentioned previously, I have changed the nomenclature 

by calling σR and σFR coefficients and not cross-sections.  

Applying Eq. [1.7] and [1.8] (using ɸR = 0.152 and ɸFR = 0.069 from Kelly and 

Lagarias, 1985) to the extinction coefficients in Fig. 1-2 yield the curves in Fig. 1-3. The 

standard units of σR and σFR are m2 mol-1, but I provide final units of m2 µmol-1. This is 

because photon flux densities usually have units of µmol m-2 s-1. Multiplying the photon flux 

density by the photoconversion coefficients yields the first-order rate constants of 

phytochrome conversion, k1 and k2, with units of s-1.  
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Fig. 1-3. Photoconversion coefficients of PR and PFR using approach to equilibrium analysis 
in Kelly and Lagarias (1985). 

 

 

Caution should be taken to convert units carefully. Notice the values for the 

extinction coefficients in Fig. 1-2 have units of mM-1 cm-1 (L per mmol per cm).  These can 

be divided by 10,000 to yield units of m2 µmol-1.  

 

1.2.3.2 Use of Photoconversion Coefficients 
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Phytochrome photoconversion is a first-order reaction, which means that the 

instantaneous rate of change is dependent on the instantaneous concentration. The following 

equations calculate the rate constants (k1 and k2) for phytochrome photoconversions.  

k1 =  � Iλ σR,λ 

λ=800 nm

λ=300 nm

 

          [1.9]  

k2 =  � Iλ σFR,λ 

λ=800 nm

λ=300 nm

 

          [1.10] 

Where Iλ is the photon flux at wavelength, λ. As mentioned previously, multiplying the 

photoconversion coefficient with the photon flux density yields units of s-1 for k1 and k2. 

These rate constants are multiplied by the concentrations of PR and PFR to yield rates of 

change (i.e. Δ[PFR] per second), but because the concentration of PR, PFR and Ptotal are 

unknown, only relative changes in PFR per second (Δ[PFR/Ptotal] per second) are known. At 

equilibrium, the rates of PR and PFR interconversion are equal to each other, thus PPE 

(assuming the two-state model) is calculated as 

PPE =
k1

k1 + k2
 

           [1.11] 

This estimation of PPE has been widely used in horticulture for 40 years (see Kusuma 

and Bugbee 2021 [and references therein]). Following the recent evidence that the fully 

active dimer (D2) is the active form (Klose et al. 2015), PPE (assuming the three-state model) 

is calculated as 
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PPE = �
k1

k1 + k2
�
2

 

          [1.12] 

Eq. [1.11] and [1.12] are described in Mancinelli (1994), but more recent modelling 

of phytochrome dynamics has shown that these simple equations may fail to fully predict the 

state of phytochrome (Rausenberger et al., 2010; Klose et al., 2015). Smith and Fleck (2019) 

provided a program that incorporates components of this more complex modeling (e.g. 

thermal reversion of phytochrome, nuclear stabilization, and nuclear import) and calculates 

different pools of phytochrome including nuclear localized phytochrome (PFR or D2), called 

the cellular model.  

  

 Objectives & Hypotheses 

Plant responses to shade light (relative increases in far-red and green, and reductions 

in blue, red and total photon intensity) have been well studied, but results can be inconsistent. 

Compared to plant responses to changes in the fluxes of far-red photon, shade responses to 

relative increases in green are poorly studied. Responses of horticultural species to relative 

increases in green are notably inconsistent and often differ in direction from studies 

performed in Arabidopsis thaliana (Appendix D). The photoconversion coefficients 

described previously are well developed and PPE has been utilized to predict parameters like 

stem elongation for nearly 50 years (Morgan and Smith, 1976; Park and Runkle, 2017), but 

this metric has significant issues (Kusuma and Bugbee, 2021). One of the primary issues is 

that these photoconversion coefficients are developed from extracted phytochrome and 

therefore predict PPE in vitro (above a leaf) rather than within a leaf where the phytochrome 
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is located. This means that photoconversion coefficients must incorporate distortion 

functions that account for absorption by other pigments (e.g. chlorophyll). Interactions 

between far-red and photon intensity have been studied, but results, especially those on leaf 

expansion, have been inconsistent and results often fail to align with theory (i.e. increased 

elongation at lower intensities). Finally, the response of phytochrome to longer wavelength 

photons, especially beyond 750 nm is poorly studied, and therefore, plant responses to 

photons from near-infrared LEDs are unknown.  

 

1) The first objective was to determine the effect and interactions of blue and green 

photons fluxes on plant morphology 

Hypotheses: 

a. Increasing the fraction of blue photons would reduce plant size (e.g., leaf area, 

dry mass and stem length), while increasing the fraction of green photons 

would increase plant size. 

b. The effect of blue photons would be more significant at lower intensities (as 

this would cause photoreceptors to be under-saturated). 

c. The effect of green photons would be more significant at a lower fraction of 

blue photons. 

2) The second objective was to investigate metrics that are commonly used to predict 

morphological responses to far-red 

Hypotheses: 
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a. Environmental metrics would be better predictors of plant morphology than 

molecular models 

b. Metrics that range from 0 to 1 will be superior to metrics than can approach 

infinity 

3) The third objective was to improve the phytochrome photoequilibrium (PPE) model 

by accounting for spectral distortions within leaves. 

Hypotheses: 

a. Estimating PPE from spectral photon distributions that have been modified 

with functions that account for optical distortions within leaves would 

improve its predictive value 

b. Using distortion functions that assume phytochrome is active within all tissues 

will be superior to distortions that assume phytochrome is only in the 

epidermis 

4) The fourth objective was to investigate how plant responses to far-red interacted with 

intensity 

Hypotheses: 

a. Shade avoidance responses to far-red would be more pronounced at lower 

intensities 

b. Responses of leaf area to far-red will depend on intensity 

5) Determine if photons from NIR LEDs can affect plant growth and development 

Hypotheses: 

a. Photons from an NIR LED, when applied during the dark period, will delay 

flowering in short-day plants. 
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b. Photons from NIR LEDs will increase stem elongation.   
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CHAPTER 2 

DOES GREEN REALLY MEAN GO? INCREASING THE FRACTION OF GREEN 

PHOTONS PROMOTES GROWTH OF TOMATO                                                            

BUT NOT LETTUCE OR CUCUMBERA 

 

 Abstract 

The photon flux in the green wavelength region is relatively enriched in shade and the 

photon flux in the blue region is selectively filtered. In sole source lighting environments, 

increasing the fraction of blue typically decreases stem elongation and leaf expansion, and 

smaller leaves reduce photon capture and yield. Photons in the green region reverse these 

blue reductions through the photoreceptor cryptochrome in Arabidopsis thaliana, but studies 

in other species have not consistently shown the benefits of photons in the green region on 

leaf expansion and growth. Spectral effects can interact with total photon flux. Here, we 

report the effect of the fraction of photons in the blue (10 to 30%) and green (0 to 50%) 

regions at photosynthetic photon flux densities of 200 and 500 µmol m−2 s−1 in lettuce, 

cucumber and tomato. As expected, increasing the fraction of photons in the blue region 

consistently decreased leaf area and dry mass. By contrast, large changes in the fraction of 

photons in the green region had minimal effects on leaf area and dry mass in lettuce and 

cucumber. Photons in the green region were more potent at a lower fraction of photons in the 

blue region. Photons in the green region increased stem and petiole length in cucumber and 
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tomato, which is a classic shade avoidance response. These results suggest that high-light 

crop species might respond to the fraction of photons in the green region with either shade 

tolerance (leaf expansion) or shade avoidance (stem elongation). 

 Introduction 

In naturally shaded environments, irradiance/photon fluxes in the blue (400 to 500 

nm) and red (600 to 700 nm) regions are relatively reduced while the fluxes of photons in the 

green (500 to 600 nm) and far-red (700 to 750 nm) regions are relatively enriched. In the 

photobiology literature, the term light is often used to refer to the photon flux, as in blue 

light, but this terminology does not describe the discrete nature of photons, which drive 

photobiological reactions. Additionally, light is closely connected to brightness in human 

perception of photons, thus photon is a preferable term. Here, the terms blue, green, red and 

far-red photons refer to photons in the regions that induce blue, green, red or far-red color 

perception. 

Plant developmental responses to a relative increase in far-red have been well studied 

[1,2], with species-specific increases in leaf area or stem length empirically described as 

shade tolerance or shade avoidance. It should be noted that shade tolerance does not often 

specify an increase in leaf area; instead, morphological changes are discussed in terms of an 

increase in specific leaf area, which is leaf area divided by leaf mass [3]. 

Elevated far-red commonly increases leaf area in controlled environments and this 

response is beneficial because it increases photon capture [4]. Increases in stem length in 

controlled environments are typically considered detrimental. In contrast to the well-

characterized responses to far-red, shade-responses to green photons are less well studied. 
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Early light-emitting diode (LED) fixtures for horticultural applications supplied only 

blue and red photons. One of the first studies that investigated the effects of adding green to 

this type of spectrum found that increasing the fraction of green photons from zero to 24% 

increased leaf area in Lactuca sativa cv. “Waldmann’s Green” by 31% and increased shoot 

dry mass by 47% [5]. This early finding created a sustained interest in considering green 

photons to horticultural fixtures in order to promote growth [6,7]. However, more recent 

studies have shown contradictory results to Kim et al. [5] (e.g., [8]), suggesting the need for a 

reanalysis of the beneficial effects of green photons on plant growth – especially with 

continued emerging evidence that green photons act antagonistically against blue photons 

through the photoreceptor cryptochrome. 

Cryptochromes are one of the two most well-studied families of blue photon 

receptors, and they primarily modulate plant growth through the control of gene expression. 

The other well-studied family of blue photon receptors are phototropins, which primarily 

modulate plant growth through interactions with membranes [9,10]. The high flux of blue 

photons in sunlight cause reduced stem and leaf elongation. Studies investigating hypocotyl 

elongation in Arabidopsis thaliana mutants have indicated that cryptochromes are the 

primary photoreceptor influencing the decrease in stem length [11,12]. Longer-term studies 

in pea have corroborated this finding as greenhouse grown plants lacking cryptochrome were 

20 to 40% longer than the wild-type plants [13]. Phototropins play a role in reducing 

hypocotyl elongation when seedlings are moved from darkness to blue light [14], but this 

rapid response does not appear to have a prolonged effect [12]. The role of these 

photoreceptors in leaf expansion in mature plants is less well studied. 
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Studies have typically found that increasing the fraction of blue photons decreases 

leaf area/plant diameter in the horticultural crops lettuce [8,15–24], cucumber [25–28] and 

tomato [26,29], but these effects are not always statistically significant [17,18,26,28,30–34] 

and occasionally go in the opposite direction [18]. Leaf area is generally highly correlated 

with dry mass (yield). Thus, increasing the fraction of blue photons also typically result in 

decreased dry mass [8,15,16,20–22,24–26,28,35,36], although this is not always the case 

[17–19,25–32,34,36–42]. In addition to reducing leaf area and yield, blue photons have also 

been shown to reduce stem and petiole length in cucumber and tomato [25,26,28,32,33], 

indicating that the effects of blue photons on manipulating cryptochrome activity in 

Arabidopsis extend to these horticultural species. We review 29 studies spanning 19 years on 

the effects of blue photon fraction in lettuce, cucumber and tomato in Table D.1. 

Comparisons are complex because the studies were conducted at multiple temperatures, 

study durations, photon fluxes, photoperiods and cultivars. 

Unlike spectral distributions that lack either blue or red photons [25,26,43], growing 

plants in the absence of green photons does not necessarily induce abnormal morphology 

[25,26]. Studies from the past two decades have suggested that green photons act 

antagonistically against blue photons to modulate the action of the photoreceptor 

cryptochrome in a similar manner to the red and far-red antagonism in the photoreceptor 

phytochrome. In cryptochrome, the flavin adenine dinucleotide (FAD) chromophore has 

three potential states. The oxidized form, FADox, is abundant in the dark, and upon photon 

absorbance it converts into the semi-reduced radical state (flavosemiquinone, FADHo), which 

is the active form. Photon absorbance by FADHo induces conversion into the fully reduced 

(FADH–) state, which is inactive [44,45]. The absorbance spectra of FADox shows a 
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sensitivity to blue photons at about 450 nm, with little absorbance beyond 500 nm, while 

comparatively the absorbance spectrum of FADHo shows relative lower absorbance in the 

blue region and higher absorbance in the green region [46]. The fully reduced form has a 

unique absorbance spectrum [47,48], but there are no models of cryptochrome activity that 

suggest a molecular change in FADH– by photon absorbance [44,49]. This model indicates 

that green photons ought to partially inhibit/reverse blue induced decreases in stem 

elongation. If cryptochrome affects leaf expansion, then green photons may increase leaf area 

and yield. 

This hypothesis has been evaluated in multiple studies. Although increasing the green 

photon flux can induce shade morphology (e.g., increased petiole / total leaf length and 

decreased leaf angle) in Arabidopsis thaliana [50,51], the effect of green photons in 

horticultural crops is inconsistent. For example, although some studies in cucumber and 

tomato showed an increase in stem elongation in response to increasing green fraction [26] 

many others have shown no response of stem or petiole length to increasing the fraction of 

green photons [25–27,29,33], and occasionally studies show a decrease in stem length [28], 

which is in the opposite direction than expected. 

Additionally, replacing red photons with green photons under a constant fraction of 

blue has increased leaf area and dry mass in some studies [5,20,22,26,39,41,52], but most 

studies show no response, and several show an opposite response [8,20,23,25–29,33,36, 

38,40] (also see Table D.2). Overall, the expected morphological (and subsequent growth) 

responses to blue and green photons do not always occur in the horticultural crops lettuce, 

cucumber and tomato. 
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The photosynthetic photon flux density (PPFD), or intensity, affects morphology. 

One notable example is that leaf thickness typically increases with increasing photon flux. 

Thick and thin leaves are referred to as sun and shade leaves. This response has recently been 

partially explained by the involvement of both cryptochromes and phototropins [53]. In some 

studies, the blue fraction has been found to be better a predictor of stem elongation and leaf 

expansion, while in other species and other studies, absolute blue intensity has been found to 

be a better predictor of morphological responses [26,30,54,55]. The extent of interactions 

between photon quality and quantity is not well studied. 

Previous studies have investigated some of the following interactions: 1) the effect of 

blue photons between 10 and 30% blue [8,26], 2) interactions with green photons at multiple 

levels of blue [8,20], and 3) interactions with intensity [26]. We sought to investigate all 

three parameters and their interactions. We hypothesized that 1) increasing the fraction of 

blue photons would reduce plant size (e.g., leaf area, dry mass and stem length), while 

increasing the fraction of green photons would increase plant size; 2) the effect of blue 

photons would be more significant at lower intensities (as this would cause photoreceptors to 

be under-saturated); and 3) the effect of green photons would be more significant at a lower 

fraction of blue photons. 

 

 Material and Methods 

2.3.1 Plant Material and Cultural Conditions 

Lettuce (Lactuca sativa, var. Red Salad Bowl), tomato (Solanum lycopersicum, cv. 

Early Girl) and cucumber (Cucumis sativa, var. Boston Pickling) seeds were direct seeded 
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then thinned for uniformity after emergence leaving four plants per module. Planted root 

modules were randomly placed into the 16 treatment chambers. Each chamber had 

dimensions of 20 × 23 × 30 (L × W × H, 13800 cm3) with gloss white walls. Fans provided 

an air velocity of 0.5 m s−1 at the top of the canopy. The root modules measured 20 × 18 × 13 

(4680 cm3) and contained a 1:1 ratio of peat and vermiculite by volume with five grams of 

uniformly mixed Nutricote® slow-release fertilizer (16-2.6-11.2, N-P-K, type 100). Root 

modules were watered to 10% excess as needed with dilute fertilizer solution (0.1N-0.01P-

0.08K; Scotts® Peat-lite, 21-5-20; EC = 1 mS cm−1), and were allowed to passively drain. 

Type-E Thermocouples connected to a data logger (CR1000, Campbell Scientific, Logan UT, 

USA) continuously monitored ambient air temperature at the top of the plant canopy. 

Day/night temperature was 23/20 °C, with less than 1 °C variation over time and 1 °C 

variation among chambers. CO2 concentration was continuously monitored and was identical 

for all treatments and varied over time between 450 and 500 ppm. 

 

2.3.2 Treatments 

The system included 16 chambers with eight unique spectral outputs at two intensities 

for a 16 h photoperiod (PPFD: 200 µmol m−2 s−1, DLI: 11.5 mol m−2 d−1; and PPFD: 500 

µmol m−2 s−1 DLI: 28.8 mol m−2 d−1). Treatments were developed using LEDs (Luxeon 

Rebel Tri-Star LEDs; Quadica Developments Inc., Ontario, Canada) to output three white 

(cool, neutral and warm), three red/blue (RB) combinations, and two red/blue/green (RBG) 

combinations. The RB combination had about 10, 20 and 30% blue, and the RBG treatments 

contained about 10 and 20% B with 20 or 10% G, respectively. The spectral distributions of 
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the treatments were measured before each replicate study with a spectroradiometer (model 

PS-200; Apogee Instruments, Logan UT, USA) and are shown in Figure 2-1. Blue, green and 

red as a percentage of the PPFD were calculated for each species at the higher and lower 

PPFD. These are averaged together in Table 2-1. PPFD was measured with a full-spectrum 

quantum sensor (MQ-200, Apogee Instruments, Logan UT, USA) at the top of the plant 

canopy, and each chamber was adjusted to maintain PPFD at ± 5%. 

 

Table 2.1. Representative ratios of blue, green and red fluxes as a percentage of 
photosynthetic photon flux density (PPFD). Values from the three species and two intensities 
deviated less than 10% from the average and thus we present average values. RB refers to 
treatments comprised of red and blue LEDs and RBG refers to treatments comprised of red, 
blue and green LEDs. 
 White RB RBG 
  Warm Neutral Cool RB10 RB20 RB30 RBG10 RBG20 
% Blue (400 to 499) 9 18 23 11 21 32 22 11 

% Green (500 to 599) 42 47 51 1 1 1 11 20 
% Red (600 to 699) 49 35 26 88 78 67 67 69 

 
 

2.3.3 Plant Measurements 

All species were harvested after canopy closure – when the leaves of the four plants 

in one of the treatments began to touch. This occurred 21 days after emergence in lettuce, 12, 

13 and 20 days after emergence in tomato, and 11 or 13 days after emergence in cucumber. 

At harvest, stem and longest petiole length of the each of the four plants per chamber were 

measured in tomato and cucumber. Leaf area was measured using a leaf area meter (LI-3000; 

LI-COR, Lincoln NE, USA). Leaf area index (LAI, m2
leaf m−2

ground) was calculated by 

dividing total leaf area per chamber by the ground area of the chamber. Shoot dry mass (DM) 
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was measured after the tissue was dried at 80 °C for 48 h. Dry mass per unit area (g DM 

m−2
ground) was calculated by dividing total dry mass by the chamber area. Specific leaf mass  

 
Figure 2-1. Representative spectral output of each of the eight treatments at a PPFD of 200 
µmol m−2 s−1. (Top) the three white LEDs, (middle) the three RB (red/blue) combinations, 
(bottom) the two RBG (red/blue/green) treatments. 
(SLM, kg DMleaf m−2

leaf) was calculated by dividing the total leaf dry mass of the four plants 

by the total leaf area of the four plants. The average stem and longest petiole length from 

each chamber were used for statistical analysis (four measurements averaged together). 
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2.3.4 Statistical Analysis 

The study was replicated three times (each with four plants per replicate in time). All 

data were analyzed using R statistical software (R Foundation for Statistical Computing; 

Vienna, Austria). Blue, green and PPFD effects on the growth parameters in lettuce, 

cucumber and tomato were determined using lmer and Anova functions with an F statistic. 

We present significance at p < 0.05 (marked with a *). In a mixed effects linear model, 

percent blue and percent green were treated as continuous variables while intensity was 

treated as a fixed effect. Replicates were treated as random factors. Interaction terms between 

these three factors were included in the linear model. The three-way interaction was 

insignificant for all parameters and was therefore pooled into the error term. 

In order to understand the interactions, the effect of blue photons was also analyzed 

by separating the data by intensity (200 and 500 µmol m−2 s−1). This separation was also 

done in the analysis of the effects of green photons, and because green photons have been 

implicated in the reversal of blue photon effects, the data were further separated for 10 or 

20% blue photons. The RB30 treatment was not included in this analysis, and both the cool 

and neutral white LEDs were considered about 20% blue. 
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 Results 
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Figure 2-2. Representative photos from a single replicate of each treatment for (a) lettuce, 
(b) cucumber and (c) tomato. The average percentages of blue and green are shown above 
the plants in their respective color. RB: red/blue; RBG: red/blue/green; PPFD: photosynthetic 
photon flux density. 
 

 

Representative photos of the three species in each treatment are shown with the 

percentages of blue and green in Figure 2-2. 

Significant effects from the mixed effects linear model are presented in Table 2-2. In 

Figures 2-3 through 2-7, data for dry mass, LAI, SLM, plant height and longest petiole length 

for each replicate were normalized to the grand mean of the three replicates and standard 

error bars represent the normalized error. The resulting percent change between 10 and 30% 

blue or zero and 50% green is shown. These graphs show the significance of the separated 

data (e.g., the effect of increasing green photons at 10% blue and a PPFD of 200 µmol m−2 

s−1). 
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Table 2.2. Significant effects of percent blue (%B), percent green (%G) and PPFD, along 
with interaction terms on the parameters of dry mass, leaf area index, specific leaf mass, 
height and longest petiole. * represents a significant effect at p < 0.05. NS, not significant. 
Let: lettuce; Cuc: cucumber; Tom: tomato. 

  Dry Mass Leaf Area Specific Leaf Mass Height Petiole 
  Let Cuc Tom Let Cuc Tom Let Cuc Tom Cuc Tom Cuc Tom 
%B * * * * * * NS * * * * * * 
%G NS NS * NS NS * * NS * * * * * 
PPFD * * * NS * NS * * * * * NS * 
%B*%G * NS NS * * NS NS NS NS NS * * NS 
%B*PPFD NS * NS NS * NS NS NS * NS * NS NS 
%G*PPFD NS NS NS NS * NS * NS NS NS NS NS NS 
 

2.4.1 Dry Mass 

The higher PPFD (500 µmol m−2 s−1) resulted in an increased dry mass in all three 

species (Table 2-2, Figure 2-3). Dry mass significantly decreased with increasing percent 

blue in all three species (Table 2-2, Figure 2-3a–c). In cucumber, percent blue interacted with 

intensity, indicating that the slope of the linear model was significantly different at both 

intensities (Table 2-2). Following this interaction, increasing the percent blue from 10 to 30% 

decreased cucumber dry mass by 32% at the higher PPFD, but only decreased it by 19% at 

the lower PPFD (Figure 2-3b). 
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Figure 2-3. Effect of percent blue on dry mass in (a) lettuce, (b) cucumber, and (c) tomato; 
and effect of percent green on dry mass in (d) lettuce, (e) cucumber, and (f) tomato. In (a-c) 
squares and the solid black line represent the high intensity treatments (PPFD = 500 µmol 
m−2 s−1) and circles and the dashed grey line represent the low intensity treatments (PPFD = 
200 µmol m−2 s−1). Red data points represent RB treatments, green points are RBG 
treatments and grey points are white LED treatments. The values in percent indicate the 
change from 10 to 30% blue. In (d–f) solid lines and squares represent the high intensity 
treatments while the dashed lines and circles represent the low intensity treatment. The cyan 
data represent treatments with about 10% blue (10% B) and the purple data represent 
treatments with about 20% blue (20% B). The values in percent indicate the change from 
zero to 50% green. * represents a significant effect of percent blue or percent green at the p < 
0.05 level. Error bars represent normalized standard error of n=3 replicates. RB: red/blue; 
RBG: red/blue/green. PPFD: photosynthetic photon flux density. 
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Percent green significant increased dry mass in tomato, but had no effect in lettuce or 

cucumber (Table 2-2, Figure 2-3d–f) and there was no interaction with PPFD for any species. 

There was an interaction between percent blue and percent green photons in lettuce, where 

dry mass trended upward with an increasing fraction of green photons with 10% blue, but 

trended downward at 20% blue (Figure 2-3d). 

 

2.4.2 Leaf Area Index 

Increasing the fraction of blue photons decreased LAI in all three species (Table 2-2, 

Figure 2-4a–c). PPFD had a significant effect on LAI in cucumber, but not lettuce or tomato. 

On average, LAI in cucumber was 7% higher in the high PPFD treatment compared to the 

low PPFD treatment, indicating that this significant effect is not biologically important. 

Similar to dry mass, there was a significant interaction between percent blue and PPFD in 

cucumber (Table 2-2). At the higher PPFD, increasing percent blue from 10 to 30% 

decreased LAI by 48%, but at the lower PPFD LAI was only decreased by 32% (Figure 2-

4e). 

Increasing the fraction of green photons increased LAI in tomato, with no significant 

effects in lettuce or cucumber (Table 2-2, Figure 2-4d–f). There was an interaction between 

percent blue and percent green in lettuce and cucumber but not tomato. This interaction can 

be observed in the separated data, where percent green appears to have an effect at 10% blue, 

but not 20%, although in lettuce this was only statistically significant at the higher intensity 

(Figure 2-4d,e). In cucumber, there was a significant interaction between percent green and 
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PPFD. The separated cucumber data show that LAI trended upward more at the higher PPFD 

than the lower PPFD (Figure 2-4e). 

 

 
 

 
Figure 2-4. Effect of percent blue on leaf area index in (a) lettuce, (b) cucumber, and (c) 
tomato; and effect of percent green on leaf area index in (d) lettuce, (e) cucumber, and (f) 
tomato. * represents a significant effect of percent blue or percent green at the p < 0.05 level. 
See Figure 2-3 for the meaning of specific labels. Error bars represent normalized standard 
error of n=3 replicates. 
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2.4.3 Specific Leaf Mass 

Specific leaf mass is an indicator of leaf thickness; as SLM increases, leaf thickness 

typically increases. Increasing the percent blue photons increased SLM in cucumber and 

tomato, but had no effect on SLM in lettuce (Table 2-2, Figure 2-5b,d). Additionally, there 

was a significant interaction between PPFD and percent blue in tomato (Table 2-2). When 

the data were separated for intensity this interaction in tomato appeared to be explained by a  

 
Figure 2-5. Effect of percent blue on specific leaf mass in (a) lettuce, (b) cucumber, and (c) 
tomato; and effect of percent green on specific leaf mass in (d) lettuce, (e) cucumber, and (f) 
tomato. * represents a significant effect of percent blue or percent green at the p < 0.05 level. 
See Figure 2-3 for the meaning of specific labels. Error bars represent normalized standard 
error of n=3 replicates. 
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significant effect of percent blue at the higher PPFD, but no effect at the low PPFD (Figure 

2-5c). In all cases, SLM was higher at a PPFD of 500 µmol m−2 s−1 compared to a PPFD of 

200 µmol m−2 s−1. 

Increasing the fraction of green photons decreased SLM in lettuce and tomato, but 

had no effect on cucumber (Table 2-2, Figure 2-5d,f). In lettuce, percent green interacted 

with PPFD to predict SLM, but this effect does not appear biologically important (Figure 2-

5d). 

 

2.4.4 Plant Height 

Increasing the fraction of blue photons significantly decreased plant height in both 

cucumber and tomato (Table 2-2, Figure 2-6a,b). The higher PPFD resulted in reduced plant 

height in both species. Additionally, there was an interaction between percent blue and PPFD 

in tomato (Table 2-2). This interaction is apparent in Figure 2-6b, where plant height 

decreased by 48% at the lower PPFD, but only decreased by 30% at the higher PPFD. 

Plant height significantly increased with increasing green photon fraction in both 

tomato and cucumber (Table 2-2, Figure 2-6c,d). These effects were more dramatic in tomato 

compared to cucumber, with a 50% increase in stem length as percent green increased from 

zero to 50% in tomato, but only about 20% increase in height in cucumber. Additionally, in 

tomato, there was a significant interaction between percent green and percent blue (Figure 2-

6d). 
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Figure 2-6. Effect of percent blue on plant height in (a) cucumber and (b) tomato; and effect 
of green photons on plant height in (c) cucumber and (d) tomato. * represents a significant 
effect of percent blue or percent green at the p < 0.05 level. See Figure 2-3 for the meaning 
of specific labels. Error bars represent normalized standard error of n=3 replicates. 
 

2.4.5 Longest Petiole Length 

The results for longest petiole length in cucumber and tomato followed a similar trend 

to plant height with significant decreases as percent blue increased (Table 2-2, Figure 2-

7a,b). Additionally, there was a significant effect of PPFD in tomato. 

Similar to plant height, increasing the fraction of green photons significantly in-

creased the petiole length in both cucumber and tomato (Table 2-2, Figure 2-7c,d), and there 

was a significant interaction between blue and green fraction in cucumber. This interaction 

can be seen in Figure 2-7c where increasing percent green increased petiole length by 26 and 

42% at 10% blue, but had no effect at 20% blue. 
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Figure 2-7. Effect of percent blue on longest petiole length in (a) cucumber and (b) tomato; 
and effect of percent green on longest petiole length in (c) cucumber and (d) tomato. * 
represents a significant effect of percent blue or percent green at the p < 0.05 level. See 
Figure 2-3 for the meaning of specific labels. Error bars represent normalized standard error 
of n=3 replicates. 
 

 Discussion 

2.5.1 Mechanism Underlying Specific Leaf Mass 

At high light intensity, leaf thickness increases due to an increase in both cell 

elongation and cell division along the abaxial to adaxial axis. This has led to the 

categorizations of sun and shade leaves [56]. It is therefore unsurprising that SLM was 

significantly increased at the higher intensity (PPFD = 500 µmol m−2 s−1) compared to the 

lower intensity (PPFD = 200 µmol m−2 s−1) in all three species (Table 2-2, Figure 2-5). 

Previous studies using Arabidopsis thaliana mutants deficient in the blue photoreceptors 



50 

cryptochromes [57] or phototropins [58] showed no difference in leaf thickness from the 

wild-type when exposed to high or low photon intensity. This led to confusion regarding the 

mechanism controlling this response, which had long been suspected to be tied to these 

photoreceptors [59]. Hoshio et al. [53] showed that the increased cell elongation along the 

abaxial to adaxial axis was absent in the cry1cry2phot1phot2 quadruple mutant, indicating 

that all four photoreceptors work together to induce this response at a specific stage of leaf 

development. They also showed that this quadruple mutant growing under pure blue photons 

had fewer cell layers than the wild-type, possibly implicating these photoreceptors in the cell 

division response. They concluded that the photoreceptors only partially explained the 

response to high intensity, and that other unknown mechanisms remain. 

Previous studies have shown that increasing the fraction of blue photons increased 

SLM, indicating an increase in leaf thickness [20,25,26], but other studies have showed no 

response [21,22,26]. In this study, increasing the fraction of blue photons increased SLM in 

both cucumber and tomato (Table 2-2, Figure 2-5b,c). 

The chromophore in cryptochrome is FAD and the chromophore in phototropin is a 

flavin mononucleotide (FMN). These two chromophores (FAD and FMN) are structurally 

very similar, and as such they have similar absorbance properties for each of their oxidized, 

semi-reduced and fully reduced states [60]. For cryptochrome, FADHo has been implicated 

as the active state, and absorbance of green photons by this state can convert it into the fully 

reduced, inactive state [44,45,61]. Despite the similar absorbance properties of FMN 

compared to FAD, no inhibition of phototropin action by green photons has been described, 

and intermediate forms of FMN are extremely transient [62]. In a similar manner, although 

phototropins have been implicated in stomatal opening [63], the reversal of blue photon 
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induced stomatal opening by green photons does not appear to be under the control of 

phototropins [64]. Nonetheless, SLM appears to be modulated by both of these 

photoreceptors [53], and thus green photons could reverse the blue induced increase in SLM 

through cryptochrome. 

In this study, both lettuce and tomato showed a significant decrease in SLM with an 

increasing fraction of green photons (Table 2-2, Figure 2-5d,f). This response is in the 

expected direction if green photons reverse blue-photon-induced increases in SLM.  

Photoreceptors may be saturated at higher photon fluxes, meaning that spectral shifts 

at higher intensity may have a smaller impact on plant morphology than at lower intensities. 

By contrast, preferential absorption of blue photons by pigments other than the blue photon 

receptors may minimize plant responses to lower intensities of blue photons. The latter 

scenario may be the case for the interaction between percent blue and PPFD in tomato SLM, 

as increasing percent blue at the higher PPFD increased SLM by 16%, but appeared to have 

no effect at the lower PPFD (Figure 2-5c). The interaction between percent green and PPFD 

in predicting SLM in lettuce is more difficult to explain as the separated data do not show 

large differences between the intensities (Figure 2-5d). 

 Despite these perplexing interactions, the overall response of SLM to an increase in 

the fraction of blue and green photons is generally consistent with the role of cryptochromes 

and phototropins. 
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2.5.2 Leaf Expansion 

Mechanisms underlying leaf area are complex due to interactions with 

photosynthesis. Here, we review the potential role of phototropins and cryptochromes on the 

control of leaf expansion under blue and green photons. 

In a young seedling, blue photons contribute to early cotyledon expansion, and both 

cryptochromes and phototropins are involved in this response [11,12]. Mature Arabidopsis 

thaliana mutants lacking phototropins have smaller curled leaves compared to wild-type 

plants [65–67]. This is a puzzling considering observed decreases in leaf area as the fraction 

of blue photons increases (Table D.1, Table 2-2, Figure 2-4a–c). It is possible that 

phototropins simply increase cell expansion in all directions, and thus do not contribute to the 

blue photon induced decreases in leaf expansion. 

Cryptochromes have been implicated in low blue shade avoidance responses like 

hyponasty [68], but the role of cryptochromes in leaf expansion of mature plants is less well 

determined. Fig. 1a in Wu and Yang [69] showed overexpressing cryptochrome visually 

decreased plant diameter (leaf expansion and petiole elongation), while mutants lacking 

cryptochrome looked stretched compared to the wild-type. Overexpression of cryptochrome 

in rice led to a significant reduction in the expansion of the secondary leaf blade [70]. These 

results provide some evidence for the role of cryptochrome in reducing leaf expansion upon 

blue photon perception. 

Considering the potential role of cryptochrome and phototropin in SLM, it follows 

that increasing leaf thickness through cell elongation in the abaxial to adaxial direction may 

decrease leaf expansion. Dougher and Bugbee [71] found that the blue induced a decrease in 

soybean leaf area was partially caused by a decrease in epidermal cell area. They also 
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determined that the observed decrease in leaf area was influenced by a decrease in epidermal 

(anticlinal) cell division (as measured by dividing leaf area by cell area). Yano and 

Terashima [72] concluded that high intensity photon flux did not change the rate of total cell 

division, but increased periclinal cell division at the expense of anticlinal cell division. 

Hoshino et al. [53] also showed that under monochromatic blue photons, periclinal cell 

division was reduced in the quadruple mutant (cry1cry2phot1phot2). Altogether, increasing 

the fraction of blue photons (perceived by cryptochromes) may both increase periclinal cell 

division at the expense of anticlinal cell division, and increase cell expansion along the 

abaxial to adaxial axis at the expense of elongation along the perpendicular axis.  

Although the mechanisms underlying the effect of blue photons on leaf expansion are 

not clear, cryptochromes appear to modulate the response. It is difficult to determine the role 

of phototropins in leaf expansion. Further research is warranted. 

 

2.5.3 Potential Contribution of Photosynthesis to Dry Mass Accumulation 

The decreases in dry mass as the fraction of blue photons increased were likely 

caused in part by the lower quantum yield of blue photons compared to green and red 

photons. McCree [73] showed that in lettuce (cv. Great Lakes and Big Boston), cucumber 

(cv. Ohio MR-17) and tomato (cv. Floradel) blue photons had a 24, 33 and 30% lower 

quantum yield than red photons. Green photons had a 16% lower quantum yield than red 

photons in all three species. As the blue percentage increased from 10 to 30%, dry mass 

decreased by 42 and 48% in lettuce, 32 and 19% in cucumber, and 17 and 21% in tomato 
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(Figure 2-3a–c). Although decreased photosynthesis likely contributed to these decreases in 

dry mass, the effects were also likely caused by reduction in photon capture (decreased LAI). 

 

2.5.4. Comparison to Previous Studies in Horticultural Species 

Increasing the fraction of blue photons decreased LAI in all three species, while 

increasing the fraction of green photons only increased LAI in tomato (Table 2-2, Figure 2-

4f). As dry mass is highly correlated with leaf area [74], the decreases in LAI likely 

contributed to the decreases in dry mass. In lettuce, increasing the fraction of blue photons 

has often been shown to decrease leaf area and dry mass [8,15,16,20–22,24,35], although 

some studies show no response [26,28,37–42] (also see Table D.1). Our data showed that 

increasing the blue photon fraction decreased leaf area and dry mass in lettuce. In cucumber, 

data from previous publications have generally shown a decrease in leaf area and dry mass 

[25,26,28], and our data confirm these findings. In tomato, the literature has largely shown 

no response to increasing the fraction of blue [26,31–33], but our data show a significant 

decrease in LAI and dry mass. The interaction between percent blue and PPFD for both dry 

mass and LAI in cucumber resulted in a greater response at the higher intensity, suggesting 

that blue photons were preferentially absorbed by other pigments at the lower intensity. 

Despite the early findings of Kim et al. [5], who showed beneficial effects of adding 

green photons to the growth spectrum, subsequent studies have rarely shown beneficial 

effects [8,16,23,25–29,33,36,38,40] (also see Table D.2). Likewise, we found no beneficial 

effect (increase in dry mass) of adding green photons to lettuce or cucumber, but we did see a 

beneficial effect for both leaf area and dry mass in tomato (Table 2-2, Figure 2-3d–f, Figure 



55 

2-4d–f). Based on our definition of shade tolerance as an increase in leaf area under shade-

light, tomato appeared to exhibit shade tolerance in response to green photons, but lettuce 

and cucumber did not.  

Green photons have been shown to induce shade avoidance responses in Arabidopsis 

thaliana, but the shade avoidance responses of stem and petiole elongation in horticultural 

species are often absent [25–27,29,33]. By contrast, increasing the fraction of blue photons is 

regularly observed to decreases stem and petiole length in cucumber and tomato 

[25,26,28,33]. In this study, despite previous findings, we showed that green photons induced 

shade avoidance responses in the horticultural species cucumber and tomato (Table 2-2, 

Figure 2-6c,d, Figure 2-7c,d). We also observed the common response of decreased stem and 

petiole lengths with increasing blue photon fraction. Unlike the interactions discussed 

previously, the interaction between percent blue and PPFD in predicting tomato plant height 

may be explained by saturating photoreceptors at higher intensities. 

 

2.5.5 Interaction between Percent Blue and Percent Green  

The interactions between blue photons and green photons in predicting leaf area of 

lettuce and cucumber, and petiole length in cucumber can be explained by the sensitivity of 

cryptochrome to blue and green photons. Bouly et al. [44] measured cry2 activation and de-

activation by its rate of breakdown (cry2 breaks down in its active form). Compared to 

applying blue photons alone, green photons provided at three times the rate of blue photons, 

resulted in minimal differences in the concentration of cry2, but when green photons were 

applied at ten times the rate, there was a significant increase in the concentration of cry2. 
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This indicates that green photons de-activated cry2 (as measured by a decrease in its 

degradation) only when applied at ten times, and not three times, the rate of blue photons. 

More recent studies have estimated the photoconversion coefficients (photoconversion 

weighting factors) for FAD state changes in vivo are 480 m2 mol−1 for the activation of cry2 

by 450 nm blue photons and 30 m2 mol-1 for de-activation by 560 nm green photons [61]. 

Photoconversion coefficients are probability functions that estimate the likelihood of photon 

absorbance by a pigment and subsequent conversion to another form; they are regularly used 

in phytochrome research (e.g., [75]). The results of Procopio et al. [61] indicate that blue 

photons have a 16-fold greater ability to change the state of cryptochrome compared to green 

photons. Therefore, increasing the flux of green at a higher fraction of blue would be 

expected to have a reduced response compared to a lower fraction of blue. Although this is 

complicated by the fact that the cryptochrome photocycle involves three states rather than 

two, and the more reduced states are only converted back to the oxidized state via dark 

reversion. A better understanding of this photocycle may provide better models for the action 

of blue and green photons in future studies. Nonetheless, green photons were more potent at 

increasing leaf expansion in lettuce and cucumber (Figure 2-4d,e), and the petiole length in 

cucumber (Figure 2-7c) at a lower fraction of blue. The response in tomato plant height is 

more difficult to explain (Figure 2-6d). 

 

 Conclusions 

Green photons only benefitted tomatoes. These data are contrary to the early findings 

of Kim et al. [5], who found that increased green fraction from fluorescent lamps increased 
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the growth of lettuce compared to LEDs without green. Higher fractions of green photons in 

horticultural LED fixtures may benefit tomato production, but not lettuce or cucumber 

production (although responses are likely cultivar dependent). White LEDs, which provide a 

high fraction of green photons, are the most cost-effective type of LED due to their use in 

general lighting [76]. Thus, their use in horticultural LED fixtures will likely continue for 

economic reasons. 

We define shade tolerance as an increase in leaf area in response to shade-like light 

(assuming only photon quality and not photon quantity has been adjusted), and shade 

avoidance as an increase in stem elongation. Based on these definitions, tomatoes expressed 

both shade avoidance and shade tolerance in response to an increased fraction of green 

photons, while cucumber only exhibited shade avoidance. 

Blue photons typically decrease leaf area and dry mass. It therefore seems 

advantageous to include a low fraction of blue photons in a fixture. From our data, the lowest 

percentage of blue (10%) produced the highest dry mass. We are now studying the minimal 

amount of blue needed for normal plant growth. 
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CHAPTER 3 

FAR-RED FRACTION: AN IMPROVED METRIC FOR CHARACTERIZING 

PHYTOCHROME EFFECTS ON MORPHOLOGYB 

 

 Abstract 

Phytochrome, a well-studied photoreceptor in plants, primarily absorbs in the red (R) 

and far-red (FR) regions and is responsible for the perception of shade (from neighboring or 

overhanging plants) and subsequent morphological responses. Experiments performed in 

controlled environments have widely used the red to far-red ratio (R:FR ratio) to simulate the 

natural environment and used phytochrome photoequilibrium (PPE) to simulate the activity 

of phytochrome. We review why PPE may be an unreliable metric including differences in 

weighting factors, multiple phytochromes, non-photochemical reversions, intermediates, 

variations in the total pool of phytochrome, and screening by other pigments. We suggest that 

environmental signals based on red and far-red photon fluxes are a better predictor of plant 

shape than the more complex PPE model.  However, the R:FR ratio is non-intuitive and can 

approach infinity under electric lights, which make it difficult to extrapolate from studies in 

controlled environments to the field. Here we describe an improved metric:  the FR fraction 

[FR/(R+FR)] with a range from 0 to 1.  This is a more intuitive metric both under electric 

lights and in the field compared to other ratios because it is positively correlated with 
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phytochrome-mediated morphological responses. We demonstrate the reliability of this new 

metric by reanalyzing previously published data. 

 

 Introduction 

Many photobiological studies are conducted under electric lights to better understand 

basic plant responses. In this review we discuss the history, derivation and limitations of two 

of the common metrics that are used to interpret photobiological responses: phytochrome 

photoequilibrium (PPE) and the red (R) to far-red (FR) ratio (R:FR ratio, R/FR). Issues with 

these metrics are exacerbated under light-emitting diodes (LEDs), which are important to 

photobiology because of their narrow bandwidth. Furthermore, the high efficiency output of 

LEDs has made them a prominent addition to controlled environment agriculture (Kusuma et 

al., 2020). In these plant factories, plant morphology can be manipulated by the specific 

choice of LEDs, but first it is vital to develop proper metrics to predict responses.   

In this review we describe an improved metric called the FR fraction [FR/(R+FR)], 

which ranges from 0 to 1.  This is a more intuitive metric both under electric and natural 

conditions compared to other ratios because it is positively correlated with phytochrome-

mediated morphological responses like stem elongation. We demonstrate the reliability of 

this new metric by reanalyzing previously published data. 

 

 Early Phytochrome Research 

Seventy years ago, the discovery of phytochrome by Borthwick et al. (1952) and 

initial extraction by Butler et al. (1959) led to a photobiological focus on the R and FR 



65 

regions of the electromagnetic spectrum. Early studies were more focused on how 

phytochrome-mediated responses occurred like wavelength sensitivity, signaling partners and 

time dependencies; but there was little focus on understanding why these responses happened 

(evolutionary and ecological perspectives).  Researchers eventually began considering the 

ecological implications realizing,  

“Beneath the forest canopy the intensity of radiation is decreased but the region 
of 730 nm is enhanced relative to 660 nm because of the filtering action of 
chlorophyll (Hendricks and Borthwick, 1963).”  
 
This led to studies in the natural environment (Kasperbauer, 1971; Taylorson and 

Borthwick, 1969) as opposed to laboratory settings with electric lighting experiments 

including pulses, flip-flops (following red pulses with far-red pulses to reverse the response) 

and monochromatic light.  The focus remained on R and FR because the two forms of 

phytochrome, Pr and Pfr, had absorbance peaks in these regions (Butler et al., 1964), and the 

R:FR ratio became well established as an indicator of the degree of shade (Cumming, 1963; 

Holmes and Smith, 1975, 1977a, 1977b).  

Phytochrome responses, especially stem-extension rate and stem length, are often 

shown to be log-linearly or linearly correlated with the ratio of active phytochrome (Pfr) to 

total phytochrome (Ptotal), where Ptotal = Pr + Pfr (Kalaitzoglou et al., 2019; Morgan and 

Smith, 1976, 1978, 1979; Park and Runkle, 2017, 2018, 2019). This ratio is referred to as 

phytochrome photoequilibrium (PPE, also called the phytochrome photostationary state; 

PSS) and was popularized by H. Smith for predicting shade avoidance responses. Smith 

credits K. M. Hartmann for the model of active to total phytochrome as the appropriate 

method for predicting phytochrome action (Hartmann, 1966; Smith, 1973). 
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Therefore, two metrics for predicting phytochrome responses have evolved: PPE and 

the R:FR ratio. Here we discuss problems with both metrics and propose a new metric.   

 

 Measurement of the Two Forms of Phytochrome 

PPE can be estimated with a model (PPEe) or measured directly in chlorophyll-

deficient tissue (PPEm). In chlorophyll-deficient tissue the relative amounts of the two forms 

of phytochrome can be measured directly in vivo using a specialized dual-wavelength 

spectrophotometer. There are two methods for measuring PPEm with this technique (Dooskin 

and Mancinelli, 1968; Klose, 2019; Lamparter et al., 1994), but the method utilized by Smith 

and Holmes (1977) is described by Klein et al. (1967) and more recently, Klose (2019). 

Briefly, both methods measure the change in the difference in absorbance between two 

wavelengths upon exposure to R or FR, and the two techniques differ in the wavelengths that 

they measure. One measures the difference in absorbance between 660 and 730 nm, while the 

other (Smith and Holmes, 1977) measures the difference between 730 and 800 nm. The 

former provides a larger signal while the latter reduces error caused by chlorophyll. We 

describe the theory behind the more commonly used technique in Appendix E. It is important 

to note that although we call this a measurement of Pfr/Ptotal, it is still an estimate. 

 

 Estimating the Equilibrium between the Two Forms (PPEe) 

PPEe is calculated from the spectral photon distribution (SPD) and weighting factors 

for both Pr and Pfr across the biologically active wavelengths (300 to 800 nm). These 

weighting factors, called photochemical/photoconversion cross-sections, quantum 
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efficiencies or photoconversion coefficients can be derived from absorbance spectra, 

extinction coefficients and quantum yields of Pr to Pfr or Pfr to Pr conversion. These values 

are presented in at least ten studies (Butler et al., 1964; Gardner and Graceffo, 1982; Kelly 

and Lagarias, 1985; Lagarias et al., 1987; Mancinelli, 1986, 1988a, 1994; Pratt and Briggs, 

1966; Sager et al., 1988; Seyfried and Schafer, 1985; Vierstra and Quail, 1983a, 1983b).  The 

weighting factors from Sager et al. (1988) have been the most widely used in horticulture, 

but are not necessarily a reference standard.  PPEe has been widely adopted.   

 

 Differences in Estimated and Measured PPE 

Gardner and Graceffo (1982), Sager et al. (1988) and Mancinelli (1988b) all report 

comparisons between PPEm and PPEe. Figure 3-1 shows this comparison. Gardner and 

Graceffo measured and estimated Pfr/Ptotal in vivo, Sager et al. (1988) measured and estimated 

Pfr/Ptotal in vitro, and Mancinelli (1988b) measured Pfr/Ptotal in vivo, but used estimations from 

in vitro data. Additionally, Gardner and Graceffo (1982) assumed a Pfr/Ptotal under red actinic 

photons to be 0.8, Sager et al. (1988) assumes it to be 0.89 and Mancinelli (1988b) assumed 

it to be 0.876. Mancinelli (1988b) used the approach to equilibrium analysis data from Kelly 

and Lagarias (1985). Notice that data does not perfectly fall on the 1:1 line.  
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Fig. 3-1. Comparison of measured and estimated phytochrome photoequilibrium (PPEm and 
PPEe) from Gardner and Graceffo [1982 (green)], Sager et al. [1988 (red)] and Mancinelli 
[1988b (blue)]. 
 

 Issues with Pfr/Ptotal as a Model to Predict Morphology 

Studies on the structure of phytochrome, nuclear localization, and genetic regulating 

partners have strongly indicated that Pfr is the active form of phytochrome (Chen and Chory, 

2011; Legris et al., 2019), although some studies have specifically implicated that the Pfr-Pfr 

homodimer is the active form while both the Pr-Pr homodimer and the Pr-Pfr heterodimer are 

both inactive (Klose et al., 2015).  It is often assumed that Pfr/Ptotal is a proxy for the 

concentration of Pfr because it is assumed that the total pool of phytochrome is relatively 

constant (Casal, 2012; Kilsby and Johnson, 1982; Kozma-Bognar et al., 1999; Park and 

Runkle, 2017). Many studies have found that Pfr/Ptotal is correlated with morphological 

responses (Kalaitzoglou et al., 2019; Morgan and Smith, 1976, 1978, 1979; Park and Runkle, 
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2017, 2018, 2019), and it has become common to report PPEe in photobiology studies even if 

they are not investigating the effects of R and FR (Hernandez and Kubota, 2016; Johnson et 

al., 2020; Kim et al., 2019; Meng et al., 2019; Poel and Runkle, 2017). These correlations 

between Pfr/Ptotal and morphology strongly imply the role of phytochrome in these responses, 

but the correlations in these studies would be equally predicted by a relationship using R and 

FR because these are the only wavelengths that varied in the studies.  In cases where other 

wavelengths vary, the results have been graphed separately (Park and Runkle, 2019).  

The ratio of Pfr/Ptotal is often thought to fully explain phytochrome activity and 

subsequent developmental responses, but there are multiple problems with its use.   

1. Differences in weighting factors are discussed by Mancinelli (1986, 1988a). 

Up to the mid-1980s it was common to use weighting factors from Butler et al. 

(1964), but these weighting factors were obtained from less pure and more degraded 

phytochrome extractions compared to Kelly and Lagarias (1985), Lagarias et al. 

(1987), Sager et al. (1988) and Vierstra and Quail (1983a, 1983b). Beyond suggesting 

using newer versus older data, Mancinelli (1986, 1988a) was unable to recommend a 

superior set of weighting factors, and only mentioned that the choice should be open 

to revision.  

The weighting factors from these studies can have substantial differences on 

an absolute scale, and there are further differences when using weighting factors 

determined in vitro versus in vivo (Gardner and Graceffo, 1982; Pratt and Briggs, 

1966; Seyfried and Schafer, 1985), where in vivo data shows a marked decrease in 

the response to blue and ultra-violet photons. Rajapakse and Kelly (1994) 
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demonstrated some of the potential differences in PPEe under a single light source, 

and furthermore PPEe and PPEm do not perfectly match (Fig. 3-1). Fortunately, the 

most commonly used weighting factors from Kelly and Lagarias (1985), Lagarias et 

al. (1987) and Sager et al. (1988) are similar on a normalized scale. Despite this 

similarity, weighting factors primarily come from the monocots oat (Avena sativa) 

and rye (Secale cereale), which differ on an absolute scale (Lagarias et al., 1987), and 

their universal utility is uncertain.  

2. Multiple phytochromes are present in dark-grown and etiolated tissue, but 

only phytochrome-B (phyB) appears to be primarily responsible for altering plant 

morphology in response to shade in adult, light grown plants. This conclusion is 

primarily due to the fact that only monogenic mutants of Arabidopsis thaliana 

without phyB appear to have severe shade-avoidance symptoms in white light 

(Aukerman et al., 1997; Devlin et al., 1998,  1999; Franklin et al., 2003), while phyA- 

(Franklin and Quail, 2010; Whitelam et al., 1993), phyC- (Franklin et al., 2003), 

phyD- (Aukerman et al., 1997; Devin et al., 1999) and phyE-deficient (Devlin et al., 

1998) mutants appear indistinguishable from the wild type in the same conditions. 

The supporting role of these other phytochromes emerge in a phyB-deficient 

background (Aukerman et al., 1997; Devlin et al., 1998, 1999; Franklin et al., 2003), 

in which cases the double mutant shows more pronounced shade avoidance 

symptoms in white light compared to the phyB-deficient monogenic mutant.  

In etiolated Arabidopsis, the percentages of the different pools of 

phytochrome protein are 85% phyA, 10% phyB and 5% other (phyC, phyD and 
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phyE), but on transition into the light the total pool of phytochrome drops by 23-fold 

and the ratios are readjusted to 5% phyA, 40% phyB and 55% other (Sharrock and 

Clack, 2002). Both PPEm and PPEe use dark-grown etiolated tissue, meaning that 

Pfr/Ptotal is based on a mix of all the phytochromes, but primarily phyA. This may 

create issues when using PPEm or PPEe to estimate the state of phyB in response to 

shade. Some limited evidence suggests that the photochemical properties of phyA and 

phyB are similar (Ruddat et al., 1997), but they differ from the photochemical 

properties of phyC and phyE (Eichenberg et al., 2000).  

3. Non-photochemical reversions of Pfr to Pr are independent of light intensity 

and duration, but dependent on temperature (Jung et al., 2016; Legris et al., 2016). 

This thermal relaxation of the phytochrome molecule occurs in both in the dark and in 

the light. This leads to a potential lower value for Pfr/Ptotal at warmer temperatures 

under a single SPD. This effect is increased at lower light intensities where the rates 

of photoconversion are slower (Sellaro et al., 2019). In addition, nuclear body 

formation and dimerization of phytochrome may alter the thermal stability of Pfr 

(Klose et al., 2015; Rausenberger et al., 2010). 

4. Intermediates between Pr and Pfr, and between Pfr and Pr have been studied 

with flash photolysis, low temperature spectroscopy, dehydration studies, and kinetics 

of absorbance changes (Kendrick and Spruit, 1977). The conversions between Pr and 

Pfr are not instantaneous processes. Instead, the conversions involve a number of 

short-lived intermediate forms. When transferred into the dark, Pfr (measured by a 

technique similar to that described in Appendix E) immediately increases to a level 

higher than the equilibrium level established in the light. This increase above 
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photoequilibrium indicates that there is a rate limiting chemical conversion between 

Pr and Pfr, leading to an accumulation of an intermediate under high light intensities. 

Kendrick et al. (1985) suggest that over 50% of total phytochrome may be in 

intermediate forms in sunlight. Smith and Fork (1992) found similar results, 

indicating that the concentration of Pfr would decrease at high light intensities even if 

Pfr/Ptotal remained the same. Smith (1990) saw no long-term change in stem extension 

rate at constant R:FR ratios under rapidly increasing or decreasing intensities, an 

effect that should have decreased or increased, respectively, the total concentration of 

Pfr. This is one of several experiments conducted by H. Smith that attempted to show 

that Pfr/Ptotal could predict responses better than the total amount of Pfr, suggesting 

that both Pfr and Pr may be active (Smith, 1981, 1982, 1983, 1990, 1994, 1995).  His 

analysis was largely ignored in the literature, although Schmidt and Mohr (1982) 

suggested that Pfr was the better indicator.  

5. Ptotal is not constant, as plant physiology textbooks often imply. Smith (1981) 

measured Ptotal in adult Zea mays tissue bleached with norflurazon and showed that 

Ptotal could change depending on the background SPD. Similarly, Schafer (1978) 

showed that the synthesis and degradation rates of Ptotal in Cucubita pepo could 

change with plant age, and suggested that these rates may be under circadian control. 

The mRNA expression of phyB appears to be under circadian control (Kozma-

Bognar et al., 1999; Toth et al., 2001), and immunoblot analysis of total phyB protein 

concentrations have shown that it can change by 50% over the course of a day 

(Kozma-Bognar et al., 1999; Sharrock and Clack, 2002). This 50% variation in phyB 

protein indicates that although PPEe provides an estimate of Pfr to Ptotal, the actual 
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concentration of Pfr could fluctuate by 50%. Some of the other phytochromes (e.g. 

phyA) have shown an even more dramatic fluctuation over the course of the day. 

Additionally, activated phyB interacts with the transcriptional factors phytochrome 

interacting factors (PIFs) resulting in their ubiquitination followed by proteasomal 

degradation (Ni et al., 2014). This means that the rate of degradation depends on the 

concentration of PIFs. Further, the concentration of phyB is not as light stable as is 

commonly thought (Klose et al., 2015). Overall, these findings indicate that the total 

pool of phytochrome at a given point in the day can vary based on the circadian 

rhythm, the expression of PIFs and the length of time in the dark or the light.  

Recent complex modelling approaches in Arabidopsis (Klose et al., 2015; 

Sellaro et al., 2019) have estimated the pool of active phyB (Pfr-Pfr homodimer) in the 

nucleus by including not only photoconversions, but also thermal reversions 

(mentioned above) and synthesis/degradation rates.  This model includes a specific 

degradation rates for each of the three potential states of the dimer. The rates of 

synthesis are assumed to be constant although this is likely not the case. Finally, there 

is no certainty as to how predictive this more complex model is for species other than 

Arabidopsis.    

6. Chlorophyll in leaves attenuate the photon flux at different wavelengths. 

Therefore, Pfr/Ptotal (PPEm or PPEe) only represent the ratio at the top epidermal layer 

of leaves (Gardner and Graceffo, 1982; Morgan and Smith, 1978). However, even 

this may not be true, as back scattering and reflectance of photons may actually make 

the photon intensity in the initial layer of a leaf higher than that just above the leaf 
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(Mancinelli, 1988a; Seyfried and Fukshansky, 1983). Morgan and Smith (1978) 

demonstrated that the correlation between log-stem extension rate and PPEe deviated 

from linearity when measured under a leaf with high chlorophyll content. Action 

spectra studies have shown that the peak wavelength of phytochrome responses in 

green tissue shift to shorter wavelengths than expected (Jose and Schafer, 1978; 

Kasperbauer et al., 1963), indicating that some photon attenuation is occurring. 

 

These considerations bring the mechanistic relationship between Pfr/Ptotal and 

morphology into question. Early studies that compared PPEm to growth responses used the 

technique described in Appendix E.  This technique could only measure the Pfr/Ptotal ratio and 

does not indicate concentrations of either Ptotal or Pfr (but see Appendix E).  Because 

measurements and estimations of Pfr/Ptotal have predicted morphological responses they were 

widely used as the primary metric, but due to the considerations discussed above, what do 

PPEm and PPEe actually indicate?  

As mentioned previously, studies have used a constant background spectrum and only 

adjusted amounts of R and FR (Kalaitzoglou et al., 2019; Morgan and Smith, 1976, 1978, 

1979; Park and Runkle, 2017, 2018), meaning that the responses are equally well predicted 

by environmental factors like the R:FR ratio.   

 

 R and FR Photons as Environmental Signals 

These challenges of mechanistically modeling phytochrome protein dynamics and 

linking them with morphological responses across a wide range of species and environments 
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mean that simple environmental signals may be more broadly applicable. Small factors in 

complex biological models can have large impacts on outputs, especially when downstream 

processes remain unknown.  

Environmental signals like temperature are easily measureable. Smith (1982) 

eloquently described the importance of environmental signals: 

“For an environmental signal to be valuable to a perceiving organism it must be: (a) 
unambiguous, (b) reliable, (c) readily detectable, and (d) related to an ecologically 
important condition in some quantitatively predictive manner.”  
 
Smith went on to state that the R:FR ratio perfectly fit these criteria as an 

environmental signal of vegetative shade, as other environmental photobiological signals of 

shade, like photon intensity, do not meet the same standard of reliability. Many authors 

investigating phytochrome action with mutant Arabidopsis avoid Pfr/Ptotal and simply use the 

R:FR ratio (de Wit et al., 2016; Trupkin et al., 2014; Wang et al., 2015). 

 

 Effect of Wavelength Range on the R:FR Ratio 

Similar to the lack of standardization regarding weighting factors to calculate PPEe, 

with some authors using data from Sager et al. (1988) and others using data from Kelly and 

Lagarias (1985), there is little standardization in the wavelength ranges for R and FR photons 

fluxes to calculate the R:FR ratio. This can result in different values of the R:FR ratio for a 

single light sources that has a constant SPD. One of the earliest and most commonly used 

ranges was the integration of the photon flux between 655 to 665 nm divided by the photon 

flux between 725 to 735 nm.  This range was widely used by H. Smith and colleagues 

(Holmes and Smith, 1977a, 1977b; Smith and Holmes, 1977). Smith, in correspondence with 



76 

J. Monteith, settled on the Greek letter ζ (lower case zeta) to represent the ratio (Holmes and 

Smith, 1977a; Monteith, 1976). Smith reported that the R:FR ratio of sunlight following this 

method was 1.19 (Smith, 1982). He reported that there is surprisingly little variation in the 

R:FR ratio under a variety of environmental conditions (Smith, 1982), but that does not 

appear to be the case (Appendix F). A second method to calculate the R:FR ratio is to simply 

divide the photon flux at 660 nm by the flux at 730 nm (Deitzer et al., 1979; Pausch et al., 

1991; Warrington et al., 1989). This single wavelength method for obtaining R and FR often 

uses alternative wavelengths like 645, 650, 725 and/or 735 nm (Casal et al., 1985; 

Kasperbauer, 1987; Kasperbauer and Karlen, 1994; Taylorson and Borthwick, 1969). M. 

Kasperbauer favored measuring R at 645 nm instead of 660 nm due to the apparent 

maximum sensitivity of floral inhibition by night break lighting at 645 nm (Kasperbauer et 

al., 1963) instead of the expected 660 nm (Butler et al., 1959). This shift in sensitivity when 

using green versus etiolated tissue was speculated to be due to chlorophyll absorption. Jose 

and Schafer (1978) found a similar shift in the action spectra for lengths of green hypocotyls. 

Finally, a third approach has been to calculate the R:FR ratio based on the flux between 600 

to 700 nm divided by the flux between 700 to 800 nm (Li and Kubota, 2009; Mortensen and 

Stromme, 1987; Rajapakse et al., 1992; Rajapakse and Kelly, 1994; Runkle and Heins, 

2001). Figure 3-2 shows a comparison of four wavelength ranges using the ASTM G173-03 

reference of global tilt solar energy flux [American Society for Testing and Materials, 2012 

(converted to a photon flux)] and a measurement made at Utah State University (Logan, UT) 

at noon on 10 June 2020 using a spectroradiometer (PS-300, Apogee Instruments, Logan 

UT). These three methods result in a 6% to 7% difference. These differences would be larger 
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under narrow bandwidth LEDs. While these are the most common methods used to calculate 

the R:FR ratio from spectral distribution measurements, there are numerous variations.   

 

 
Fig. 3-2. Spectral photon distribution of the ASTM G173-03 reference of global tilt energy 
converted to photon flux [American Society for Testing and Materials, 2012 (orange line)] 
and a measurement made at Utah State University at noon on 10 June 2020 (blue line). Four 
ranges used for obtaining the red to far-red ratio (R:FR ratio) are shown as lines or bands in 
the figure: 1) 600 to 700 nm / 700 to 800 nm shown as arrows at the top of the figure, 2) 655 
to 665 nm / 725 to 735 nm shown as shaded regions, 3) 660 / 730 nm shown as vertical lines 
and 4) 645 / 730 nm shown as a separate vertical line. The corresponding calculation of the 
R:FR ratio is shown in inset table. This figure also demonstrates potential variation due to 
environmental conditions. The light blue arrow shows a water vapor absorbance band and the 
black arrows show an oxygen absorbance band. 

Sensors with dual detectors have been widely used to calculate an R:FR ratio. These 

sensors include photodiodes sensitive to photons in the R and FR regions. An early 

commercial model was the 660/730-nm sensor (SKR110, Skye Instruments, Llandrindod 

Wells, UK), which used to be sensitive to photons from 630 to 665 for the R region, but this 
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range was modified in 2010 to 645 to 675 nm. The FR range remained mostly unchanged 

from 715 to 740 nm, although it appears to have narrowed (Fig. 3-3). The Skye R:FR sensor 

was reported to provide a ratio of 1.1 in sunlight (Messier et al., 1989); we recently 

confirmed this measurement as 1.05. More recently, an R:FR sensor was developed with a 

wavelength range of 645 to 665 nm for R and 720 to 740 nm for FR (model S2, Apogee 

Instruments). R:FR sensors do not evenly weigh the photons between these wavelengths (Fig. 

3-3), but are less expensive, more portable, have a faster response time, and are more durable 

than spectroradiometers. Inexpensive spectroradiometers are now widely available but these 

have lower spectral resolution (often greater than 24 nm bandwidth).  

When calculating the R:FR ratio (and subsequent metrics described below), we 

recommend that the most appropriate range for FR is 730 ± 10 nm. This is a larger range than 

the commonly used recommendation from H. Smith, but the variation in reported maximum 

absorbance of Pfr in the FR region justifies this wider range (Kelly and Lagarias, 1985; Sager 

et al., 1988; Seyfried and Schafer, 1985). Broader ranges (e.g. 700 to 800 nm) could 

overestimate phytochrome responses from the Sun or from LEDs that have peaks beyond 750 

nm. The R range is more difficult to determine due to chlorophyll screening and the apparent 

shift in maximum sensitivity from ≈660 nm to ≈630 or 645 nm (Jose and Schafer, 1978; 

Kasperbauer et al., 1963). Either choice of peak wavelength for R photons can be appropriate 

with justification. Similar to FR, a wider range (± 10 nm) seems appropriate. Commercially 

available R:FR sensor use these wider ranges and are a good choice for quickly and 

affordably assessing incoming R and FR photons. When reporting spectral data in wider 

contexts than phytochrome responses, broader ranges may still be appropriate.   
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Fig. 3-3. Sensitivity of the red and far-red photodiodes in three red to far-red ratio sensors 
from Apogee instruments (Logan, UT) and Skye Instruments (Llandrindod Wells, UK). The 
shaded red regions represent our recommended ranges for calculating the R:FR ratio.  
 

 Units to Measure the R:FR Ratio: Energy Flux vs. Photon Flux 

Although some studies have used energy units to measure R and FR fluxes 

(Salisbury, 1981; Taylorson and Borthwick, 1969), most studies have used photon fluxes 

because photons were known to be the driving factor for phytochrome responses as far back 

as 1964 (Butler et al., 1964; Siegelman and Hendricks, 1964). This is also described by the 

Stark-Einstein Law/photochemical equivalence law (Roth, 2001).  Photons at 660 nm are 

more energetic than photons at 730 nm, so an R:FR ratio (660/730 nm) in sunlight based on 

energy units is 1.24, while the ratio based on photon flux is 1.12.  These measurements can 

be interconverted using Planck’s equation (micromoles of photons = Joules of energy × λ (in 

nm)×0.008359). 
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 Effect of Environmental Conditions on R and FR Photon Flux 

Atmospheric conditions also affect the R:FR ratio in natural environments.  

Kotilainen et al. (2020) demonstrated that atmospheric conditions, latitude, and time of day 

cause more variation in the R:FR ratio in the natural environment than previously thought. 

Photobiologists studying phytochrome responses in the natural environment need to be aware 

of this variation. We summarize these factors in Appendix F.  

 

 The Relationship between R:FR Ratio and PPE is Highly Nonlinear 

The R:FR ratio has been an adequate metric for the natural environment because the 

highest value is ≈1.4 around midday (Kotilinen et al., 2020). Nonetheless, as measurements 

move from full sunlight to deep shade the relative amount of FR increases and the R:FR ratio 

decreases. This confines the R:FR ratio in the natural environment to values ranging from ≈0 

to 1. 

Smith and Holmes (1977) plotted the relationship between R:FR ratio and PPEm 

under sunlight, vegetative shade and some electric lights. This analysis showed that PPEm 

was highly sensitive to R:FR ratios found in shade. Smith (1982) recommends that this curve 

can be used to estimate Pfr/Ptotal from the R:FR ratio in natural environments, but he warns 

against using it in controlled environments, saying,  

“the curve may be reliably used for all natural broadband sources except those, 
 which contain a high portion of blue. Its use with artificial far-red sources is  
limited because of the difficulty of accurate read-out on the steepest part of the 
curve.”  
 
Under electric lights the flux of FR can approach zero and the R:FR ratio approaches 

infinity. Although Pfr/Ptotal, may be unreliable, it does generally describe phytochrome status 
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and it is useful to understand the relationships with the R:FR ratio. Figure 3-4A shows the 

relationship between R:FR ratio measured with a Skye R:FR sensor and PPEe calculated 

from spectral measurements and weighting factors published by Sager et al. (1988). The 

relationship is highly nonlinear.  Under LEDs with minimal FR, the R:FR ratio nearly flat-

lines above 3, and values continue to slightly increase up to 1800.   Some publications have 

reported R:FR ratios above 100 (Hernandez and Kubota, 2016), while others have avoided 

the infinity problem by reporting the R:FR ratio as 1:0 (Park and Runkle, 2017, 2018). These 

issues mean that the R:FR ratio has little predictive value under electric lights.   

 

 R Fraction: An Intermediate Solution 

A simple improvement is to use the red fraction (R fraction), first reported by Smith 

(1990), which is calculated as:  

𝑅𝑅 𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑅𝑅
𝑅𝑅+𝐹𝐹𝑅𝑅

 =   𝑅𝑅:𝐹𝐹𝑅𝑅
1 + 𝑅𝑅:𝐹𝐹𝑅𝑅

    

       Eq. [3.1] 

 

Fig. 3-4. Relationship between the R:FR ratio, R fraction, FR fraction and estimated 
phytochrome photoequilibrium. (A) Relationship between red to far-red ratio (R:FR ratio), 
measured with an R:FR sensor (SKR110, Skye Instruments, Llandrindod Wells, UK) and 
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estimated phytochrome photoequilibrium (PPEe) using weighting factors from Sager et al. 
(1988). The R:FR ratio approaches infinity, but PPEe reaches a maximum of 0.89. (B) 
Relationship between Red fraction [R/(R+FR)] and estimated PPEe. The curve is more linear. 
(C) Relationship between FR fraction and PPE. This ratio is positively correlated with 
growth parameters like stem length and leaf area so this may be the preferred ratio. Both PPE 
and R fraction are negatively correlated with stem length and leaf area. 
 
 
 

This confines the fraction (or ratio) to values between 0 and 1. We recommend the 

same ranges for R and FR as previously discussed for the R:FR ratio, but we note that 

confining the ratio from 0 to 1 can have a bigger impact than the wavelength range. We plot 

the same data as Fig. 3-4A using the new R fraction instead of the R:FR ratio in Fig. 3-4B.  

Smith (1990) showed that the relationship between the R fraction and the change in 

stem extension rate in Sinapis alba was more linear than the relationship between PPEm and 

the change in stem extension rate. But, the implications were not heavily discussed and the 

metric never became widely used.  

Pfr/Ptotal, like the R fraction, is confined to values between 0 and 1. Although, based 

on the photochemical properties, Pfr/Ptotal is actually confined to values between 0 and 0.89 

(Lagarias et al., 1987, Fig. 3-4). R activates Pr into Pfr and FR reconverts Pfr back into Pr, so it 

makes sense that the R fraction [R/(R+FR)] is well correlated with PPE [Pfr / (Pr + Pfr)]. 

 

 FR Fraction: An Improved Metric 

The active form of phytochrome (Pfr) suppresses stem elongation by interacting with 

and degrading PIFs, which are involved in the expression of shade avoidance (cell wall and 

auxin related) genes (Casal, 2012; de Lucas and Prat, 2014). Therefore, Pfr/Ptotal, R fraction 

and the R:FR ratio have an inverse relationship with the parameters of interest in controlled 
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environments like stem length (Morgan and Smith, 1976, 1978, 1979; Park and Runkle, 

2017, 2018). Perhaps many researchers have used the R:FR ratio because in the natural 

environment it is generally confined to values between ≈0 and 1. An FR:R ratio would not be 

confined in the same way. But positive correlations are more intuitive than negative 

correlations, and thus the FR fraction more intuitive than the R fraction. The FR fraction is 

the mirror image of the R fraction (Fig. 3-4C) and use the same wavelength ranges described 

previously. It is calculated as:  

𝐹𝐹𝑅𝑅 𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐹𝐹𝑅𝑅
𝑅𝑅+𝐹𝐹𝑅𝑅

=  1
1 + 𝑅𝑅:𝐹𝐹𝑅𝑅

   

       Eq. [3.2] 

An FR:R ratio was used by M. Kasperbauer in several studies that investigated 

neighbor perception (Kasperbauer, 1971; Kasperbauer and Karlen, 1994) or reflectivity of 

colored mulches (Decoteau et al., 1990; Kasperbauer and Hunt, 1992). These studies do not 

provide an explanation for the use of the FR:R ratio, but the ratio is positively correlated with 

growth parameters.  

 Comparison of a Related Ratio that Evolved to Eventually Range from 0 to 1 

The evolution to a simpler, more intuitive ratio has similarities with metrics used in 

remote sensing of vegetation. Jorden (1969) proposed the ratio vegetation index [RVI 

(reflectance at 900 nm divided by the reflectance at 680 nm)] to assess chlorophyll content 

and fraction of ground cover by leaves.  But like the R:FR ratio, this original metric was non-

linear and approached infinity in dense vegetation.  To reduce these issues, Tucker (1978) 

introduced the difference vegetation index (the difference in intensity between 900 and 680 

nm). But this difference increased with light intensity, so it was later normalized to the 
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intensity by dividing by the total photon flux.  This resulted in a metric that ranges from 0 to 

1 as the canopy density increases from bare soil to complete cover. This improved metric is 

now widely used and called the normalized difference vegetation index [NDVI (Gamon et 

al., 1995)].   

Another metric that is still evolving is root mass fraction (root mass divided by total 

mass). Many researchers still publish root:shoot ratio (root mass divided by shoot mass), but 

this ratio starts at infinity in a germinating seed and decreases nonlinearly as the plant ages. 

By contrast, root mass fraction starts at 1 and slowly decreases over the life cycle.  Metrics 

that use a total in the denominator are more intuitive.    

 

 A Comparison of Metrics 

To demonstrate the value of this improved index we normalize (to the grand mean of 

both studies) and regraph geranium (Pelargonium ×hortorum ‘Pinto Premium Orange 

Bicolor’) stem length data from Park and Runkle (2017, 2018) using PPEe, the R:FR ratio 

and the FR fraction as the independent variable (Fig. 3-5). It should be noted that the R:FR 

ratio and FR fraction are calculated with wider 100-nm bandwidths rather than the narrower 

20-nm bandwidths we suggested earlier. This is because these authors reported R and FR in 

these 100-nm bands. Additionally, because these data come from a study that uses LEDs 

centered at ≈660 and 730 nm (with no white LEDs) the 100-nm range and the 20-nm range 

would produce very similar results. We exclude data from the most recent publication by 

these authors because it also altered the amount of blue, inducing morphological effects 

outside the R and FR ranges (Park and Runkle, 2019). This data contains three R:FR ratios 
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that do not have any FR, which the authors report as 1:0. Because division by zero is 

undefined we arbitrarily set FR equal to 0.01, 0.025 and 0.05 (relative to R = 1) in these cases 

(Fig. 3-5B and C). The alternative is to assign these FR values the same low value, but this 

would have caused clumping of data, which may not occur in LED fixtures (see the flat part 

of Fig. 3-4A). Additionally, the arbitrary values demonstrate the hyperbolic function often 

seen when graphing data with the R:FR ratio. Our arbitrary values can be obtained with a 

spectroradiometer, but the measurement depends on the dark calibration and signal-to-noise 

ratio.  

Between 0 to 10, the R:FR ratio is still a good predictor of stem length (Fig. 3-5B, 

inset). But, large R and small FR values significantly alter the correlation between the R:FR 

ratio and stem length (Fig. 3-5B) and the curve is highly nonlinear. Especially in sole-source 

LED plant factories, which often lack FR, the R:FR ratio is clearly a poor metric to predict 

phytochrome controlled responses. Zhang et al. (2020) similarly concluded that the R:FR  

 
Fig. 3-5. Comparison of phytochrome photoequilibrium, the R:FR ratio and FR fraction on 
the prediction of stem length. Re-presented geranium (‘Pinto Premium Orange Bicolor’) stem 
length data estimated from two papers by Park and Runkle (2017, 2018). These data come 
from Fig. 2 in both papers. Grey circles are from the 2017 paper and were grown for 29 to 30 
d. The open circles are from the 2018 paper and were grown for 36 to 39 d. Data is 
normalized to the grand mean of both studies. (A) The reported estimate of phytochrome 
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photoequilibrium (PPEe) compared to stem length. (B) The red to far-red ratio (R:FR ratio) 
compared to stem length. Because Park and Runkle report R:FR ratios with no FR as 1:0, we 
arbitrarily chose 0.005, 0.025 and 0.01 (relative to R = 1). Notice the extremely large scale of 
the x-axis and how the data is sensitive to the small value of FR that might be provided by a 
spectroradiometer. These values are not unreasonable as they depend on the dark calibration 
and signal to noise ratio. (C) FR faction (FR/R+FR) compared to stem length. (C) uses the 
same data as (B) and are calculated using Eq. [3.2]. Notice that the FR fraction is not nearly 
as sensitive to small quantities of FR compared to the R:FR ratio. 

 

ratio could change drastically while PPEe remained relatively constant. They further found 

that the growth in Antirrhinum majus, Petunia ×hybrida and Zinnia elegans was better 

correlated with PPEe than the R:FR ratio indicating that this was the superior metric.  PPEe 

presented here also appears to be a reasonably good metric. However, as we have discussed 

previously there are good reasons to be skeptical of this approach. As we learn more about 

phytochrome kinetics and downstream processes, this ratio may be incorporated into 

complex and mechanistic models that have better predictive ability, but for now perhaps 

environmental signals are better metrics.    

 The FR fraction (and the R fraction, not shown) is not sensitive to extremely high R 

or low FR (Fig. 3-5C). These examples demonstrates that the FR fraction is intuitively 

correlated with shade avoidance growth parameters and confined to values from 0 to 1. This 

metric is well suited to controlled environment plant production. Additionally, because 

experiments performed in controlled environments are used to predict responses in the 

natural environment this may indicate that it is also a better metric under natural conditions.  

It is important to remember that the R:FR ratio, PPEe, and the FR fraction can only 

predict morphological responses caused by phytochrome.  The effects of blue light are not 

assessed with these metrics. Although PPEe includes some sensitivity to violet and ultra-

violet photons, these effects are minimal compared to blue light receptors like cryptochromes 
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(Park and Runkle, 2019; Runkle and Heins, 2001). Cryptochromes interact with many of the 

same transcription factors as phytochrome (de Wit et al., 2016). Blue and green photons have 

been proposed to act antagonistically in a similar manner to R and FR (Banerjee et al., 2007; 

Bouly et al., 2007), and thus models describing cryptochrome kinetics have been developed 

that resemble phytochrome kinetic models (Procopio et al., 2016).  Future studies should 

investigate interactions of the R and blue photons antagonistically acting against FR and 

green photons.   
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CHAPTER 4 

IMPROVING THE PREDICTIVE VALUE OF PHYTOCHROME PHOTOEQUILIBRIUM: 

CONSIDERATION OF SPECTRAL DISTORTION WITHIN A LEAFC 

 

 Abstract 

The ratio of active phytochrome (Pfr) to total phytochrome (Pr + Pfr), called 

phytochrome photoequilibrium (PPE; also called phytochrome photostationary state, PSS) 

has been used to explain shade avoidance responses in both natural and controlled 

environments. PPE is commonly estimated using measurements of the spectral photon 

distribution (SPD) above the canopy and photoconversion coefficients. This approach has 

effectively predicted morphological responses when only red and far-red (FR) photon fluxes 

have varied, but controlled environment research often utilizes unique ratios of wavelengths 

so a more rigorous evaluation of the predictive ability of PPE on morphology is warranted. 

Estimations of PPE have rarely incorporated the optical effects of spectral distortion within a 

leaf caused by pigment absorbance and photon scattering. We studied stem elongation rate in 

the model plant cucumber under diverse spectral backgrounds over a range of one to 45 

percent FR (at total photon flux density, 400 to 750 nm, of 400 µmol m-2 s-1) and found that 

PPE was not predictive when blue and green varied. Preferential absorption of red and blue 

photons by chlorophyll results in an SPD that is relatively enriched in green and FR at the 

phytochrome molecule within a cell (located both within the cytosol and the nucleus). This 
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can be described by spectral distortion functions for specific layers of a leaf. Multiplying the 

photoconversion coefficients by these distortion functions yields photoconversion weighting 

factors that predict phytochrome conversion at the site of photon perception within leaf 

tissue. Incorporating spectral distortion improved the predictive value of PPE when 

phytochrome was assumed to be homogeneously distributed within the whole leaf. In a 

supporting study, the herbicide norflurazon was used to remove chlorophyll in seedlings. 

Using distortion functions unique to either the green or the white cotyledons we came to the 

same conclusions as with whole plants in the longer-term study. Leaves of most species have 

similar spectral absorbance so this approach for predicting PPE should be broadly applicable. 

We provide a table of the photoconversion weighting factors. Our analysis indicates that the 

simple, intuitive ratio of FR (700 to 750 nm) to total photon flux (far-red fraction) is also a 

reliable predictor of morphological responses like stem length. 

 

 Introduction 

LED technology provides a high degree of control over spectral output, which can be 

utilized to manipulate plant photoreceptors, but this manipulation requires an understanding 

of the photoreceptor activity. The action of phytochrome, the most well studied 

photoreceptor, has been extensively modeled (Sage, 1992), and our understanding continues 

to evolve (Sellaro et al., 2019; Smith and Fleck, 2019). In addition to predicting plant 

morphology in the field, phytochrome models must be able to predict morphology in 

controlled environments that can have unique background spectra. 
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Here we describe the historic and evolving modeling of phytochrome action that is 

largely based on stem/hypocotyl elongation. We discuss how these models have mostly 

ignored the issue spectral distortion by chlorophyll screening in green plants, and show that 

accounting for spectral distortion within leaves improves the predictive capability of classic 

phytochrome models. 

 

4.2.1 A Historic Review of Phytochrome Modeling 

Models of phytochrome action were developed in parallel with its discovery. The first 

models included the photon absorbing pigment phytochrome and reaction partners 

(Borthwick et al., 1952), where two forms of phytochrome were interconverted by red (R) 

and far-red (FR) photons. Later, Hartmann (1966) provided a hypothesis to explain how 

phytochrome controlled the high irradiance response. He simultaneously irradiated 

hypocotyls with photons at two wavelengths, and explained the results with an estimate of 

the ratio of Pfr to Ptotal [called phytochrome photoequilibrium (PPE) or the photostationary 

state (PSS)], where Ptotal is the sum of Pr plus Pfr.  

Hartmann’s work was praised by Smith (1975), who hypothesized that the PPE ratio 

explained phytochrome regulated responses in mature plants in the natural environment 

(Smith, 1973). Morgan and Smith (1976) provided evidence for this hypothesis by showing a 

direct linear relationship between PPE and the log of the stem extension rate. Morgan and 

Smith (1979) went on to show that this log linear relationship generally held for multiple 

species that evolved in a range of environments with the exception of understory plants that 

evolved in woodland areas, which had either a reduced or absent response. Child and Smith 



98 

(1987) further built upon this hypothesis, showing that the rapid percentage increase in stem 

extension rate after applying FR was linearly correlated with PPE.   

Smith and collaborators either measured PPE directly in etiolated tissue (Morgan and 

Smith, 1976; Smith, 1990) or estimated it with the R:FR ratio (Morgan and Smith, 1978; 

Morgan and Smith, 1979). It is now common to predict PPE from the spectral photon 

distribution (SPD) above the canopy and photoconversion coefficients: σR for the conversion 

of Pr → Pfr, and σFR for the conversion of Pfr → Pr. These coefficients are essentially 

probability functions that predict the likelihood of photon absorbance at a given wavelength 

and subsequent conversion to the other form.  The calculation to estimate PPE following this 

method is as follows: 

PPE �
Pfr

Ptotal
� =  

∑ Iλ σR,λ 
λ=800 nm
λ=300 nm

∑ Iλ σR,λ +  ∑ Iλ σFR,λ 
λ=800 nm
λ=300 nm

λ=800 nm
λ=300 nm

 

          (4.1) 

 

Where Iλ is the incident photon flux density at wavelength, λ.  Photoconversion coefficients 

are calculated from in vitro measurements of the photochemical properties of phytochrome 

including: 1) absorbance spectra, 2) an estimation/calculation of PPE under actinic red 

photons, 3) the extinction coefficient of Pr at the peak in the red region (about 668 nm) and 

4) quantum yields of Pr → Pfr and Pfr → Pr. Different photochemical properties are 

provided in at least ten publications (see Lagarias et al., 1987; Mancinelli, 1986, 1988, 1994). 

Thus it is possible to derive different photoconversion coefficients (Here, the term 

photoconversion coefficient refers to what has historically been called the 

photochemical/photoconversion cross-section, whereas the term photoconversion coefficient 
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historically refers to the photochemical cross-section divided by the natural log of 10. 

Because coefficient is a more friendly term, we use this term instead of cross-section).  

  These photoconversion coefficients, however, are primarily based on phytochrome-A 

(phyA) and not phyB. The phyB photoreceptor is the primary phytochrome photoreceptor 

responsible for sensing and responding to shade in the natural environment (Legris et al., 

2019). Although phyA plays a larger role during de-etiolation (Mazzella and Casal, 2001), 

only monogenic mutants deficient in phyB (compared to monogenic mutants deficient in 

phyA, phyC, phyD or phyE) appear elongated when grown in white light indicating the 

dominant role of phyB past the stage of de-etiolation (Whitelam et al., 1993; Aukerman et 

al., 1997; Devlin et al., 1998, 1999; Franklin et al., 2003; Franklin and Quail, 2010). Some 

limited evidence suggests that the photochemical properties of phyA and phyB may be 

similar (Ruddat et al., 1997; Eichenberg et al., 2000).  If so, the fact that the photoconversion 

coefficients are derivation from primarily phyA may not be a significant concern. 

Estimates of PPE using photoconversion coefficients and the SPD above the leaf were 

used by Park and Runkle (2017, 2018, 2019) whose data shows a linear (as opposed to log 

linear) relationship between estimated PPE and stem length in several ornamental species. 

Overall, PPE estimates have resulted in a negative relationship with stem length. One 

limitation of most previous studies is that they typically performed under a single 

background of light and treatments often only change the amount of FR and occasionally the 

amount of R. Thus, the full extent of the reliability of estimated PPE to predict morphology 

has not been determined. 
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4.2.2 Recent PPE Modeling Efforts 

The three-state model.  The model described above (PPE = Pfr / Ptotal) is called the 

two- state model. A more complex model considers the dimerization of the phytochrome 

molecule in which the two arms of the dimer are activated independently. This is called the 

three-state model.  It assumes only the Pfr-Pfr homodimer (called D2) is the active form, 

while the Pr-Pr homodimer (D0) and the Pr-Pfr heterodimer (D1) are both inactive. Therefore 

the three-state model at photoequilibrium is equal to D2/(D0+D1+D2), which can be 

calculated by squaring PPE calculated by the two-state model (PPE2; Mancinelli, 1988, 

1994). Although there is sufficient evidence to suggest that phytochrome exists as a dimer 

(Jones and Quail, 1986; Brockmann et al., 1987; Rockwell et al., 2006) the evidence that 

only D2 is the active form is at present only based on mathematical analysis (Klose et al., 

2015), and further investigation is required.  

The cellular model. Thermal reversion, phytochrome destruction and nuclear body 

association/disassociation can either reduce or stabilize the pool of active phytochrome 

(Rausenberger et al., 2010; Klose et al., 2015). When these factors are considered the model 

is referred to as the cellular model. Sellaro et al. (2019) described that these other factors 

mainly play a role at low photon fluxes and/or high temperature, while only 

photoconversions apply at sufficiently high photon fluxes and low enough temperature. This 

model is thoroughly described in Smith and Fleck (2019). These complex models have yet to 

be used in applied research.   
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4.2.3 Spectral Distortions within Leaves 

Leaves/cotyledons, and not stems/hypocotyls, were shown to be the primary site of 

red and far-red perception in Cucumis sativa (Black and Shuttleworth, 1974), Sinapis alba 

(Casal and Smith, 1988a), Arabidopsis thaliana (Tanaka et al., 2002; Endo et al., 2005) and 

Brassica rapa (Procko et al., 2016), while both organs were shown to be perceptive in a 

separate study in Sinapis alba (Casal and Smith, 1988b) and the epicotyl was shown to be the 

primary site of perception in Vigna sinensis (Garcia-Martinez et al., 1987). Upon far-red 

perception in leaves/cotyledons, signals (including auxin) are transported to the 

stem/hypocotyl to induce elongation (Tanaka et al., 2002; Procko et al., 2016). From these 

data, it seems likely that phytochrome in the leaves/cotyledons play a dominant role in 

controlling stem elongation, with stems/hypocotyls playing a secondary role.  

A major issue with using photoconversion coefficients to estimate PPE is that they 

are applied to the SPD above the leaf, and not the SPD at the phytochrome molecule, which 

is distorted by chlorophyll and other pigments, as well as cell walls. Photons are scattered 

within leaves making the light diffuse within leaves (Figure 4-1). Due to this internal 

reflection, refraction and diffraction, leaves act as ‘light traps’ wherein the photon intensity 

in the epidermis can exceed the intensity above the leaf by several fold (Seyfried and 

Fukshansky, 1983; Vogelmann, 1994). Because the term attenuation specifically refers to a 

decrease in the photon intensity, we use the term distortion to describe spectral changes in 

leaves.   

Both Morgan and Smith (1978) and Gardner and Graceffo (1982) discuss chlorophyll 

screening issues stating that estimates of PPE (above the leaf) are only accurate for the top 

epidermal layer of cells within a leaf. Gardner and Graceffo (1982) suggested that the 
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functional layer of phytochrome must be near the outer epidermal layer because of the linear 

relationship between PPE and the log stem extension rate seen in Morgan and Smith (1976). 

These assumptions are invalid because spectral distortions still occur in the epidermis, and 

additionally, several studies have shown that the peaks of phytochrome regulated action   

FIGURE 4-1: Basic principles of spectral distortion and photon scattering within a leaf. (a) 
A diagram of a cross section of a leaf showing the scattering of photons, which are 
eventually transmitted, reflected or absorbed.  (b) A graphical representation of photon 
intensity at wavelengths 450, 550, 650 and 750 nm as a function of leaf depth. Because of 
reflections, diffraction and refraction, the photon intensity in the top layers of a leaf can 
exceed the intensity above the leaf. The Kubelka-Munk theory was used to calculate photon 
intensity with depth. The grey horizontal line represents the photon intensity just above the 
leaf.  
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spectra shift to lower wavelengths than the peak absorbance of extracted phytochrome,  

indicating that some degree of spectral distortion occurs within leaves. For example, 

Kasperbauer et al. (1963) observed that inhibition of flowering in Chenopodium rubrum was 

most affected by night break lighting at 645 nm, instead of the expected 660 (or 668) nm, an 

effect they attributed to spectral filtering by chlorophyll. Similarly, Jose and Schafer (1978) 

found that 630 nm photons induced the shortest hypocotyls and internodes in green tissue.  

 Several attempts have been made to account for spectral distortion within a leaf, 

especially via Kubelka-Munk theory. The Kubelka-Munk theory describes light propagation 

within a scattering medium like a leaf (Vogelmann, 1994). It simplifies to the Beer-Lambert 

law if extinction and scattering coefficients are assumed to be constant and not dependent on 

fractional distance through the leaf (Evans, 1995). Holmes and Fukshansky (1979) modeled 

PPE through a green leaf using the Kubelka-Munk theory and estimated that PPE decreased 

by about 40% as it moved through a leaf under full sunlight. Later, Kazarinova-Fukshansky 

et al. (1985) used the Kubelka-Munk theory to develop distortion functions that describe 

photon gradients within zucchini cotyledons. These distortion functions can be multiplied by 

the phytochrome photoconversion coefficients to develop weighting factors that can be used 

to predict the action spectra of phytochrome conversions within a certain layer of cotyledon 

tissue based on the incident photon flux above the leaf. Little has been done to test 

predictions of PPE with these weighting factors using experimental data. As such, despite the 

efforts of Kazarinova-Fukshansky et al. (1985), above-the-leaf estimates are still regularly 

employed.  

 Because the degree of spectral distortion depends on the specific layer of the leaf, it is 

important to ask whether all phytochrome is ‘functional’. The epidermis has been shown to 
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control the rate of elongation (Kutschera and Niklas, 2007; Savaldi-Goldstein et al., 2007), 

but whether the epidermis is where the light signals are perceived, especially in 

leaf/cotyledon tissue, remains undetermined. Phytochrome is expressed in all tissue (Somers 

and Quail, 1995), but Kim et al. (2016) concluded that only phytochrome in epidermal tissue 

(of the hypocotyl) controlled elongation under continuous R light and end-of-day FR. This 

conclusion was based on transgenic lines of Arabidopsis thaliana that controlled PHYB 

expression using hypocotyl-tissue-specific promoters, effectively limiting phyB to specific 

layers of hypocotyl tissue (i.e. epidermis, cortex, endodermis and vasculature). Endo et al. 

(2005) similarly expressed phytochrome in tissue specific organs and found that mesophyll-

located phytochrome (in the cotyledons) controlled elongation.  

Our objective was to use models of spectral distortion within a leaf (both for 

epidermal-located phytochrome and homogeneously distributed phytochrome) to improve the 

predictive relationship between PPE and morphological parameters. 

 

 Materials and Methods 

Two studies were conducted:  

1) Cucumber plants were grown for 10 to 15 days in growth chambers with unique 

spectral backgrounds and different doses of FR (long-term study) 

2) Elongation of photobleached and green cucumber seedlings were compared after 

two days in the growth chambers with a gradient of FR (short-term photobleaching  

study) 
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In both studies, multiple models of spectral distortion were used to predict PPE in specific 

layers of tissue. 

 

4.3.1 Plant Materials 

4.3.1.1 Long-term Study 

Tomato, lettuce, spinach, soybean and cucumber were screened for sensitivity to FR 

by applying either a low dose or no added FR. Cucumber was the most sensitive species to 

FR and was selected for further study (example data from one tomato study is shown in 

Figure G-1). 

Seeds of cucumber (Cucumis sativa cv. Straight Eight) were planted into 1.7 L pots 

with a 1:1 mixture of peat/vermiculite by volume amended with 1.6 g per liter of dolomitic 

lime and 0.8 g per liter Gypsum (CaSO4). Cotyledons emerged four days after planting and 

pots were moved from the greenhouse to the growth chambers (Figure G-2). 

 

4.3.1.2 Short-term Photobleaching Study 

Nine cucumber seeds were germinated on black felt saturated with nutrient solution 

(Utah hydroponic refill solution for dicots, USU Crop Physiology Laboratory, 2020) in each 

of 22 germination boxes (18 × 16.5 cm2) at 21 ˚C. Black felt was used to minimize ground 

reflection so photons would primarily enter the cotyledons from above (Figure G-3). After 

three days the radicle had emerged, and nutrient solution was re-applied, with half of the 

germination boxes (11 boxes) receiving 50 µM norflurazon in the nutrient solution. 

Norflurazon is an herbicide that blocks the synthesis of carotenoids, leading to 
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photobleaching in high light, eventually killing the plant. Seeds were then moved into 

pretreatment conditions: two norflurazon treated and two non-treated boxes were moved into 

the dark and the remainder of the boxes were moved into a growth chamber with a 

continuous photosynthetic photon flux density (PPFD) of about 500 µmol m-2 s-1 (Figure G-

4) and a temperature of 20 ˚C to finish emerging. 12% of the seeds either did not germinate 

or were not vigorous and all boxes had at least 6 seedlings. After three days in the 

pretreatment the norflurazon treated seedlings appeared white with an average hypocotyl 

length of 1.4 cm and the non-photobleached seedlings had an average hypocotyl length of 1.2 

cm. Three days in continuous light reduces the concentration of highly light-labile phyA, 

which was shown to be reduced by 50- to 100-fold after 12 h under low red photon flux and 

were below detectable limits after 7 d in white light (Sharrock and Clack, 2002). This 

ensured that responses were primarily caused by phyB. The germination boxes were placed 

in seedling trays with one photobleached and one non-photobleached germination box in 

each tray. Trays were then placed in the growth chambers for 48 h. This was repeated four 

times. 

 

4.3.2 Environmental Conditions 

4.3.2.1 Long-term Study 

Temperature was maintained at 27/22 ˚C day/night. Plants were watered as needed 

(typically every 2-3 days) with a complete nutrient solution at a concentration of 120 mg N 

per L (Peter’s professional 20-10-20, 20N-4.4P-16.6K; Allentown PA). Potassium silicate 

(AgSil16H; Certis USA; Columbia MD) was added to the nutrient solution at 0.3 mM Si.  
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Chambers were enriched to 850 ppm CO2. All studies contained six replicate plants per 

treatment. Plants were rotated every other day to minimize any position effects in the 

chamber. Individual plants were analyzed as replicates. Plant density was 20 plants per 

square meter. 

 

4.3.2.2 Short-term Photobleaching Study 

Temperature was maintained at a constant 20 ˚C. The norflurazon treated seedlings 

lost turgor at low humidity so water was added to the tray and the tray was covered to raise 

the humidity. Condensation formed on the lid of the seedling trays.   

 

4.3.3 Spectral Treatment 

Spectral measurements were made with a spectroradiometer (PS-300; Apogee 

instruments; Logan, UT). For both the long-term and the short-term studies, three growth 

chambers (1.25 × 0.9 × 1.2 m3, L × W × H) provided separate background SPD from either 

cool white LED fixtures, 400-W high-pressure sodium (HPS) fixtures, or white+red LED 

fixtures. These background spectral distributions are common in controlled environment 

agriculture and are referred to here as high blue (cool white LED), high green (HPS) and 

high red (white+red LED). Spectral data for these background spectra are provided in Table 

4.1 and Figure 4-2. 
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TABLE 4.1: Ratios of colors for the three spectral backgrounds. 
 

Treatment 
%BLUE %GREEN %RED 

Total 
∑400 − 499 𝑓𝑓𝑛𝑛
∑400 − 700 𝑓𝑓𝑛𝑛 ∑500 − 599 𝑓𝑓𝑛𝑛

∑400 − 700 𝑓𝑓𝑛𝑛 ∑600 − 699 𝑓𝑓𝑛𝑛
∑400 − 700 𝑓𝑓𝑛𝑛 

HIGH BLUE 29 48 23 100 
HIGH GREEN 6 52 42 100 

HIGH RED 7 12 81 100 
 
 
 
4.3.3.1 Long-term Photobleaching Study 

Each chamber was separated in half with a white reflective board to provide a higher 

and lower level of FR from LEDs (peak of 730-735 nm). This allowed for two fractions of 

FR in each trial in time. Cucumber plants in the chambers at the end of one of these studies 

are shown in Figure 4-3a. The FR fraction was then varied among trials to achieve a 

collective range of 1 to 45% FR across seven replicate trials for a total of 14 doses of FR in 

each spectral background. Using regression analysis with plant rotation, this provided 84 

replicates (six replicate plants × 14 doses of FR) for each spectral background.    

Percent far-red (FR fraction) was calculated as: 

 

Percent far red =
FR flux (701 − 750 nm)
ePPFD (400 − 750 nm)

 × 100 

          (4.2) 
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FIGURE 4-2: Representative spectral photon distributions (SPD) of the high blue, high 
green and high red spectra used in both the long-term and short-term studies. The dashed 
dark red line is the SPD of the far-red, which was variable among studies. 

 

Because FR photons are photosynthetically active (Zhen and van Iersel, 2017; Zhen 

and Bugbee, 2020), the extended photosynthetic photon flux density (ePPFD: 400 – 750 nm) 

was kept constant among studies. This meant that as FR increased, the traditional PPFD (400 

– 700 nm) decreased. For ePPFD, a cut-off wavelength of 750 nm may slightly overestimate 

photosynthetic photons (Zhen et al., 2018), but this definition is adequate for FR from LEDs. 

The average ePPFD was 400 and carefully adjusted so that it varied less than 10 µmol m-2 s-1 

among the background spectra in each study. The photoperiod was 16 h. Detailed spectral 

information showing the one to 45% FR is provided in Table G.1 and Figure G-5. 
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4.3.3.2 Short-term Photobleaching Study 

The background light fixtures were placed at the top of one side of the chamber and 

FR LED bars were placed on the other side of the chamber to provide a gradient of FR that 

increased from right to left while PPFD increased from left to right. Seedling trays were 

placed on the left, middle and right sides of the chamber to obtain about 18, 31 and 50% FR 

for each background spectrum. A photo of the experimental set-up is provided in Figure 4-

3b. The average ePPFD in these studies was 300 µmol m-2 s-1 and varied less than 15 µmol 

m-2 s-1 among the background spectra. The spectral photon distributions for these studies are 

shown in Figure G-6. Light was applied continuously for the whole 48 h treatment period. 

 

4.3.4 Estimation of PPE 

We calculated PPE (assuming the two-state model) following Eq (4.1). We used the 

photoconversion coefficients derived from the photochemical properties in Lagarias et al. 

(1987). These are different from other commonly used photoconversion coefficients (Kelly 

and Lagarias, 1985; Sager et al., 1988) on an absolute scale, but are similar when normalized 

to the Pr peak. The absolute magnitudes of the photoconversion coefficients are only 

important if other rates of phytochrome dynamics, like thermal reversions, are considered. 

 

4.3.5 Estimation of the Three-state Model 

We did not account for the additional factors in the cellular model proposed by 

Rausenberger et al. (2010) and modified by Klose et al. (2015). Sellaro et al. (2019) reported 
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FIGURE 4-3: Experimental set-up of plants in the long-term and short-term studies. (a) 
Example photo of the plants in the high blue, green and red chambers from the long-term 
studies. In this example there was no added FR on the right side in each chamber. Treatments 
were randomized among studies. Each chamber was divided in half to supply two doses of 
FR. FR LEDs are circled in red. There is a second FR LED on the other side of the 
background LED (out of view, see Figure G-2) to improve the uniformity of FR. 
Additionally, in studies with higher fractions of FR, LEDs were placed across the top of the 
chamber. Uniformity within and between treatments was ensured by dimming lamps with 
either power supply capabilities or neutral density window screen. To achieve uniformity of 
spectral photon distribution (SPD) and extended photosynthetic photon flux density (ePPFD), 
the plants were grown on the sides of each half-chamber. (b) Photo of the experimental set-
up for short-term photobleached seedling study. Each chamber was provided with a high 
dose of FR on one side of the chamber and the background light source on the other side of 
the chamber. This provided a gradient of percent far-red decreasing from left to right. FR 
LEDs are circled in red, and the background light source is circled in its respective color. 
Seedlings (in germination boxes) were kept in seedling trays that were brought to a high 
relative humidity by placing water in the bottom of the tray.  
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that when the temperature is 25 ˚C, the cellular model reaches 99% of the three-state model 

(assuming only photoconversions) at PPFD of about 450 µmol m-2 s-1, and when the 

temperature is 20 ˚C, the cellular model reaches 99% of the three-state model at PPFD of 

about 350 µmol m-2 s-1.  These conditions are close to the environmental conditions used in 

these experiments. Therefore, we used the simplified three-state model assuming the 

temperature effects on phytochrome reversion were negligible. As mentioned previously, the 

three-state model is simply calculated by squaring PPE calculated by Eq (4.1) (Mancinelli, 

1988). 

 

4.3.6 Modeling Spectral Distortion within a Leaf 

We use spectral distortion functions derived from Kazarinova-Fukshansky et al. 

(1985) to predict spectral distortion at the phytochrome molecule under the assumption that 

‘functional’ phytochrome is either 1) only located in the epidermis (top 1% of the leaf), or 2) 

homogeneously distributed within all layers of the leaf. All curves from Kazarinova-

Fukshansky et al. (1985) were obtained using GetData Graph Digitizer (http://getdata-graph-

digitizer.com). Kazarinova-Fukshansky et al. (1985) modeled spectral distortion using the 

Kubelka-Munk theory within 7 d old Cucurbita pepo cv. “Senator” (zucchini), a species 

closely related to cucumber.  

The Kubelka-Munk theory-based distortion functions use transmittance and 

reflectance measurements, so we include this data in Figure 4-4a for etiolated and green 

zucchini seedlings (Kazarinova-Fukshansky et al., 1985). Figure 4-4b shows the distortion 

functions for green plants assuming ‘functional’ phytochrome is 1) only in the epidermal 
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tissue (orange lines) or 2) homogenously distributed throughout the whole leaf (purple lines). 

Figure 4-4c shows the same distortion functions in etiolated tissue.   

 The photoconversion coefficients derived from Lagarias et al. (1987) were multiplied 

by the distortion functions to obtain modeled estimates of phytochrome conversion weighting 

factors (or action spectra) in specific layers of tissue (Eq 4.3). 

 

Photoconversion weighting factor for Pr(λ) = σR(λ) × Distortion coefficient(λ) 

Photoconversion weighting factor for Pfr(λ) = σFR(λ) × Distortion coefficient(λ) 

          (4.3) 

 

4.3.7 Plant Measurements 

4.3.7.1 Long-term Study 

Plants were harvested when the stem length in the highest FR treatment was 25 to 30 

cm long; this occurred 10 to 15 days after emergence.  Stem length, petiole length and leaf 

area were recorded. Leaf area was measured with a leaf area meter (model Li-3000, LI-COR, 

Lincoln NE). Leaves, cotyledons and stems were separated and dried at 80 ˚C for 2 d, after 

which dry mass was measured and percent leaf and percent stem dry mass were calculated by 

dividing the respective dry mass by the total dry mass.  

Stems typically elongate following a sigmoidal curve (Fisher et al., 1996; Bjorkman, 

1999) with exponential elongation in young plants (Morgan and Smith, 1978), followed by 

linear elongation, and finally, exponential rise to a maximum. This means that elongation is 

best described as a natural logarithm function in the early stages of growth. For this reason  



114 

FIGURE 4-4: Spectral distortion functions developed from zucchini that were used in both 
the long-term and the short-term studies on elongation in cucumber. (a) Fractional 
transmittance (solid) and reflectance (dashed) spectra of green and etiolated zucchini 
cotyledons. Etiolated cotyledons represented norflurazon treated cotyledons. (b) Derived 
spectral distortion functions for green plants in epidermal tissue (orange) or the whole leaf 
(purple). (c) Derived spectral distortion functions in etiolated/white seedlings for epidermal 
tissue (orange) or the whole leaf (purple). All data are derived from Kazarinova-Fukshansky 
et al. (1985). 
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early studies regularly used log-linear stem elongation rates to predict elongation from 

phytochrome photoequilibrium (Morgan and Smith, 1976, 1978, 1979). , Thus in young 

plants, stem length at day (t) would be equal to: 

Stem length(𝑓𝑓) = Stem length(𝑓𝑓)𝑒𝑒k𝑡𝑡 

          (4.4) 

Where Stem length(i) is the initial length. The assumptions to log-linear elongation is 

compared to linear elongation in Figure G-7. We can then calculate the exponential 

extension coefficient (the natural log of the stem extension rate; lnSER or k in Eq 4.4), 

assuming the initial stem length was equal to one, as follows: 

lnSER =
ln(Stem length at harvest)

days to harvest
 

          (4.5) 

The assumptions of Stem length(i) being equal to one is investigated in Figure G-8. This 

equation was also used to calculate the leaf expansion coefficient (natural log of the leaf 

expansion rate; lnLER) and the petiole extension coefficient (natural log of the petiole 

extension rate; lnPER). Chlorophyll concentration was measured with a chlorophyll meter 

(model MC-100, Apogee instruments, Logan UT). 

 

4.3.7.2 Short-term Photobleaching Study 

Cucumber hypocotyl lengths were measured with a ruler to the nearest 0.5 mm before 

and after they were moved into the treatments. The change in hypocotyl length over 48 h was  

normalized to the elongation of the respective dark control: 
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Elongation relative to the control =
𝐿𝐿𝑓𝑓 − 𝐿𝐿𝑖𝑖

𝐿𝐿𝑐𝑐,𝑡𝑡2 − 𝐿𝐿𝑐𝑐,𝑡𝑡1
 

          (4.6) 

Where Lf is the final hypocotyl length, Li is the initial hypocotyl length, and Lc,t1  and 

Lc,t2 are the average hypocotyl lengths of the dark controls before or after the cucumber 

seedlings were placed in the treatments. The change in hypocotyl length was normalized to 

its respective control (with or without applied norflurazon) due to the finding of Casal (1995) 

in which norflurazon treated seedlings grown in the dark were 15 to 20% shorter than 

untreated seedlings. For each replicate in time, the elongation relative to the control for all 

the seedlings in each treatment were averaged together.   

 

4.3.8 Statistics 

All data was analyzed using R statistical software (R Foundation for Statistical 

Computing; Vienna, Austria). Correlations were determined by calculating the r2 value of a 

trend-line through the data. Trend-lines used either linear or exponential decay functions. 

Data was analyzed using a mixed effect linear model using lmer and Anova functions with 

the F statistic judged to be significant at p < 0.05. The background spectra (e.g. high blue) 

were treated as a categorical variable, while different methods for analyzing the effect of FR 

were treated as a continuous variable. Two examples of methods for analyzing the effects of 

far-red include percent FR and PPE modeled above the leaf. Chambers and replicates were 

treated as random factors. 
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 Results 

4.4.1 Long-term Photobleaching Study 

The percent far-red ranged from less than 2% (which is only obtainable under LEDs) 

to 45% (typical of canopy shade). Figure 4-5 shows the response of seven morphological 

parameters to increasing percent FR under three diverse spectral backgrounds. lnSER, 

lnLER, lnPER and percent stem mass all increase with increasing percent FR (Figure 4-5a-

c,g). Chlorophyll concentration and percent leaf mass both decreased with increasing percent 

FR (Figure 4-5d,f). Specific leaf mass, which is calculated by dividing leaf mass by leaf area 

and is an indicator of leaf thickness, was unaffected by percent FR (p = 0.19, Figure 4-5e). 

Because lnSER had the highest correlation with percent FR it was used as the response 

variable for models of PPE within leaf tissue. 

 

4.4.1.1 Accounting for Spectral Distortions in Predictions of PPE 

Multiplying the spectral distortion functions (Figure 4-4b) by the photoconversion 

coefficients (Eq 4.3) provides weighting factors that predict local phytochrome conversions 

within a specific layer of tissue for a given SPD above the leaf (Figure 4-6). It is important 

to note that a) the photochemical properties of phytochrome, and thus the photoconversion 

coefficients, have not changed and that b) if no spectral distortion occurs within a leaf, then 

the photoconversion weighting factors are equal to the photoconversion coefficients.  
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FIGURE 4-5: The response of seven physiological parameters to increasing percent far-red. 
The blue data and lines come from the chamber with spectral background containing a high 
portion of blue photons (high blue), the green data comes from the high green chamber, and 
the red data comes from the high red chamber. The r-squared value for each background is 
shown with the respective color. The black dashed line is a trend line running through all the 
data from all three background light sources, with the corresponding r-squared shown in 
black.  (a) The stem extension rate constant (the natural log of the stem extension rate, 
lnSER; described in Eqs (4.3) and (4.4)). (b) The leaf expansion rate constant, calculated 
following the same method as lnSER, but using leaf area at harvest instead of stem length. (c) 
Petiole expansion rate constant, calculated following the same method as lnSER, but using 
petiole length at harvest instead of stem length.  (d) Chlorophyll concentration at harvest (e) 
Specific leaf mass, leaf mass divided by leaf area. (f) Percent leaf mass, leaf mass divided by 
total shoot mass (g) percent stem mass, stem mass divided by total shoot mass.  
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Figure 4-6 shows that weighting factors for Pfr (Pfr → Pr) increase relative to Pr (Pr 

→ Pfr) as the location of phytochrome moves from the epidermis to all leaf/cotyledon tissue. 

The weighting factors for Pr do not significantly shift the peak of action away from about 

668 nm.  

 
FIGURE 4-6: Photoconversion coefficients and photoconversion weighting factors for 
phytochrome conversion. (a) Photoconversion coefficients derived from Lagarias et al. 
(1987). These are used to estimate PPE above the canopy. The other two graphs are the 
photoconversion weighting factors for phytochrome that is (b) only in epidermal tissue or (c) 
homogeneously distributed through all leaf/cotyledon tissue.  

 

Using σR and σFR (Figure 4-6a) in Eq (4.1) or substituting them with the Pr and Pfr 

weighing factors (Figure 4-6b, c) produces estimates PPE in three layers: PPEabove, 
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PPEepidermis and PPEwhole leaf. We fit the lnSER data in Figure 4-5a to the estimates of PPE in 

these three layers assuming the commonly used two-state model (Figure 4-7). There was a 

high correlation between PPE estimated above the leaf (PPEabove) and lnSER for any single 

background SPD (Figure 4-7a; r2 = 0.91, 0.89 and 0.85 for high blue, high green and high 

red, respectively). This relationship declines if PPE is compared to all the data (all three 

background spectra, dashed line, r2 = 0.47). The correlation between PPE and lnSER for any 

single background spectrum remained relatively unchanged when PPE was estimated in the 

epidermal leaf tissue (PPEepidermis) or the whole leaf (PPEwhole leaf), but the relationship with 

all the data was improved when predicted within the leaf (Figure 4-7b, c). PPEwhole leaf 

produced the highest correlation between PPE and lnSER of all the data (r2 = 0.75, Figure 4-

7c). 

 

4.4.1.2 Comparison between the Two-state and Three-state models 

The two-state and three-state models of phytochrome were compared assuming the 

active phytochrome was a) in the epidermis and b) homogeneously distributed in all the leaf 

tissue (Figure 4-8 compared to Figure 4-7b, c). Using regression analysis through all three 

spectral backgrounds, the three-state model did not improve the predictive power over the 

commonly used two-state model for any of the three assumed locations of phytochrome (r2 = 

0.58 and 0.72 for PPEepidermis and PPEwhole leaf, respectively).  

To further investigate differences between these four estimates of PPE (Figure 4-7b, 

c and Figure 4-8), the slopes and offsets for the three individual background spectra (blue, 

green and red lines) were compared using a linear mixed effects model, with the estimates of  
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FIGURE 4-7: The response of the natural log of the stem extension rate (lnSER) to changes 
in the estimate of phytochrome photoequilibrium (PPE) in multiple layers of tissue. PPE is 
calculated with the two-state model. See Figure 4-5 for an explanation of colors. (a) The 
relationship between PPEabove and lnSER. This is the most common method to model 
phytochrome activity using the spectral photon distribution above the leaf. Panels (b) and (c) 
use estimates of PPE for phytochrome that is (b) in epidermal tissue or (c) homogeneously 
distributed through the whole leaf.  
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PPE as a continuous variable and the background spectrum as a categorical variable.  There 

was a significant effect of the background spectrum on the prediction of lnSER for all four 

estimates of PPE, indicating that the offsets for the linear models were significantly different 

(p < 0.0001 in all cases). 

 
FIGURE 4-8: Modeling phytochrome activity with the three-state model. For this analysis, 
only phytochrome that is (a) in the epidermis or (b) homogeneously distributed within the 
whole leaf were considered. See Figure 4-5 for an explanation of colors.   
 

 

In the linear mixed effects model, an interaction effect between PPE and the 

background spectrum indicates that the slopes of the three lines are significantly different. 

This was the case for every model with the exception of only PPEwhole leaf using the three-
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state model (p = 0.25 compared to p = 0.033 for PPEwhole leaf using the two-state model, and p 

< 0.0001 for PPEepidermis using both the two- and three-state models). This means that the 

three lines (blue, green and red) in this model (PPEwhole leaf using the three-state model) of 

PPE are not significantly different (nearly parallel). 

 

 
FIGURE 4-9: Representative plants at harvest from the short-term photobleaching study.  
Green seedlings are shown on the left and norflurazon-treated photobleached seedlings are 
shown on the right. There was some chlorophyll at the tips of some of the photobleached 
seedlings.  

 

4.4.2 Short-term Photobleaching Study 

To further investigate the role spectral distortion by chlorophyll on estimates of PPE 

and subsequent stem or hypocotyl elongation, seedlings were grown with or without 

chlorophyll using the herbicide norflurazon.   

The photobleaching of the norflurazon treated seedlings was visually apparent, 

although some seedlings had chlorophyll at the tips of the cotyledons (Figure 4-9). Over the 

48 h treatment period, the dark-grown norflurazon treated seedlings elongated an average of 

8.5 cm, while the non-treated seedlings elongated an average of 9 cm. Elongation of 

seedlings in the light treatments relative to the dark controls are plotted as a function of 
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percent FR in Figure 4-10. The photobleached seedlings elongated significantly less than the 

green seedlings, but a higher fraction of FR induced more elongation in both green and 

photobleached seedlings.   

  

FIGURE 4-10: Elongation of green (closed circles, solid lines) and photobleached (open 
circles, dashed lines) seedlings over a 48 h period relative to dark controls. See Figure 4-5 
for an explanation of colors.  Data show that photobleached seedlings elongated less then 
green seedlings.    

Spectral distortion functions for etiolated seedlings (Figure 4-4c) were used to 

calculate weighting factors for phytochrome conversions in either the epidermis or the whole 
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leaf (Figure G-9). The photoconversion coefficients (Figure 4-6a) were substituted with the 

weighting factors for specific locations in green or etiolated cotyledons (Figure 4-6b, c and 

Figure G-9) in Eq (4.1) to estimate PPE in these treatments. 

Figure 4-11 models the data in Figure 4-10 with these estimates of PPE. For this 

analysis, both the green and photobleached seedlings grown under a single spectral 

background (e.g. high blue) were combined together for regression analysis. Similar to the 

long-term study, PPE estimated above the cotyledon produced a poor correlation when run 

through all the data from all three spectral backgrounds (r2 = 0.20; Figure 4-11a), but unlike 

the long-term study, the regression through the data for a single spectral background also 

produced a poor correlation (r2 = 0.12, 0.13 and 0.30 for high blue, high green and high red, 

respectively). Compared to PPE estimated above the cotyledon (PPEabove), the estimate of 

PPE within the epidermal tissue (PPEepidermis) provided a slight improvement in predictive 

ability (Figure 4-11b). Corroborating the results of the long-term study, the assumptions that 

‘functional’ phytochrome is homogeneously distributed within the whole leaf (PPEwhole leaf) 

provided the best correlations between PPE and elongation relative to the dark controls 

(Figure 4-11c). This was true for both correlations using all the data and correlations using 

each individual background spectrum.  

Similar to the comparison between the three-state and the two-state models in the long-term 

study, there was little difference between the correlation between PPE and elongation relative 

to the control in a specific layer of tissue using either model. The three- state model for 

homogenously distributed ‘functional’ phytochrome required non-linear models to fit the 

data, and this resulted in a strong relationship (Figure 4-11e). 

 



126 

FIGURE 4-11: The response of green (closed circles) and photobleached (open circles) 
seedlings to models of PPE in specific leaf layers, using the same models as Figure 4-7 and 
Figure 4-8. See Figure 4-5 for an explanation of colors. Estimates of PPE are calculated 
using green or etiolated weighting factors.  The green and photobleached seedlings from a 
single spectral treatment were combined for analysis. Panels (a) through (c) use estimates of 
PPE based on the two-state model for phytochrome that is (a) above the leaf, (b) in epidermal 
tissue or (c) homogeneously distributed in the whole cotyledon. Panels (d) and (e) use 
estimates of PPE based on the three-state model for phytochrome that is (d) in epidermal 
tissue or (e) homogeneously distributed in the whole cotyledons. All models use linear 
regression with the exception of (e), which fit the date with exponential decay functions. 
Each point represents an average of 6 to 9 seedlings. There were four replications in time.   
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 Discussion 

4.5.1 Effects of Spectral Distortion on the Action Spectrum of Phytochrome Conversion 

Kazarinova-Fukshanky et al. (1985) previously estimated the weighting factors for in 

vivo (either green or etiolated tissue) phytochrome photoconversions based on in vitro 

determinations of the photoconversion coefficients and their spectral distortion functions. 

They used the original photoconversion coefficients from Butler et al. (1964), which are 

based on partially degraded 60 kDa phytochrome rather than native 124 kDa phytochrome 

(Mancinelli, 1986). Therefore, the weighting factors from Kazarinova-Fukshansky et al. 

(1985) required updating using the most accurate photoconversion coefficients. Here, 

photoconversion coefficients calculated from the photochemical properties in Lagarias et al. 

(1987) were used.   

The application of photoconversion weighting factors did not significantly shift of the 

Pr peak away from 668 nm. Therefore, we could not explain why Kasperbauer et al. (1963) 

or Jose and Schafer (1978) observed shifts to 645 and 630 nm, respectively. 

 

4.5.2 Analysis of Phytochrome Models 

The high correlations between PPEabove and lnSER for each individual background in 

the long-term study is similar to previous reports that kept the background spectrum constant, 

and only adjusted levels of R or FR (Morgan and Smith, 1976, 1978, 1979; Park and Runkle, 

2017, 2018), but there is a low correlation when using PPEabove to broadly estimate lnSER 

under any spectral background (Figure 4-7a).  By comparison, the convergence of lnSER 

data in Figure 4-7b, c indicate that models that account for spectral distortion within a leaf 
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better predict phytochrome mediated plant responses under a broader range of spectral 

backgrounds.  

Morgan and Smith (1978) found a linear relationship between PPE and lnSER when 

PPE was estimated under a leaf with a low chlorophyll concentration (380 µmol m-2), but 

they reported a departure from linearity at a high chlorophyll concentration (660 µmol m-2). 

Here, chlorophyll concentration in the leaves averaged 574 µmol m-2 across all treatments, 

although it ranged from 383 µmol m-2 to 937 µmol m-2 and decreased as percent FR 

increased (Figure 4-5d). Using only the transmitted spectrum, the relationship between PPE 

and lnSER was non-linear (Figure G-10). Phytochrome in the upper layers of a leaf would 

have a lower ‘effective’ chlorophyll concentration, and may be thought of as similar to the 

low chlorophyll leaf in Morgan and Smith (1978). Thus, the linear relationship between PPE 

and lnSER in the upper layers of leaf tissue (PPEepidermis) is similar to previous findings 

(Figure 4-7b).  

Results from our short-term photobleaching study were similar to Holmes and 

Wagner (1981), who measured the percent inhibition of elongation (relative to dark controls) 

of green and norflurazon-treated Chenopodium rubrum seedlings grown under a single 

spectral background with added R or FR. As PPE increased from 0.3 to 0.8 in their study, 

inhibition of hypocotyl elongation increased (i.e. shorter hypocotyls) for both the treated and 

untreated seedlings, although the effect appeared reduced in the green seedlings. 

Additionally, when white light was applied along with R and FR, the green seedlings were 

taller than the norflurazon treated seedlings. Broadly, their results are similar to ours (Figure 

4-10 and Figure 4-11a).  
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It is difficult to determine whether the relationship between PPE and lnSER should be 

linear (e.g. Figure 4-7c) or non-linear (e.g. Figure 4-11e). In the nucleus, activated phyB 

(Pfr or D2) interacts with numerous transcription factors including PHYTOCHROME 

INTERACTING FACTORS (PIFs), often inactivating or phosphorylating them (Legris et al., 

2019). PIFs transcriptionally promote the expression of genes related to auxins, gibberellins 

and cell walls, effectively leading to increased cell expansion (de Lucas and Prat, 2014). 

Thus, the down regulation of PIFs caused by higher relative concentrations of phyB-Pfr (high 

PPE) will cause a decrease in stem elongation, but with so many contributing factors, the 

exact relationship is difficult to determine. Additionally, post-transcriptional and translation 

regulation by phytochrome (Legris et al., 2019), the circadian control of phyB protein 

accumulation (Sharrock and Clack, 2002), and cytoplasmic roles of phytochrome (Hughes, 

2013) all further complicate this relationship.  We investigated the relationship between stem 

elongation and PPEwhole leaf assuming the Michaelis-Menten kinetic equation (Figure G-11). 

The relationship between PPEwhole leaf and stem elongation was not as strong as the simple 

linear models described previously. 

The assumption that ‘functional’ phytochrome was homogeneously distributed 

throughout all leaf layers (whole leaf) provided better correlations with elongation than the 

assumption that ‘functional’ phytochrome was only in the epidermis (Figure 4-7 and Figure 

4-11). This corroborates the findings of Endo et al. (2005) who found that phyB expression 

in the mesophyll of the cotyledons restored the wild-type morphology in a phyB mutant.  

Kim et al. (2016) concluded that only phytochrome in the epidermis (of the hypocotyl) 

contributes to the control of hypocotyl elongation, but their results show a potential role for 

both epidermal and cortex located phytochrome in the control of hypocotyl elongation. 
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Cortex and mesophyll cells are both ‘ground’ tissue, comprising the majority of plant 

biomass. It seems likely that phytochrome in these cells (and the epidermis) modulate 

development in response to light signals, while phytochrome in vascular tissue does not 

(Endo et al., 2005; Kim et al., 2016).  

The data presented here indicate that PPE estimated above a leaf is an inappropriate 

method for predicting phytochrome action. Under electric lights, above-the-leaf estimates of 

PPE are often above 0.8, which is higher than in sunlight. Some authors have concluded that 

the biological responses to treatments with PPEabove ranging from about 0.8 to 0.88 were 

likely not caused by phytochrome because it did not vary to a large degree (Barnes and 

Bugbee 1992; Dougher and Bugbee 2001a, b; Cope and Bugbee 2013). The proposed method 

of modifying the SPD that reaches phytochrome molecules demonstrates a high attenuation 

of R photons, resulting in lower rates of Pr to Pfr conversion than expected by above-the-leaf 

estimates. A re-evaluation of previous studies may be warranted. 

 

4.5.3 Consideration of More Recent Models: Three-state and Cellular models 

In the studies reported here, the intensity was kept close to the threshold intensities 

for a given temperature described by Sellaro et al. (2019) in order to minimize the 

contribution of thermal reversion on phytochrome dynamics. This simplified the estimates of 

PPE to only photoconversions, and therefore the cellular model, which accounts for other 

phytochrome dynamics, could be ignored.  

The three-state model could still be investigated by simply squaring PPE calculated 

by the two-state model (Mancinelli, 1988). The correlations between PPE and elongation 
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were not greatly changed when using the three-state over the two-state model (Figure 4-7b, 

c compared to Figure 4-8 and Figure 4-11 b, c compared to Figure 4-11d, e), but the linear 

models between PPE and lnSER for the estimate of phytochrome homogenously distributed 

in the whole leaf using the three-state model produced nearly parallel lines (more 

specifically, the slopes were not determined to be significantly different) for the three 

spectral backgrounds (Figure 4-8b). This means that a change in PPE is predicted to result in 

identical changes in elongation for the three spectral backgrounds. These results suggest that 

the three-state model for PPEwhole leaf best predicts phytochrome action.  

The three-state model assuming phytochrome is homogeneously distributed in all leaf 

tissue provided non-linear relationship between PPE and elongation in the short-term 

photobleaching study, and while linear responses may be more satisfying, it is possible that 

the response of stem extension to changes in PPE is non-linear (described above). Overall, it 

is difficult to conclude anything further regarding the two-state vs. the three-state models.  

Based on the principles of the cellular model, an interaction between intensity and 

percent far-red is expected (i.e. increasing percent far-red should have a more pronounced 

effect on stem elongation at lower intensities than higher intensities). Although specific 

effects of intensity have been well documented in the literature (Smith 1982), the interactions 

between intensity and percent far-red on the stem length or stem extension rate have been 

less well documented.  

Hitz et al. (2019) applied three FR fractions (1, 7 and 20% FR) to a PPFD of 100 

µmol m-2 s-1 and a PPFD of 400 µmol m-2 s-1, and saw an increase in stem length both when 

the percent FR was increased and when the PPFD was decreased, as the cellular model 

would generally predict.  However, when the data from Hitz et al. (2019) is considered as a 
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percent increase from the treatments with no added FR, there appears to be no effect of 

intensity (Figure G-12). Child and Smith (1987) saw no difference in the relationship 

between PPE and the change in stem extension rate at intensities between 50 to 150 µmol m-2 

s-1 of white light. Smith (1990) saw only transient changes in stem extension rate when 

rapidly increasing or decreasing the total intensity while keeping the R:FR ratio constant. 

Park and Runkle (2018) did not observe an interaction between PPE and intensity on stem 

length in petunia, geranium or coleus, but they did observe an independent effect of intensity 

on petunia stem length. These contradictions are difficult to explain because intensity in these 

studies, unlike our own, dropped below the thresholds described by Sellaro et al. (2019). Our 

study may not be representative of a traditional cucumber propagation environment because 

of the high intensity utilized to minimize this thermal reversion. Further studies at various 

intensities are required to test the robustness of the cellular model. 

 

4.5.4 Blue and Green Responses 

Although stem and hypocotyl elongating were primarily explained by changes in 

PPE, it cannot be rules out the background spectra would not have significantly different 

effects on elongation. The high green and high red treatments had roughly the same 

percentage of blue photons, which make them comparable to each other, but less comparable 

to the high blue treatment (Table 4.1), especially on a PPE basis. This is because the blue 

light receptors, cryptochromes, must be considered. Blue photons decrease stem elongation 

in cucumbers (Hernandez and Kubota, 2016; Snowden et al., 2016). When the data from both 

the long-term and short-term studies were plotted with PPE (two-state or three-state) as the 
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independent variable (Figure 4-7, Figure 4-8, Figure 4-11) the background spectral 

treatments generally increased in elongation in the order of high blue, high green then high 

red at the same value of PPE. This indicates a role of blue photons (through cryptochrome), 

and possibly green photons, in shifting the offset of the PPE model. These results are 

consistent with Park and Runkle (2019). 

 Research in the last 15 years has indicated that blue and green photons, sensed 

through the photoreceptor cryptochrome, act in a similarly antagonistic manner as R and FR. 

For example, green photons were found to reverse the blue induced decrease in hypocotyl 

elongation (Bouly et al., 2007). This has led to models of cryptochrome action similar to the 

phytochrome models described above (Procopio et al., 2016). It might be expected that green 

photons would increase stem elongation similar to FR, but neither Hernandez and Kubota 

(2016) nor Snowden et al. (2016) saw this response in cucumber. Additionally, although 

Sellaro et al. (2010) demonstrated that a blue/green ratio reliably predicted hypocotyl lengths, 

their data showed that increasing the flux of green photons, like blue photons, also decreased 

hypocotyl elongation, but to a lesser extent than the blue photons. It is difficult to determine 

what caused this green induced decrease in hypocotyl length, but this effect may explain the 

differences in offsets for the high blue and high green data compared to high red data (Figure 

4-7, Figure 4-8, Figure 4-11). 

 

4.5.5 Future Directions and Potential Improvements 

Kusuma and Bugbee (2021) recently outlined six issues with using PPE as a model to 

predict morphological responses. These included 1) differences in photoconversion 
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coefficients from different studies, 2) multiple phytochromes, 3) thermal reversions, 4) 

phytochrome intermediates, 5) fluctuations in Ptotal, and 6) spectral distortion by 

chlorophyll. In this study, photoconversion coefficients derived from Lagarias et al. (1987) 

were used, which are derived from measurements of highly pure phytochrome in vitro. Our 

experiments were constructed to primarily obtain effects from phyB and minimize 

contributions of thermal reversion, but fluctuations in Ptotal and the formation of 

intermediates were not accounted for. Finally, the results presented here provide evidence 

that spectral distortion by chlorophyll must be considered in estimating PPE, but several 

further considerations could improve the robustness of PPE prediction of morphology based 

on spectral measurements.   

As discussed previously, the leaves and cotyledons are likely the primary location of 

photon perception by phytochrome, but hypocotyls also contribute to photon perception. The 

planting density in the long-term study was 20 plants per m2, which likely led to additional 

FR enrichment caused by reflection by neighboring plants. Because FR induced auxin signals 

can move within the plant (Roig-Villanova and Martinez-Garcia, 2016) it is important to 

determine how FR signals are integrated across different tissues across the plant. 

The spectral distortion functions used in this study were derived from Kazarinova-

Fukshansky et al. (1985). These distortion functions were calculated from transmission and 

reflectance measurements using the Kubelka-Munk theory from Kazarinova-Fukshansky et 

al. (1985), who made their measurements in 7 d old zucchini seedlings grown under 16000 lx 

of white light (it is difficult to determine what this is in PPFD, but we estimate that it is about 

250 to 300 µmol m-2 s-1). Because spectral reflectance and transmittance have roughly the 

same shape for all plants with chlorophyll, these distortion functions may have relatively 
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universal utility, but environmental conditions contribute to a few key changes in plant 

internal structure that could decrease the reliability of the presented distortion functions. 

 

4.5.5.1 Potential shifts in spectral distortion functions 

Increasing the FR fraction (decreasing PPE) decreased the leaf chlorophyll 

concentration (Figure 4-5d), and there was no effect of percent FR on specific leaf mass, 

with the exception of a small effect in the high blue treatment (Figure 4-5e). This means that 

this change in chlorophyll concentration (µmol per square meter of leaf) was unlikely caused 

by changes in leaf thickness, but rather was caused by differences in chlorophyll synthesis or 

retention. Decreasing the concentration of chlorophyll within the leaves is expected to 

increase the penetration of photons into deeper layers of tissue, increasing the average photon 

intensity within a leaf. This would result in spectral distortion functions (and thus 

photoconversion weighting factors) that are intermediate between the epidermis and whole 

leaf estimates (Figure 4-4b, Figure 4-6b, c).  

The change in the spectral distortion function with changing chlorophyll 

concentrations will depend on the distribution of the chlorophyll within the leaves. Nishio et 

al. (1993) reported that carotenoid and chlorophyll concentrations peaked halfway through a 

spinach leaf if the plants were grown in sunlight, but peaked at a depth of about 30% through 

the leaf when grown in the shade. When chlorophyll/carotenoids are concentrated toward the 

adaxial side of the leaf, photons in the will be attenuated more rapidly, decreasing the 

average photon flux within the leaf. It seems unlikely that the shade (FR) induced changes in 

both chlorophyll concentration and chlorophyll distribution will perfectly offset each other, 
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but nonetheless the two effects would antagonistically alter the average SPD within the leaf. 

If chlorophyll distributions favor the adaxial side under higher FR, this may mean that the FR 

induced decrease in chlorophyll concentration will minimally affect the average spectral 

distortion within the leaf.  

High photon intensity and blue photons can increase leaf thickness and reorient 

chloroplasts. Cui et al. (1991) suggested that increased leaf thickness via palisade elongation 

promoted photon penetration deeper into leaf tissue, although there was little difference in 

fractional leaf penetration between thick and thin leaves in their study. Chloroplast 

orientation along the sides of cell walls at high photon intensity induces a sieve effect 

allowing photon penetration deeper into leaf tissue (Davis et al., 2011; Parry et al. 2014). 

Again, this results in spectral distortion functions intermediate between the whole leaf and 

epidermis estimates (Figure 4-4b).  

Developing leaves tend to have lower chlorophyll concentrations than mature leaves. 

As plants mature and chlorophyll concentrations increase, the average fluxes of blue and red 

photons within a leaf will decrease. This means that the phytochrome dynamics in older 

leaves would shift to lower average Pfr concentrations than younger leaves under identical 

SPD.  Younger leaves were more receptive to far-red than older cotyledons in Casal and 

Smith (1988b). This response is the opposite of what would be expected assuming 

chlorophyll concentrations were higher in older cotyledon tissue compared to younger leaf 

tissue. Therefore, younger leaves may be more receptive to photon signals than older leaves. 

Nonetheless, as these younger leaves develop and chlorophyll concentrations increase, 

photon penetration into leaves will decrease, shifting the spectral distortion functions from 

similar to the epidermis estimate to lower than the whole leaf estimate (Figure 4-4b).  
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The combined effects of photon quality and quantity on leaf internal structure and 

chlorophyll concentration/distribution could result in changes in the internal SPD. 

Modifications to the spectral distortion functions to account for these changes could improve 

the model. Additional research is warranted.   

 

4.5.6 A Simpler Intuitive Metric: The FR Fraction 

Phytochrome and cryptochrome, when activated, interact with some of the same 

transcription factors (de Wit et al., 2016). The chromophore at the center of the photoreceptor 

cryptochrome is a flavin adenine dinucleotide (FAD) molecule, a coenzyme associated with 

numerous proteins. FAD absorbs photons in the UV-A and blue regions of the spectrum. 

FAD absorbance drops substantially around 500 nm (Banerjee et al., 2007; Procopio et al., 

2016). The inactive form of phytochrome absorbs across the entire biologically active 

spectrum (300 to 800 nm), but is primarily activated by red photons. Chlorophyll-induced 

spectral distortions may mean that phytochrome is also significantly activated by (longer 

wavelength) green photons (Figure 4-6c). Therefore, blue, green and red photons may push 

back against FR photons to affect morphology. Percent far-red (FR fraction) was shown to be 

an excellent predictor of lnSER in the long-term study (r2 = 0.89), although the expected blue 

(and possibly green) offsets are not present. Percent far-red did not appear to be a good 

predictor of morphology in seedlings (Figure 4-10).  

Due to the issues with PPE outlines above, Kusuma and Bugbee (2021) suggested 

that environmental signals might be more reliable than photo-molecular models, like PPE. 

Environmental pressure drives evolution, and thus genetically regulated molecular machinery 
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could be expected to conform to the incoming signals (in so much as it provides a survival 

advantage). The R:FR ratio is often used as a metric to describe the degree of shade, but 

percent far-red may be a better ratio because it integrates the action of multiple 

photoreceptors that co-evolved to detect the extent of shade. Although our improvements to 

the PPE model indicate some important mechanistic aspects of photon perception within a 

leaf, the FR fraction is a simple intuitive metric that may be widely applicable across many 

conditions. 

 

 Summary 

PPE is generally estimated from the spectral photon distribution above the leaf, which 

does not account for the spectral distortion caused by absorbance and scattering within a leaf, 

and is thus an inadequate metric for estimating phytochrome induced morphology. Estimates 

of PPE for phytochrome that is homogeneously distributed throughout the whole leaf 

accounted for spectral distortions and was a better predictor of morphological responses. The 

distortion functions used here were from a different species than the species investigated and 

yet improved predictions. We thus believe the distortion functions used here have universal 

utility.      

Percent far-red is an intuitive environmental metric that accounts for photon effects 

from 400 to 750 nm on stem elongation rate, possibly because it accounts for cryptochrome 

and phytochrome action. This is an empirical metric but it appears to have excellent 

predictive power.  



139 

The use of LEDs in controlled environments allows an unprecedented opportunity to 

manipulate plant growth. FR LEDs have a high efficacy and may thus contribute to these 

manipulations, but the phytochrome mediated responses to FR must be better understood to 

utilize their potential. 
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CHAPTER 5 

FAR-RED INCREASES THE LEAF AREA OF LETTUCE AT HIGH PHOTON FLUXES, 

BUT DECREASES LEAF AREA AT LOW FLUXES 

 

 Summary 

• The first signal of oncoming competition for sunlight from neighboring vegetation is 

an increase in the far-red photon flux (FR; 700 to 750 nm). Then as shade becomes 

more severe, the flux of photosynthetically active radiation (PAR; 400 to 700 nm) 

will decrease. Increased leaf expansion is a critical shade acclimation response, as 

reduced leaf area will limit photon capture and thus biomass accumulation. Previous 

reports have been inconsistent regarding the response of leaf area to FR showing 

increases, decreases and no response. Additionally, studies are often confounded by 

recent findings that FR is photosynthetic, possibly resulting in an increased leaf 

expansion through increased growth, rather than a morphological adjustment.  

• Extended photosynthetic photon flux density (ePPFD; PAR+FR) was maintained at 

three levels, as the percentage of FR [100×FR/(PAR+FR)] was adjusted in the growth 

spectrum of lettuce and cucumber. 

• In lettuce, FR increased leaf expansion at high ePPFD, but decreased it at low ePPFD. 

This interaction was attributed to FR effects on biomass partitioning between leaves 

and stems under these conditions, which favored stems at low ePPFD, but was 

unaffected at high ePPFD. In cucumber, FR increased leaf expansion under all 

ePPFD. 
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• Implications for horticulture are discussed. 

 

 Introduction 

Limited resources limit plant growth (El-Sharkawy, 2011). As sessile organisms, 

plants must modulate their growth and development to efficiently compete for access to these 

resources. One of the primary resources that plants compete for is sunlight, which has led to 

the evolution for a high degree of plant plasticity in response to shaded environments.  

Before plants are truly shaded, i.e. before they experience a decrease in 

photosynthetically active radiation (PAR; 400 to 700 nm), the flux of far-red (FR; 700 to 750 

nm) will increase due to reflections from neighboring vegetation primarily in the horizontal 

direction. This increase in FR (decrease in the R:FR ratio), caused by preferential absorption 

of photons in the PAR region for photosynthesis and scattering of FR photons by leaf tissue, 

is perceived by the photoreceptor phytochrome (Ballare et al., 1987, 1991; Casal, 2012). As 

plants grow, they begin to overlap, decreasing the overall photon flux of PAR and FR, 

although the percentage of FR [100×FR / (PAR + FR)] will remain enriched compared to 

sunlight. Many plant species adjust their morphology in response to both FR and PAR to 

maximize survival in a process called shade avoidance (Ballare et al., 1991; Schmitt, 1997; 

Kurepin et al., 2009; Pierik & de Wit, 2014). Shade avoidance responses are often defined by 

increases in stem and petiole elongation, an increase in biomass allocation to stems, 

increased specific leaf area (SLA; leaf area divided by leaf mass), upward leaf movement 

(hyponasty), and increased apical dominance (Casal, 2012; Gommers et al., 2013; Pierik & 

de Wit, 2014).  
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Biomass accumulation is highly correlated with leaf area (Monteith, 1977; Gifford et 

al., 1984; Zhen & Bugbee, 2020a), as leaves are the photon-collecting organs with higher 

photosynthetic capacity than other organs (Xu et al., 1997). Thus, leaf area/expansion in 

response to shade is a vital parameter for the survival of a plant. SLA, which is often reported 

to increase in shade, only indicates a change in leaf area given a certain amount of biomass 

partitioning to the leaves, therefore total plant leaf area is also dependent on the biomass 

partitioning within plants, which tends to favor stems over leaves in shaded environments 

(Morgan & Smith, 1979; Ballare et al., 1987, 1991; Poorter et al., 2012). 

The response of leaf area/expansion to an increased percentage of FR (decreased 

R:FR ratio) has been reported to vary significantly (Casal & Smith, 1989; Casal, 2012; 

Demotes-Mainard et al., 2016), with increases (Lopez-Juez et al., 1990; Kurepin et al., 2007; 

Lee et al., 2016; Park & Runkle, 2017, 2019; Kalaitzoglou et al., 2019; Zou et al., 2019; 

Zhen & Bugbee, 2020a; Legendre & van Iersel, 2021), decreases (Holmes & Smith, 1975; 

Robson et al., 1993; Devlin et al., 1999) or no effect (Miyashita et al., 1994; Kurepin et al., 

2007; Lee et al., 2015; Park & Runkle, 2017, 2019; Zhang et al., 2020). These differences in 

response are likely species dependent, but they also depend on other environmental 

conditions. For example, Franklin et al. (2003) noted an apparent (unmeasured) increase in 

leaf area with increased FR, which was contradictory to previous findings and attributed to 

the lower temperature than the studies they compared to (e.g. Robson et al., 1993; Devlin et 

al., 1999). Other studies have noted different effects of FR on leaf area/expansion at different 

intensities of PAR (Kurepin et al., 2007), while others have noted no interaction (Park & 

Runkle, 2018).  
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One highly confounding factor with many of these studies is that FR photons are 

added to a constant flux of traditionally defined PAR. Recent evidence has demonstrated that 

FR photons are photosynthetic (Zhen & Bugbee, 2020a,b) through excitation of PSI (Zhen & 

van Iersel, 2017). Because many studies add FR to traditionally defined PAR, they increase 

the flux of total photosynthetic photons, potentially leading to increases in leaf area through 

increases in biomass accumulation. It is thus important to properly separate the two effects. 

Maintaining extended photosynthetic photon flux density (ePPFD = PAR+FR; 400 to 750 

nm), while adjusting levels of FR, is one way to separate these two responses.  

We sought to investigate the interactions of FR and ePPFD on plant morphology in 

two widely produced crops, lettuce and cucumber. While plant responses to FR are 

modulated only by phytochrome (Holmes & Smith, 1975; Franklin et al., 2003; Casal, 2012), 

responses to a decrease in ePPFD are modulated by phytochromes (Millenaar et al., 2009; 

Trupkin et al., 2014), cryptochromes (Keller et al., 2011; Pedmale et al., 2016), and possibly 

photosynthetic signals (Millenaar et al., 2009). Cryptochromes and phytochromes interact 

with many of the same transcription factors in order to modulate gene expression (de Wit et 

al., 2016), but cryptochrome interaction was shown to regulate genes related to cell wall 

elasticity while FR was associated with auxin genes (Pedmale et al., 2016). Phytochrome 

responses depend on the ePPFD because thermal reversion (Pfr back to Pr) significantly 

affects phytochrome dynamics at lower photon fluxes (Sellaro et al., 2019). Additionally, 

hormonal signals in response to FR have different patterns of expression at low and high 

ePPFD (Hersch et al., 2014).   

Altogether, the signaling pathways in response to changes in photon quality and 

quantity are complex, as photoreceptor-controlled responses have appeared both 



150 

additive/independent (Neff & Chory, 1988; Keller et al., 2011; Pedmale et al., 2016) and 

synergistic (Casal & Mazzella, 1998; Sellaro et al., 2009; de Wit et al., 2016) in different 

studies. We hypothesize that increasing the percentage of FR will have a more significant 

effect on plant development at lower levels of ePPFD, and that FR and ePPFD will interact in 

the prediction of leaf area. We show that in lettuce increasing FR increases leaf area and dry 

mass accumulation at high intensities, but decreases leaf area and dry mass accumulation at 

lower intensities, while in cucumber leaf expansion increased with increasing far-red at all 

intensities.  

 

 Materials and Methods 

5.3.1 Plant Material and Cultural Conditions 

Green butterhead lettuce (Lactuca sativa ‘Rex’) and cucumber (Cucumis sativa 

‘Straight eight’) seeds were direct seeded then thinned for uniformity after emergence 

leaving four plants per root module. Root modules measured 20 × 18 × 13 (4680 cm3) and 

contained a 1:1 ratio of peat and vermiculite by volume with 0.75 g per L wetting agent 

(AquaGro G), 1 g per L hydrated lime, and 5 g per module of uniformly mixed slow-release 

fertilizer (Nutricote total; 18-6-8, N-P-K, type 70). Planted root modules were randomly 

placed into the 12 treatment chambers. Each chamber had dimensions of 20 × 23 × 30 (L × 

W × H, 13800 cm3) with gloss white walls.  Fans provided an air velocity of 0.5 m s-1 at the 

top of the canopy.  Root modules were watered to 10% excess as needed with dilute fertilizer 

solution at a rate of 100 mg N per L (21-5-20; Peters Excel; EC = 1 dS m-1), and allowed to 

passively drain. Type-E Thermocouples connected to a data logger (CR1000, Campbell 
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Scientific, Logan UT) continuously monitored ambient air temperature. Day/night 

temperature averaged 23.4±1.2/20.9±0.8 ˚C, with less than a 1˚C variation among chambers. 

CO2 concentration was continuously monitored and was identical for all treatments and 

varied over time between 450 to 500 ppm.   

 
Fig. 5-1 Experimental design of the study.  Treatments included four percentages of far-red at three 
levels of extended photosynthetic photon flux density (ePPFD). The lowest ePPFD in the cucumber 
study was 50, not 100, µmol m-2 s-1.  
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5.3.2 Treatments 

The system included 12 chambers with four percentages of FR (Fig. 5-1 and Fig. 5-2) 

at three levels of ePPFD (4×3 = 12 treatments) for a 16 h photoperiod. In the cucumber study 

the three levels of ePPFD were 50, 200 and 500 µmol m-2 s-1 (DLI: 2.88, 11.52 and 28.8 mol 

m-2 d-1). In the lettuce study, the lowest ePPFD treatment (ePPFD: 50 µmol m-2 s-1) was 

increased to 100 µmol m-2 s-1 (DLI = 5.76 mol m-2 d-1) because 50 µmol m-2 s-1 was below 

the light compensation point. 

 
Fig. 5-2 Representative spectral photon distributions for the four fractions of far-red. Spectral 
photon distribution from the ePPFD: 200 µmol m-2 s-1 intensity. Spectral distributions from 
the other studies have the same shape with a different scale on the y-axis. Photon fluxes of 
blue, green and red were maintained at 20, 40 and 40%, respectively, as a percent of 
photosynthetically active radiation (PAR; 400 to 700 nm) for each treatment of far-red (FR).  
Percent far-red (%FR) treatments included 2% (grey), 9% (orange), 17% (purple), and 33% 
(cyan). 
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Treatments were developed using phosphor-converted white (2700 and 6500 K), red 

(peak about 658 nm) and far-red (peak 726 nm) LEDs (Lumileds LLC, San Jose, CA) to 

output 20, 40 and 40% blue, green and red photons, respectively, as a fraction of PAR. 

Treatments were then designed to reduce traditionally defined photosynthetic photon flux 

density (PPFD) while increasing FR photon flux density.  Percent FR, as calculated by 

dividing the FR flux density by the ePPFD and multiplying by 100, was 2, 9, 17 and 33% 

(Fig. 5-1 and Fig. 5-2). Spectral photon distributions of the treatments were measured before 

each replicate study with a spectroradiometer (model PS-300; Apogee Instruments, Logan 

UT). ePPFD was measured with an ePPFD sensor (MQ-260, Apogee Instruments, Logan 

UT) at the top of the plant canopy throughout the study, and chambers were adjusted to 

maintain ePPFD at ± 5%. Root modules were rotated every three days to increase the 

uniformity of treatments within the chamber.  

 

5.3.3 Plant Measurements 

Plants were harvested at canopy closure. This occurred 17 or 18 days after emergence 

in lettuce and 9, 10, or 11 days after emergence in cucumber. At harvest, stem length, leaf 

area, chlorophyll concentrations and fresh mass were measured. Leaf area was measured 

using a leaf area meter (LI-3000; LI-COR, Lincoln NE). Petiole length was measured in the 

cucumber study and leaf length and leaf width were measured in the lettuce study. Leaves 

and stems (and cotyledons in cucumber) were separated, and dry mass of each organ (DM) 

was measured after the tissue was dried at 80 ˚C for 48 hours. Percent stem mass was 

calculated by dividing stem dry mass by total shoot dry mass, multiplied by 100; roots were 
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not included. Specific leaf area (SLA, m2
LA kg DMleaf

-1) was calculated by dividing the leaf 

area by the dry mass.  

 

5.3.4 Statistical Analysis 

The lettuce study was replicated three times and the cucumber study was replicated 

five times. Every replicate in time contained four plants in each treatment. All data was 

analyzed using R statistical software (R Foundation for Statistical Computing; Vienna, 

Austria). ePPFD was treated as a categorical variable with three levels for all analysis. 

Percent FR was treated as either a continuous variable or a categorical variable depending on 

the type of analysis. Responses that were linear with increasing percent FR were analyzed 

with linear mixed-effects regression analysis (percent FR treated as a continuous variable) 

and non-linear responses were analyzed with two-way ANOVA analysis (percent FR treated 

as a categorical variable).  Replicates in time were treated as random factors in all statistical 

analyses. Significant effects were determined at the p < 0.05 level. Detailed statistical 

analysis for specific parameters are provided below.  

 

 Results 

Fig. 5-3 shows the overhead view of all the plants from each treatment in one 

replicate study. Fig. 5-4 shows the side view of the plants from each treatment in one 

replicate study. These photos show approximate diameters and heights of the plants in 

different treatments.  
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Fig. 5-3 Overhead view of all the treatments in one replicate for (a) lettuce and (b) cucumber. 
The white arrow on the left indicates increasing extended photosynthetic photon flux density 
(ePPFD) and the red arrow on the bottom indicates increasing percent far-red.  
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Fig. 5-4 Side view of all the treatments in one replicate for (a) lettuce and (b) cucumber. The 
white arrow on the left indicates increasing extended photosynthetic photon flux density 
(ePPFD) and the red arrow on the bottom indicates increasing percent far-red. 
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5.4.1 Dry Mass 

Fig. 5-5a and 5-5b show the effect of ePPFD and percent FR on total shoot dry mass 

of lettuce and cucumber. The response was non-linear in both species, thus two-way 

ANOVA analysis and Tukey’s post hoc test were used (with percent FR treated as a 

categorical variable) to separate the significant differences between treatments. The relatively 

smaller values and variance of total dry mass in the low ePPFD treated plants resulted in 

reduced statistical power to determine significant difference between percent FR treatments. 

Therefore, the data of each replicate in time was normalized to its respective 2% (no added 

FR) control, and this normalized response was analyzed with 1) two-way ANOVA 

analysis/Tukey’s post hoc test to determine significant differences between treatments and 2) 

a student’s t-test to determine if the normalized response was statistically different from one, 

which represented the response of no added FR. This normalized response is presented in 

Fig. 5-5c and 5-5d.  

Unsurprisingly, higher levels of ePPFD produced more biomass than lower levels in 

both species. Percent FR and ePPFD interacted to predict biomass accumulation in lettuce, 

with an increase in dry mass with increasing percent FR at the high ePPFD, but a decrease in 

dry mass with increasing percent FR at the low ePPFD. This decrease occurred in both the 

100 and 200 µmol m-2 s-1 ePPFD treatments. There was also an interaction between percent 

FR and ePPFD in cucumber, where the highest percent FR at the lowest ePPFD had a no 

effect compared to higher ePPFD (Fig. 5-5d). In general, the response of shoot dry mass in 

cucumber showed no effect of increasing percent FR from 2 to 9%, a sharp increase between 

9 and 17% FR, and little response between 17 and 33% FR. Additionally, the normalized dry 
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mass response in cucumber showed no significant difference from one at the lowest ePPFD 

and highest percent FR treatment (Fig. 5-5d).  

 
 

 
Fig. 5-5 Effects of percent far-red (FR) and extended photosynthetic photon flux density 
(ePPFD) on shoot dry mass in lettuce (a,c) and cucumber (b,d). (a) and (b) represent absolute 
values of dry mass and (c) and (d) are the normalized response, where data from each 
replicate in time was normalized to its respective 2% FR (no added FR) control treatment for 
each ePPFD. In (c) and (d), * indicates that the treatment is statistically different from 1 
(using a student’s t-test), which represents the response of the 2% FR control. Trend lines are 
included to guide the eye, and not meant to be used as a statistical representation. Error bars 
represent standard error for n = 3 replicates in lettuce and n = 5 replicates in cucumber. 
Letters are not included in (d) because the treatments were not determined to be statistically 
different from each other, although treatments were significantly different from the control. 
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5.4.2 Total Leaf Area 

 Average plant leaf area is presented in Fig. 5-6. This graph shows similar trends to 

shoot dry mass, indicating that leaf area significantly affected photon capture and biomass 

accumulation (leaf area is highly correlated with growth). Due to the similar non-linear 

response of leaf area to percent FR and ePPFD, this response was analyzed with the same 

methods as total dry mass.  

 
Fig. 5-6 Effect of percent far-red (FR) and extended photosynthetic photon flux density 
(ePPFD) on leaf area in lettuce (a,c) and cucumber (b,d). (a) and (b) represent absolute values 
of leaf area and (c) and (d) are the normalized response, where data from each replicate in 
time has been normalized to its respective 2% FR control treatment for each level of ePPFD. 
In (c) and (d), * indicates that the treatment is statistically different from 1 (using a student’s 
t-test), which represents the effect of the 2% FR control. Trend lines are included to guide the 
eye, and not meant to be used as a statistical representation. Error bars represent standard 
error for n = 3 replicates in lettuce and n = 5 replicates in cucumber. 
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Because leaf area/expansion is a driver of biomass accumulation, it is valuable to 

better understand the interaction between the two treatments in controlling this response in 

lettuce – decreased leaf area with increasing percent FR at 100 and 200 µmol m-2 s-1, but 

increased  leaf area with increasing percent FR at 500 µmol m-2 s-1. Leaf lengths increased 

with percent FR at all three levels of ePPFD, while the response of leaf width was similar to 

the response of leaf area (Fig. H-1a and H-1b). This resulted in cuneate rather than orbicular 

shaped leaves at higher percent FR (Fig. H-1c). Although an increase in leaf length may be 

expected under shaded conditions, the change in leaf shape does not explain the interaction 

between percent FR and ePPFD in predicting total leaf area in lettuce. 

 

5.4.3 Specific Leaf Area 

Changes in specific leaf area (SLA) indicate the change leaf area given the biomass 

partitioning to the leaves. It is widely reported to increase with shade. The response of SLA 

to percent FR at different levels of ePPFD appeared more linear than the response of dry 

mass or total leaf area, thus this parameter was analyzed with linear mixed-effects regression 

with percent FR as a continuous variable and ePPFD as a categorical variable. Increasing the 

percent FR and decreasing the ePPFD increased SLA in both species (Fig. 5-7a and 5-7b). 

Because ePPFD had a large effect on SLA (the lowest ePPFD induced a 2.5 to 3 

times higher SLA than the high ePPFD in both species), the best way to determine if there is 

an interaction between percent FR and ePPFD was to normalize the response. This is because 

the non-normalized response could indicate an interaction even if the effect of percent FR 

induced the same fractional change at all three levels of ePPFD. Fig. 5-7c and 5-7d normalize 
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the SLA response to the average 2% FR effect at each ePPFD. Linear mixed-effects 

regression analysis was then performed on this normalized data, which found no interaction 

between ePPFD and percent FR for either species, although the interaction approached 

significant in cucumber (Fig. 5-7d).  

 

 
Fig. 5-7 Effect of percent far-red (FR) at different levels of extended photosynthetic photon 
flux density (ePPFD) on specific leaf area (SLA) in lettuce (a,c) and cucumber (b,d). (a) and 
(b) represent absolute values of SLA, while (c) and (d) are the normalized response, where 
data has been normalized to the average response in the 2% FR control treatment for each 
ePPFD.  Increasing the percent FR and decreasing the ePPFD increased SLA in both species. 
Error bars represent standard error for n = 3 replicates in lettuce and n = 5 replicates in 
cucumber. 
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Overall, the increase in SLA in response to both increasing percent FR and decreasing 

ePPFD has been regularly observed in previous studies. However, because there was no 

interaction between the two treatments to predict SLA, this parameter (SLA) does not explain 

the interaction between to two treatments to predict total leaf area (Fig. 5-6a and 5-6c).  

 

5.4.4 Biomass Partitioning 

Increased shade is often reported to increase stem lengths, and this is often associated 

with an increase in biomass partitioning to stems. Percent stem mass, a metric that assesses 

partitioning to stems, is calculated by dividing stem dry mass by total shoot dry mass (and 

multiplying by 100).  Subtracting percent stem mass from 100 is the shoot biomass allocation 

to leaves (and cotyledons for cucumber). 

In lettuce, the effects of percent FR and ePPFD on percent stem mass were analyzed 

with linear mixed-effects regression following the same procedure as SLA (Fig.5-7a). In 

cucumber, the effect of percent FR on percent stem mass was non-linear, and was thus 

analyzed with two-way ANOVA analysis and Tukey’s post hoc test. 

In cucumber, there was no difference between percent stem mass at 2 and 9% FR for 

any of the three levels of ePPFD (Fig. 5-8b), then increasing percent FR from 9 to 33% 

increased biomass partitioning to stems at all three levels of ePPFD.  

In lettuce, there was also an effect of percent FR, ePPFD and an interaction between 

the two treatments in the prediction of percent stem mass. The most striking impact of the 

interaction between percent FR and ePPFD in lettuce was that increasing percent FR from 2 

to 33% increased percent stem mass by 2.5-fold at the lowest ePPFD, but had no effect at the 
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highest ePPFD (Fig. 5-8a). Similar to the effect of ePPFD at the lowest percent FR in 

cucumber (dotted lines in Fig. 5-8b), percent stem mass in lettuce tended to be higher at 100 

µmol m-2 s-1 than the higher two levels of ePPFD at 2% FR. But, this was not statistically 

significant at the p = 0.05 level using Tukey’s post hoc test from a two-way ANOVA (p = 

0.09 and 0.06 for 100 compared to 200 and 100 compared to 500 µmol m-2 s-1, respectively). 

 
Fig. 5-8 Effects of percent far-red (FR) at different levels of extended photosynthetic photon 
flux density (ePPFD) on stems. (a) Percent stem mass in lettuce, representative of biomass 
partitioning to stems, (b) percent stem mass in cucumber, (c) stem length in lettuce, and (d) 
stem length in cucumber. The lettuce data was analyzed with linear mixed-effects regression 
analysis, and the cucumber data was analyzed with a two-way ANOVA analysis. Error bars 
represent standard error for n = 3 replicates in lettuce and n = 5 replicates in cucumber.  
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This striking interaction in lettuce between percent FR and ePPFD in the prediction of 

percent stem mass explain the interaction between the two treatments in the prediction of 

total plant leaf area. As percent stem mass (biomass allocation to stems) increases, percent 

leaf mass (biomass allocation to leaves) decreases. Because SLA increased with increasing 

percent FR at all levels of ePPFD (Fig. 5-7c), total leaf area increased under the highest 

ePPFD as biomass partitioning to leaves was unaffected. However, at the lowest ePPFD, 

even though the FR treatments increased SLA by about 30%, biomass was redirected away 

from the leaves to a significant enough degree to reduce leaf area.  

Due to thermal reversion of phytochrome, ePPFD and FR have been combined into 

one unifying model called the cellular model, which accounts for both increased thermal 

reversion at higher temperatures and the larger contribution of thermal reversion on 

phytochrome dynamics at lower ePPFD. This model was unable to explain the response of 

percent stem mass in cucumber (Fig. H-2), indicating a contribution of other factors (e.g. 

cryptochrome and/or photosynthate signals). 

 

5.4.5 Stem Length 

The responses of lettuce and cucumber stem lengths were similar to the response of 

percent stem mass, and they data for each species was analyzed using the same methods as 

percent stem mass (Fig. 5-8). This indicates that the increase in biomass allocation to stems 

was to support their rapid elongation. There was an effect of percent FR, ePPFD and an 

interaction between the two in the prediction of stem length in both species. In cucumber, the 

tallest plants at the highest percent FR occurred at the middle ePPFD instead of the lowest 
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ePPFD. A similar response was observed in longest petiole length (Fig. H-3). This is likely a 

direct result of lower photosynthesis resulting in reduced growth.  

 
 

 Discussion 

Leaves are primarily responsible for carbon gain with higher photosynthetic capacity 

than stems, petioles and fruits (Xu et al., 1997). Despite the importance of this organ, the 

response of total leaf area to shade signals (specifically an increase in FR) has been 

inconsistent (see introduction). Here, we show that the effect of percent FR on leaf 

expansion/leaf area can depend on the ePPFD (Fig. 5-6a, c). We conclude that this 

interaction is a byproduct of the differences in biomass allocation between stems and leaves 

under these conditions, and not a response of SLA which increased with FR under all levels 

of ePPFD. This interaction between ePPFD and percent FR is also dependent on species as it 

only occurred in lettuce. 

In cucumber, increasing percent FR increased leaf area at all three levels of ePPFD 

despite a similar interaction between percent FR and ePPFD as lettuce in the prediction of 

biomass partitioning to stems. This contradiction may be explained by 1) the effect of 

increasing FR on percent stem mass was only reduced at the highest ePPFD in cucumber, 

whereas it was eliminated entirely in lettuce; and 2) there was an insignificant (p = 0.11, Fig. 

5-7d) trend of a larger effect of increasing percent FR on SLA at lower levels of ePPFD in 

cucumber. Therefore, the morphological effects of SLA may have offset the effects of 

biomass partitioning in cucumber resulting in similar total leaf areas.  
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Increased percent stem mass was associated with increased stem length (Fig. 5-8). 

Biomass allocation between leaves and stems has been reported to be sensitive to both FR 

and ePPFD (Morgan & Smith, 1979, 1981; Ballare et al., 1987; Poorter et al., 2011; Yang et 

al., 2018). Faster rates of stem elongation may require an increase in sugars to support the 

upregulated metabolism. As such, increases in percent FR have been associated with 1) a 

decrease in expression of genes related to photosynthesis, the Calvin cycle, and 

sucrose/starch biosynthesis in Arabidopsis hypocotyls (but not cotyledons) suggesting a 

decrease in local sugar production in the hypocotyl and thus an increase in stem sink 

strength; and 2) an increase in the transport of radiolabeled carbon from cotyledons to 

hypocotyls (de Wit et al., 2016). This transported carbon was allocated to multiple pools of 

carbon within the hypocotyl including amino acids, lipids, neutral sugars, proteins and cell 

walls. Of these, the insoluble portion (cell walls and proteins) and the ethanol soluble portion 

(lipids/cell membranes) both increased over 3-fold from the high R:FR treated to the low 

R:FR treated seedlings. The increases in these two pools indicate an increase to structural 

components, meaning an increase in biomass accumulation. In addition to this change in 

carbon transport, auxin (which is upregulated in the shade, see below), inhibits cytokinin 

expression in leaf primordia (Carabelli et al., 2007), which leads to an inhibition of cell 

proliferation in leaves and reduced leaf area (Rielfer et al., 2006; Wu et al., 2017). This 

provides a second mechanism by which biomass allocation to stems increases in the shade. 

Low ePPFD has been reported to decrease the root mass fraction while increasing the stem 

and leaf mass fractions, while the R:FR ratio has been shown to have little effect on root 

mass fraction (Poorter et al., 2011), but we did not measure root mass fraction.  
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Shade symptoms are often reported to increase in response to both and decreases in 

photon intensity and increases in FR. The response to photon intensity are often associated 

with a decrease in blue photons specifically (de Wit et al., 2016; Pedmale et al., 2016), 

although this is not always the case (Millenaar et al., 2009). Previous studies have shown 

similar interactions between low blue (low photon intensity) and increased FR, with 

synergistic shade responses under both conditions compared to one shade condition alone (de 

Wit et al., 2016). This is similar to the results obtained in this study, especially for stem 

elongation (Fig. 5-8). This interaction is hypothesized to be related to both the 

PHYTOCHROME INTERACTING FACTOR (PIF) family of transcription factors and the 

E3 ubiquitin ligase formed by CONSTITUTIVELY PHOTOMORPHOGEIC 1 (COP1) and 

SUPRESSOR OF PHYA-105(SPA) proteins (Su et al., 2017), both of which are regulated by 

the phytochrome and cryptochrome photoreceptors (Legris et al., 2019). 

 

5.5.1 Photosynthetic Considerations 

Often, studies investigating plant responses to FR will typically supplement with FR, 

rather than substitute traditionally defined PAR with FR. Increasing percent FR while 

maintaining ePPFD (decreasing traditionally defined PAR) removes the potential impact of 

photosynthesis on leaf expansion through increased growth rates. Assuming PAR and FR 

photons both drive photosynthesis with equal efficiencies, then the studies performed here 

(substituting PAR with FR) would at most result in equal photosynthesis. However, this 1:1 

assumption is likely not the case. Zhen & Bugbee (2020b) noted that the photosynthetic 

relationship of 400 to 700 nm photons and 701 to 750 nm photons began to deviate from a 
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1:1 equivalency when FR was added in excess of 40% of PAR (29% FR based on the 

definition used here). Furthermore, Zhen et al. (2018) showed that photons at 752 nm did not 

increase the quantum yield of PSII (the fraction of absorbed photons used for 

photochemistry), indicating that photons at 752 nm did not contribute to photosynthesis (the 

next lowest wavelength measured was 731 nm). These considerations indicate that 1) 

extending the definition of photosynthetic photons out to 750 nm may overestimate the 

photosynthetic response, and b) 33% FR used in this study would have deviated from a 1:1 

photosynthetic relationship FR and PAR. 

Despite this limitation of our experimental design, the decreased contribution of FR 

to photosynthesis further highlight the effect of increasing FR on leaf expansion in cucumber 

and lettuce (at high photon fluxes in the latter). 

 

5.5.2 Implications for Horticulture 

The results presented here have substantial implications for the horticultural industry 

– especially in sole-source lighting environments, where electric lighting from LEDs has 

been rapidly increasing. Providing photons for crop production is expensive, especially when 

considering the electrical power required to operate the LEDs. FR LEDs are among the 

highest efficacy LEDs (µmol of photons per joule input electrical energy), primarily because 

of the lower energy of the photons (Kusuma et al., 2020). Interest in FR for horticultural 

environments has increased in the past five years where studies have often found that adding 

FR increases leaf area or plant diameter in lettuce, resulting in an increase in fresh and dry 

mass (Lee et al., 2016; Meng & Runkle, 2019; Zou et al., 2019; Zhen & Bugbee, 2020a; 



169 

Legendre & van Iersel, 2021). But, these studies often supplemented with FR rather than 

substituting PAR photons for FR photons. The addition of FR LEDs in fixtures increases the 

price for two reasons: 1) FR LEDs are lower demand, meaning they are more expansive, and 

2) operating these additional LEDs increases the power requirements. Thus, substitution of 

PAR with FR is much more reasonable for practical applications.  Zhen & Bugbee (2020a) 

found that substituting 14% of PAR with FR at an ePPFD of 350 µmol m-2 s-1 resulted in 

similar quantum yields for CO2 fixation in ‘Waldmann’s Dark Green’ lettuce, but increased 

biomass accumulation by 29 to 31% via an increase in photon capture (leaf expansion). 

Similarly, Legendre & van Iersel (2021) concluded that FR photons were between 57 to 

183% more effective at increasing photon capture than PAR photons in ‘Green Salad Bowl’ 

lettuce, and were thus 93 to 162% more effective at increasing biomass accumulation. 

Interestingly, they observed no interaction between PPFD and FR, when PPFD varied 

between 111 and 245 µmol m-2 s-1. Here, we show a clear interaction between both of these 

parameters in ‘Rex’ lettuce, with no benefit of substituting PAR with FR when the total 

ePPFD was 100 and 200 µmol m-2 s-1. Additionally, substituting 33% of the PAR for FR 

photons resulted in decreases in leaf expansion and dry mass accumulation at these two 

photon intensities (Fig. 5-5 and Fig. 5-6). Thus, the addition of FR appeared to only be 

beneficial at high ePPFD in this study, possibly indicating that FR will not be beneficial in 

some cultivars if the ePPFD is too low, and it may actually be detrimental. Further research is 

required to determine how common this response is across cultivars of lettuce and other leafy 

greens.  

Producers can increase yields by including FR LEDs in lighting fixtures because FR 

photons will increase leaf expansion and photon capture, while decreasing electrical input 
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(depending on operating conditions and other LEDs in the fixture). Based on current 

definitions, FR photons are not considered in the calculation of photosynthetic photon 

efficacy (PPE), which is the flux of photosynthetic photons (µmol s-1) divided by the input 

power (W), resulting in µmol per J.  Currently, photosynthetic photons are considered to only 

be those with wavelengths between 400 to 700 nm based on studies by McCree (1971, 1972). 

Because this definition excludes photons between 700 to 750 nm, the benefits of photons 

from FR LEDs, both on leaf expansion and photosynthesis are excluded. These definitions 

ought to be reconsidered, but at the same time, FR must be used with caution, as we have 

shown it can be detrimental in some conditions.  
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CHAPTER 6 

PHOTONS FROM NIR LEDS CAN DELAY FLOWERING IN SHORT-DAY SOYBEAN 

AND CANNABIS: IMPLICATIONS FOR PHYTOCHROME ACTIVITY 

 

 Abstract 

Photons during the dark period delay flowering in short-day plants (SDP). Red 

photons applied at night convert phytochromes to the active far-red absorbing form (Pfr), 

leading to inhibition of flowering. Far-red photons (greater than 700 nm) re-induce flowering 

when applied after a pulse of red photons during the dark period. However, far-red photons at 

sufficiently high intensity and duration delay flowering in sensitive species.  Mechanistically, 

this response occurs because phytochrome-red (Pr) absorbance is not zero beyond 700 nm. 

We applied nighttime photons from near infrared (NIR) LEDs over a 12 h dark period. 

Compared to control plants without nighttime photons, photons from NIR LEDs delayed 

flowering in two sensitive species: 3 days in Glycine max (at an intensity of 3.8 µmol m-2 s-1) 

and 12 days in Cannabis sativa (5.2 µmol m-2 s-1). This suggests that photons from NIR 

LEDs can activate phytochromes (convert Pr to Pfr) and thus alter plant development. 

 

 Introduction 

Phytochromes are a class of plant photoreceptors that modulate development 

throughout the life cycle of a plant. They interconvert between two major forms upon photon 

absorption: the inactive form (Pr), which is most sensitive to red photons, and the active form 

(Pfr), which is most sensitive to far-red photons [1]. Although Pr and Pfr are named for the 



176 

region that they are most sensitive to, both forms absorb across the entire biologically active 

range of radiation (300 to 800 nm). Historically, a metric called phytochrome 

photoequilibrium (PPE) has been used to predict phytochrome-mediated plant developmental 

responses. PPE is an estimate of the fraction of active Pfr to the total phytochrome pool, and 

it is calculated from the spectral photon distribution (SPD) of the incident light and 

photoconversion cross-sections for Pr and Pfr at each wavelength.  Photoconversion cross-

sections are closely related to absorption spectra and, when multiplied by the photon intensity 

at specific wavelengths, they provide an estimate of the rates of conversion between the two 

forms of phytochrome. Several studies have separately derived the photochemical parameters 

necessary to calculate these photoconversion cross-sections. Fig 6-1a shows four Pr cross-

section values that are derived from 1) Seyfried and Schafer [2], 2) Kelly and Lagarias [3], 3) 

Lagarias et al. [4] and 4) Sager et al. [5] for 650 to 800 nm. Shinomura et al. [6] used a 

spectrograph (a device that uses prisms to provide narrow bandwidths of radiation) to 

determine an action spectrum of seed germination and found that it closely matched the 

absorbance spectra of Pr (Fig 6-1a). Phytochrome absorbance spectra above 800 nm have not 

been rigorously determined, but Schafer et al. [7] predicted the photoconversion cross-

sections out to 1100 nm with the action spectra of both inhibition and promotion, 

respectively, of mesocotyl and coleoptile elongation. These data show a log-linear decrease 

in the relative photoconversion cross-section between about 700 to 800 nm, above which it 

the relationship deviates from log-linearity, e.g. Gaussian to Lorenzian; but there are no 

apparent peaks in sensitivity between 800 and 1100 nm.   Therefore, although the ability of 
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photons to activate Pr into Pfr decreases rapidly above 700 nm (and even 800 nm), responses 

can still occur in these regions with high enough photon intensities.   

 
Fig 6-1. Photoconversion cross-sections of Pr and Pfr from four studies. (a) Left axis, 
Photoconversion cross-sections of Pr determined by Seyfried and Schafer [2], Kelly and 
Lagarias [3], Lagarias et al. [4] and Sager et al. [5]. Photoconversion cross-sections are 
related to absorbance spectra. Right axis, action spectrum of seed germination [6]. Inset: Pr 
photoconversion cross-section at 700 to 800 nm. Note the inconsistency of Pr action above 
750 nm determined by different research groups. (b) Photoconversion cross-sections of Pfr.  
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Photoconversions for the conversion of Pfr back to Pr are also available for many of 

these studies [2-5] (Fig 6-1b). These show a higher sensitivity than Pr cross-sections between 

700 to 800 nm, but similar to Pr, Pfr photoconversion cross-sections are not available for 

wavelengths above 800 nm.  

A common NIR LED for night vision has a peak at about 850 nm with a full width at 

half maximum (FWHM) of 25 to 40 nm and outputs photons down to at least 750 nm.  This 

LED is used in security cameras for night vision in greenhouses and controlled environment 

agriculture. Because of their regular use in controlled plant growth environments, especially 

during the dark periods, it is valuable to investigate the potential role they may play in 

altering plant growth and development. The photons from this LED may affect plant growth 

and development either by 1) the activation of Pr to Pfr (Fig 6-1a), or 2) the inactivation of 

phytochrome from Pfr to Pr. The activation of phytochromes (i.e. convert Pr to Pfr) can be 

assessed by floral initiation in short-day plants (SDP), while the inactivation of phytochrome 

(i.e. convert Pfr to Pr) can be assessed with stem elongation.  

SDP undergo floral initiation when the period of un-interrupted darkness is longer 

than a critical length [8]. The application of photons for 4 hours or less during the dark 

period, called a night-break or night-interruption, is a common practice to delay or inhibit 

flowering in SDP in ornamental crop production. Similarly, low levels of constant light 

throughout the dark period, here called nighttime photons, can also disrupt flowering in SDP. 

Pfr plays a vital role in this process [9]; however, the mechanisms governing the response are 

only partially understood. It involves complex interactions between phytochromes (phyA, 

phyB and phyC in the SDP rice [10]) and 1) the circadian rhythm [11], 2) transcriptional 

regulation [12], and 3) possibly post-transcription stabilization [13]. 
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Early studies that contributed to the discovery of phytochrome investigated the action 

spectrum of floral inhibition by night-break lighting in SDP. Using a spectrograph, these 

studies found strong inhibitory responses to red photons (600 to 700 nm), and minimal 

responses to the yet unnamed far-red photons, especially beyond 720 nm, although they still 

observed some inhibition at 770 nm – no response was observed out to 840 nm [14]. 

Following the landmark flip-flop seed germination study with red and far-red photons [15], 

studies found that far-red could reverse red night-break inhibition of flowering in SDP 

[16,17]. Although flowering was able to be re-induced by a far-red pulse after a red pulse, it 

differed from the germination response in that each additional ‘flip-flop’ had a reduced 

response. After four cycles of flip-flopping, flowering was almost entirely inhibited [17]. 

Follow-up studies determined that high doses (dependent on intensity and duration) of far-red 

(with or without prior night-break with red) inhibited flowering of SDPs compared to a 

control without night-break lighting [17-20].  

Table 6.1 summarizes the effect of far-red night-breaks lighting compared to controls 

without night breaks reported in studies spanning 63 years.  The older studies report stage of 

floral development as an index, and the newer studies typically report time to flowering. 

Additionally, the older studies typically used a spectrograph with filters while the newer 

studies apply far-red photons with LEDs that have a peak at about 730 nm. Some studies 

show a delay in flowering (see [21]), indicating that the applied photons (700 and 750 nm) 

are able to activate phytochrome into Pfr and inhibit flowering. By contrast, some studies 

under similar conditions show no significant response (see [22]). These contradictions may 

be due to differences in the duration of the dark period, intensity of the far-red, duration of 

the night-break and sensitivity of the species. Floral initiation is a complex molecular 
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process, and different species/cultivars will have different thresholds for a photo-molecular 

process to occur. Therefore, it is important to choose species known to be sensitive to night-

break/nighttime photons when investigating the ability of photons from NIR LEDs to activate 

phytochromes and inhibit flowering. Soybean (Glycine max) and Cannabis sativa are highly 

sensitive to nighttime photons [8]. 

Photons from NIR LEDs could also potentially affect plant growth and development 

by inactivating Pfr back into Pr. Far-red photons are often reported to increase stem 

elongation [28], a process that is modulated through the inactivation of phytochrome [29].  

We investigate the ability of photons from NIR LEDs applied over a 24 h photoperiod 

to 1) delay flowering in two sensitive short-day species, and 2) elongate stems. We found 

that at high enough doses, photons from NIR LEDs can affect both of these plant responses.   

 

Table 6.1. Summary of the effect of far-red night-break lighting on flowering 
development or time to flowering. Results differed between studies, possibly due to the 
difference in treatments (also described). Stage of flowering refers to a flowering 
development index, different publications use different scales. R: red; FR: far-red; NB: night 
break; SD: short-day 

Species 

Reported 
FR 

intensity FR source 

Night 
break 
length 

Photoperiod 
conditions 
(day/night) 

Effect on flowering 
development Citation Comment 

Xanthium 
pensylvanicum 
Wallr. 

unclear 

filtered 
sunlight with 
output near 

735 nm 

12 min 12h/12h 

Reduced stage of 
flowering from 6 to 
4 (scale from 0 to 7) 
- 33% reduction 

Downs [17] 
Provided after 
R  (about 50 
µmol m-2 s-1) 

Chrysanthemum 
morifolium cv. 
Indianapolis 
Yellow 

  

Filtered 
incandescent 

    

Reduced stage of 
flowering from 4.1 
to 0.4 (scale from 0 
to 10) - 90% 
reduction 

    

Chrysanthemum 
morifolium  cv. 
Shasta 

unclear 81 min 9h/15h 

Reduced stage of 
flowering from 3.7 
to 0 (scale from 0 to 
10) - inhibited 

Cathey and 
Borthwick 

[18] 
 

Chrysanthemum 
morifolium  cv. 
Honey Sweet 

      

Reduced stage of 
flowering from 3.7 
to 0 (scale from 0 to 
10) - inhibited 
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Chenopodium 
rubrum 

14 µmol 
m-2 s-1 

Spectrograph 
centered at 730 
nm (about 720 

to 740 nm) 

16 min 8h/16h 

Reduced stage of 
flowering from 9 to 
6.7 (scale from 0 to 
9) - 26% reduction 

Kasperbauer 
et al. [19]   

Xanthium 
pensylvanicum 

Wallr. 

about 50 
µmol m-2  

s-1 

Filtered 
incandescent 

quantified 
from 710 to 

800 nm 

  12h/12h 

Reduced stage of 
flowering from 6.7 
to 4.9 (scale from 0 
to 7) - 27% 
reduction 

  

  1 h 8h/16h 

Reduced stage of 
flowering from 6.8 
to 3.1 (scale from 0 
to7) - 55% reduction 

Mancinelli 
and Downs 

[20] 

  4h/20h 

Reduced stage of 
flowering from 6.7 
to 0.9 (scale from 0 
to 7) - 87% 
reduction 

  

Oryza sativa 
(rice) 

18000 
µmol m-2 

Acrylic filtered 
fluorescent. 

Shortest 
wavelength ≈ 
710 nm, peak 

≈ 765 nm 

"flash" 10h/14h no effect Ishikawa et 
al. [23]   

Tagetes erecta 
(African 
Marigold) cv. 
America Antigua 
Yellow 

1.3 - 1.6 
µmol m-2  

s-1 

LED peak at 
about 730 nm, 

quantified 
from 700 to 

800 nm 

4 h 9h/15h 9 day delay Craig and 
Runkle [21] 

only 
significant in 
one of two 
replicate 
studies 

Chrysanthemum 
morifolium 
Ramat. cv. 
Reagan 

62.5 µmol 
m-2 s-1 

LED peak at 
about 740 nm, 

quantified 
from 300 to 

900 nm 

4 h 12h/12h 1.7 day delay Higuchi et 
al. [24]   

Chrysanthemum 
×morifolium cv. 
Adiva Purple 

1.3 - 1.6 
µmol m-2  

s-1 

LED peak at 
about 735 nm, 

quantified 
from 700 to 

800 nm 

4 h 9h/15h 

no effect 

Craig and 
Runkle [25] 

Data for 
Dahlia should 
be interpreted 
with caution 
because there 
was 
incomplete 
flowering in 
SD and FR 
NB treatments 

Dahlia hortensis 
cv. Carolina 
Burgundy 

11 day delay 

Dahlia hortensis 
cv. Figaro Mix 8 day delay 

Tagetes erecta 
(African 
Marigold) cv. 
America Antigua 
Yellow 

10 day delay 

Chrysanthemum 
seticuspe 

20 µmol 
m-2 s-1 

LED peak at 
about 740 nm 10 min 8h/16h no effect Higuchi et 

al. [26] 
Supplementary 
data 

Chrysanthemum 
morifolium 
Ramat. cv. Iwa no 
hakusen 6.6 µmol 

m-2 s-1 

LED peak at 
728 nm, 

quantified 
from 400 to 

800 nm 

6 h 12h/12h 

Reduced stage of 
flowering from 0.86 
to 0.27 (scale from 0 
to 1) - 96% 
reduction Liao et al. 

[27] 

R NB similar 
to SD 

Chrysanthemum 
morifolium 
Ramat. cv. Jimba 

no effect   
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Dendranthema 
grandiforum cv. 
Gaya Yellow 

10 µmol 
m-2 s-1 

LED peak at 
730 nm 4 h 10h/14h no effect Park and 

Jeong [22]   

 

 
 Material and Methods  

6.3.1 Plant Materials 

Soybean (Glycine max cv. Hoyt) were seeded into 1.7 L pots inside a greenhouse. 

Rooted cuttings of medicinal hemp (Cannabis sativa L. cv. T1 “Trump”) were transplanted 

into 6.5 L pots filled with a 3:1 mixture of peat/vermiculite. The media was amended with 

1.6 g per L of dolomitic lime to bring the pH to 5.8 and 0.8 g per L Gypsum (CaSO4) to 

provide additional sulfur. Soybeans emerged four days after planting and were moved from 

the greenhouse into the growth chamber (CMP 3023, Conviron, Winnipeg, Canada). After 

transplanting, the Cannabis was grown in the greenhouse for one week (28/25 ˚C day/night; 

18/6 h day/night) before moving into the growth chamber. 

 

6.3.2 Spectral Treatments 

A growth chamber (0.77 ×1.8 m) was split in half with white reflective cardboard to 

minimize light contamination between sections. The background spectrum for both sides was 

provided by white + red LEDs (Icarus Vi, BIOS, Melbourne FL), which had 10% blue (400 

to 500 nm), 22% green (500 to 600 nm), and 68% red (600 to 700 nm). Two NIR LED 

fixtures (Ray 22 custom spectra; Fluence Bioengineering, Austin, TX) with a peak at about 

850 nm were added to one side of the chamber. The other side received no NIR photons.  
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For soybean, two studies were conducted in time, one with a control and a low NIR 

treatment [nighttime NIR photon flux density (700 to 900 nm) = 44 µmol m-2 s-1], and a 

second study with a control and a high NIR treatment (nighttime NIR photon flux density = 

87 µmol m-2 s-1). Each study contained 12 plants per treatment. The Cannabis study was 

conducted across three studies in time. In addition to the controls, the first study contained a 

high night far-red flux density (nighttime NIR photon flux density = 62 µmol m-2 s-1) with 

four replicate plants and the second and third studies contained a low night far-red flux 

density (nighttime NIR photon flux density = 121 µmol m-2 s-1) with three replicate plants.  

The white + red background light was applied for a 12 h photoperiod and the NIR 

was applied for the full 24 h. Measurements were made with a spectroradiometer (PS-300; 

Apogee instruments; Logan, UT) with 13 measurements made for each treatment. Spectral 

traces from the Cannabis study are shown in Fig 6-2. The spectral data is summarized in 

Table 6.2. To increase the accuracy of far-red measurements (700 to 800 nm) a high 

integration time was used to improve the signal to noise ratio. Table 6.2 splits the flux f 

photons from NIR LEDs into three regions: FR-A (700 to 749 nm), FR-B (750 to 799 nm) 

and FR-C (800 to 900 nm). Nighttime PPE was calculated assuming only photoconversions 

(no thermal reversion; see more details in Discussion) using data from Kelly and Lagarias 

[3], Lagarias et al. [4] and Sager et al. [5].  
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Table 6.2. Spectral analysis of near infrared (NIR) treatments. Values in this table 
represent averages from 13 measurements in each chamber. Additionally, treatments with the 
same level of NIR are averaged together.  
 
  Soybean 
  Day Night 
  control low NIR high NIR control low NIR high NIR 

PPFD (400 - 700 nm) 646 638 651 - - - 
              

FR photon flux density             
FR-A (700 - 749 nm) 10 10 10 0.0 0.1 0.2 
FR-B (750 - 799 nm) 3.2 4.8 7 0.1 1.7 3.8 
FR-C (800 - 900 nm) 4.7 41 83 2.0 42 83 

              
PPE             

Kelly and Lagarias (1985) 0.87 0.87 0.87 - 0.11 0.12 
Lagarias et al. (1987) 0.86 0.86 0.86 - 0.11 0.11 

Sager et al. (1988) 0.88 0.88 0.87 - 0.21 0.20 
              
  Cannabis 
  Day Night 
  control low NIR high NIR control low NIR high NIR 

PPFD (400 - 700 nm) 832 840 837 - - - 
              

FR photon flux density             
FR-A (700 - 749 nm) 13 13.6 14 0.0 0.1 0.3 
FR-B (750 - 799 nm) 4.3 6.4 8.9 0.1 2.6 5.2 
FR-C (800 - 900 nm) 5.8 55 114 2.0 59 116 

              
PPE             

Kelly and Lagarias (1985) 0.87 0.86 0.87 - 0.08 0.12 
Lagarias et al. (1987) 0.86 0.86 0.86 - 0.09 0.12 

Sager et al. (1988) 0.88 0.87 0.87 - 0.19 0.21 
 

6.3.3 Environmental Conditions 

Temperature was a constant 26 °C day/night in the growth chambers (Fig 6-3). CO2 

was maintained at 400 ppm. Inductive photoperiods (12/12 h day/night) began when plants 

were moved into the growth chambers. Plants were irrigated daily to a 10% excess with a 

complete liquid fertilizer [Peter’s Peat-lite professional 20-10-20 (20N-4.4P-16.6K), Everris 

NA, Inc., Dublin, OH] at a rate of 120 mg N per L. Greencare micronutrients (Greencare 
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Fertilizers, Inc., Kankakee, IL) were added at a rate of 7 mg per L. AgSil 16H (PQ 

Corporation, Malvern, PA) was added using a second proportioner for the liquid fertilizer at a 

rate of 8.4 mg Si (0.3 mmol Si) per L. Electrical conductivity (EC) of the nutrient solution 

was  1.2 mS cm-1 and pH was 6.8. 

 

Fig 6-2. Spectral distribution from the Cannabis studies. The black line is the background 
spectral distribution used in all treatments including the control. The red and green lines 
show the two intensities of added photons from a near-infrared (NIR) LED (low NIR and 
high NIR in Table 2). Inset: spectral distribution between 700 and 800 nm of nighttime light 
pollution from NIR LEDs. Spectral distributions in the soybean study had the same shapes 
but with lower overall intensities. 
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Fig 6-3. Photo at the end of the soybean (A) and Cannabis (B) study. The near infra-red 
(NIR) LEDs, circled in red, were provided for the full 24 h, while the background light was 
provided for a 12 h photoperiod. The no NIR treatment was a control with a long (12 h 
uninterrupted) night. 

 

6.3.4 Plant Measurements 

Plants were monitored daily to determine time to flowering. In soybean, time to 

flowering was determined by emergence of the first colored flower. In Cannabis, time to 

flowering was determined as when the apical inflorescence reached 2 mm.  Stem length of 

soybean was measured from the base of the stem to the apical meristem when flowering first 

occurred.   



187 

6.3.5 Statistics 

All data were analyzed using SigmaPlot graphical/statistical software (Systat 

Software, Inc., San Jose CA). All plants within each treatment were averaged together and 

analyzed using linear regression.  

 

 Results & Discussion 

6.4.1 Flowering 

Increasing the photon flux density from NIR LEDs delayed flowering (increased time 

to flowering) in both soybean (p = 0.056) and Cannabis (Fig 6-4, p = 0.014). On average, the 

high NIR treatment flowered 3 and 12 d later than the dark SD control in soybean and 

Cannabis, respectively.  All soybean plants flowered within three days of each other and all 

Cannabis plants flowered within four days of each other. Plants were not rotated in the 

chambers, and thus only the average response within the chamber was used for statistical 

analysis. 

Previous studies have provided conflicting evidence regarding the effects of night-

break photons beyond 700 nm on time to flower (Table 6.1). Flowering is a complex process, 

and the molecular/genetic mechanisms regulating photoperiodic flowering continue to be 

investigated. Many details of this process, as well as the universality of metabolic pathways 

remain uncertain [12]. Nevertheless, it is well established that phytochromes play an essential 

role in flowering [9], but these photoreceptor proteins act on at least three separate metabolic 

pathways: the circadian oscillator [11,30], transcriptional regulation [12] and post-

transcriptional stabilization [13]. Circadian control and transcription both require the nuclear 
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localization of phytochrome. Only the Pfr form of phytochrome can enter the nucleus to 

disrupt flowering in night-break or nighttime photon conditions. The necessary thresholds of 

Pfr to affect these responses are not known and likely differ among species [31]. Kasperbauer 

et al. [19] speculated from their data that just 1 to 2% of phytochrome in the active form for 

varied significantly for the night period (Table 6.2). Nonetheless, they estimated that between 

10 to 20% of the total pool of phytochrome was in the Pfr form during the night in this study 

 

Fig 6-4. Effect of photons (700 and 900 nm) on time to flowering in soybean and 
Cannabis. Data points are the average effect within each treatment. 
 
(Table 6.2). These estimations of Pfr as a fraction of Ptotal are likely too high because they do 

not include thermal reversion of Pfr back to Pr. Schafer et al. [7] estimated the lowest 
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theoretical PPE under monochromatic longer-wavelength (greater than 780 nm) photons is 

about 0.0001 or 0.01% Pfr.  

Reversion/relaxation of Pfr back into Pr occurs in a non-photochemical process that is 

temperature dependent. This process was historically called dark reversion, but is now called 

thermal reversion. Thermal reversion has been well studied [32], but it has only recently been 

incorporated into estimates of Pfr to Ptotal, especially in low light [33-35].    

Jung et al. [36] determined that Arabidopsis thaliana phyB-Pfr had a half-life of about 

52 minutes at 27 ˚C, the approximate temperature of this study. This half-life likely only 

applies to phyB at 27 ˚C. Warmer temperatures result in shorter half-lives compared to cooler 

temperatures.  Additionally, different types of phytochromes have different stabilities. For 

example, phyA demonstrates thermal reversion in multiple species [32], phyD is thermally 

unstable, and phyE is highly thermostable [37]. Osugi et al. [10] determined that all 

phytochromes in rice (phyA, phyB and phyC) play a role in flowering, making it difficult to 

estimate the thermal reversion of the phytochromes in the species used in this study. 

Altogether, it was difficult to predict the nighttime PPE due to variation (and possible 

inaccuracy) in the photoconversion cross-sections, spectral distortions within leaves [2,19] 

and unknown thermal reversion rates.  

Nonetheless, the photoconversion cross-sections determined in vitro are not zero 

beyond 750 nm (Fig 6-1), which overlaps with the spectral output from the NIR LED, 

indicating that some amount of Pr will be converted into Pfr during the night period with NIR 

photons. 
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There are concerns in the Cannabis industry that photons from NIR LEDs cause 

monecious flowering. Cannabis is naturally dioecious; only female plants are desired for 

medical Cannabis cultivation. Monoecious flowering is often confused with 

hermaphroditism. Botanically, these terms are distinct: monoecious refers to the presence of 

separate male and female flowers on the same plant, while hermaphrodite refers to the 

presence of both male and female reproductive organs within an individual flower [38]. In 

practice, the distinction is not important because monoecious and hermaphroditic Cannabis 

produce pollen and potentially reduce product quality and value [39]. The tendency of  

 

Fig 6-5. Effect of photons (between 700 and 900 nm) on soybean height at flowering. 
Data points are the average effect within each treatment.   

Cannabis to form monoecious or hermaphroditic plants is under genetic and environmental 

influence [40,41]. No monoecious or hermaphrodite plants were observed in this study, but 

we did not grow the plants to maturity.  
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6.4.2 Stem Length 

Soybean plant height at flowering was increased by photons from the NIR LEDs (Fig 

6-5). The coefficient of variation (standard deviation divided by the mean) of plant height at 

flowering in each treatment was at most 0.15. 

Far-red photons have a powerful effect on stem elongation in soybeans [28], so the 

effect of photons from NIR LEDs on soybean plant height (p = 0.057) was not entirely 

surprising (Figs 6-3 and Fig 6-5). Pfr inhibits the activity of transcription factors that promote 

stem elongation meaning that this elongation response is caused by the inactivation of 

phytochrome, Pfr to Pr [29].  

 
Fig 6-6. Total photon flux density from a near infrared (NIR) LED floodlight as a 
function of distance. These measurements were made directly below the floodlight at 
increasing distances, and they follow the inverse square law.  

We conclude that photons from NIR LEDs applied for 24 h per day can both 

inactivate Pfr to Pr inducing stem elongation and activate Pr to Pfr delaying flowering in 

sensitive SDP. For practical applications, this means that the NIR LEDs in security cameras 

for night-vision in controlled environment plant growth have the potential to alter plant 
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development. We measured the photon flux from an NIR floodlight, which is used to 

increase the range of night-vision for a security camera, to determine the intensities that 

plants might be exposed to in commercial setting (Fig 6-6). The photon flux density at one 

meter of the floodlight was about 25 µmol m-2 s-1. Our data indicate that this intensity may be 

enough to delay flowering by one day in soybean and two days in Cannabis. Additionally, 

this intensity from the NIR LEDs is enough to increase stem elongation by 33% in soybean. 

It should be noted that these measurements were made with a floodlight, which represents a 

much higher flux of NIR photons compared to the flux of just a security camera – although, 

floodlights can be used in controlled environment settings. Additionally, most plants would 

not be within one meter of the NIR LEDs. By a distance of about 3 m, the photon flux from 

these LEDs drops to about one µmol m-2 s-1, which is likely too low to have any noticeable 

effects. Therefore, although NIR photons from security cameras can have affect plant growth 

and development, intensities are likely too low to be effective.  

 

 Literature Cited 

1. Smith H. Phytochromes and light signal perception by plants—an emerging synthesis. 
Nature. 2000; 407: 585-591. doi: 10.1038/35036500 

2. Seyfried M, Schäfer E. Action spectra of phytochrome in vivo. Photochem Photobiol. 
1985; 42: 319-326. doi: 10.1111/j.1751-1097.1985.tb08947.x 

3. Kelly JM, Lagarias JC. Photochemistry of 124-kilodalton Avena phytochrome under 
constant illumination in vitro. Biochemistry. 1985; 24: 6003-6010. doi: 
10.1021/bi00342a047 

4. Lagarias JC, Kelly JM, Cyr KL, Smith Jr WO. Comparative photochemical analysis 
of highly purified 124 kilodalton oat and rye phytochromes in vitro. Photochem 
Photobiol. 1987; 46:5-13. doi: 10.1111/j.1751-1097.1987.tb04729.x 

5. Sager JC, Smith WO, Edwards JL, Cyr KL. Photosynthetic efficiency and 
phytochrome photoequilibria determination using spectral data. Trans Am Soc Agri. 
Eng. 1988; 31: 1882-1889. doi: 10.13031/2013.30952 



193 

6. Shinomura T, Nagatani A, Hanzawa H, Kubota M, Watanabe M, Furuya M. Action 
spectra for phytochrome A-and B-specific photoinduction of seed germination in 
Arabidopsis thaliana. Proc Natl Acad Sci USA. 1996; 93: 8129-8133. doi: 
10.1073/pnas.93.15.8129 

7. Schäfer E, Lassig TU, Schopfer P. Phytochrome-controlled extension growth of 
Avena sativa L. seedlings. Planta 1982; 154: 231-240. 

8. Vince-Prue D. The role of the dark period and its interaction with light. In: Vince-
Prue D, editor. Photoperiodism in plants. London: McGraw-Hill; 1975. pp. 70-97.  

9. Vince-Prue D. The duration of light and photoperiodic responses. In: Kendrick RE, 
Kronenberg GHM, editors. Photomorphogenesis in plants. Dordrecht: Springer; 1994. 
pp. 447-490. doi: 10.1007/978-94-011-1884-2_17 

10. Osugi A, Itoh H, Ikeda-Kawakatsu K, Takano M, Izawa T. Molecular dissection of 
the roles of phytochrome in photoperiodic flowering in rice. Plant Physiol. 2011; 157: 
1128-1137. doi: 10.1104/pp.111.181792 

11. Wang H, Wang H. Phytochrome signaling: time to tighten up the loose ends. Mol 
Plant. 2015; 8: 540-551. doi: 10.1016/j.molp.2014.11.021 

12. Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T. Photoperiodic flowering: 
time measurement mechanisms in leaves. Annu Rev Plant Biol. 2015; 66: 441-464. 
doi: 10.1146/annurev-arplant-043014-115555 

13. Zheng T, Sun J, Zhou S, Chen S, Lu J, Cui S, Tian Y, Zhang H, Cai M, Zhu S, Wu 
M. Post‐transcriptional regulation of Ghd7 protein stability by phytochrome and 
OsGI in photoperiodic control of flowering in rice. New Phytologist. 2019; 224: 306-
320. doi: 10.1111/nph.16010 

14. Parker MW, Hendricks SB, Borthwick HA, Scully N. Action spectrum for the 
photoperiodic control of floral initiation of short-day plants. Bot Gaz. 1946; 108: 1-
26. doi: 10.1086/335392 

15. Borthwick HA, Hendricks SB, Parker MW, Toole EH, Toole VK. A reversible 
photoreaction controlling seed germination. Proc Natl Acad Sci USA. 1952; 38: 662-
666. doi: 10.1073/pnas.38.8.662 

16. Borthwick HA, Hendricks SB, Parker MW. The reaction controlling floral initiation. 
Proc Natl Acad Sci USA. 1952; 38: 929-934. doi: 10.1073/pnas.38.11.929 

17. Downs RJ. Photoreversibility of Flower Initiation. Plant Physiol. 1956; 31: 279-284. 
doi: 10.1104/pp.31.4.279 

18. Cathey HM, Borthwick HA. Photoreversibility of floral initiation in chrysanthemum. 
Bot Gaz. 1957; 119: 71-76. doi: 10.1086/335964 

19. Kasperbauer MJ, Borthwick HA, Hendricks SB. Inhibition of flowering of 
Chenopodium rubrum by prolonged far-red radiation. Bot Gaz. 1963; 124: 444-451. 
doi: 10.1086/336234 

20. Mancinelli AL, Downs RJ. Inhibition of flowering of Xanthium pensylvanicum 
Wallr. By prolonged irradiation with far red. Plant Physiol. 1967; 42: 95-98. doi: 
10.1104/pp.42.1.95 

21. Craig DS, Runkle ES. Using LEDs to quantify the effect of the red to far-red ratio of 
night-interruption lighting on flowering of photoperiodic crops. Acta Hort. 2012; 
956: 179-185. doi: 10.17660/ActaHortic.2012.956.18 

https://doi.org/10.1007/978-94-011-1884-2_17


194 

22. Park YG, Jeong BR. Night interruption light quality changes morphogenesis, 
flowering, and gene expression in Dendranthema grandiflorum. Hort. Environ. 
Biotechnol. 2019; 60: 167-173. doi: 10.1007/s13580-018-0114-z 

23. Ishikawa R, Shinomura T, Takano M, Shimamoto K. Phytochrome dependent 
quantitative control of Hd3a transcription is the basis of the night break effect in rice 
flowering. Genes Genet Sys. 2009; 84: 179-184. doi: 10.1266/ggs.84.179 

24. Higuchi Y, Sumitomo K, Oda A, Shimizu H, Hisamatsu T. Day light quality affects 
the night-break response in the short-day plant chrysanthemum, suggesting 
differential phytochrome-mediated regulation of flowering. J Plant Physiol. 2012; 
169: 1789-1796. doi: 10.1016/j.jplph.2012.07.003 

25. Craig DS, Runkle ES. A moderate to high red to far-red light ratio from light-emitting 
diodes controls flowering of short-day plants. J Am Soc Hort Sci. 2013; 138: 167-
172. doi: 10.21273/JASHS.138.3.167 

26. Higuchi Y, Narumi T, Oda A, Nakano Y, Sumitomo K, Fukai S, Hisamatsu T. The 
gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate 
short-day flowering in chrysanthemums. Proc Natl Acad Sci USA. 2013; 110: 17137-
17142. doi: 10.1073/pnas.1307617110 

27. Liao Y, Suzuki K, Yu W, Zhuang D, Takai Y, Ogasawara R, Shimazu T, Fukui H. 
Night Break Effect of LED Light with Different Wavelengths on Floral Bud 
Differentiation of Chrysanthemum morifolium Ramat ‘Jimba’and Iwa no 
hakusen. Environ. Control Biol. 2014; 52: 45-50. doi: 10.2525/ecb.52.45 

28. Hitz T, Hartung J, Graeff-Hönninger S, Munz S. Morphological response of soybean 
(Glycine max (L.) Merr.) cultivars to light intensity and red to far-red ratio. 
Agronomy. 2019; 9: 428. doi: 10.3390/agronomy9080428 

29. Legris M, Ince YÇ, Fankhauser C. Molecular mechanisms underlying phytochrome-
controlled morphogenesis in plants. Nat. Commun. 2019; 10: 1-5. doi: 
10.1038/s41467-019-13045-0 

30. Oakenfull RJ, Davis SJ. Shining a light on the Arabidopsis circadian clock. Plant Cell 
Environ. 2017; 40: 2571-2585. doi: 10.1111/pce.13033 

31. Chen M, Chory J. Phytochrome signaling mechanisms and the control of plant 
development. Trends Cell Biol. 2011; 21: 664-671. doi: 10.1016/j.tcb.2011.07.002 

32. Klose C, Nagy F, Schäfer E. Thermal reversion of plant phytochromes. Mol Plant. 
2020; 13: 386-397. doi: 10.1016/j.molp.2019.12.004 

33. Rausenberger J, Hussong A, Kircher S, Kirchenbauer D, Timmer J, Nagy F, Schäfer 
E, Fleck C. An integrative model for phytochrome B mediated photomorphogenesis: 
from protein dynamics to physiology. PLoS One. 2010; 5: e10721. doi: 
10.1371/journal.pone.0010721 

34. Klose C, Venezia F, Hussong A, Kircher S, Schäfer E, Fleck C. Systematic analysis 
of how phytochrome B dimerization determines its specificity. Nat Plants. 2015; 1: 1-
9. doi: 10.1038/nplants.2015.90 

35. Sellaro R, Smith RW, Legris M, Fleck C, Casal JJ. Phytochrome B dynamics departs 
from photoequilibrium in the field. Plant Cell Environ. 2019; 42: 606-617. doi: 
10.1111/pce.13445 

https://doi.org/10.2525/ecb.52.45


195 

36. Jung JH, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak AK, Box MS, 
Charoensawan V, Cortijo S, Kumar M. Phytochromes function as thermosensors in 
Arabidopsis. Science. 2016; 354: 886-889. doi: 10.1126/science.aaf6005 

37. Viczián A, Ádám É, Staudt AM, Lambert D, Klement E, Romero Montepaone S, 
Hiltbrunner A, Casal J, Schäfer E, Nagy F, Klose C. Differential phosphorylation of 
the N‐terminal extension regulates phytochrome B signaling. New Phytologist. 2020; 
225: 1635-1650. doi: 10.1111/nph.16243 

38. Lebel-Hardenack S, Grant SR. Genetics of sex determination in flowering plants. 
Trends Plant Sci. 1997; 2: 130-136. doi: 10.1016/S1360-1385(97)01012-1 

39. Punja ZK, Holmes JE. Hermaphroditism in Marijuana (Cannabis sativa L.) 
Inflorescences–Impact on Floral Morphology, Seed Formation, Progeny Sex Ratios, 
and Genetic Variation. Front Plant Sci. 2020; 11 :718. doi: 10.3389/fpls.2020.00718 

40. Moliterni VC, Cattivelli L, Ranalli P, Mandolino G. The sexual differentiation of 
Cannabis sativa L.: a morphological and molecular study. Euphytica. 2004; 140: 95-
106. doi: 10.1007/s10681-004-4758-7 

41. Faux AM, Berhin A, Dauguet N, Bertin P. Sex chromosomes and quantitative sex 
expression in monoecious hemp (Cannabis sativa L.). Euphytica. 2014; 196: 183-197. 
doi: 10.1007/s10681-013-1023-y 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



196 

CHAPTER 7 

SUMMARY AND CONCLUSIONS 

 

 Specific Objectives and Hypotheses 

1) In addressing the first objective, to determine the effect and interactions of blue and 

green photons fluxes on plant morphology, we concluded that: 

a. Increasing the fraction of blue photons reduced leaf area and dry mass in 

lettuce, cucumber and tomato, while increasing the fraction of green photons 

only increased leaf area and dry mass in tomato. Stem length was reduced by 

an increasing fraction of blue photons, and increased by an increasing fraction 

of green photons in both cucumber and tomato.  

b. Blue photon fraction interacted with intensity in predicting dry mass in 

cucumber, leaf area in cucumber, specific leaf mass in tomato, and plant 

height in tomato, but of these interactions, only plant height in tomato showed 

a larger response at low photon intensity.  

c. Blue photon fraction interacted with green photon fraction in predicting dry 

mass in lettuce, leaf area in lettuce and cucumber, plant height in tomato, and 

petiole length in cucumber. For all of these parameters, with the exception of 

plant height in tomato, this interaction showed that green photons had bigger 

effects when the fraction of blue photons was lower.  

2) In addressing the second objective, to investigate metrics that are commonly used to 

predict morphological responses to far-red, we concluded that: 
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a. We conclude that simple environmental metrics, like the FR fraction/percent 

far-red were as predictive as PPE.  

b. The R:FR ratio, a metric that is commonly used in photobiology, can 

theoretically approach infinity, and is therefore was not predictive.  

3) In addressing the third objective, to improve the phytochrome photoequilibrium 

(PPE) model by accounting for spectral distortions within leaves, we conclude that: 

a. Accounting for spectral distortion within leaves resulted in predictions of PPE 

that better predicted stem elongation in cucumber. 

b. Assuming phytochrome was homogeneously distributed within all leaf tissue 

resulted in a better relationship between PPE and stem elongation than 

assuming phytochrome was only located in epidermal tissue.  

4) In addressing the forth objective, to investigate how plant responses to far-red 

interacted with intensity, we conclude that: 

a. Photon flux density interacted with percent far-red to predict stem elongation 

biomass partitioning (between leaves and stems) in lettuce. Interactions were 

also present in cucumber, but less pronounced.  

b. The interactions between percent far-red and photon intensity on biomass 

partitioning resulted in far-red induced increases in leaf expansion at high 

photon fluxes, but decreases at low photon fluxes in lettuce.  

6) In addressing the fifth objective, to determine if photons from NIR LEDs can affect 

plant growth and development, we conclude that: 

a. Photons from NIR LEDs can delay flowering of SDP when applied during the 

dark period.  
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b. Photons from NIR LEDs can increase stem elongation. 

c. The intensities in practical applications are likely too low to induce these 

responses.  

 

 Broad Scientific Conclusions 

Plants are highly responsive to changes in the photon environment, a phenomenon 

that has been extensively modeled. Photobiological models can be highly complex (Smith 

and Fleck, 2019), and still fail to predict responses (Fig. H-3). This failure is primarily due to 

the difficulty in incorporating all of the complex interactions between downstream factors 

within a plant.  

Phytochrome photoequilibrium is one such model that has existed for over half a 

century (Hartmann, 1966). Its predictive capability was improved by accounting for spectral 

distortions within leaf tissue, solving only one of several problems with this model (Kusuma 

and Bugbee, 2021). Many molecular pathways have evolved to respond to environmental 

signals, thus, environmental signals, and not molecular models, may be better predictors of 

plant responses. One such metric is the far-red fraction. This was first proposed to be an 

improvement to the R:FR ratio, when equal to the flux of far-red (FR) divided by the flux of 

red (R) plus FR. However, this only predicts responses under phytochrome control, and other 

photoreceptors contribute to the final shape of a plant. Therefore, extending the FR fraction 

to include all wavelengths from 400 to 750 nm provides a simple method to integrate 

responses induced by multiple photoreceptors.  
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Photobiology studies have suggested that green photons act antagonistically to blue 

photons through the cryptochrome photoreceptor. Some shade avoidance responses were 

observed in response to green photons in cucumber and tomato, suggesting that the FR 

fraction could be improved if it incorporated both green and far-red in the numerator. 

However, another study showed that this was not necessary (Fig. 4-5a). It would be useful to 

understanding this discrepancy, and interactions that arise with variations in the extended 

photosynthetic photon flux density (ePPFD). 

Although the FR fraction was shown to be a useful intuitive metric in many of the 

studies presented here, there were notable interactions with ePPFD. The interactions tended 

to be unsurprising in both molecular and ecological contexts, with more pronounced shade 

avoidance responses as ePPFD decreased. Even comparing two horticulturally relevant 

intensities (ePPFD: 200 and 500 µmol m-2 s-1): at the lower intensity, increasing percent far-

red increased shoot biomass partitioning to the stems (decreasing the biomass partitioning to 

the leaves), resulting in an overall decreased in total leaf area (despite an increased in SLA); 

while at the higher intensity, increasing percent far-red had no effect on shoot biomass 

partitioning resulting in an increase in total leaf area (with an increase in SLA). Nonetheless, 

it is difficult to incorporate this interaction into a comprehensive model, especially in the 

pursuit of simplicity.   

 Even if environmental signals may be better predictors of plant morphology than 

molecular models, it is still useful to understand the components of the complex cellular 

signaling because it may help identify specific modes of action or genes that can be 

manipulated to improve crop yields. In addition to improvements, negative consequences of 

certain photon environments may become more predictable. For example, the delay in 
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flowering observed when photons from an NIR LED were applied during the dark period of 

Cannabis and soybean.   

 

 Broad Applied Conclusions 

From an applied perspective, the primary goal of photobiology in horticulture (and 

most applied fields for that matter) is to maximize outputs while minimizing inputs. 

Increasing leaf area increases photons capture, which increases yield. Therefore, in general, 

the optimum spectrum is one that induces faster leaf expansion. Unfortunately, responses are 

species specific, and therefore optimal spectra will be species specific.   

The studies presented here show that substituting traditionally defined 

photosynthetically active radiation (PAR) with FR can result in increases in leaf area and dry 

mass, but responses tended to be more beneficial at higher levels of ePPFD (500 compared to 

both 100 and 200 µmol m-2 s-1). Additionally, while there are clear benefits of adding about 

20% FR from LEDs, effects beyond this remain undetermined. More studies are required to 

fine-tune the optimum fraction of FR.  

Green photons increased biomass accumulation in tomato in a short-term study, but 

further investigation is required to test long-term plant yields. Ji et al. (2020) showed that FR, 

which is known to increase biomass partitioning to stems, increased tomato fruit sink 

strength – leading to increased yields. Perhaps green photons induce a similar response. 

Finally, lettuce and cucumber, two species that were statistically unresponsive to green 

photons, showed an interaction between blue and green photons in the prediction of leaf area, 

indicating that perhaps green is beneficial when the flux of blue photons is low.  
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Many studies indicate that blue photons ought to be minimized in a growth spectrum 

in order to maximize biomass accumulation (although higher fractions of blue can increase 

the concentrations of beneficial secondary metabolites). Some studies have shown that 

eliminating blue photons entirely can increase yields (Meng et al., 2020; Son and Oh, 2013; 

Wang et al., 2016) while other studies show decreased yields (Hernández and Kubota, 2016; 

Snowden et al., 2016; Yorio et al., 2001). Like many photobiological responses, effects are 

species specific.  
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A.1 History of Lighting Technologies 

For most of human history fires, candles and oil lamps provided light for human vision 

in the dark. Then, over 200 years ago, advances in electric technology began to revolutionize 

lighting. The first practical electric light was the carbon arc lamp, which was commercialized 

decades before the well-known incandescent light bulbD. Arc lamps conduct electricity 

through the air, ionizing the gaseous particles in the process. These ionized atoms can 

transfer electrons as they collide. When an ionized gaseous atom accepts an electron, the 

electron “relaxes” to a lower energy level, releasing a photon in the process. Carbon arc 

lamps were phased out in favor of Thomas Edison’s safer and more reliable incandescent 

light bulb. Incandescent bulbs use electricity to heat a filament until it glows (following the 

Stefan-Boltzmann law), providing light in a similar manner to the Sun. The incandescent 

bulb dominated for much of the 20th century but towards the mid to end of the century 

fluorescent lamps, a type of gaseous discharge lamp, began to dominate due to their higher 

efficiency. Gaseous discharge lamps operate in the same manner as carbon arc lamps, but 

ionize a specific, contained gas rather than simply ionizing air. Fluorescent lamps, which 

ionize mercury gas, are so named because they use a material called a phosphor to absorbs 

ultra-violet (UV) photons and re-emit them in the visible region - a process called 

fluorescence. Fluorescent lamps have low internal gas pressures, but by increasing the 

pressures, high intensity discharge (HID) lamps such as high-pressure sodium and metal 

halide lamps became popular in the latter half of the 20th century and are still widely used  

 
D The invention of incandescent light bulb predated carbon arc lamps by four years, but these early incandescent 
bulbs were too short-lived to have practical application.  
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Figure A-1: Historical increase in efficiency of lighting technologies. Efficiency here 
describes the photon energy output (400 to 700 nm) divided by the electrical energy 
input. Dashed lines indicate the projected increase in technologies for the next 30 years. 
LED efficiency in this graph represents efficiency of a combination of red and blue 
LEDs at about 350 mA per mm-2. Under lower drive currents, the efficiency of these 
LEDs can approach 90%.  
 

(e.g., for streetlights). These HID lamps are even more efficient than fluorescent lamps and 

typically have high power ratings (e.g., 400, 600, and 1000 W). Within the last two decades, 

fluorescent lamps and even some HID lamps have been phased out in favor of much higher 

efficiency light-emitting diodes (LEDs), a solid-state-lighting-technology. Like gaseous 

discharge lamps, LEDs also emit photons through the relaxation of excited electrons, but 

LEDs conduct charge through a solid material rather than a gas and operate at low voltage 
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instead of high voltage. Each technology replaced its predecessor due to improvements in 

their efficiencies (Figure A-1; Nakamura et al., 2010).  

 

A.2 Lighting Technologies for Plant Growth 

Electric lighting for use in plant growth environments closely followed developments 

in human lighting (Wheeler et al., 2008). Early plant photobiology research utilized both 

carbon arc and incandescent lamps to provide sole-source lighting in indoor environments 

(Sage, 1992), but carbon arcs were generally not favored due to their high maintenance 

requirement and hazardous operation. In these early days of plant photobiology, studies 

investigated the effects of different colors on crop growth by using colored filters and prisms 

(Sage, 1992). With the development of fluorescent lamps, many growth chambers in the 

latter half of the 20th century were fitted with fluorescent and incandescent lamps (Downs, 

1977). Fluorescent lamps could be designed with specific phosphors that re-emitted the 

absorbed photons at specific wavelengths, thus fluorescent lamps could output (for example) 

a green or red dominant spectrum. This further allowed the investigation of the effect of 

specific wavelength photons on plant growth. But, as with human lighting, these technologies 

are being phased out for LEDs. Broad spectrum white LEDs contain a phosphor, like 

fluorescent lamps, that absorb blue photons and re-emit longer wavelength photons, but 

LEDs can also be designed to output narrow spectrum photons across the visible spectrum.  
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A.3 Physics of Spectral Output 

Regarding the investigation of spectral effects on plant growth, it is interesting to 

consider the physics related to unique spectral output from specific types of lamps. In 

gaseous discharge lamps and LEDs, as electrons “relax” the wavelength of the emitted 

photon depends on the energy difference between the excited and relaxed states. Therefore, 

the spectral photon distribution from gaseous discharge lamps depends on the emission 

spectrum of the specific gas, which is determined by the potentially energy states of the 

excited electron. Under low pressure, the atoms are dispersed and in a relatively uniform 

energy state, limiting the emission spectrum to fewer and fewer wavelengths, but at higher 

pressures, the atoms are packed in higher density, decreasing the uniformity of energy states, 

and therefore the energy difference between the exited and relaxed states becomes 

increasingly broad, as does the spectral photon distribution. LEDs can de designed to 

carefully control the energy bandgap between the excited and relaxed states of the electrons, 

limiting the photons to narrow bandwidths (in a relatively Gaussian distribution). The 

spectral photon distribution of incandescent lamps, on the other hand, is determined by their 

temperature, as well as both the Stefan-Boltzmann and Wien’s laws. In terms of converting 

power to electromagnetic radiation, incandescent lamps are very efficient, but most of the 

radiation is in the infrared. Halogen lamps are a type of incandescent lamp that can reach 

higher temperatures than traditional incandescent lamps, shifting the spectrum to shorter 

(blue) wavelengths. The high temperature required to produce this higher flux of shorter 

wavelength (higher energy) blue photons in a halogen bulb evaporates the tungsten in the 

filament. This would shorted the life of a normal incandescent lamp, but the halogen bulb 

contains an inert noble gas mixed with a small portion of a halogen (iodine or bromine), 
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which sets up a reversible reaction cycle wherein the evaporated tungsten is deposited back 

onto the filament.  

Although the history and physics of these older lighting technologies are interesting, 

LEDs are far superior – both because of their narrow spectrum and because of their much 

higher efficiency. These two considerations (efficiency and spectrum) make indoor farming 

possible. 
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CURRENT AND POTENTIAL                                                                                            

LED EFFICACYE 
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B. 1 Overview   

Light emitting diodes (LEDs) have enabled a historic increase in the conversion of 

electric energy to photons, but this is approaching a physical limit. The theoretical maximum 

efficiency occurs when all input energy is converted to energy in photosynthetic photons.  

Blue LEDs can be 93% efficient, phosphor-converted “whites” 76% efficient, and red LEDs 

81% efficient. These improvements open new opportunities for horticultural lighting.  Here 

we review 1) fundamental physics and efficiency of LEDs, 2) the current efficacy of LEDs 3) 

the effect of spectral quality on crop yield and 4) the potential efficacy of horticultural 

fixtures.  Advances in the conversion of photons to yield can be achieved by optimization of 

spectral effects on plant morphology, which vary among species. Conversely, spectral effects 

on photosynthesis are remarkably similar across species, but the conventional definition of 

photosynthetic photons (400–700 nm) may need to be modified. The upper limit of LED 

fixture efficacy is determined by the LED package efficacy multiplied by four factors 

inherent to all fixtures: current droop, thermal droop, driver (power supply) inefficiencies, 

and optical losses. With current LED technology, the calculations indicate efficacy limits of 

3.4 µmol J-1 for white+red fixtures and 4.1 µmol J-1 for blue+red fixtures.  Adding optical 

protection from water and high humidity reduces these values by about 10%.  We describe 

tradeoffs between peak efficacy and cost. 

 

B.2 Physics 

The term efficiency applies to ratios with the same units in the numerator and 

denominator, which can be expressed as a percentage. LED efficiency describes the optical 
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power output divided by the electrical power input (watt/watt or %). The term efficacy 

applies to ratios with different units. In horticultural lighting, efficacy refers to micromoles of 

photon output per second, per watt of input power. Since a watt is a joule per second, this 

simplifies to µmol per joule. The relationship between photon energy and wavelength is 

expressed in the Planck-Einstein relation, often just called Planck’s equation. This equation 

states that energy is inversely proportional to wavelength (E=hc/λ). This equation is used to 

convert between efficiency and efficacy, and it is used to calculate the maximum possible 

photosynthetic photon efficacy for a given spectrum. 

By converting LED efficiency into efficacy we get the appropriate units for 

determining the impact of photons on plants per input electrical power.   This follows another 

physical law called the Stark-Einstein Law, which states that for every photon absorbed, only 

one molecule can react. This Law can be restated to say that one photon excites one electron. 

In this paper, photon efficacy is limited to photons between 400 and 700 nm, except in the 

case of far-red LEDs, where photons from up to 800 nm are included. LED package 

manufacturers often report efficacy in lumens per watt, because this is a meaningful metric 

for human lighting, but it is not applicable for horticultural lighting because it is a measure of 

photons weighted for human vision based on the human eye response to different colors.  

[In this paper, LED refers to an LED package, which is the LED chip inside a 

housing. The housing/packaging enables mechanical and electrical connections to the 

fixture, provides a thermal path, affects photon distribution, and includes the 

phosphor layer for white LEDs (see below).  LED performance specifications are for 

LED packages. An LED fixture refers to LED packages integrated into a fixture.] 
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B.2.1 Fundamental Efficiency of LEDs  

The fundamental efficiency of LEDs (LED packages) is the product of the following 

three sub-efficiencies: 

1. Electrical efficiency: the ratio of the emitted photon energy expressed in 

electron volts to the applied voltage (Vphoton/Vf), affected by internal electrical 

resistance of the LED. 

2. The internal quantum efficiency (photon per electron): the conversion of 

electrons to photons, affected by non-radiative recombination pathways including 

impurities and microphysical defects. 

3. Photon extraction efficiency: the ratio of photons that exit the LED 

semiconductor material to total generated photons, affected by internal reflection and 

reabsorption. Losses in extracting photons out of an LED package are termed 

‘package losses’ within the LED industry.  These can vary greatly among LED 

package types. 

Table B.1: Efficiency and efficacy of some common LEDs at 100 mA per mm2 (near-
optimal efficacy) and a 25 ˚C junction temperature. Data derived from company 
websites (see below). The conversion of efficiency to photon efficacy depends on spectral 
distribution. 

LED 
Peak wavelength 

or correlated color 
temperature 

Efficiency 
(W W-1) 

Photon efficacy 
(µmol J-1) 

Blue 450 nm 0.93 3.5 
Green 530 nm 0.42 1.9 
Red 660 nm 0.81 4.5 

Far-red 730 nm 0.77 4.7 
Cool White 6500 K 0.76 2.9 

Warm White 2700 K 0.69 2.6 
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For a more comprehensive description of LED efficiency, see ref. 1.  Incremental 

improvements have been made to each of the three factors above resulting in a substantial 

improvement of LED packages over the past 10 years. Now, far-red, red, white and blue 

LEDs, respectively, can be 77, 81, 76 and 93% efficient (Table B.1).   

 

B.2.2 White LEDs   

White LEDs consist of blue LEDs with a luminescent material coating (e.g. a 

phosphor material, typically Y3Al5O12:Ce) that absorbs blue photons and luminesces at 

longer wavelengths.  Phosphor-converted white LEDs are designed to transmit some blue 

photons, with the remainder converted to longer wavelengths.  Types and amounts of 

phosphor are varied to create multiple hues and color qualities.  Figure B-1 shows a general 

relationship between correlated color temperature (CCT) and percentage of blue photons 

(400–500 nm). This relationship generally follows Wien’s Displacement Law, which 

indicates that as the CCT increases the peak wavelength decreases. Therefore, white LEDs 

with a high CCT have a higher percentage of blue photons. In addition to CCT, electric lights 

are qualified/quantified by other metrics including CRI and TM-30 (ref. 2). Both CRI and the 

TM-30 metric of Rf use a scale of 0–100 to describe color fidelity.   A high color fidelity 

facilitates observing subtle color differences.  This is important to human observers for visual 

identification of tiny insects, nutritional disorders, and diseases. Suitable color fidelity is also 

necessary for machine vision.  

Commonly used terms to associate names with color temperatures are warm white 

(2500–3500 K), neutral white (3500–4500 K), cool white (4500–5500 K) and daylight 
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(5500–7500 K). A lower CCT (2700–4000 K) and higher CRI (greater than 80) are often 

preferred for indoor lighting to provide incandescent-like light qualities for humans3. 

 
Fig. B-1 The general relationship between color temperature on percent blue photons 
(left axis), and the effect of color temperature on photon efficacy (right axis). Exact 
values vary among manufacturers. Photon efficacy in this graph is presented at a 
junction temperature of 25 ˚C and 150 mA. The efficacy values will shift if these inputs 
are changed, see below.   

 

Increased density of phosphor coatings and increased use of red phosphor materials 

decreases efficiency. A 6500 K LED (daylight) with about 30% blue photons can have 95% 

of the photon output of its non-phosphor-converted blue LED counterpart, but this value 

decreases to 80–85% for a warm white LED with 10% blue photons. Additionally, as the 

optical output of white LEDs increases, the phosphor efficiency will decrease. This is due to 

conversion, energy, and optical losses within the phosphor conversion process. 
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B.2.3 Current Droop 

LEDs are designed for performance at specific current ranges. Moderate LED drive 

current density enables higher efficiency, but at very low drive currents, efficiency decreases. 

LED loss mechanisms are typically a function of current density. So at a given current, 

increasing the size on an LED chip can increase the efficacy of an LED by reducing the 

current density. Unfortunately, chip area is often confidential and LED manufacturers only 

report LED specs at the total LED drive current, not drive current density.  

Figures B-2 and B-3 are calculated using data from Lumileds (Amsterdam, 

Netherlands) (Wouter Soer, personal communication)4, Osram (Munich, Germany) 5-7 and 

Samsung (Seoul, South Korea)8. These companies provide LED efficacy data in µmol J-1. 

Additional LED manufacturers include Nichia (Anan, Japan)9, Cree (Durham, North 

Carolina, USA)10, Epistar (Hsinchu, Taiwan)11, and many others. As technology improves, 

see the companies’ websites to find the latest LED package efficacy information, and apply 

the principles described below to determine potential fixture efficacy. Figure 2 shows the 

decrease in efficacy as a function of drive current density for typical LEDs. This effect is 

referred to as current ‘droop’. Current droop is the decrease in radiative efficiency of the 

LED as current is increased.  For a blue LED current droop is caused by Auger 

recombination12,13.  For a white LED, which has a blue LED and a phosphor conversion 

layer, the droop is caused by Auger in the blue LED and reduction in phosphor conversion 

efficiency at higher optical flux concentrations14.  For red and far-red LEDs, the current 

droop is caused by carrier leakage due to poor confinement of electrons in the active 

regions15.  In general, decreasing the drive current increases the efficacy, but eventually 

Shockley-Read-Hall defect losses will dominate at very low drive current16.  LED 
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manufacturers continue to both increase LED peak efficiency and reduce current droop. The 

theoretical maximum lines for red (centered at 660 nm) and blue (centered at 450 nm) LEDs 

are based on the assumption of 100% power efficiency of the LED or hypothetical photon 

generating device (1 W electricity input = 1 W photon output) followed by a conversion to 

number of photons using Planck’s equation. White LEDs would be as efficient as blue LEDs 

if phosphor conversion was 100% efficient. However, phosphor conversion efficiencies 

range from 80 to 95% depending on amount of phosphor, phosphor material, temperature, 

 

Fig. B-2 Effect of drive current on photon efficacy at a junction temperature of 25 ˚C. 
The dashed lines in this graph represent inadequate test data at low drive currents. 
However, low drive current (e.g. 65 mA) is used in LED fixtures. Blue photons have a 
lower theoretical maximum efficacy than red photons, based on Planck’s equation, 
which states that energy is inversely proportional to wavelength (E = hc/wavelength).  
Blue photons centered at 450 nm can provide 3.76 µmol J-1 and red photons centered at 
660 nm can provide 5.52 µmol J-1. This is really less of a characteristic of the photons 
than of the LEDs that make them.               

and photon flux density. A color-mixed “white” fixture using direct emitting (not phosphor 

converted) green LEDs (550 nm) as well as red and blue LEDs would have a theoretical 
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maximum of about 4.6 µmol J-1, but direct-emitting green LEDs currently have low 

efficiency (referred to as the green gap17) resulting in low efficacy (about 1.9 µmol per J)18.    

 

B.2.4 Thermal Droop 

Junction temperature refers to the operating temperature at the actual diode. There are 

two temperature standards for reporting the efficacy of LEDs: 25 and 85 ˚C. Efficacy 

decreases about 10% as the temperature increases from 25 to 85 ˚C (thermal droop). Thermal 

droop is typically worse in red compared to blue LEDs.  

 

 

 

 

 

 

 

 

 

Fig. B-3 Effect of junction temperature on photon efficacy. Note that higher drive 
currents increase the junction temperature. The dashed lines in this graph represent 
temperatures below 25 ˚C, and therefore temperatures below ambient conditions. 
Reducing the temperature below ambient would be an energy requiring process. 
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B.2.5 Projected Efficacy 

 A timeline of the historic and projected increases in LED efficacy is presented in 

Figure B-4 (ref. 19).   

Figure B-4 has been updated to include an estimation of the efficacy of current LED 

technology. This estimation indicates LED efficacy is approaching a practical maximum. The 

theoretical maximum assumes 100 percent efficiency, but is difficult to attain. Therefore 

efficacy is expected to level off at a practical maximum that is 90% of the theoretical 

maximum.  

 
Fig. B-4 Historical, current and projected LED package combination efficacy of a 
20/80% ratio of blue and red LEDs. This is an average of the two LEDs.  The figure 
constrains LED performance to specific current and temperature operating conditions 
as discussed below. The current technology point is not constrained to these conditions 
so will be higher compared to the figure data. 
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B. 3 LEDs for Horticultural Applications 

Horticultural LED fixtures typically contain combinations of red (peak ≈ 660 nm), 

blue (peak ≈ 450 nm), white, and/or far-red (peak ≈ 730 nm) emitting LEDs. Other peak 

wavelengths are available, but they have lower efficiencies and efficacies and are less 

common. Fixture manufacturers choose the ratios of these LEDs for specific applications and 

based on their perception of best practices and market demands.  

 

B.3.1 History of Horticultural LED Fixtures 

Morrow discussed the significance of LEDs for horticultural lighting and reviewed 

the early adoption of the technology20. The first LED-produced photons used to grow plants 

were red21, which was shortly followed by the development of high output blue LEDs22. For 

a review of the historical significance of this Nobel prize-winning discovery, see ref. 23. 

Before widespread adoption of blue LEDs, early studies demonstrated the value of blue 

photons for plant growth using blue fluorescent fixtures to supplement red photons from 

LEDs24,25. 

The first commercial horticultural LED fixtures were blue+red combinations.  These 

fixtures, which produced a spectrum that appeared magenta, had a higher efficacy than white 

or white+red fixtures. Many people thought that these blue+red fixtures would enhance 

photosynthesis compared to full spectrum fixtures due to their close match to the chlorophyll 

absorption spectrum, which shows peak absorption in the blue and red regions of the 

photosynthetically active radiation (PAR, 400–700 nm) spectrum. This thinking was 

advanced by early LED manufacturers, even though green photons have long been known to 



220 

be effective for photosynthesis26,27. Due to widespread use in lighting applications for human 

vision, white LED packages are now ≈20% of the cost of red LEDs. This has contributed to 

the increase in the fraction of white LEDs to more than 60%, in some horticultural fixtures. 

 

B.3.2 Spectral Effects on Plant Shape and Photosynthesis  

Photons excite electrons and photobiology is thus driven by the number of photons, 

not energy or lumens. Biologically active photons must have sufficiently high energy to 

excite pigment photoreceptors, and there are multiple photoreceptors with weighting 

functions for wavelengths, which are biophysically or empirically derived. Lumens are an 

example of a weighting function applied to a photon flux and spectral distribution for human 

visual function.   

The effect of spectral quality on plant shape is synergistic among wavelengths, 

interacts with intensity, varies among species28 and may vary over the plant life cycle. Some 

principles, however, apply across all species. The impacts of spectrum on plant growth and 

development are much greater in sole-source lighting than in greenhouse supplemental 

lighting where electric lighting makes up only a small portion of the plant lighting diet.    

In plant biology spectra are traditionally separated into the following coarse 

categories.  

Ultra-violet photons are further separated into three broad categories: UV-C (100–

280 nm), UV-B (280–315/320 nm) and UV-A (315/320–400 nm). The wavelength at which 

UV-C and UV-B are separated (280 nm) is determined by the shortest wavelength of solar 

radiation that reaches the surface of Earth.  The wavelength at which UV-B and UV-A are 
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separated (315 or 320 nm) is generally determined by the effect of sun on human skin 

sunburn (315 nm) or skin cancer (320 nm).  There is no universal agreement on the 

wavelength transition between UV-B and UV-A, both are equally used.  Fortunately, UV-C 

photons are completely blocked by our atmosphere because they are highly damaging to 

biological organisms. UV-B photons are also damaging, but can have beneficial effects 

including increased production of secondary metabolites29. UV-A photons are less damaging 

than UV-B, and can have either stimulatory or inhibitory effects on plant growth depending 

on species and interacting environmental factors30. 

At 25 ˚C and 350 mA, UV-B and UV-C LEDs are only ≈3% efficient31, but these 

photons can have large biological effects in small quantities. At 25 C and 700 mA, the 

efficiency of UV-A LEDs increases from 50 to 60% as the wavelength increases from 370 to 

395 nm32.  A violet LED with a peak between 402 to 408 nm is ≈65% efficient, and has 15–

30% of its photons below 400 nm.  Efficiency will increase as current density decreases.   

Based on studies by McCree26, 27, PAR only includes photons with wavelengths 

between 400 to 700 nm. However, McCree’s studies show significant differences in the 

photosynthetic efficiency of species at wavelengths below ≈425 nm. Some species, like 

radish, have equal photosynthesis between 375 and 500 nm. Photons above 350 nm can be 

photosynthetic, but a high-fraction are typically absorbed by non-photosynthetic pigments.  

Blue photons (400–500 nm) reduce plant height and leaf expansion in nearly all 

species28,33-35.  Because of absorption by inactive pigments (e.g. anthocyanin), blue photons 

are ≈20% less photosynthetically efficient than photons from the most common red LED 

(660 nm)26,27.   However, the blue-induced decreases in leaf area (reducing photon capture) 

may have a larger effect on overall plant growth than the blue-induced reduction in 
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photosynthetic rate28. A range of 5–30% blue is typically used in horticultural LED fixtures 

to inhibit excessive stem extension and reduce plant height, which is typically beneficial for 

controlled environment growth.  

Green photons (500–600 nm) improve human perception of color.  Unfortunately, 

monochromatic direct emitting (non-phosphor converted) green LEDs have low efficacy. 

White (phosphor-converted blue) LEDs are thus used to provide the green photons that are 

important to human vision; and they have the added benefit of providing blue and red 

photons.  Green photons are up to 10% less photosynthetically efficient than photons from 

the most common red LED (660 nm)26,27, but they penetrate deeper into plant canopies than 

blue or red photons36. 

The effect of green photons on plant shape is generally much less than the effects of 

blue or far-red photons. Studies in Arabidopsis suggest that green photons can reverse blue 

photon effects (e.g. inhibition of hypocotyl elongation)37,38 or induce shade avoidance (e.g. 

increased stem elongation, reduced branching)39,40. Some studies suggest that green-induced 

shade avoidance also occurs in food crops and other economically valuable plants28,35,41, but 

several other studies have shown minimal effects28,33,41-45.  

Red photons (600–700 nm) are well absorbed by leaves, are photosynthetically 

efficient, and are efficiently generated by LEDs so they are widely used in horticultural 

fixtures. The classical paradigm has been that red and far-red act antagonistically to inhibit or 

induce shade avoidance symptoms like stem elongation, hyponastic leaf orientation and/or 

reduced branching46,47. However, the high absorbance of red photons by chlorophyll means 

that the impact of red on shade responses may be overestimated48. Replacing green photons 
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with red photons has minimal effects on plant shape43,45, but plants grown in the complete 

absence of red and green photons (sole-source blue LEDs) can rapidly elongate28,33,49.  

Far-red photons (700–800 nm) can have powerful effects on plant shape and are 

efficiently generated by LEDs so they are a promising addition to horticultural lighting. 

Along with several other laboratories, we are working to quantify the effects of far-red 

photons on plant morphology.  In some species (especially lettuce), far-red photons 

beneficially increase leaf expansion, but they also significantly increase stem elongation in 

many other species35,50, which may not be beneficial. 

Despite the classic definition of PAR, recent studies indicate that far-red photons 

(700–750 nm) are photosynthetically synergistic with shorter wavelength photons51,52. These 

photons are thus being reconsidered for their role in photosynthesis. Far-red photons must be 

used with caution, particularly in sole-source environments, because they can induce stem 

elongation associated with shade avoidance. 

 

B.4 Technology of LED Fixtures  

B.4.1 Four Factors that Determine Fixture Efficacy  

The upper limit of fixture efficacy is determined by the choice of LEDs and operating 

conditions.  Different colors of LEDs have different efficacies, but the quality of LEDs 

within and among manufacturers also varies. In addition to the efficacy of the selected LEDs, 

fixture efficacy is determined by four additional factors53: 

 1. LED drive current  

 2. LED junction temperature  
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 3. Driver efficiency 

 4. Optical losses in the fixture 

1. Drive current 

The effect of drive current on LED efficacy has been discussed above. Due to 

different types of efficiency reductions at high and low drive currents, efficiency can 

be maximized at some relatively low drive current (less than 100 mA). Fixture 

manufacturers seek to co-optimize fixture size, cost, output and efficacy for specific 

applications. While low drive currents will increase the efficacy of the fixture, the 

output of each LED would be relatively low. This increases the cost and complexity 

of the fixture. 

2. LED junction temperature   

The junction temperature of LEDs in fixtures depends on the drive current, ambient 

temperature and the heat dissipation (thermal management) of the fixture, but is 

typically around 85 ˚C53. Better thermal management may increase fixture cost, but it 

also increases efficacy and longevity of the LEDs (Fig. B-5).  

[LEDs degrade with time as a function of temperature and current density. L70 is a 

metric that indicates the time at which a fixture output is 70% of the original output 

(sometimes referred as Q70 for horticultural products). A typical L70 for LED 

fixtures is 50,000 h. As the LEDs and fixture age, the efficacy will decline; a problem 

that is exacerbated by high junction temperatures. Rates of fixture aging can vary 

greatly among manufacturers.  Most manufacturers characterize their fixture lifetime 

(L70, L90, Q70 or Q90) in terms of LED output depreciation based on a standard 
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LED package test–IES LM-80, which can be interpolated into luminaire lumen 

maintenance. Projections of luminaire lumen maintenance based on LED 

depreciation cannot exceed six times of the duration that the LEDs were tested, so for 

a depreciation lifetime claim of 60,000 h the LEDs must have been tested for 10,000 

h. Many fixtures that claim extended lifetimes are exceeding the allowable six times 

interpolation based on LED testing. Fixture lifetimes based on LED depreciation also 

do not include optical loss mechanisms in the fixture and accelerated aging of the 

LEDs due to higher temperatures. Also, typical lifetime claims do not consider 

catastrophic failure of the LED driver, which often fails before the LEDs have 

reached the L70.]  

Fig. B-5 Long-term depreciation of LEDs based on temperature. LEDs will 
depreciate slower when operated at lower temperatures. 
 

3. LED Drivers (also called power supplies) are necessary to convert AC to DC power 

and provide regulated voltage and current.  The efficiency of LED drivers ranges 
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from 85 to 95%.  LED drivers can be less efficient when they provide dimming, color 

control and/or communication functionality.    

4. Optical losses occur when LEDs are mounted in fixtures. The sides of the fixture can 

obstruct low-angle photons. Protective transparent covers (e.g. glass) transmit up to 

92% of the photons and thus reduce the output by 8%, but this protection can 

significantly improve the lifetime of a fixture. Fixtures with unprotected LEDs can 

have 99% optical efficiency, but may have shorter lifetimes in harsh growing 

environments (e.g., high humidity).   

Optical covers can also diffuse the photons, which reduces efficiency, but can 

result in more uniform mixing of colors and improved photon penetration into plant 

canopies54-56.   

Photons must impact leaves to be absorbed, and this is an important 

consideration in fixture design. Early LED fixtures had focused photon output over a 

small area. This facilitated precise photon placement, but caused non-uniform 

distribution. LED package and fixture design has transitioned to a less-focused 

photon distribution but as long as the photons exit the fixture this does not affect our 

analysis of optical efficacy57.  

 

B.4.2 Potential Fixture Efficacy  

Using the following near-maximum parameters, we now calculate an achievable  

fixture efficacy using presently-available technology:    
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1. Drive current minimized to achieve 104% of the reported LED efficacy (100 mA mm-

2 to 50 mA mm-2)  

2. Temperature rise minimized by sufficient heat dissipation (e.g. water cooling) to 

achieve 95% of the reported LED efficacy (at 25 ˚C) 

3. The LED driver is 95% efficient 

4. Unprotected LEDs in the fixture to achieve 99% optical efficiency  

The resulting fixture efficacy would be 1.04 × 0.95 × 0.95 × 0.99 = 93% of the 

reported efficacy of the LED.  The first two factors can be above 100% if the LEDs are 

operated at lower drive current and lower temperature than the reported specification (100 

mA mm-2 and 25 ˚C here). Reducing drive current is much easier than reducing temperature. 

Accordingly, a horticultural fixture with 90% red and 10% blue photons (i.e. a photon 

flux distribution of B10:R90, typical of magenta-colored fixtures) could potentially achieve 

an efficacy of 4.1 µmol J-1 if it used red and blue LEDs with efficacies of 4.5 and 3.5 µmol J-

1, respectively (Table B.1).    

A fixture built using all white LEDs with an efficacy of 2.9 µmol J-1 (Table B.1) 

would result in a fixture efficacy of 2.7 µmol J-1.   

A broad spectrum fixture, with approximately equal portions of red and white LEDs 

could achieve an efficacy of 3.4 under optimal conditions if the best LEDs are used (Fig. B-

6). The increased leaf expansion caused by far-red photons means that the addition of up to 

30% far-red LEDs might be cost effective for lettuce and other leafy greens35. 
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Table B.2: Examples of the highest efficacy values from independently-tested LED 
fixtures and an HPS fixture.  TÜV SÜD America is an accredited testing laboratory.  

Color Efficacy (µmol J-1) Reference 
blue/red 2.55 Johnson et al. (2017)53 
blue/red 2.64 Radetsky (2018)54 

white/red 2.59 Radetsky (2018)54 
blue/red 3 DLC(2019)10 

white/red 2.78 DLC(2019)10 
white/red 2.61 DLC(2019)10 
3000 K 2.13 TÜV SÜD America (2019) 
5000 K 2.43 TÜV SÜD America (2019) 

1000 W double-ended 
HPS 1.72 

  
Radetsky 
(2018)54 

 

B.4.3 Typical Fixture Efficacy  

Using more typical parameters: 

1. Drive current achieves 90% of the reported LED efficacy 

2. Temperature management achieves 90% of the reported LED efficacy (at 25 ˚C) 

3. The LED driver is 90% efficient 

4. Protected LEDs in the fixture achieve 92% optical efficiency 

 
 

 

The resulting fixture efficacy would be 0.90 × 0.90 × 0.90 × 0.90 = 67% of the 

reported efficacy of the LEDs.    

In 2014, the best LED fixtures had an efficacy of 1.7 µmol J-1 (ref. 57). Now, fixture 

efficacies of 2.5 to 2.8 µmol J-1 for white+red fixtures and 3 µmol J-1 for blue+red fixtures 

have been achieved (Table B.2).   



229 

Certified test laboratories conduct comprehensive tests on fixtures to characterize 

their performance. This is the integrated measure of all the above factors.  Fixture 

manufacturers should always be able to provide test results for their fixtures from certified 

third-party test laboratories.  

The Design Lighting Consortium (DLC) maintains a list of horticultural lighting 

products that meet their listing requirements58.  The DLC requires that products have a 

minimum efficacy of 1.9 µmol J-1 and meet photon flux maintenance, driver lifetime, 

warranty, and safety requirements.   

 
Fig. B-6 A suggested fixture for high efficacy. The y-axis assumes one watt of input 
power.   
 

B.5 Additional Considerations 

In addition to efficacy, several other factors affect fixture choice, including: 
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1. Initial fixture cost per photon s-1 of output capacity. HPS fixtures (1 kW) range from 

$200 to $350 USD per kW (5–9 µmol s-1 per $). LED fixtures range from $1000 to 

$3000 USD per kW (0.5–1.5 µmol s-1 per $).  On a photon flux basis, the initial cost 

is therefore, 3–18 times higher for LED vs. HPS fixtures.  The cost of both 

technologies has decreased but the cost of LED fixtures are expected to decrease 

faster than HPS fixtures. While initial cost is higher, LED fixtures reduce energy cost 

compared to HPS.  Depending on usage periods and price of energy, the electric 

savings can equal the difference in initial cost after of 3–5 years for sole source 

applications and 5–8 years for supplemental applications57. 

2. Spectral quality for plant morphology and photon capture35,59.   

3. Adequate green photons to create “white” light to facilitate human comfort and visual 

identification of insects, diseases, and nutritional disorders60. 

4. Fixture reliability, including environmental protection of the LEDs.   

5. Fixture operating temperatures, which affect LED and system longevity. 

6. Uniformity and distribution of photon output. Many early LED fixtures had narrow 

beam angles, but more recent fixtures have a broader distribution of photons.  High 

wattage HPS fixtures need to be mounted higher above the canopy than LED fixtures 

to achieve uniform distribution of photons. 

7. Fixture size for shading in a greenhouse application. 

Because LEDs can be cycled on and off over short intervals, there has been interest in 

rapid cycling of LED fixtures to improve plant growth.  Unfortunately, high frequency 

flickering (10–10000 Hz) has been well studied and there is neither empirical nor theoretical 

evidence that this can be used to increase the quantum yield of photosynthesis. Plants appear 
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to integrate light intensity for photosynthesis61,62.   However, some recent evidence indicates 

that longer term cycling of LEDs (minute to hours) can alter plant shape (hypocotyl length) 

and color (anthocyanin synthesis)63. 

 

B.6 Summary 

• Blue LEDs are now 93% efficient, phosphor-converted “whites” are 76% efficient, 

and reds are 81% efficient when run at the near optimal conditions of 100 mA mm-2 

and a junction temperature of 25 ˚C. 

• Both junction temperature and drive current density will affect the photon efficacy of 

LEDs, and in general, the most efficient LED fixture will run their LEDs at low drive 

currents. However, a lower drive current results in a lower photon output per LED, 

and the resulting fixture will require many LEDs to achieve a high photon output and 

thus will be more expensive.  

• Broad spectrum distribution of photons is important useful for uniform spectral 

reflectance and diagnosis of plant disorders. Broad spectrum lighting is not 

necessarily beneficial for with photosynthesis or plant growth. Unique spectra, 

selectively applied during specific stages of the life cycle, can however, have a 

beneficial effect on plant shape and development. 

• The calculations in this paper show current possible performance levels of LED 

fixtures of 3.4 µmol J-1 for white+red fixtures and 4.1 µmol J-1 for blue+red fixtures. 

These values are significantly higher than current typical values of 2–3 µmol J-1.  
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Although fixture efficacy is paramount, timing and angular delivery of photons to 

photosynthetic tissues, spectrum and intensity also determine the effectiveness of the photon 

delivery system. Efficient lighting is then coupled with optimal temperature, humidity, 

nutrition, plant water potential, atmospheric carbon dioxide concentration, delivery of 

oxygen to root surfaces and genetics. Both NASA and the USDA are funding research at 

universities to optimize these factors and improve the economic potential of electric lighting 

in in controlled environments:  https://cubes.space/ ;  https://www.hortlamp.org/index.html.   
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APPENDIX C 

PHOTON EFFICACY IN HORTICULTURE: TURNING LED PACKAGES                     

INTO LED LUMINAIRESF 
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C.1 Abstract  

The final photon efficacy of an LED luminaire is determined by the inherent 

efficiency and photon wavelength of the LED package(s), multiplied by four losses 

associated with the design of the LED luminaire. Depending on the design of the LED 

luminaire and choice of operating conditions there can be additional LED package related 

losses of current droop and thermal droop; and there will be non-LED package losses related 

to power supply efficiency and optical efficiency. Here we describe the typical performance 

of a range of high-end LED packages with peak wavelengths across the photo-biologically 

active range of radiation (280 to 800 nm). We describe how current and thermal droops affect 

the efficiency of the LED luminaire. Finally, the performances of some state-of-the-art LED 

luminaires are described.  

 

C.2 Introduction 

The final photon efficacyG of an LED luminaireH is determined by the inherent 

efficiency and photon wavelength of the LED package(s)I, multiplied by four losses 

associated with the design of the LED luminaire. Depending on the design of the LED 

luminaire and choice of operating conditions there can be additional LED package related 

losses of current droop and thermal droop; and there will be non-LED package losses related 

to power supply efficiency and optical efficiency. Here we describe the typical performance 

 
GIn this chapter, photon efficacy refers to µmol of all photons divided by joules of input energy (µmol J-1). The 
term photosynthetic photon efficacy includes only photons with wavelengths between 400 to 700 nm.  
H Here, the term LED luminaire refers to a “complete lighting unit” including LED packages mounted on a 
circuit board, power supplies, reflective surfaces, protective housing, electrical connections, and circuitry. 
I An LED package refers to an LED chip/die within a housing, which provides a thermal path, enables electrical 
connections, and affects the angles of photon output. For white LED packages it also includes the phosphor.  
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of a range of high-end LED packages with peak wavelengths across the photo-biologically 

active range of radiation (280 to 800 nm). We describe how current and thermal droops affect 

the efficiency of the LED luminaire. Finally, the performances of some state-of-the-art LED 

luminaires are described.  

Light-emitting diode (LED) technology is the most efficient lighting technology, with 

some LED luminaires now providing double the photon efficacy of the highest performing 

alternative technology, double-ended high-pressure sodium (DE-HPS) luminaires. LED 

luminaires can achieve a photosynthetic photon efficacy of over 3.4 compared to 1.7 µmol of 

photons per joule of input energy (µmol J-1)J for DE-HPS (DesignLights Consortium, 2021). 

But, these high photon efficacies are only possible under certain operating conditions and 

spectral combinations. Here we discuss the changes in efficiency/photon efficacy as LED 

packages are incorporated into LED luminaires. These include: 1) current droop, 2) thermal 

droop, 3) power supply efficiency, and 4) optical efficiency (Kusuma et al., 2020).  

LED technology is rapidly evolving, with advancements driven by emerging 

applications for specific types of LEDs. LEDs can be categorized into three groups based on 

the typical/primary elemental composition of semiconductor materials: 1) GaN/AlGaN for 

LEDs with a peak wavelength between 220 and 360 nm, 2) InGaN for LEDs with a peak 

wavelength between 360 to 550 nm, and 3) AlInGaP for LEDs with a peak wavelength 

between 550 to 1000 nm. Improvements to InGaN LEDs have been enabled by 

 
J The units for photon efficacy are µmol of photons per second divided by watts of input power. Because a watt 
is a joule per second, the seconds cancel in the numerator and the denominator resulting in µmol J-1.   
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C.1 Typical LED Package Performance 

Table C.1: Typical performance of select LED packages. Narrow bandwidth LED 
packages are described by their approximate peak wavelength and phosphor-converted 
(PC) white LED packages (bottom) are described by their correlated color temperature 
(CCT). Percent of theoretical maximum describes the efficiency of the LED packages. 
For the narrow bandwidth LED packages efficiency is the power output divided by the 
power input, while efficiency of the PC white LED packages is the product of the 
efficiency of the underlying 450 nm blue LED multiplied by the phosphor conversion 
efficiency. Both of these parameters must be 100% efficient for a PC white LED 
package to reach its theoretical maximum performance. The operating conditions to 
obtain the efficiencies (percent of theoretical maximum) and photon efficacies described 
here are a 25 ˚C junction temperature and a nominal drive current specified in the 
table. Choosing LED packages from the highest performance bin can increase the 
efficiency and photon efficacy values by 5 to 10%. Dividing the photon efficacy by the 
percent of theoretical maximum (as a fraction) provides the theoretical maximum 
efficacy for that LED package.  

Wavelength (nm) 
or CCT (K) 

nominal drive 
current (mA) 

Photon efficacy    
(µmol J-1) 

Percent of 
theoretical 
maximum   

280 100 0.08 3 
310 20 0.03 1 
385 500 0.9 28 
405 500 1.6 48 
450 350 2.8 74 
470 350 2.4 62 
500 350 2 50 
530 350 1.3 30 
590 350 1.1 21 
620 350 3.4 64 
635 350 2.5 47 
660 700 4.1 74 
730 350 3.6 59 
850 1000 3 42 
3000 65 2.8 74 
6500 65 2.9 77 
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advancements in material quality and device structures that have been driven by their large 

scale use in general illumination (Feezell and Nakamura, 2018; Tsao et al., 2015). 

Improvements in AlInGaP LEDs have historically been driven by signage, indicator, and 

automotive applications but are now being driven primarily by horticultural applications. 

Development of AlGanN based ultra-violet (UV) emitting LEDs has been driven by 

applications in sterilization and curing. 

Table C.1 and Figure C-1 describe the efficiency and photon efficacy of commercially 

available LED packages with peaks from 280 to 850 nm (the data in Fig. 1 is normalized to 

one watt of electrical input). The data presented here and in subsequent figures were 

developed from data from the following companies: Nichia Corp. for the 280 nm LED 

package (Nichia, 2020); SeoulViosys Co. for the 310 nm LED package (SeoulViosys, 2020); 

Lumileds holding BV for the 385 and 405 nm LED packages (Lumileds, 2018), the 850 nm 

LED package (Lumileds, 2020), and the 3000 K and 6500 K LED packages (Lumileds, 

2021); and OSRAM Opto Semiconductors GmbH for the 450 nm LED package (Osram, 

2020c), 470 nm LED package (Osram, 2020b), 500 nm LEDpackage (Osram, 2020h), 530 

nm LED package (Osram, 2020g), 590 nm LED package (Osram, 2020i), 620 nm LED 

package (Osram, 2020a), 635 nm LED package (Osram, 2020f), 660 nm LED package 

(Osram, 2020e), and 730 nm LED package (Osram, 2020d). The photon efficacy of all of 

these LED packages is reported at a junction temperature of 25 ˚C, and a nominal drive 

current specified in Table C.1. Values here differ from Kusuma et al. (2020) for three 

reasons: 1) these are reported at the nominal current densities for each type of LED package 

as opposed to 100 mA mm-2, 2) these values represent typical performance rather than top 

bin performance, and 3) LEDs have continued to improve (this is most true of the 660 nm red 
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LED package). It is important to recognize that this is an evolving industry and 

improvements in efficiency will continue.  

The LED package performances described here reflect both the fundamental LED 

material properties as well as commercial development focused on certain wavelengths. For 

example, green LEDs (with peak wavelengths between 500 to 600 nm) would be 

commercially viable, but LED material challenges in both the InGaN and AlInGaP LED 

materials systems limit the performance of green LEDs. Among LED scientists, this is 

referred to as the “green gap”. An example of commercial impact is that, based on material 

properties, an LED at 635 nm should be more efficient than an LED at 620 nm (Table C.1), 

but the 620 nm LEDs are more important for general illumination, and thus developmental 

focus in 620 nm LEDs have led them to surpass 635 nm LEDs.  

Figure C-1a shows the variation in the power flux (at 1 W electrical input) for direct 

emitting LED packages with different emission wavelengths and associated spectral 

bandwidths. Bandwidths are generally defined by the spectral width in nm at half of the 

maximum output, called the full width at half maximum (FWHM). Figure C-1 highlights the 

difference in efficiency for different wavelength LED packages, especially the green gap in 

LED performance. There are research examples that show it is possible for InGaN LEDs to 

provide emission across the visible spectrum, but for now, AlInGaP LEDs have a much 

better performance at emission wavelengths around the red portion of the spectrum (DOE 

BTO Lighting R&D Program, 2019).  
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Figure C-1b converts the power output in Figure C-1a into a photon output using 

Planck’s equation, demonstrating the fact that LEDs with longer peak wavelengths have an 

advantage in that their photons have less energy. For example, although 450 nm blue and 660 

nm red LED packages have similar efficiencies, the photon efficacy of 660 nm red is almost 

50% higher than the 450 nm blue.  

 
Figure C-1: Power flux and photon flux of 14 LED packages. (a) Power flux of 14 LED 
packages across the photo-biologically active region of radiation. These fluxes assume 
one watt of electrical input. (b) Data in (a) converted to a photon flux using Planck’s 
equation.  
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C.4 Binning 

Although the LED packages presented in Table C.1 and Figure C-1 are some of the 

highest performing products currently on the market, these values represent typical, and not 

maximum, performance of these products. LED package products are generally separated 

into bins based on the specific performance of that product. The performance characteristics 

that LED packages are binned by include photon output, forward voltage, and wavelength. 

The performance differences among individual LED packages are the result of the LED 

semiconductor crystal growth processes, which require very precise (high) temperature, 

pressure, and gas flow control in very clean chambers. Even with the best control there are 

variations in the semiconductor crystal properties that result in performance variations. The 

impact of binning is that LED packages from the same manufacturer can have a range of 

performance levels, so it is necessary for LED luminaire manufacturers to specify not just the 

color and the package type of the desired LED but also the specific performance bin. By 

choosing LED packages from a higher performance bin, the efficiencies and photon 

efficacies in Table C.1 may vary by 10% depending on the type of LED. 

 

C.5 White LED Packages 

There are two ways to generate white light with LEDs: phosphor-conversion (PC) and 

color-mixed (CM). PC white LEDs incorporate an optical down-conversion material 

(typically a phosphor) into an LED package with a blue (450 nm) LED. This material absorbs 

a portion of the blue photons and then re-emits them at longer wavelengths.  The relative 

composition of blue light and the phosphor converted light can be engineered to achieve 
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different hues of white light. CM white LEDs are made up of a combination of the narrow-

bandwidth LEDs described in Fig. C-1 and Table C.1. For example, combining 450, 530 and 

620 nm LEDs would provide white light. The process of down-converting photons in a PC 

white LED introduces conversion efficiency losses. There are two typical phosphors used in 

generating white light from a blue LED, one with a broad emission that peaks at about 550 

nm (green) and another with a peak emission at about 600 nm (red). The green phosphor is 

more efficient than the red phosphor, 88% compared to 81% photon efficiency at 150 ˚C and 

1 W input (DOE BTO Lighting R&D Program, 2019). The photon efficiency of the phosphor 

material depends on the temperature and the photon intensity. The green and red phosphors 

have similar efficiencies at low drive currents.   

The theoretical maximum photon efficacy of a PC white LED package is limited by its 

foundational 450 nm LED. Using Planck’s equation, this theoretical maximum is equal to 

3.76 µmol J-1. This would require both the LED itself and the phosphor conversion (photons 

emitted / photons produced) to both be 100% efficient (the efficiency [percent of theoretical 

maximum] of the white LED packages in Table C.1 assume the product of these two 

efficiencies, rather than Wout / Win). Because of this limitation, CM white LEDs have a 

higher potential photon efficacy than PC white LEDs, but for making white light the current 

green gap in the technology significantly limits CM white LEDs. Therefore, PC white LEDs 

dominate the market to provide broad spectrum white light. Additionally, the very high 

demand for PC white LEDs in human lighting has enabled price reductions and performance 

improvements that enable their effective use for horticulture.   
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C.6 LEDs for Horticulture 

The lower photon efficacy of narrow bandwidth LED packages within the green gap, 

especially in comparison to PC white LED packages, limit their application in horticulture. 

But, green LED packages with peaks between 500 to 600 nm are a useful tool for research 

purposes. UV-A, UV-B and UV-CK LED packages may find a use in horticulture, as these 

wavelengths may have beneficial effects on crop quality, and can readily be incorporated into 

LED luminaires. However, UV LED packages with a peak below about 380 nm suffer from 

low efficiency, which can limit their practical effectiveness. Far-red LED packages (730 nm) 

have the potential to be a valuable addition to LED luminaires for their role in increasing leaf 

expansion, although caution should be taken as many species increase their stem length under 

far-red photons. Infrared LED packages (850 nm) are used in security cameras, which may 

be installed in plant factories with artificial lighting (PFALs). Photons at these long 

wavelengths have the potential to affect plant development, although effects are expected to 

be minimal.  

The most commonly used LED packages in horticulture include PC white, 660 nm red, 

and 450 nm blue LED packages. Other LED packages including 730, 405, 385, 280, and 310 

nm LED packages are being considered for incorporation into LED luminaires, but caution 

should be taken with their inclusion as many responses are intensity and species dependent. 

 

 
K UV-C is most likely be used for germicidal or sterilization purposes. 
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C.7 Current Droop 

The incorporation of LED packages into LED luminaires requires a number of 

operating and design considerations. Driving LED packages lower than the nominal drive 

current will increase the photon efficacy, while driving them higher than the nominal drive 

current will decrease it. This is known as current droop. This effect is a direct function of the 

current density (the current divided by the LED chip area), but the chip area is often not 

reported by LED package manufacturers. Figure C-2 normalizes the typical current droop as 

the fractional change in the drive current, with 1 being equal to the nominal drive current 

(note the differences in the nominal drive current between LED packages in Table C.1). 

Current droop is a result of a decrease in photon output per ampere input. At higher currents, 

LED packages also experience an increase in the forward voltage (related to electrical 

resistance within the LED device and package). This means there is both a relative decrease 

in the output and an increase in the input occur at higher current operation (electrical power, 

W = Vf · A).  

 
LED luminaire manufacturers often operate the LED packages at a low drive current in 

order to maximize photon efficacy with additional benefits of 1) reducing thermal 

management requirements and 2) extending the LED lifetime. The operating drive current for 

PC white LED packages in LED luminaires is often below 100 mA.  However, increasing the 

drive current increases the output of the LED package. Therefore, a tradeoff exists between 

photon efficacy (along with thermal management and lifetime) and photon output. An LED 

luminaire with both high photon efficacy and high photon output requires the incorporation 

of many LED packages. Some luminaires contain more than 5,000 LED packages. This 
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means that although the photon output and the photon efficacy of the LED luminaire will 

both be high, the price of the LED luminaire will also be high. Because very low drive 

currents can cause excessively low photon outputs per LED package, the economics of the 

optimal drive current must be considered.  

 
Figure C-2: Current droop of the 16 LED packages described in Table C.1. Current 
droop is plotted as a function of fractional change from the nominal drive current. This 
is because current droop is actually a function of current density and the die size of an 
LED package is often not reported. The junction temperature is specified at 25 ˚C and 
the type of each LED package is listed (roughly in order) on the right hand side of the 
figure.  
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Although a decrease in the drive current generally increases the photon efficacy, 

extremely low drive currents also cause a decrease in photon efficacy. At very low current, 

crystal defect and/or impurity related non-radiative recombination dominates, while at high 

drive currents, current droop dominates. With InGaN LEDs, Auger recombination causes 

droop. This can be thought of as the interaction of two excited charge carriers, which leads to 

an increase in the energy of one of the charge carriers, rather than the desired relaxation of 

the charge carrier. Relaxation of charge carriers is what causes the emission of a photon. For 

AlInGaP LEDs, droop is a result of charge carriers escaping from the LED active region and 

non-radiatively recombining elsewhere in the LED device structure. There is a range of drive 

currents between these two extremes (defects/impurity losses and droop losses) where 

luminaire manufacturers can operate the LED packages with optimal photon efficacy (and 

economics).  

 

C.8 Thermal Droop 

Efficiency losses in an LED package produce heat (100% efficiency minus LED 

package efficiency = unwanted heat). This leads to self-heating of the LED package and LED 

luminaire. LED packages decrease in photon efficacy when operated at high junction 

temperature, either due to self-heating or ambient conditions.  

Junction temperature is the temperature at the LED p-n junction (also known as the 

active region).  The LED junction temperature is measured at a defined temperature probe 

point with a known thermal resistance between that point and the junction, such that the 

junction temperature can be determined. 
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Figure C-3: Thermal droop of the 16 LED packages described in Table C.1. This data is 
specified at the nominal drive current described in Table C.1. Photon efficacy will 
continue to change as temperature decreases below 25 ˚C and data from LED package 
manufacturers has been specified down to -40 ˚C, but the junction temperature rarely 
drops to ambient temperature. A junction temperatures of -40 ˚C would require a high 
amount of energy input for cooling. Therefore, only a dotted line is shown for junction 
temperatures below 25 ˚C as these values are practically unrealistic.  

 

The efficiencies and photon efficacies in Table C.1, Figure C-1, and Figure C.2 are 

specified for a junction temperature of 25 ˚C (with the exception of the 280 nm LED 

package, which is specified at an ambient temperature, the 310 nm LED package is specified 

at a solder joint temperature, and the 850 nm LED package is specified at a case 
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temperature). Typical LED packages, under typical operating conditions, will have junction 

temperatures between 55 and 100 ˚C. This is despite the fact that typical performance is often 

defined at 25 ˚C.  As with current droop, this decrease in efficiency (and resulting photon 

efficacy) is caused by a decrease in photon output. Unlike increasing the current, increasing 

the temperature actually decreases the forward voltage - meaning a reduced input power, but 

the net effect is still that LED packages have reduced efficiency at higher temperatures. 

Figure C-3 shows typical thermal droops from increasing junction temperature. It is 

apparent from this figure that AlInGaP based LEDs experience a greater degree of thermal 

droop compared to lnGaN and AlGaN based LEDs.  

 

C.9 Power Supply Efficiency 

LED luminaires require power supplies to convert AC to DC power. Most power 

supplies can achieve this power conversion with 80 to 95% efficiency. As with LED 

packages, higher performance power supplies are more expensive.  

Power supplies can also provide dimming capabilities, either through current 

modulation or pulse width modulation, which is dimming achieved through pulsing the 

electrical power through the LED packages at a high frequency.  

 

C.10 LED Luminaire Optical Efficiency 

This efficiency describes the number of photons that are emitted from the LED  

luminaire divided by the number of photons produced by the LED packages. This efficiency 

can approach 100%. However, if a glass or plastic lens is used to engineer the optical 
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distribution (including making the light diffuse) or protect the LED packages then there can 

be optical losses due to reflection and absorption. The LED luminaire optical efficiency does 

not describe the percentage of emitted photons that reach and are absorbed by the plants.  In 

some cases it may make sense to use lenses to more optimally distribute the light across the 

plant and improve yield, but this comes at the cost of optical losses that reduce the efficiency 

of the LED luminaire.  This is another trade-off that horticultural lighting manufacturers and 

growers must consider.  Optical performance and losses can occur through both refractive 

and reflective optical elements and these elements may degrade over time, especially in the 

greenhouse environment, which contributes to the depreciation of photon output. 

 

C.11 LED Luminaire Photon Efficacy 

Multiplying the LED package performance (photon efficacy) by the four efficiencies 

described above provides a final estimate of the LED luminaire photon efficacy.  

LED luminaire 
photon efficacy = LED package 

photon efficacy ×
current 
droop × thermal 

droop × power supply 
efficiency ×  optical 

efficiency  

 

Two example cases can be considered: 

Case 1 

An LED luminaire contains 90% 6500 K PC white LED packages and 10% 660 nm red 

LED packages (Table 7.1). The white LED packages are operated at the nominal drive 

current and the 660 nm LED packages are operated at about half of the nominal drive current 

(250 mA). It is assumed that under these conditions, both types of LED package will operate 

at a junction temperature of about 85 ˚C. The power supply for the while LED packages is 
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90% efficient and the power supply for the 660 nm red LED packages is 85% efficient.  The 

LED packages are unprotected, achieving a high optical efficiency.  

White LEDs: 2.9
µmol

J
 ×  1.0 × 0.92 × 0.90 × 0.99 = 2.4

µmol
J

 

Red LEDs: 4.1
µmol

J
 ×  1.07 × 0.96 × 0.85 × 0.99 = 3.5 

µmol
J

 

 

One thing that is immediately obvious from this calculation is the fact that decreasing 

the drive current below the nominal provides an increase in photon efficacy rather than a 

decrease. The weighted average of the overall LED luminaire would be  

 

LED luminaire photon efficacy = �0.9 ×  2.4
µmol

J
� +  �0.1 ×  3.5

µmol
J

� = 2.5 
µmol

J
 

 

Case 2 

An LED luminaire contains 90% 660 nm red LED packages and 10% 450 nm blue 

LED packages. Additionally, by choosing LED packages from a higher performance bin the 

performance can be assumed to be 5% better than indicated in Table 7.1. Both types of LED 

package are operated at about 100 mA. At this low drive current heating would be minimal 

and the junction temperature of the LED packages might be about 50 ˚C. The power supplies 

for both types of LED packages are 90% efficient and the LED packages are unprotected.  

Red LEDs: 4.3
µmol

J
 ×  1.14 × 0.99 × 0.90 × 0.99 = 4.3 

µmol
J

 

Blue LEDs: 2.9
µmol

J
 ×  1.15 × 0.99 × 0.90 × 0.99 = 2.9

µmol
J
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The overall photon efficacy of the LED luminaire would be  

 

LED luminaire photon efficacy = �0.9 ×  4.3
µmol

J
� +  �0.1 ×  2.9

µmol
J

� = 4.2 
µmol

J
 

The first case represents typical operating conditions for an LED luminaire, while the 

second case represents a state-of-the-art LED luminaire – although even this theoretical LED 

luminaire could be further optimized. Table C.2 provides the measured photosynthetic 

photon efficacies of a variety of LED luminaires taken from the DesignLights Consortium 

(DLC) website (DesignLights Consortium, 2021; https://www.designlights.org/horticultural-

lighting/search/). The DLC is a third-party testing organization that provides a list of 

products that qualify for rebates. One of the required qualifications is a photosynthetic 

photon efficacy of at least 1.9 µmol J-1. Following the website link above, LED luminaires 

can be sorted by photosynthetic photon efficacy in ascending or descending order. The LED 

luminaires presented in Table C.2 may represent slightly higher photosynthetic photon 

efficacies than the average of that product, due to binning and self-selection. Additionally, 

the current average LED luminaire photosynthetic photon efficacy on the DLC website is 

about 2.5 µmol J-1. It is apparent that the highest photosynthetic photon efficacy LED 

luminaires contain a high fraction of red photons, and that photon output (PPFD) does not 

appear to be correlated with photosynthetic photon efficacy.    
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Table C.2: Photosynthetic photon efficacies of a range of LED luminaires reported by 
the DesignLights Consortium. The types of LED packages used in the LED luminaire 
are described in the first column, although some of the LED luminaires with PC-W 
LED packages may also contain 450 nm blue LED packages. Ratios of blue (%B), green 
(%G), red (%R) and far-red (%FR) are all described as a percent of the PPFD and not 
total photon flux density. PC-W: Phosphor-converted white. 

LED packages PPFD %B %G %R %FR 

Photosynthetic 
photon efficacy 

(µmol J-1) 
PC-W 839 10 38 52 8 1.81 

PC-W+660 nm 755 18 41 41 2 2.04 
450 nm+660 nm+730 nm 700 26 0 74 9 2.06 

PC-W+530 nm+660 nm+730 nm 1443 12 23 65 13 2.09 
PC-W+660 nm 138 17 28 55 1 2.10 

450 nm+660 nm+730 nm 1235 26 0 74 9 2.26 
PC-W+660 nm 1969 18 45 37 2 2.30 
PC-W+660 nm 766 17 30 53 1 2.35 

PC-W 64 23 46 31 3 2.40 
PC-W+660 nm 491 24 45 31 2 2.44 
PC-W+660 nm 1593 19 41 40 2 2.49 

450 nm+660 nm 498 17 0 83 0 2.55 
PC-W+660 nm 1639 19 41 40 2 2.56 

PC-W+660 nm+730 nm 1672 19 38 43 10 2.56 
PC-W+660 nm 781 9 17 74 1 2.57 
PC-W+660 nm 1727 22 41 37 2 2.67 
PC-W+660 nm 277 27 70 73 0 2.72 

450 nm+660 nm 1721 48 0 52 0 2.73 
PC-W+660 nm 1681 8 9 83 1 2.77 
PC-W+660 nm 1796 17 41 42 3 2.77 
PC-W+660 nm 1805 12 23 65 1 2.88 
PC-W+660 nm 506 11 5 84 1 2.90 

450 nm+660 nm 1724 8 0 92 0 2.90 
450 nm+660 nm 93 34 0 66 0 2.94 
450 nm+660 nm 292 5 0 95 0 3.00 
PC-W+660 nm 4971 16 26 58 1 3.18 
PC-W+660 nm 1700 11 5 84 1 3.30 

450 nm+660 nm 2196 5 0 95 0 3.40 
450 nm+660 nm 2195 4 0 96 0 3.51 
450 nm+660 nm 2311 4 0 96 0 3.69 

One drawback of Table C.2 is that LED luminaires are classified by the photosynthetic 

photon efficacy (400 to 700 nm) rather than the total photon efficacy. This means that LED 
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luminaires that contain 730 nm far-red LED packages pay a penalty even though these 

photons are expected to have beneficial effects on the growth and development of many 

species (Zhen and Bugbee, 2020a, 2020b).  

 

C.12 LED Luminaire Longevity 

LED luminaires can operate well beyond 50,000 hours, which is longer than most other 

lighting technologies. LED packages rarely completely fail. They are highly reliable with a 

predictable degradation over time if the operating conditions (junction temperature and drive 

current) are known. When LED luminaires do fail, it is typically due to a failure in the power 

supply, electrical connections, or manufacturing defect (DOE BTO Lighting R&D Program, 

2019).  

Depreciation of LED packages within an LED luminaire is predicted from the 

depreciation of the LED packages over time under fixed conditions (junction temperature and 

drive current).  The method of testing LED packages, called LM-80, is approved by the 

Illuminating Engineering Society (IES) (IESNA Testing Procedures Committee, 2008).  LED 

package manufacturers perform these tests on their products and share the results with their 

customers (LED luminaire manufacturers).  When the LED packages are engineered into an 

LED luminaire, the drive current is known, and the junction temperature can be measured.  

The depreciation of the LED packages within the LED luminaire can then be projected 

according to IES technical memo 21 (TM-21) (IESNA Testing Procedures Committee, 

2011).  This enables a consistent projection of photon maintenance among different LED 

luminaire manufacturers.  However, TM-21 only allows for projection of up to six times the 
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LED package measurement duration under LM-80. For example, if an LED luminaire 

manufacturer claims a depreciation level for 60,000 hours then the LED packages must have 

been LM-80 tested for 10,000 hours. 

LM-80 and TM-21 measure and project the depreciation of the LED packages. Other 

factors can increase the rate of depreciation of the LED luminaire.  These factors include 

temperature extremes, humidity, chemical incursion (like sulfur which is a common 

fungicide), electrical surges (voltage and current), and depreciation of lenses or reflectors in 

the LED luminaire. For growers, photon output depreciation directly results in reduced plant 

growth, so it is important to predict depreciation and plan for lighting updates even if LED 

luminaires are still operational.  Output depreciation is not unique to LED lighting 

technology, as all lighting technologies depreciate, but unlike LED luminaires the lamps 

typically fail before the depreciation is a major issue.   

While LED packages generally degrade over time, LED luminaires can also 

catastrophically fail, meaning they stop emitting photons partially or entirely. This is 

generally due to failures in electrical connections or the power supply.  A partial failure could 

occur when one circuit of LED packages loses its electrical connection, while the remaining 

circuits are still operational.  Power supplies are also sensitive to environmental conditions 

such as temperature, humidity, chemical incursion, and electrical surges.  The wide range of 

circuit types, operating conditions, and power quality (minimal surges) make the lifetime of a 

power supply less predictable than the LED packages.  Quality of manufacturing and 

component selection plays a large role in power supply reliability. LED luminaire 

manufacturers can select power supplies that have been tested under wet and hot operating 
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conditions, under thermal cycling to check robustness of solder joints, and/or under vibration 

tests to check component integrity.   

Ultimately, a conservative and practical estimate of the lifetime of a LED luminaire is 

the duration of the manufacturer warranty.  Growers ought to inquire after the LM-80 data 

and TM-21 analysis for the LED luminaires.  They should ask for failure rates and reliability 

testing, as well as documentation regarding the power supplies that are used.   Lighting is a 

critical component for indoor plant growth and LED luminaire failures can have significant 

impacts on production.  As such, LED luminaire purchasing decisions, including reliability, 

are paramount. 

 

C.13 Continued Improvement 

LED technology has rapidly advanced in the past decade, and the most common LED 

packages for horticulture use (PC white, 450 nm blue, 660 nm red, and 730 nm far-red).  

These LED packages are approaching their theoretical maximum performance. 

Advancements will continue, but will slow for these most advanced LED packages.  

Closing the green gap would increase photon efficacy, especially for human lighting. 

The theoretical maximum photon efficacy of PC white LED packages is dependent on the 

higher energy 450 nm blue LEDs. Although green photons are photosynthetic (McCree, 

1971), they are not required for plant growth. These LED packages are included in LED 

luminaires because 1) PC white LED packages are inexpensive and 2) green photons aid in 

human perception of plant color. As 530 nm green and 590 nm yellow LED packages 

improve these can replace PC white LED packages to achieve this human-centric goal.   



259 

The theoretical maximum photosynthetic photon efficacy is 5.85 µmol J-1 for photons 

concentrated at 700 nm, but this is not a practical maximum. A plant grown under only 700 

nm photons would likely be subject to developmental problems. Several studies have shown 

that some plants require at least some blue photons for normal plant growth (Yorio et al., 

2001; Hernandez and Kubota, 2016), although other studies have shown some plants can be 

grown under pure red (Son and Oh, 2013; Meng et al., 2020). Determining which species can 

grow normally under pure red may help maximize the theoretical potential in horticulture. 

Finally, recent studies have provided compelling evidence that the spectral range for 

photosynthesis should be extended to 750 nm (Zhen and Bugbee, 2020a, 2020b). This would 

allow the use of highly efficient far-red LED packages in selected horticulture applications.   
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APPENDIX D 

SUMMARY OF BLUE AND GREEN EFFECTS ON LETTUCE,                                

CUCUMBER AND TOMATO 
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Table D.1: Response of lettuce, cucumber and tomato growth (dry mass) and development 
(leaf area, stem length and petiole length) to blue photons (B). This analysis only includes the 
effects of increasing the fraction of blue between 5 and 75% blue, meaning that all treatments 
contain some red (600 to 699 nm) and blue photons. The complete absence of either red or 
blue photons often induces abnormal growth and development (Hernandez and Kubota, 
2016; Snowden et al., 2016), likely caused by under-activation of the photoreceptors 
cryptochromes and phytochromes (Kong et al., 2019). In the Days column the number in 
bold is the number of days in the treatment, and the other number is the number of days 
between emergence/planting and moving the plants into the treatments. 
 

 

Species Cultivar
Range of 

treatments
PPFD     

(µmol m-2 s-1)

Photo-
period 

(h) Parameter Effect Citation Comment
CO2 

(ppm) Temp Days
Waldmann's 

Green
8 and 16% 300 18 Dry Mass NS Yorio et al. 

2001
1200 23 21

Leaf Area NS

Dry Mass ↑

Leaf Area ↓

Dry Mass ↓

Red Cross 16, 23 and 
55%

300 16 Dry Mass NS Li & Kubota 
2009

- 25/20 10+12

Leaf Area ↓

Dry Mass ↓

Leaf Area ↓

Dry Mass ↓

Leaf Area -

Dry Mass NS

Leaf Area ↓

Dry Mass NS

Leaf Area ↓

Dry Mass NS

Leaf Area NS

Dry Mass -

Leaf Area ↑

Dry Mass ↑

Leaf Area ↓

Dry Mass NS

Ostinata 12 to 36% 150 16 Dry Mass - Kong et al. 
2015

Results are difficult  to 
interpret. No apparent trend

1200 25/18 39

Leaf Area ↓

Dry Mass ↓

Leaf Area ↓

Dry Mass ↓

Green Oak 
Leaf

23, 30 and 
45%

135 16 Dry Mass - Chen et al. 
2016

Results are difficult  to 
interpret. No apparent trend

350 22/18 35

Leaf Area ↓

Dry Mass ↓

Leaf Area ↓

Dry Mass ↓

Le
ttu

ce

4+18

Red Fire 10 and 26% 300 12
Ohashi-Kaneko 

et al. 2007 400 20/18 37

Grand Rapids 6 to 26% 200 & 500 16
Dougher & 

Bugbee 2001 1000 26/22

400 20 18+28
Grand Rapid 

TBR

Waldmann's 
Green 11 to 28%

200

16
Cope et al. 

2014

Results for leaf area at 200 
µmol m-2 s-1 are difficult  to 

interpret

Sunmang

13 to 59% 171 12
Son & Oh 

2013
Grand Rapids lettuce at 47% 

blue did not fit  the trend

430 24.5 21

500

Red Fire
15, 19 and 

25%

100

16
Furuyama et al. 

2013

At 200 µmol m-2 s-1  the 
highest dry mass occurred in 
the middle treatment (19% 

B)

1000 23/20 4+11+
14

200

300

Jeokchima
10, 20 and 

30% 230 16 Lee et al. 2014
Decrease in leaf area only 

occurs between 20 and 30% B 800 22/18 28

Sunmang

13 to 34% 173 12
Son & Oh 

2015 400 20 18+28
Grand Rapid 

TBR

unspecified 8 to 50% 200 16
Wang et al. 

2016 400 24/20 30

Sunmang 8 to 31% 173 12 Son et al. 2016
Results are difficult  to 

interpret. Appears to trend 
downward

400 20 18+28

Blue Effects
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Table D.1: continued 

 

Species Cultivar
Range of 

treatments
PPFD     

(µmol m-2 s-1)

Photo-
period 

(h) Parameter Effect Citation Comment
CO2 

(ppm) Temp Days
Leaf Area NS

Dry Mass NS

Leaf Area NS

Dry Mass NS

Green Skirt 10 to 30% 150 16 Plant diameter ↓ Kang et al. 
2016

1000 22/17 14+28

14 -

16 NS

14 NS

16 NS

Plant diameter ↓

Fresh/Dry Mass ↓

Plant diameter ↓

Fresh/Dry Mass ↓

Rex Dry Mass ↓

Cherokee Dry Mass ↓

100 NS

150 -

200 -

250 -

300 ↓

Plant diameter ↓

Dry Mass ↓
Green Oak 

Leaf
Dry Mass NS

Red Oak Leaf Dry Mass NS

Leaf Area NS

Dry Mass NS

Leaf Area ↓

Dry Mass ↓

Stem Length ↓

Leaf Area NS

Dry Mass NS

Stem Length NS

Petiole Length ↓

Leaf Area ↓

Dry Mass ↓

Stem Length ↓

Petiole Length ↓

Leaf Area ↓

Dry Mass -

Stem Length - (↑)

Leaf Area ↓

Dry Mass ↓

Stem Length ↓

Le
ttu

ce

Waldmann's 
Green 11 to 28%

200

16
Snowden et al. 

2016 430 - 21

500

Frill ice
20.7, 21.4 
and  26.2%

200

Dry Mass
Yan et al. 

2019b

At 200 µmol m-2 s-1 in 14 h, 
the highest dry mass occurred 

in the middle treatment 
(21.4% B)

800 22/18 20+ 
20

250

Rouxai

7 to 33% 180 20
Meng et al. 

2019
379 to 

402 20 30

Rex

17 and 50% 180 24
Meng & 

Runkle 2019 Not including FR treatments - 23 3 + 12

800 22 20+ 
20

Rouxai 7 to 55% 180 20
Meng et al. 

2020 410

Ziwei 14 to 27% 14 Dry Mass Yan et al. 
2019a

At 150, 200 and 250 µmol m-

2 s-1, treatments had 
significant differences, but 
the pattern is not always 

consistent.

22 30/33

20 and 50% 200 18 Spalholz et al. 
2020

A higher 80% B showed 
significant differences in Red 

Oak Leaf
704 20 42

-(400) 23/21 15

C
uc

um
be

r

Cumlaude 10 to 75% 100 18 Hernandez & 
Kubota 2016

512

Tiberius
10, 25 and 

28% B 210 16 Zou et al. 2020
The highest dry mass and leaf 

area occurred in the middle 
treatment

24.5 17

Sweet Slice 11 to 28%

200

16
Snowden et al. 

2016 430 - 21

500

Zhongnong 26
14 to 27% 

B 200 12
Song et al. 

2017

Results are difficult  to 
interpret. Lowest dry mass 

and height were in 
intermediate treatments. 

Tallest plants occurred at the 
highest percent blue

500 25 15

Zhongnong 16 10, 25 and 
28% B

230 16 Zou et al. 2020 -(400) 23/21 15
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 Table D.1: continued 

 

 

 

Table D.2: Effect of green photons (G) on growth and development of lettuce, cucumber and 
tomato. The studies included in this summary generally maintained a constant fraction of 
blue photons (B), while increasing the fraction of green photons (by simultaneously 
decreasing the fraction of red photons). In the Days column the number in bold is the number 
of days in the treatment, and the other number is the number of days between 
emergence/planting and moving the plants into the treatments. 

 

Species Cultivar
Range of 

treatments
PPFD     

(µmol m-2 s-1)

Photo-
period 

(h) Parameter Effect Citation Comment
CO2 

(ppm) Temp Days

Leaf Area NS

Dry Mass NS

Stem Length NS

Leaf Area ↓

Dry Mass NS

Stem Length NS

Leaf Area NS

Dry Mass NS

Stem Length ↓

Leaf Area ↓

Dry Mass ↓

Stem Length ↓

Petiole Length NS

Leaf Area ↓

Dry Mass ↓

Stem Length ↓

Petiole Length ↓

Leaf Area NS

Dry Mass NS

Stem Length ↓

Leaf Area -

Dry Mass -

To
m

at
o

Komeett

0, 4 and 
16% B 

(supple-
mental)

56 + GH 18 Hernandez & 
Kubota 2012

Supplemental in GH 512 24.5 7+11

Early Girl 25 and 50% 160 18 Wollaeger & 
Runkle 2014

- 20 31/32

Early Girl 6 to 50% 160 18 Wollaeger & 
Runkle 2015

- 20 31 to 
33

Early girl 11 to 28%

200

16
Snowden et al. 

2016 430 - 21

500

Komeett 10 to 75% 100 18 Hernandez et 
al. 2016

509 25 21

Qianxi 25 to 75% 300 12 Liu et al. 2018
Significant differences, but no 

apparent trends - (400) 28/18 30

Species Cultivar
Range of 

treatments
PPFD     

(µmol m-2 s-1)

Photo-
period 

(h) Parameter Effect Citation Comment
CO2 

(ppm) Temp Days

Leaf Area ↑

Dry Mass ↑

Red Cross 31, 52 and 
70% G

300 16 Dry Mass NS Li & Kubota 
2009

- 25/20 10+12

Ostinata
27% B with 

23, 40 or 
51% G

150 16 Dry Mass ↑ Kong et al. 
2015

1200 25/18 39

Green Effects

Le
ttu

ce

18
Kim et al. 

2004 1200 21 28
Waldmann's 

Green

16% B with 
or without 

24% G
150
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Table D.2: continued 

 

Species Cultivar
Range of 

treatments
PPFD     

(µmol m-2 s-1)

Photo-
period 

(h) Parameter Effect Citation Comment
CO2 

(ppm) Temp Days

Leaf Area NS

Dry Mass NS

Leaf Area NS

Dry Mass ↑

Leaf Area NS

Dry Mass NS

Leaf Area NS

Dry Mass NS

Leaf Area ↑

Dry Mass NS/↑

Leaf Area ↓

Dry Mass NS

Leaf Area NS

Dry Mass NS

Green Skirt

10% G in a 
10, 20 or 

30% B 
background

150 16 Plant diameter NS Kang et al. 
2016

1000 22/17 14+28

14 ↑

16 NS

14 NS

16 NS

100 NS

150 NS

200 ↓

250 ↓

300 ↓

Plant diameter NS

Dry Mass NS

Plant diameter ↓

Dry Mass ↓

Plant diameter NS

Dry Mass ↓

Leaf Area ↑

Dry Mass NS

Leaf Area ↓

Dry Mass ↓

Grand Rapid 
TBR

Le
ttu

ce

250

Dry Mass

Ziwei
18.5% B 

with 32 or 
45% G

14

Frill ice
21% B with 
34 or 41% 

G

200
Yan et al. 

2019b 800 22/18 20+ 
20

400 20 18+28

24% B with 
or without 

8% G
14% B with 
or without 

8% G
24% B with 
or without 

8% G

Sunmang

14% B with 
or without 

8% G

173 12
Son & Oh 

2015

22/18 35

Sunmang
About 20% 
B with 7 or 

13% G
173 12 Son et al. 2016

Two 7% G treatments. NS 
compared to one, ↑ compared 

to other
400 20

16 Dry Mass NS/↓
Chen et al. 

2016
NS compared to high yellow, 

↓compared to high red 350
Green Oak 

Leaf

23% B with 
30 or 53% 

G
135

Dry Mass Yan et al. 
2019a

800 22 20+ 
20

18+28

Waldmann's 
Green

1.7 to 41% 
G in a 

background 
of 11 to 
14% B

200

16
Snowden et al. 

2016 430 21

500

410 22 30/33
34% B with 
or without 

33% G
55% B with 
or without 

32% G

Tiberius
15% B with 
0 or 25% G 150 16 Li et al. 2020

Rouxai

12% B with 
or without 

32% G

180 20
Meng et al. 

2020

1000 24/20 21

Tiberius
27% B with 
35 or 45% 

G
210 16 Zou et al. 2020 -(400) 23/21 15
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Table D.2: continued 

  

 

D.1 Literature Cited 

Chen, X.L.; Xue, X.Z.; Guo, W.Z.; Wang, L.C.; Qiao, X.J. Growth and nutritional  
properties of lettuce affected by mixed irradiation of white and supplemental light 
provided by light-emitting diode. Sci. Hortic. 2016, 200, 111–118, 
doi:10.1016/j.scienta.2016.01.007. 

Cope, K.R.; Snowden, M.C.; Bugbee, B. Photobiological interactions of blue light and  
photosynthetic photon flux: Effects of monochromatic and broad‐spectrum light 
sources. Photochem. Photobiol. 2014, 90, 574–584, doi:10.1111/php.12233. 

Dougher, T.A.; Bugbee, B. Differences in the response of wheat, soybean and lettuce to  

Species Cultivar
Range of 

treatments
PPFD     

(µmol m-2 s-1)

Photo-
period 

(h) Parameter Effect Citation Comment
CO2 

(ppm) Temp Days
Leaf Area NS

Dry Mass NS

Stem Length NS

Leaf Area NS

Dry Mass NS

Stem Length NS

Petiole Length NS

Leaf Area ↑

Dry Mass NS

Stem Length NS

Petiole Length NS

Leaf Area NS

Dry Mass ↓

Stem Length NS

Leaf Area ↓

Dry Mass ↓

Stem Length ↓

Leaf Area NS

Dry Mass NS

Stem Length NS

Leaf Area NS

Dry Mass NS

Stem Length NS

Petiole Length NS

Leaf Area NS

Dry Mass NS

Stem Length ↑

Petiole Length NS

Leaf Area NS

Dry Mass NS

Stem Length NS

C
uc

um
be

r

Cumlaude 28% G at 
20%B

100 18 Hernandez & 
Kubota 2016

No departure from the trend 
set by B effects

512 24.5

Zhongnong 26 20% B with 
1 to 44% G

200 12 Song et al. 
2017

500

Zhongnong 16
27% B with 
35 or 45% 

G
230 16 Zou et al. 2020 -(400) 23/21

15

17

Sweet Slice
13% B with 
2 to 41% G

200

16
Snowden et al. 

2016 430 21

500

-

Early Girl

0 and 25% 
G as B 

decreases 
from 50 to 

160 18 Wollaeger & 
Runkle 2014

- 20

25

No departure from the trend 
set by B

509 25 21

500

Komeett 28% G at 
20% B

100 18 Hernandez et 
al. 2016

31/32

Early girl

1.7 to 41% 
G in a 

background 
of 11 to 
14% B

200

16
Snowden et al. 

2016 430 - 21

15

To
m

at
o
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APPENDIX E 

METHOD AND THEORY OF DIRECTLY MEASURING PPE (PFR/PTOTAL) IN 

ETIOLATED TISSUE 
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E.1 Method 

This method is primarily explained by Klein et al. (1967), Kendrick and Frankland 

(1968) and Klose (2019). The technique was modified from Butler et al. (1963).   

These measurements must be made with chlorophyll deficient tissue because 

chlorophyll affects the measurements, even at small concentrations. This means that either 

dark grown etiolated tissue or norflurazon treated tissue must be used. Hypocotyl hooks tend 

to have a relatively large concentration of phytochrome and therefore this tissue is generally 

used for measurements. To assess the status of the major phytochrome in light grown plants, 

phytochrome-B, mutants are often used that are phytochrome-A deficient and phytochrome-

B over-expressers (Klose et al., 2015). The tissue is packed tightly into a cuvette for 

measurements. 

This technique requires a spectrophotometer, which measures the absorbance (or 

optical density, OD) of two wavelengths simultaneously and calculates the difference 

between them, ΔOD. This instrument is called a dual wavelength spectrophotometer and is 

described in Butler et al. (1963) and Klose (2019). The two wavelengths used to calculate the 

ΔOD are 730 and 800 nm, such that ΔOD = OD730 – OD800. These wavelengths are chosen 

because the absorbance peak of Pfr is close to 730 nm and 800 nm is a stable reference 

wavelength that does not change upon irradiation. Chlorophyll can still affect the readings in 

this region. These measurements rely on the Beer-Lampert law that states that concentration 

is proportional to absorbance. Therefore, ΔOD is roughly a proxy for the concentration of Pfr.  

 First, samples in the cuvettes are exposed to the photon source of interest. Then they 

are placed in the dark, frozen and transported to the spectrophotometer where an initial ΔOD 

measurement is made, ΔODi. Then the sample is exposed to saturating actinic red irradiation 
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(about 660 nm) and the ΔOD is measured again, ΔODR. If only Pr absorbed at 660 nm, 

saturating red radiation would convert all the phytochrome to Pfr, and ΔODR would thus be a 

proxy for the total pool of phytochrome (Ptotal). However, that is not the case and both Pr and 

Pfr absorb at 660 nm, so ΔODR must be corrected to estimate Ptotal using an estimation of PPE 

under saturating red. Many publications have calculated this value, called Xfr
red eq, ϕ660 or 

PPER. Smith and Holmes (1977) use an estimation from Pratt (1975), but this appears to be a 

low estimate (see Lagarias et al., 1987; Mancinelli, 1994). A good estimate of ϕ660 is 0.89. 

 Finally, the sample is exposed to saturating actinic FR (about 730 nm) radiation, 

which converts all the phytochrome to Pr, reaching a Pfr minimum, ΔODFR. Unlike 660 nm 

which is absorbed significantly by both forms of phytochrome, 730 nm radiation is 

predominately absorbed by Pfr. Pr may cause less than 1% of the absorbance, but this error is 

small enough to be ignored. Therefore ΔODFR should be a proxy for a Pfr concentration of 

zero, and therefore it is treated as noise and is subtracted from both ΔODi and ΔODR as 

follows: 

[Pfr] ∝  ΔOD𝑖𝑖 −  ΔOD𝐹𝐹𝑅𝑅 

           [E.1] 

[Ptotal] ∝
ΔOD𝑅𝑅 −  ΔOD𝐹𝐹𝑅𝑅

ϕ660
 

           [E.2] 

 Therefore, the final calculation of measured phytochrome photoequilibrium under a 

specific photon source is uses the following equations: 

PPE =  
ϕ660  ×  (ΔOD𝑖𝑖 −  ΔOD𝐹𝐹𝑅𝑅)

ΔOD𝑅𝑅 −  ΔOD𝐹𝐹𝑅𝑅
 

           [E.3] 
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This technique can only measure the relative ratio of all the phytochromes (5 in 

Arabidopsis and 3 in rice), unless the use of mutants is adopted. In the main text we say that 

only PPE can be measured with this technique, not [Pfr] or [Ptotal], but a semi-absolute 

measurement of Ptotal can be measured using Eq. [S1.2] if careful sample preparation is 

undertaken. With careful preparation in a single species the scattering of light within the 

tissue can be assumed to be the same, and thus an absolute value of Ptotal can be obtained with 

units of ΔΔOD/mg fresh mass (Klose, 2019). However, it seems unlikely that Ptotal can be 

compared among species and between young and old tissue due to differences in light-

scattering. This would indicate that the careful measurement of Ptotal is only a semi-absolute 

value.  
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APPENDIX F 

ENVIRONMENTAL FACTORS IMPACTING THE R:FR RATIO IN SUNLIGHT 
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F.1 R:FR Ratio in the Natural Environment 

The R:FR ratio of sunlight varies widely and values have been reported as low as 0.7 

to as high as 1.8 (Holmes and Smith, 1977; Kotilainen et al., 2020; Salisbury, 1981; Smith, 

1982, 1994).  In the natural environment, water vapor, location and the time of day also 

affect the R:FR ratio. 

It is often thought that in full sunlight near solar noon, when the sun is at a low zenith 

angle (high elevation angle), the R:FR ratio is relatively constant around 1.15 (Franklin and 

Whitelam, 2005; Smith, 1982), but recent data by Kotilainen et al. (2020) demonstrates the 

influence of atmospheric water vapor, location and the time of day on the R:FR ratio. There 

is an atmospheric water vapor absorbance band with a peak at 723 nm and two oxygen 

absorbance bands in the R and FR region (Patadia et al., 2018; Smith, 1982; Fig. 1). The 

water absorbance band depends on the amount of moisture in the atmosphere; the oxygen 

absorbance band is affected by length of the atmospheric path.  Furthermore, light scattering 

through the atmosphere at low sun angles near dawn and dusk has historically been thought 

to significantly reduce the R:FR ratio. This has led to many end-of-day far-red studies 

(Kasperbauer, 1971; Salisbury, 1981).  More recent data indicates that low sun angles can 

significantly increase the R:FR ratio in some environmental conditions (Kotilainen et al., 

2020).  Collectively, these factors alter R:FR ratios  in full sunlight in the natural 

environment.  
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SUPPLEMENTAL DATA FOR CHAPTER 4 
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Table G.1: Percent far-red in each treatment. There were 7 trials in time, each with a 
higher and lower dose of FR.  

 

 

 
Fig. G-1: Effect of percent far-red on stem length and leaf area in tomato 

Trial # FR Dose
HIGH 
BLUE

HIGH 
GREEN

HIGH 
RED

LOW 1.5 3.4 1.3
HIGH 9.1 12 8.6
LOW 1.5 3.2 1.8
HIGH 9.2 9.0 9.2
LOW 1.6 5.5 1.3
HIGH 25 24 23
LOW 1.6 6.3 1.4
HIGH 25 25 25
LOW 13 13 13
HIGH 19 20 18
LOW 13 13 12
HIGH 20 20 20
LOW 18 17 16
HIGH 41 44 39

Trial 7

Trial 3

% FAR-RED
Trial 4

Trial 5

Trial 6

Trial 1

Trial 2

∑701 − 750 𝑓𝑓𝑛𝑛
∑400 − 750 𝑓𝑓𝑛𝑛
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Fig. G-2: Photo of the chambers used in the study.  

 
 

 
Fig. G-3: Reflectance of black felt used in short-term photobleaching study. 
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Fig. G-4: Spectrum of the pre-treatment for the short-term photobleached seedling study.  

Fig. G-5: Average spectral photon distribution in each far-red (FR) dose treatment. Blue, 
green and red lines represent the high blue, green and red background treatments, 
respectively.   
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Fig. G-6: Spectral treatments from the short-term photobleaching study. These 
experiments used the same spectral backgrounds as the long-term study. These studies 
only contained three levels of FR. Measurements are averages from four replicate studies.   
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Fig. G-7: Comparing the assumption of log-linear stem elongation with linear elongation 
in the long-term study. Stems typically elongate following a sigmoidal curve (Fisher et 
al., 1996; Bjorkman, 1999) with exponential elongation in young plants (Morgan and 
Smith, 1978), followed by linear elongation, and finally, exponential rise to a maximum. 
This means that elongation is best described as a natural log function in the early stages 
of growth (Eq. 4.4 and 4.5). For this reason early studies regularly used log-linear stem 
elongation rates to predict elongation from phytochrome photoequilibrium (Morgan and 
Smith, 1976, 1978, 1979). Comparing exponential elongation (a,c,e) to linear elongation 
(b,d,f) resulted in minimal differences in the r2 values. Importantly, comparing PPE 
estimated above the leaf compared to estimating PPE within the leaf result in the same 
conclusions regardless of assuming linear or log linear elongation. Additionally, percent 
far-red was a good metric regardless of linear or log-linear elongation.  
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Fig. G-8: Changing the assumption in the initial plant height when calculating the natural 
log of the stem extension rate (lnSER). For the analysis used in the main text of this 
study, the initial stem length was assumed to be equal to one cm (a,b).  (c) through (f) 
assume random initial values between 1.4 and 2.3 cm (measured initial cucumber heights 
in a separate study) for Stem length(i) in Eq. 4.4.  Eq. 4.5 is then modified by dividing 
stem length at harvest by this random value for each data point. (c) and (d) assume the 
same set of random values for Stem length(i) and (e) and (f) assume a different set of 
random values. In both cases the r2 values do change, but changes are minimal, and 
importantly, Estimating PPE within the leaf significantly improves the correlation 
through all the data in every case.  
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Fig. G-9: Photoconversion weighting factors for phytochrome conversion in etiolated 
tissue.  Weighting factors are for (a) phytochrome in the epidermal tissue or (b) 
phytochrome homogeneously distributed through all cotyledon tissue.  

 
Fig. G-10: Relationship between lnSER in the long-term study and PPE estimated using 
the transmission spectrum as a distortion function. The relationship is non-linear.  
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Fig. G-11: Alternative models to explain the stem elongation data in response to far-red 
using the modified Michaelis-Menten kinetic formula.  
 

Stem elongation (PIF activity) = Vmax −
Vmax [PPE]
km + [PPE]

 

 
Because the PIF transcription factors upregulate genes related to elongation, stem 
elongation is assumed to be correlated with PIF activity. In order to normalize this PIF 
activity, the normal Michaelis-Menten formula is subtracted from Vmax (maximum PIF 
activity is assumes to be equal to the maximum elongation rate).Because Pfr inhibits the 
activity of PIFs, higher relative concentrations of Pfr concentrations would inhibit 
elongation. Pfr is normalized following the normal method of calculating PPE.   
 
This model was fit to the log linear (a and b) and linear (c and d) stem elongation data 
using both the two-state (a and c) and three-state (b and d) models assuming PPE within 
the leaf in all cases. This model does follow the general non-linearity of the relationships 
between different estimates of active phytochrome and elongation rate, but the correlation 
coefficients are lower than the linear estimates used in chapter 4 (Fig. 4-7 and Fig. 4-8). 
In all cases, the model is significantly improved assuming the three-state over the two-
state model.  However, the assumption of this modified Michaelis-Menten formula, 
similar to general linear models, are questionable.  
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Fig. G-12: Data from Hitz et al. (2019) represented in graphs that use percent far-red 
(FR). Green data comes from the cv. Lissabon, red data comes from the cv. Merlin, and 
blue data comes from the cv. Sultana. Darker lines are were grown under a PPFD of 100 
µmol m-2 s-1 and the dark lines were grown under 400 µmol m-2 s-1. (a) The data graphed 
with absolute tem length. (b) The data re-graphed as percent increase compared to the 
treatment with no added FR.  
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SUPPLEMENTAL DATA FOR CHAPTER 5 
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Fig. H-1: Effect of percent far-red (FR) and extended photosynthetic photon flux density 
(ePPFD) on leaf shape in lettuce. (a) Leaf length (b) leaf width and (c) leaf width divided 
by leaf length. Top graphs are absolute values while bottom graphs are the normalized 
response, where data from each replicate in time has been normalized to its respective 2% 
FR control treatment for each level of ePPFD. In the normalized graphs, * indicates that 
the treatment is statistically different from 1 (using a student’s t-test), which represents 
the effect of the 2% FR control. Error bars represent standard error for n = 3 replicates. 
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Fig. H-2: Model of the effect of percent far-red (FR) and extended photosynthetic photon 
flux density (ePPFD) on percent stem mass in cucumber using the cellular model 
developed by Rausenberger et al. (2010), Klose et al. (2015), Sellaro et al. (2019), and 
Smith and Fleck (2019). For each graph, the program provided by Smith and Fleck 
(2019) was used to calculate the size of different pools of phytochrome as a fraction of 
the total pool of phytochrome, given the average spectral photon distribution (SPD) of 
each replicate. Then, the average percent stem mass of the four plants in each treatment 
were plotted. Linear or exponential decay models were used to fit all the data.  
 
In (a) through (d) Pfr is assumed to be the active form of phytochrome, while in (e) 
through (h), D2 (the fully active Pfr-Pfr homodimer) is assumed to be the active form. In 
(a), (b), (e) and (f) the SPD above the leaf is input into the model, while in (c), (d), (g) 
and (h), spectral distortion functions are first used to estimate the SPD within the leaf.  
 
In (c), the dark yellow circle shows the relative decrease in Pfr at lower ePPFD compared 
to higher ePPFD. This is caused by a greater significance of thermal reversion at lower 
photon intensities. In (d) the dark yellow circle shows the spread of the data between 
different levels of ePPFD. This shows that thermal reversion did not shift the expected 
response at lower intensities enough make the data fall on a single line. This strongly 
indicates that some other factor (e.g. blue photons) were contributing to the response.  
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Fig. H-3: Effect of percent far-red (FR) and extended photosynthetic photon flux density 
(ePPFD) on petiole length in cucumber. Error bars represent standard error for n = 5 
replicates in cucumber. 
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Fig. H-4 Effect of percent far-red (FR) at three levels of extended photosynthetic photon 
flux density (ePPFD) on percent dry mass in lettuce (a,c) and cucumber (b,d). Percent dry 
mass was calculated by dividing total shoot dry mass by total shoot fresh mass, and 
multiplying by 100.  (a) and (b) represent absolute values of percent dry mass and (c) and 
(d) are the normalized response, where data has been normalized to the average response 
in the 2% FR control treatment for each ePPFD. Error bars represent standard error for n 
= 3 replicates in lettuce and n = 5 replicates in cucumber. In (d), the NS indicates that the 
slopes of the 50 and 200 µmol m-2 s-1 treatments are not statistically different, while the 
500 µmol m-2 s-1 treatment (marked with an *) has a statistically different slope. 
 

 

 

 

 



295 

 
Fig. H-5 Effects of percent far-red (FR) and extended photosynthetic photon flux density 
(ePPFD) on chlorophyll concentration in lettuce (a,c) and cucumber (b,d). Chlorophyll 
concentration was measured with a chlorophyll concentration meter (MC-100, Apogee 
Instruments, Logan UT) using lettuce coefficients for the lettuce measurements and 
generic coefficients for the cucumber measurements. (a) and (b) the raw data and (c) and 
(d) are the normalized response. In (c) data from each replicate in time has been 
normalized to its respective 2% FR control treatment for each intensity, and * indicates 
that the treatment is statistically different from 1 (using a student’s t-test), which 
represents the response of the 2% FR control. In (d) data has been normalized to the 
average response in the 2% FR control treatment for each ePPFD. In (a) and (c) trend 
lines are included to guide the eye, and not meant to be used as a statistical 
representation. Error bars represent standard error for n = 3 replicates in lettuce and n = 5 
replicates in cucumber. 
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