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ABSTRACT

Exact and Approximate Relaxation Techniques for Computational Guidance

by

Sheril Avikkal Kunhippurayil, Doctor of Philosophy

Utah State University, 2021

Major Professor: Matthew W. Harris, Ph.D.
Department: Mechanical and Aerospace Engineering

The focus of this dissertation is in the development and application of relaxation tech-

niques that enable efficient and real-time solution of complex computational guidance prob-

lems. Relaxations transform a non-convex constraint into a convex constraint and provides

proof that the optimal solutions to the relaxed problem are optimal for the original problem.

Unique contributions of this work include: 1) a relaxation technique for solving fixed final

time problems between fixed points, 2) a performance analysis on the application of compu-

tational guidance for the Mars Ascent Vehicle, and 3) establishment of sufficient conditions

for non-singularity of optimal control for problems on a smooth manifold with mixed con-

straints. The first result states that for annularly constrained linear systems, controllability

is a sufficient condition for the problem to be solvable as a sequence of convex programs.

The second result applies relaxations to an ascent problem. The third result is the most

general result to date for problems with mixed constraints. It uses a minimum principle

on manifolds with mixed contraints to analyze the problem in a geometric framework, and

shows that strong observability of the dual system is sufficient for non-singularity.

(150 pages)
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PUBLIC ABSTRACT

Exact and Approximate Relaxation Techniques for Computational Guidance

Sheril Avikkal Kunhippurayil

The focus of this dissertation is in the development and application of relaxation tech-

niques that enable efficient and real-time solution of complex computational guidance prob-

lems. Relaxations transform a non-convex constraint into a convex constraint and provides

proof that the optimal solutions to the relaxed problem are optimal for the original problem.

Unique contributions of this work include: 1) a relaxation technique for solving fixed final

time problems between fixed points, 2) a performance analysis on the application of compu-

tational guidance for the Mars Ascent Vehicle, and 3) establishment of sufficient conditions

for non-singularity of optimal control for problems on a smooth manifold with mixed con-

straints. The first result states that for annularly constrained linear systems, controllability

is a sufficient condition for the problem to be solvable as a sequence of convex programs.

The second result applies relaxations to an ascent problem. The third result is the most

general result to date for problems with mixed constraints. It uses a minimum principle

on manifolds with mixed contraints to analyze the problem in a geometric framework, and

shows that strong observability of the dual system is sufficient for non-singularity.
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CHAPTER 1

INTRODUCTION

Optimal control problems arise frequently not only in mechanics and aerospace engi-

neering, but also in areas of management science and economics. Aerospace applications

such as autonomous real-time control applications demand real-time optimization, i.e., con-

vergence to a global optimum along with computational efficiency. Problems such as the

planetary landing problem or the soft landing problem [1], the rendezvous problem [2], and

the path planning problem for unmanned aerial vehicles [3] – all fall under this category.

However, these problems are naturally non-convex and not easy to solve in real-time.

In the planetary landing problem, a spacecraft tries to land autonomously on the surface

of the planet using thrusters, which produce a force vector that has an upper and non-zero

lower bound on its magnitude. The non-zero lower bound makes the set of feasible controls

non-convex. Similarly for the rendezvous problem, upper and lower bounds exist for the

thrust magnitude resulting in a non-convex feasible set of controls. In the path planning

problem for unmanned aerial vehicles, there are upper and lower bounds on the norm of

the commanded velocity which makes the problem non-convex. In addition, solving these

problems using nonlinear programming techniques can only guarantee convergence to a local

optimum and can fail to find a feasible solution unless a feasible initial guess is provided by

the user [4].

A computationally effective and practical approach is to transform these non-convex

constraints into convex constraints through exact or approximate relaxations. An exact re-

laxation is the two-stage process of 1) relaxing the non-convex constraint to a convex form

and 2) proving that the optimal solution to the relaxed problem is optimal for the original

problem. Unlike approximate relaxations, exact relaxations do not involve any system dy-

namic perturbations. In the context of optimization-based control, exact relaxations were
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first introduced by Behçet Açıkmeşe and Scott Ploen in 2007 for fuel optimal planetary

landing [1] and they coined the term “lossless convexification” to such relaxations. These

relaxations are useful since the relaxed problem can be solved using interior point methods

(IPMs) [5–7] and customized IPM solvers [8]. The use of IPM algorithms guarantees conver-

gence to the global optimum in polynomial time, meaning they can be solved in real-time.

Current research with customized methods indicates orders of magnitude improvement in

computation time [8–10].

Traditional guidance laws have been analytical. They were also simple in the sense

that they require nominal algebraic operations for evaluating the closed-form guidance and

control laws. However, for complex guidance and control problems that incorporate many

state and control constraints, computational guidance offers significant increased capability

with a simultaneous reduction in operational costs associated with guidance and control

systems [11]. Computational guidance differs from traditional guidance in the sense that

the generation of control commands relies extensively on onboard computation and the

process of determining these commands is either model-based or data-based such that it

does not require a specified reference state or trajectory.

The focus of this dissertation is in the development and application of relaxation tech-

niques which are based in optimal and geometric control theory, and those that enable

efficient, real-time solution of complex computational guidance problems. Relaxation tech-

niques and computational guidance were first applied to the Mars landing problem in 2005

by Açıkmeşe and Scott Ploen – then staff members at the Jet Propulsion Laboratory (JPL).

The work was extended by Blackmore et al. in 2010 for the case where landing at the

desired point was not feasible [12]. Several other landing applications have also been con-

sidered [4, 13–15]. Later, the relaxation results were extended for nonlinear systems with

annular control constraints [13], and linear systems with annular control contraints and

linear state constraints [16]. While these relaxations are extremely powerful, a specific as-

sumption precludes their application to fixed time transfers between fixed points. Also, the

results have been proved only for certain specific classes of problems. Hence, many open
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questions remain – some of them are listed below.

1. For annularly constrained linear systems,

(a) Is there a relaxation that is applicable to the problem of fixed time transfer

between fixed points?

(b) If it exists, can the proof be done in finite dimensions?

2. Is computational guidance applicable to the Mars Ascent Problem? What advantages

does it offer over traditional guidance schemes?

3. For problems on a smooth manifold with mixed constraints,

(a) What are the sufficient conditions for non-singularity of optimal control?

(b) Can singular solutions be characterized as system zeros/zero directions?

Chapters 4, 5, and 6 answer these questions, respectively. Now, we provide a brief

description of the upcoming chapters.

Chapter 2: Background and Related Work

This chapter begins with a brief history of optimal control theory followed by its applica-

tion to the development of analytical and computational guidance laws. The advantages

of applying relaxation techniques and convex optimization are also discussed. Finally, a

literature survey of the two problems of interest for this dissertation are presented.

Chapter 3: Elements of Optimal Control

This chapter primarily presents the necessary conditions for global optimality for two classes

of problems – (i) a basic optimal control problem, and (ii) a problem on a smooth manifold

with mixed constraints. The chapter also provides insight into some of the relevant tools

from differential geometry.



4

Chapter 4: Lossless Convexification of Optimal Control Problems with Annular Control

Constraints

The chapter presents new lossless convexification results for annularly constrained problems

with linear dynamics. The work is unique because it addresses a specific category of prob-

lems – fixed time transfer between fixed points, and this was not done before. An attempt

to provide the proof for relaxation in finite dimensions and its results are also presented.

Chapter 5: Application to Mars Ascent Guidance

This chapter presents an application of relaxation techniques and computational guidance

to the Mars Ascent Vehicle – second stage guidance. The nominal and Monte Carlo perfor-

mance results are compared to traditional guidance schemes such as Q-guidance (NASA’s

current choice) and LVLH-guidance (a PEG-like guidance).

Chapter 6: Strong Observability as a Sufficient Condition for Non-Singularity in Optimal

Control with Mixed Constraints

This chapter presents sufficient conditions for non-singularity of optimal control for problems

defined on a smooth manifold subject to mixed constraints. The results are applicable to

time-invariant and time-varying systems, and subsume results of a previous work. The

work is unique because it is the most general result to date. Applications to time optimal

and fuel optimal problems are also presented. The chapter also provides a discussion on

how to characterize singular solutions as zero directions of the system. Note that the zero

directions result in zero output everywhere and are related to the observability properties

of the system.

Chapter 7: Final Remarks

This chapter discusses some of the related open questions and challenges in the field of

relaxations.
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CHAPTER 2

BACKGROUND AND RELATED WORK

Optimal control theory is an outgrowth of the calculus of variations with a history

stretching back over 360 years. The story begins with Galileo in 1638 when he posed two

shape problems: the shape of a heavy chain suspended between two points (the catenary),

and the shape of a wire such that a bead sliding along it under gravity traverses the distance

between its end points in minimum time (brachistochrone). Galileo’s conjectures on the

solutions of his two problems were incorrect, and Newton in 1685 was the first to solve a

shape problem - the nose shape of a projectile providing minimum drag - though he did not

publish the result until 1694 [17]. In 1696, Johann Bernoulli challenged his contemporaries

to solve the brachistochrone problem. Five mathematicians responded to the challenge

including Johann’s elder brother Jakob, Leibnitz, l’Hospital, Tschirnhaus, and Newton.

Bernoulli published all their solutions together with his own in 1697 [17]. The competition

aroused interest in this type of problem and was followed by a period of activity by a

number of mathematicians. In 1744, Euler formulated the problem in general terms as of

one finding the curve x(t) over a time interval a ≤ t ≤ b, with given boundary conditions,

which minimizes a cost J in integral form. He also stated a first order necessary condition

for optimality.

Up to this point the solution techniques had been essentially geometric until in 1755

when Lagrange described an analytical approach, based on perturbations or “variations”

of the optimal curve using his “undetermined multipliers” which led directly to Euler’s

necessary condition – now known as the “Euler-Lagrange equation”. Euler readily adopted

this approach and renamed the subject as “the calculus of variations” [17].

In 1786, Legendre studied the second variation and came up with a second-order neces-

sary condition for optimality. Legendre derived it for scalar case, but was later extended to
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the vector case by Clebsch and is now known as the Legendre-Clebsch condition. Meanwhile,

Hamilton through his “principle of least action”, had been reformulating the equations of

mechanics as a variational principle and he introduced the function – now known as the

“Hamiltonian function”. These events were followed by contributions from Jacobi, Weier-

strass, and Caratheodory until the general problem (now known as the problem of Lagrange)

was solved. A notable contribution from Weierstrass are his necessary conditions for strong

minima. These conditions were based on the topological fact that an optimal solution must

terminate on the boundary of the extended reachable set formed by the competing curves

and their integral costs [18]. As such, assumptions on the existence of control variations

or normality assumptions were required. However, it was later established that any condi-

tions that operate under these normality assumptions without qualification are not actually

necessary [19]. The issue was first resolved in the calculus of variations by McShane in

1939 [20].

In the late 1950s, L. S. Pontryagin and his co-workers came up with the “Maximum

Principle”. An important novelty of Pontryagin’s approach consists of liberating the vari-

ations along the optimal curves from the constricting condition that they must terminate

at the given boundary. Instead, he considered variations that are infinitesimally near the

terminal point and that generate a convex cone of directions locally tangent to the reachable

set at the terminal point defined by the optimal trajectory [18]. In addition, an essential

advantage of the maximum principle over the classical theorems in calculus of variations

is the fact that this principle is applicable for any closed control set in an n-dimensional

space, whereas calculus of variations is only applicable to an open set [21]. This set the

scene for parameterizing the degrees of freedom implicit in Lagrange problem by consider-

ing constraints of the form ẋ(t) = f(t, x(t), u(t)), where parameters u(t) or “controls” can

be chosen at each t ∈ (a, b), possibly restricted to some control set Ω ⊂ Rm, yielding the
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optimal control problem:

min J =

∫ b

a
L(t, x(t), u(t))dt (2.1)

subj. to ẋ(t) = f(t, x(t), u(t)) (2.2)

x(a) = x0 , x(b) = xf (2.3)

u(t) ∈ Ω (2.4)

The necessary conditions for optimality for this problem were established by Pontryagin,

which were based on the fact that the Hamiltonian that corresponds to the optimal trajec-

tory must be maximal relative to the competing directions [18].

Soon after, the era of lunar exploration began and optimization techniques were heavily

applied for developing guidance laws, especially for lunar powered descent. These guidance

laws were purely analytical in nature. In 1964, Meditch applied the Pontryagin’s maximum

principle to develop a minimum fuel thrust program for the terminal phase of a lunar soft

landing mission [22]. He proved that no singular solutions existed for the problem and

with the help of a switching function, he was able to show that the optimal thrust program

consisted of either full thrust from the initiation of the mission until touchdown, or a period

of free-fall followed by full thrust until touchdown. In 1967, Hull developed thrust programs

for minimum fuel consumption during vertical take-off and landing manuever of a rocket in

vacuum which were applicable to an arbitrary central gravitational field [23]. He employed

a linear integral technique developed by Miele, which is based on the application of Green’s

theorem to extremization of linear integrals. Later in 1969, the Apollo Lunar Module landed

on the moon using the Apollo powered descent guidance (APDG) law, which is considered

one of the many technological innovations of the time that delivered the ultimate success.

This guidance law computed a commanded thrust acceleration vector which was defined

as a quartic function of time [24]. Using the current position and velocity vector as the

initial condition, the coefficients of the quartic polynomial were uniquely determined by

meeting the targeted final position, velocity, and thrust acceleration at a specified final
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time. Another powered guidance law developed at the same time is the E-guidance law [25],

where the commanded thrust acceleration was defined by a linear polynomial of time, and

the targeting condition is specified by the final position and velocity at the prescribed final

time. Eventually, it was discovered that the E-guidance law is a special case of APDG [26].

Both APDG and E-guidance laws have simple and elegant closed-form solutions, and they

still represent a useful technology more than 50 years old.

However, in recent years, with the advances in the computational technology, there is

an emerging and accelerating trend to replace these traditional closed-form guidance and

control laws with numerical algorithms. This approach was given the name “computational

guidance and control” (CG&C) by Ping Lu [11]. In contrast to the traditional guidance

and control, CG&C differs in the following: (i) the generation of guidance and control

commands relies extensively on onboard computation, often involving iterations, and (ii)

the process of determining guidance and control commands is model-based or data-based,

and it does not require a specified reference trajectory, gain tuning, or extensive offline

mission, or system-dependent designs [11].

Now, to solve an optimal control problem, one could use either the indirect or direct

method. The former applies the optimal control theory to derive the necessary conditions

and then solve the resulting two-point boundary value problem (TPBVP). The latter dis-

cretizes the original continous-time problem into a nonlinear programming (NLP) problem,

which is then solved by an NLP algorithm. However, the TPBVP is known to be highly

sensitive to initial guesses and NLP problems are non-deterministic polynomial-time hard

(NP-hard), which means that the amount of computation required to solve the problem

will not be limited by a bound determinable a priori [27]. As a result, convex optimiza-

tion problems have gained popularity since they are computationally tractable in the sense

that they can be solved in polynomial-time with the help of IPMs [6]. An optimal control

problem with linear dynamics, affine equality constraints, inequality constraints formed by

convex functions, and a convex cost is classified as a convex optimal control problem.
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Over the last 15 years, convex optimization has been applied to a wide range of space-

craft applications. These include the application of convex optimization in the Mars precise

landing problems with nonconvex constraints on the thrust magnitude [1,12,28,29]. Highly

nonlinear problems such as spacecraft rendezvous and proximity operations with the target

spacecraft in any Keplerian orbit were solved by successive second order cone programming

(SOCP) [2, 30, 31]. Convex optimization has also found applications in rapidly designing

descent trajectories for asteroid landing [32,33].

However, most spacecraft applications are naturally nonconvex. Nonconvexity may

arise if the objective function and/or the constraints are nonconvex. One source of con-

vexity is due to nonlinear dynamics which is true for many spacecraft applications. Since

optimal control problems are infinite-dimensional, they must be discretized in order to be

solved. After descretization, the nonlinear dynamics will become nonlinear algebraic equal-

ity constraints and become the major sources of nonconvexity. Hence, a number of tech-

niques were developed to reformulate the nonconvex problem into a convex problem. These

include equivalent transformations, change of variables, successive linearization, successive

approximation, and relaxations [27].

We define relaxation as the process in which a non-convex constraint is transformed

into a convex constraint. Throughout this work, the terms – exact relaxation and lossless

convexification are used synonymously. The interest of this research is primarily focused

towards relaxing the following two major categories of non-convex problems: (i) problems

with annular constraints, and (ii) problems on smooth manifolds with mixed constraints.

A brief survey of the existing literature on these specific problems is given in the following

subsections.

2.1 Problems with Annular Constraints

Problems with annular constraints are relevant as many guidance problems fall under

this category including the rocket landing problem. Rockets with chemical propulsion sys-

tems do not perform reliably under a certain thrust level, and hence the guidance system

is responsible for generating thrust commands with a magnitude constrained between a



10

non-zero lower bound and an upper bound. Such constraints introduce nonconvexity to the

problem. This problem was first studied by Behçet Açıkmeşe and Scott Ploen in 2007 for

Mars entry, descent, and landing [1]. They developed computational guidance schemes for

Mars landing, wherein they formulated the problem as a non-convex optimization problem,

transformed it to a convex form, and solved it using convex solvers. In 2011, Açıkmeşe and

Blackmore presented results for lossless convexification of optimal control problems with a

convext cost, linear dynamics, and an annular control constraint [4]. The proof was based

on two conditions: system controllability and an orthogonality condition. However, the

orthogonality condition prevented the relaxation results to be applied for fixed final time

problems between fixed points. A problem discussed in [4] is the planetary soft landing

problem, wherein an autonomous spacecraft lands at a prescribed location on the planet

surface with zero relative velocity. The constraint set in this problem is non-convex since

the magnitude of the control vector is bounded above and below with a non-zero lower

bound.

uy

ux Γ

ux

uy

Fig. 2.1: Relaxation of the annular control constraint

The annulus in Figure 2.1 represents the actual non-convex control set in the (ux, uy)

space. After the relaxation, this non-convex annular space is lifted to a convex cone in the

(ux, uy,Γ) space, where Γ is a slack variable.

In 2012, Blackmore et al. extended the results for problems with continuous-time non-

linear dynamics and annular control constraints [13]. Here again a controllabilty condition

was required for the relaxation and the results were applicable only to free final time prob-
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lems. Later in 2014, Harris, and Açıkmeşe presented relaxation results for problems with

linear dynamics, annular control constraint, and linear state constraints. For time-varying

systems, the proof required the state space be strongly controllable, A-invariant and an

orthogonality condition. For time-invariant systems, the state space required to be strongly

controllable. Again the results were applicable to free final time problems.

Note that upon relaxation, the resulting convex problem is still an infinite-dimensional

optimal control problem. This difficulty is overcome by considering direct numerical meth-

ods to compute the optimal solutions, where the original infinite-dimensional control prob-

lem is approximated by a finite-dimensional parameter optimization problem, i.e., the prob-

lem is discretized in time [34–36]. Since the resulting parameter optimization problem is

convex, it can be solved to global optimality in polynomial time with an a priori known

upper bound on the number of mathematical operations needed [5, 6, 37].

However, in all of the previous works, the proofs for the relaxation were done for

the infinite-dimensional problem and no attempt to provide the same for the discrete-time

problem were discussed. Problems with annular constraints are commonly encountered but

yet they pose a very specific problem. A more general problem is discussed in the next

section.

2.2 Problems on Smooth Manifolds with Mixed Constraints

Problems on smooth manifolds with mixed constraints appear in the real-time control

of mechanical and aerospace systems that are highly constrained by operational, environ-

mental, and mission constraints. One such problem is the atmospheric reentry of the space

shuttle [38–40]. The problem is challenging because of nonlinear dynamics and a heat-

ing constraint. To ensure structural safety of the vehicle during reentry, it is crucial to

limit the atmospheric heating on the shuttle wing leading edge. The heating constraint

is a mixed constraint that is a function of the states and the control. Another particu-

larly relevant example is that of planetary descent [1, 41]. Consider the scenario wherein a

spacecraft is powered with a chemical propulsion system such that the thrust magnitude is

constrained between a non-zero lower bound and an upper bound, and the mission requires
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the spacecraft to approach the landing site at a specific angle. As noted before, such annu-

lar constraints on the thrust levels make the problem non-convex. Also, state constraints

such as the glide slope constraint introduce additional complexity to the problem. Another

trajectory optimization problem that falls into this category is the rendezvous problem of

spacecraft in LEO [2] with a constant altitude constraint.

Optimization problems on manifolds also appear in other fields of engineering – partic-

ularly robotics. These include generating collision-free trajectories for quadrotors [42, 43],

vision-based trajectory optimization for robots with camera orientation constraints [44,45],

and trajectory planning for free-floating robotic spacecraft [46] to name a few.

In many practical scenarios, it is beneficial to know a priori that the optimum controls

to the problem are on the boundary of the control set. This simplifies the controller design,

enables relaxations, and helps to choose an appropriate numerical method. In this context,

if the controls are not on the boundary, then the solution is said to be singular.

The requirement for non-singularity is related to the idea of lossless convexification.

In [16], Harris and Açıkmeşe presented sufficient conditions for non-singularity of optimal

control for a particular class of annularly constrained problems. The problem included an

annular control constraint, a convex control contraint, and linear state contraints. The

problem, however, did not include mixed constraints explicitly. Moreover, the analysis was

done in Euclidean space and their method of proof required a specific coordinate represen-

tation. The authors utilized the idea of “friends” from linear systems theory [47] to replace

the linear state constraint with a mixed constraint. This reformulation was used to arrive

at the proof for the relaxation that they introduced in the paper [16].

As such, it would be beneficial to define the problem with mixed constraints in a

geometric intrinsic framework using the notion of smooth manifolds and generalize the

results of Harris and Açıkmeşe [16] in a coordinate-independent setting. It is also important

to note that the proof for lossless convexification in [16] required the system to be strongly

controllable on a reduced state space defined by the state constraints.
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A closely related idea to strong controllability or strong observability of the system

is that of a system zero. The non-existence of zeros, and zero directions is equivalent to

strong observability. Also, results from [16] indicate that strongly observable systems do

not permit singular solutions. This suggests that the singular solutions can be characterized

as zero directions of the system.

2.3 Summary

Optimization problems have been studied for centuries but optimal control was devel-

oped in the late 1950s. Starting with the lunar exploration era, a number of analytical

guidance laws based on optimal control have been developed including the APDG and

the E-guidance laws. However, with the advent of high speed computing, more effecctive

computational guidance laws are being developed to exploit the powerful techniques of con-

vex optimization. This relative ease of solving convex problems demanded the need for

relaxation techniques.

Açıkmeşe, Ploen, Blackmore, and Harris have made some significant contributions

to the field of relaxations. They presented new mathematical results for problems with

linear and nonlinear dynamics, nonconvex control constraints, and linear systems evolving

on manifolds. However, the results are inapplicable to fixed time problems between fixed

points.

Sufficient conditions for non-singularity of optimal control for problems with state con-

straints defined in Euclidean space have been studied by Harris and Açıkmeşe [16]. However,

the results were confined to linear systems evolving on linear manifolds and required a spe-

cific coordinate representation.
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CHAPTER 3

ELEMENTS OF OPTIMAL CONTROL

3.1 Introduction

This chapter emphasizes the main mathematical results related to optimal control the-

ory which are critical to the development of results presented in this work. The chapter

is organized as follows. Section 3.2 introduces the mathematical notation. Section 3.3

describes the basic optimal control problem defined in Euclidean space and states the stan-

dard conditions of Pontryagin. Section 3.4 recalls some basic tools from differential geometry

concerning flows of vector fields over a smooth manifold which are essential in defining an

optimal control problem in a geometric intrinsic framework. Section 3.5 re-interprets the

minimum principle in the geometric language of manifolds. Finally, in section 3.6 a problem

on a smooth manifold subject to mixed contraints is defined and the necessary conditions

for optimality are stated.

3.2 Nomenclature for the Chapter

A function f ∈ Cn if its first n derivatives exist and are continuous; R is the set of real

numbers; Rn is the n-dimensional real vector space; Z is the set of positive integers; ||v||

is the 2-norm of the vector v; a condition is said to hold almost everywhere in the interval

[a, b], a.e. [a, b], if the set of points in [a, b] where this condition fails to hold is measure

zero; the function x(·) evaluated at t is denoted by x(t); the time derivative of a function

is denoted by dx/dt or an overdot as ẋ; the partial of φ with respect to vector x ∈ Rn is

denoted ∇xφ and is a column vector.

3.3 Basic Optimal Control Problem

In this section, we introduce the basic optimal control problem and state the necessary

conditions for global optimality. The primary references for this section are the original
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work by Pontryagin [21] and its more recent interpretation by Liberzon [48]. In general, an

optimal control problem is one of finding a control trajectory u(·) and an associated state

trajectory x(·) such that a given objective or performance index is minimized over a finite

time interval [t0, tf ]. A number of different constraints can be imposed on the problem but

here we consider a problem with only pure control constraints. Hence we call it the basic

optimal control problem (BOCP). The problem is mathematically described below.

min J = φ(tf , xf ) +

∫ tf

t0

`(t, x(t), u(t)) dt (BOCP)

subj. to ẋ(t) = f(t, x(t), u(t)), x(t0) = x0

u(t) ∈ Ω, ψ(tf , xf ) = 0.

The system dynamics are described by the ordinary differential equations

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0. (3.1)

The system state belongs to the set of absolutely continous functions with x(t) ∈ Rn.

It is assumed that f(·, ·, ·) ∈ C and f(·, ·, ω) ∈ C1 for each fixed ω, i.e., it is continuous

in all arguments and continuously differentiable with respect to the first and the second.

The control input is assumed to belong to the set of bounded measurable functions with

u(t) ∈ Ω ⊂ Rm, where Ω is the control constraint set. Both x(t) and u(t) are defined

on the interval [t0, tf ] where t0 is the initial time, and tf is the final time. The final time

can be free or fixed. The terminal constraint is given by ψ(tf , xf ) = 0. The objective is to

minimize the sum of the terminal cost φ(tf , xf ) and the running cost `(t, x(t), u(t)).

Before stating the necessary conditions for optimality, we define the Hamiltonian and

the endpoint functions as the following

H(t, x, u, p, p0) = p0`(t, x, u) + pT f(t, x, u) (3.2)

G(tf , xf , p0) = p0φ(tf , xf ) + ξTψ(tf , xf ). (3.3)
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Now we state the necessary conditions for the BOCP.

Theorem 3.1. Let u be an optimal control and x be the corresponding optimal trajectory.

Then there exist a constant p0 ∈ {0, 1}, a function p : [t0, tf ]→ Rn, and a constant ξ such

that the following relations hold almost everywhere in [t0, tf ]:

(i) the non-triviality condition

(p0, p(t)) 6= 0 ∀t ∈ [t0, tf ] (3.4)

(ii) the differential equations

ẋ(t) = ∇pH(t, x, u, p, p0)

ṗ(t) = −∇xH(t, x, u, p, p0)

(3.5)

(iii) the pointwise minimum condition

u(t) ∈ arg min
ω∈Ω

H(t, x, u, p, p0), a.e. t ∈ [t0, tf ] (3.6)

(iv) and, the transversality conditions

H(tf ) = −∇tfG(tf , xf , p0) = −p0∇tfφ(tf , xf )− ξT∇tfψ(tf , xf )

p(tf ) = ∇xfG(tf , xf , p0) = p0∇xfφ(tf , xf ) + ξT∇xfψ(tf , xf ).

(3.7)

Remark 3.1. For time-invariant systems, the Hamiltonian is a constant along the optimal

trajectory.

While most optimal control problems can be analyzed in Euclidean space, setting up the

problem in a geometric intrinsic framework provides key benefits. Primarily, this elucidates

the intrinsic role of the costate and provides a geometric re-interpretation of the minimum

principle. As we shall see later in chapter 6, this aids in leveraging geometric control

concepts leading to sufficient conditions that are weaker and those that are more easily
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satisfied. The next section introduces basic concepts from differential geometry that are

essential for setting up the problem in a geometric intrinsic framework and re-interpreting

the mininum principle.

3.4 Tools from Differential Geometry

The purpose of this section is to review some basic concepts in differential geometry,

thereby introducing notations and fundamental results concerning smooth manifolds and

vector fields. These results are standard and well-known, and the reader is encouraged to

refer to classical texts such as [49–52] for further details.

3.4.1 Open Sets and Continuous Mappings in Rn

We call a subset U ⊆ Rn open if for every point x ∈ U , there exist a real number ε > 0

such that the open ball Bε(x) defined by

Bε(x) = {y ∈ Rn : ‖x− y‖ < ε} (3.8)

is contained in U . If we consider a set X ⊆ Rn, a subset V ⊆ X containing a point x ∈ X

is a neighborhood of x if there is an open subset U ⊆ V with x ∈ U . If V itself is open, we

call V an open neighborhood. Now, the collection of all open subsets of X define a topology

on X and a set together with a topology is called a topological space. A topological space

X is called Hausdorff if any two distinct points in X have open neighborhoods that do not

intersect.

Given two topological spaces X ⊆ Rn and Y ⊆ Rm, a map f : X → Y is defined to be

continuous if for every open set U ⊆ Y , the subset f−1(U) is open in X. A continuous map

f : X → Y is a homeomorphism if it is a bijection (one to one and onto) and it’s inverse

f−1 is continuous as well.

A map f : X → Y is called smooth if for each x ∈ X there exist an open subset U ⊆ Rn

and a smooth map F : U → Rm that coincides with f on all of X ∩ U , i.e. FX∩U = f . A

smooth map f : X → Y is a diffeomorphism if it is a bijection and its inverse f−1 is smooth
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as well. Thus, every diffeomorphism is a homeomorphism, but the converse is not true.

3.4.2 The Notion of a Differentiable Manifold

Now we want to introduce the notion of an intrinsic geometry without making reference

to an Euclidean space. This leads us to the concept of manifolds which has taken center

stage in mathematics, especially in topology and geometry, ever since its introduction in

the twentieth century.

Before we introduce the notion of a differentiable manifold, we recall the definition for

a topological manifold X of dimension k. It is a topological space which is Hausdorff, has a

countable basis with an open covering X =
⋃
α∈Z Uα, and corresponding coordinate maps

ϕα : Uα → ϕα(Uα) which are homeomorphisms of Uα to open subsets ϕα(Uα) ⊂ Rk. The

pair (Uα, ϕα) is called a coordinate chart or a coordinate neighborhood. A family of such

charts U = {(Uα, ϕα)} whose domain covers X is called an atlas for X.

To each point q that lies in a coordinate neighborhood (U,ϕ), we assign the k coor-

dinates x1(q), ..., xk(q) of its image ϕ(q) in Rk, where each xi(q) is a real-valued function

on U . If q lies also in a second coordinate neighborhood (V, ψ), then it has coordinates

y1(q), ..., yk(q) in this neighborhood. Figure 3.1 shows the coordinate neighborhoods (U,ϕ)

and (V, ψ) on a two-dimensional sphere (S2). Since ϕ and ψ are homeomorphisms, the

function

ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V ) (3.9)

defines a homeomorphism with the domain and range being the two open subsets of Rk

which corresponds to the points of U ∩V by the two coordinate maps ϕ and ψ respectively.

In coordinates, ψ ◦ ϕ−1 is given by continuous functions

yi = hi(x1, ..., xk), i = 1, ..., k, (3.10)

giving the y-coordinates of each q ∈ U ∩ V in terms of its x-coordinates. Similarly, ϕ ◦
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ψ−1 gives the inverse mapping which expresses the x-coordinates as functions of the y-

coordinates

xi = gi(y1, ..., yk), i = 1, ..., k. (3.11)

x1

x2

ϕ(U)

R2

y1

y2

ψ(V )

R2

X
U

V

ϕ

ψ

Fig. 3.1: The open sets U (right hemisphere) and V (lower hemisphere) on S2 are mapped
onto open discs ϕ(U) and ψ(V ) in R2 through the coordinate maps ϕ and ψ respectively

The fact that ψ ◦ ϕ−1 and ϕ ◦ ψ−1 are homeomorphisms and are inverse to each other

is equivalent to the continuity of hi(x) and gj(y), together with the identities

hi(g1(y), ..., gk(y)) = yi, i = 1, ..., n,

gj(h1(x), ..., hk(x)) = xj , j = 1, ..., n.

(3.12)

Thus, every point of a topological manifold X lies in a collection of coordinate neighbor-

hoods, but whenever two neighborhoods intersect, we have continuous functions hi(x) and

gj(y), also known as transition functions, that give the change of coordinates. The basic

idea that leads to differentiable manifolds is to try to select a family or subcollection of

neighborhoods so that the change of coordinates is always given by differentiable functions.
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We call two neighborhoods (U,ϕ) and (V, ψ) smooth-compatible or C∞-compatible if

U ∩ V nonempty implies that the functions hi(x) and gj(y) are C∞. This is equivalent to

requiring ψ ◦ ϕ−1 and ϕ ◦ ψ−1 to be diffeomorphisms of the open subsets ϕ(U ∩ V ) and

ψ(U ∩ V ) of Rk. Therefore, a differentiable manifold or smooth manifold is a topological

manifold if for the atlas U = {(Uα, ϕα)}, the transition functions are diffeomorphisms of

their corresponding open sets in Rk. Hereafter, we will use X to denote a smooth manifold

of dimension k.

3.4.3 Tangent and Cotangent Spaces

With the above notion of a smooth k-dimensional manifold X, we can now define the

tangent space and cotangent space attached to a point q ∈ X. Before doing so, we recall

differentiable functions and mappings on smooth manifolds.

A function f : X → R is called differentiable if for all coordinate maps ϕ : U → ϕ(U),

we have f ◦ ϕ−1 : ϕ(U)→ R to be a C∞ function defined on the open set ϕ(U) ⊂ Rk.

Consider a smooth manifold Y of dimension l. A mapping F : X → Y is called smooth

if for every q ∈ X, there exist coordinate neighborhoods (U,ϕ) of q and (V, ψ) of F (q) with

F (U) ⊂ V such that ψ ◦ F ◦ ϕ−1 : ϕ(U)→ ψ(V ) is C∞.

Tangent Spaces

Intuitively, a tangent vector at a point q ∈ X can be considered as a derivative operator

or derivation acting on a locally defined C∞ function around q. To make this connection

evident, we define a curve θ lying in X and passing through q as a differentiable mapping

θ(t) : (−ε, ε) → X with ε > 0 and θ(0) = q, and C∞(q) as the set of C∞ functions locally

defined around q. Now, the tangent vector to the curve θ at t = 0 is a function given by

θ̇(0) = ζ : C∞(q)→ R, such that

ζ(f) =
d

dt
(f ◦ θ)

∣∣∣
t=0

(3.13)

where f ∈ C∞(q). The space of all tangent vectors at q gives the tangent space of X at q,
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denoted by TqX (see Figure 3.2). More formally, we define the tangent space TqX to be

the set of all mappings ζ : C∞(q) → R satisfying for all α, β ∈ R and f, g ∈ C∞(q) the two

conditions

ζ(αf + βg) = α(ζf) + β(ζg) (linearity), (3.14)

ζ(fg) = (ζf)g(q) + f(q)(ζg) (Leibniz rule). (3.15)

X

TqX
q

Fig. 3.2: Tangent space at q of S2

Lemma 3.1. TqX is a k-dimensional space, i.e., dim(TqX)=dim(X).

Proof. Consider a coordinate chart (U,ϕ) such that q ∈ U and ϕ(q) = x0. Let the coordi-

nates of the map ϕ be x1(q), ..., xk(q) which are real valued functions in U . Then, we know

that ∀f ∈ C∞(q), there exist a function f̂ = f ◦ ϕ−1 : ϕ(U)→ R which expresses f in local

coordinates relative to (U,ϕ). Let θ(t) : (−ε, ε)→ U be a curve in U with θ(0) = q and let
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ϕ ◦ θ(t) = (x1(t), ..., xk(t)). Then,

ζ(f) =
d

dt
(f ◦ θ)

∣∣∣
t=0

=
d

dt
((f ◦ ϕ−1) ◦ (ϕ ◦ θ))

∣∣∣
t=0

=
d

dt
(f̂(x1(t), ..., xk(t)))

∣∣∣
t=0

= ẋ1(0)
∂f̂

∂x1

∣∣∣
x0

+ ...+ ẋk(0)
∂f̂

∂xk

∣∣∣
x0

.

Let ∂f
∂xi

∣∣∣
q

= ∂f̂
∂xi

∣∣∣
x0

: C∞ → R be the differentiation with respect to the ith coordinate using

the coordinate chart (U,ϕ). Then, the tangent vector at q given by

ζ(·) = ẋ1(0)
∂(·)
∂x1

∣∣∣
q

+ ...+ ẋk(0)
∂(·)
∂xk

∣∣∣
q
, (3.16)

is a linear combination of the terms ∂
∂xi

∣∣∣
q
. These gradients are linearly independent since

∂
∂xi

∣∣∣
q
xj = δij . Therefore, the tangent space TqX is a k-dimensional space spanned by{

∂
∂xi

∣∣∣
q

}
, where i = 1, ..., k.

Remark 3.2. The basis
{

∂
∂xi

∣∣∣
q

}
to the tangent space TqX at q depends on the selection of

the coordinate neighborhood that contains q. In other words, to each coordinate neighborhood

(U,ϕ) on X, there corresponds a natural basis ∂
∂x1

∣∣∣
q
, ..., ∂

∂xk

∣∣∣
q

for every q ∈ U .

A concept closely tied to the idea of tangent spaces is that of a vector field. Before

defining a vector field, we introduce the tangent bundle. Loosely speaking, the tangent

bundle of X is the union of tangent spaces attached to every q ∈ X, given by

TX :=
⋃
q∈X

TqX. (3.17)

More precisely, we define the tangent bundle as follows. Let π : TX → X be the projection

function. Now, TX is a tangent (vector) bundle if ∀ q ∈ X,
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(i) π−1(q) has a vector space structure,

(ii) there exist a local trivialization, i.e., an open neighborhood U such that the map

gU : π−1(U) → U × Rk is a diffeomorphism, and the restriction of g at q, given by

gq : π−1(q)→ Rk is an isomorphism of vector spaces.

The local trivialization of TX over the open set U is analogous to choosing k local sections

si such that {si(q)} form a basis for π−1(q) ∀ q ∈ U . A section is a continuous map

F : U → π−1(q) such that ∀ q ∈ U, π ◦ F (q) = q. Finally, we define a vector field on X as

every smooth section of the tangent bundle, i.e., every smooth function F : X → TX such

that F (q) ∈ TqX.

Cotangent Spaces

The cotangent space to X at q, denoted by T ∗qX, is the dual space to TqX. It is a

vector space of dimension k and is defined as the set of all linear mappings σq : TqX → R.

The elements of a cotangent space are called cotangent vectors, or simply covectors.

Recall that tangent vectors are linear functions mapping locally defined functions at q,

i.e., C∞(q) to real numbers. Now, cotangent vectors are linear functions mapping tangent

vectors to real numbers. Therefore, cotangent spaces can be considered as an equivalence

class of local functions whose directional derivative with respect to any tangent vector is

the same, i.e., T ∗qX = C∞(q)/ ∼, where f ∼ g if and only if ζf = ζg ∀ ζ ∈ TqX.

We write the equivalence class of f ∈ C∞(q) in T ∗qX by df , called the differential of

f . This matches with f : U → R and df
∣∣∣
q

= f∗

∣∣∣
q

: TqX → R for differential of smooth

mappings, where f∗ denotes the push forward. The dual basis for
{

∂
∂xi

}
of TqX is {dxi}

such that dxi
(
∂
∂xj

)
= ∂

∂xj
xi = δij . We also define the cotangent bundle as the union

T ∗X :=
⋃
q∈X

T ∗qX (3.18)

Combining the local coordinates x1, ..., xk on X with local coordinates on T ∗qX relative to

the basis dx1, ..., dxk, we obtain the local coordinates on the cotangent bundle T ∗X known
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as canonical coordinates.

Finally, we define the Hamiltonian H as any arbitrary smooth function on the contan-

gent bundle. Then the differential dH of the Hamiltonian gives a covector on T ∗X at each

point. To each such covector, we can then associate a tangent vector at each point of T ∗X.

Doing so, we obtain a vector field on T ∗X, called the Hamiltonian vector field.

3.5 Re-interpreting the Minimum Principle

The purpose of this section is to reformulate our optimal control problem and the

minimum principle (Theorem 3.1) in the geometric language of manifolds. Besides providing

a higher level of generality, it clarifies the intrinsic meaning of the adjoint vector (costate),

thereby elucidating the essence of minimum principle even in the familiar setting of problems

in Rn.

Consider the control system given by

ẋ(t) = f(t, x(t), u(t)) (3.19)

whose state x(t) evolves on a k-dimensional manifold X and whose control u(t) takes

values in some control set Ω. For its solution x(·) to evolve in X, the velocity vector must

be tangent to X. Hence, we see that the state vector evolves in X while the velocity

vector evolves in the tangent bundle TX. Therefore, we define the continuous mapping

f : R×X ×Rm → TX as a vector field on X such that f(t, x(t), u(t)) ∈ Tx(t)X, and which

is smooth with respect to (t, x(t)).

Remark 3.3. To be coherent, hereafter, we denote a point on the manifold by x(t), as

opposed to q, used in the preceding section.

Now we want to determine the space that the costate p(t) belongs to. Refering to

our earlier definition of the Hamiltonian (Eq. 3.2), p(t) appears in an inner product with

the vector field f(·, ·, ·). Thus, we see that the intrinsic role of the costate p(t) is that of

a covector and hence, it should belong to the cotangent space. This becomes clear as we

analyze how covectors propagate along a flow induced by a dynamical system on X.
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Let τ > 0 and Φτ : X → X be a C1 map that is obtained by flowing forward for τ units

of time along the trajectory of the system (Eq. 3.5) corresponding to some fixed control

u(·). First, we discuss the transformation that Φτ induces on tangent vectors. Let x(t) ∈ X

and ζ be a tangent vector at x(t). We know that ζ is tangent to some curve θ(α) in X

passing through x(t), such that θ(0) = x(t). The image Φτ (θ(·)) of this curve under the

map Φτ is a curve in X, which passes through Φτ (x(t)), as illustrated in Figure 3.3. Define

the tangent vector at Φτ (x(t)) associated with this new curve as

dΦτ |x(t)(ζ) =
d

dα

∣∣∣
α=0

(Φ ◦ θ) (3.20)

ζ

x(t)

dΦτ |x(t)(ζ)

Φτ (x(t))

Φτ

X

Fig. 3.3: Tangent vectors propagating forward

The above quantity depends only on the vector ζ and not on the choice of a particular

curve θ(·). Therefore, we obtain a linear map

dΦτ |x(t) : Tx(t)X → TΦτ (x(t))X (3.21)

called the derivative or differential of Φτ at x(t). We see that the derivative map dΦτ pushes

the tangent vectors forward in the direction of action of the original map Φτ on X. The

infinitesmal transformation induced by dΦτ is the variational equation given below, which
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arises in the proof of the minimum principle.

ζ̇ = fxζ (3.22)

where fx is calculated along the optimal trajectory.

Now we consider the case of a covector, denoted by p|x(t) such that p|x(t)(ζ) ∈ R for

each ζ ∈ Tx(t)X. For the same map Φτ : X → X, we try to define a linear function

p|Φτ (x(t)) on TΦτ (x(t))X. In order to do so, we need to assign a value p|Φτ (x(t))(η) for every

η ∈ TΦτ (x(t))X. We could assume that p|Φτ (x(t))(η) equals the value of p|x(t) on the preimage

of η under the map Φτ . However, this preimage is not well defined unless the map Φτ is

invertible. Therefore, there is no apparent candidate map for propagating covectors along

Φτ similarly to how the derivative map dΦτ acts on tangent vectors. Therefore, we need to

pull covectors back, i.e., given a covector p|Φτ (x(t)) on TΦτ (x(t))X, define a covector p|x(t) on

Tx(t)X by

p|x(t)(ζ) := p|Φτ (x)(dΦτ |x(t)(ζ)) (3.23)

Also note that the adjoint equation ṗ(t) = −(fx)T p(t) is the infinitesmal version of Eq.3.5

written in local coordinates. Finally, we define the Hamiltonian as

H(t, x(t), u(t), p(t)) = p|x(t)(f(t, x(t), u(t))). (3.24)

This further aligns with our earlier statement of the Hamiltonian being a function on the

cotangent bundle.

3.6 Optimal Control Problem on a Smooth Manifold with Mixed Constraints

In this section, we define an optimal control problem on a smooth manifold with mixed

constraints. Due to the mixed constraints and the manifold, the standard result of Pon-

tryagin [21] is inapplicable. The necessary conditions stated here have been derived by

Bonalli [53]. This was done by embedding the manifold and the related vector fields into an

Euclidean space of appropriate dimension and subsequently exploiting a maximum principle
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theorem for problems with mixed constraints by Dmitruk [54].

We define the problem as the following

min J = φ(tf , xf ) +

∫ tf

t0

`(u(t)) dt (OCPMC)

subj. to ẋ(t) = f(t, x(t), u(t)), x(t0) = x0

he(t, x(t), u(t)) = 0, hi(t, x(t), u(t)) ≤ 0

ψ(tf , xf ) = 0.

A number of technical assumptions on the problem data must be made such as smooth-

ness [53]. Note that the system evolves intrinsically on the manifold X, i.e., the dynamics

are given by the function f : R × X × Rm → TX. Furthermore, the control constraints

must satisfy a rank condition so that they are regular and the non-triviality condition can

be strengthened [55,56].

Before stating the principle, we define the Hamiltonian, Lagrangian, and endpoint

functions as the following

H(t, x, u, p, p0) = p0`(u) + pT f(t, x, u) (3.25)

L(t, x, p, u, p0, νh, νk) = H(t, x, u, p, p0) + νThehe(t, x, u) + νThihi(t, x, u) (3.26)

G(tf , xf , p0) = p0φ(tf , xf ) + ξTψ(tf , xf ). (3.27)

Theorem 3.2. Let u be an optimal control and x be the corresponding optimal trajectory.

Then, there exist a constant p0 ≥ 0, an absolutely continuous curve p : [t0, tf ] → T ∗X

for which p(t) ∈ T ∗x(t)X and (p0, p(t)) 6= 0, bounded functions with νhe(t) ∈ Rrhe and

νhi(t) ∈ Rrhi where νhi ≥ 0 such that the following relations hold almost everywhere in

[t0, tf ]:
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(i) the differential equations

ẋ(t) = ∇pL(t, x, p, u, p0, νhe , νhi)

ṗ(t) = −∇xL(t, x, p, u, p0, νhe , νhi)

(3.28)

(ii) the Hamiltonian minimum condition

H(t, x, u, p, p0) ≤ H(t, x, ω, p, p0) (3.29)

for every admissible ω.

(iii) the stationary condition

∇uL(t, x, p, u, p0, νhe , νhi) = 0 (3.30)

(iv) the complementary slackness condition

νThihi(t, x, u) = 0 (3.31)

(v) the transversality conditions

pf − p0∇xfφ(tf , xf ) ⊥ TxfXf (3.32)

and, if the final time tf is free,

H(tf , xf , uf , pf , p0) = −p0∇tfG(tf , xf , p0) (3.33)
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The transversaility conditions stated above can also be written in the form

H(tf ) = −p0∇tfφ(tf , xf )− ξT∇tfψ(tf , xf )

p(tf ) = p0∇xfφ(tf , xf ) + ξT∇xfψ(tf , xf ).

(3.34)

3.7 Summary

The chapter began with the introduction of a basic optimal control problem and stating

its necessary conditions for optimality. Some of the important tools from differential geome-

try such as the notion of a smooth manifold, tangent and cotangent spaces, and vector fields

were then introduced. This was followed by a re-interpretation of the minimum principle

in the geometric language of manifolds. Finally, the necessary conditions for problems on

smooth manifolds subject to mixed constraints were stated.
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CHAPTER 4

LOSSLESS CONVEXIFICATION OF OPTIMAL CONTROL PROBLEMS

WITH ANNULAR CONTROL CONSTRAINTS

4.1 Introduction

This chapter analyzes a class of optimal control problems with an annular control con-

straint. Annular control constraints appear in many real-time control applications that

involve systems with complex actuator models – particularly in the entry, descent, and

landing of spacecraft with chemical thrusters [1, 12, 41, 57]. Chemical thrusters fail to op-

erate reliably under a certain thrust level, thereby introducing a non-zero lower bound on

the thrust magnitude. This lower bound is non-convex, and as such, the resulting trajec-

tory optimization problems are difficult to solve. Existing nonlinear programming based

trajectory optimization methods do not guarantee convergence to solutions (optimal or fea-

sible) making them inappropriate for real-time applications. If, however, the problem can

be written in a convex form, then powerful interior point methods can be customized to

find globally optimal solutions in polynomial-time. This is the approach taken by SpaceX

in their rocket landings [58].

The term lossless convexification refers to the two-stage process of 1) relaxing the annu-

lar, non-convex constraint to a convex form and 2) proving optimal solutions for the relaxed

problem are also optimal for the original problem. These relaxation techniques have been

studied extensively for annularly constrained linear systems [4], nonlinear systems [13], and

linear systems with explicit state constraints and additional control inequalities [16]. Each

of these proofs requires an assumption on the gradient of the final point. In general, the

assumption cannot be verified a priori since it depends on the optimal solution. However,

one special case where it can be verified a priori is the free final time transfer between fixed

points, which is assumed directly in [13]. The proofs also have in common controllabil-
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ity/observability assumptions. In [4], controllability of the linear system (observability of

the dual system) is assumed. In [13], controllability of the system linearized about each

extremal is assumed. In [16], strong controllability is assumed.

As noted before, the primary motivation for this work is real-time optimization. Within

the domain of spaceflight, the real-time calculation of trajectories is called guidance. Tra-

ditional guidance algorithms, dating back to the 1950s, are simple and analytical in na-

ture. Examples include Apollo lunar descent guidance [24–26, 59], the Iterative Guid-

ance Mode (IGM) for Saturn V ascent [60, 61], and Powered Explicit Guidance (PEG)

for Shuttle [62, 63]. However, with improved computing power and algorithms, computa-

tional guidance laws (especially ones based on convex optimization) are becoming popu-

lar [2, 11, 27, 30, 32, 33, 64]. Notably, in the last few decades, the computational speed-up

due to algorithmic advances exceeds that due to hardware improvements by a factor of

two for some problem classes [65]. Within a computational guidance framework, more dif-

ficult problems involving systems with practical limitations or constraints can be solved

such as the powered rocket landing problem with velocity bounds [29], problems with linear

state constraints [14], problems with quadratic state constraints [15], and problems with

integer-type control constraints [66,67].

Even when the problem can be rendered convex, customization is required to accelerate

solve times [8–10] to levels sufficient for use onboard radiation-hardened flight processors.

These customizations exploit problem structure, sparsity, and memory allocation. The

efficacy of this relax and customize approach to the problem of powered rocket landing

has been successfully demonstrated through bench testing on a flight computer [68], flights

tests [69–71], and the SpaceX landings [58]. Regarding the flight computer tests [68], tests

were carried out on a 200 MHz RAD750 in the flight software testbed at NASA JPL.

Solution times of milliseconds on a 3.4 GHz desktop processor corresponded to solution

times of approximately one second on the flight computer with customized code, which is

considered appropriate for a real-time guidance, navigation, and control system. During

testing and simulation for the above demonstrations, it was observed that the relaxations
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work even at times that are not the fuel optimal times. This observation and the removal

of the assumption on the gradient of the final point motivate the results of this work.

To briefly summarize the previous theoretical results: In [4], the sufficient condition

for convexification required two assumptions: system controllability (Condition 1 of their

paper) and an orthogonality condition on the gradient of the final point (Condition 2 of their

paper). These assumptions preclude convexification for fixed final time problems between

fixed points.

In [13], free final time problems were considered as well as a controllability condition

(Condition 1 of their paper). These assumptions preclude convexification for fixed final time

problems between fixed points.

In [16], linear systems evolving on a linear manifold were considered. For time-invariant

systems with free final time, a strong controllability assumption was made (Criterion 1.i

of their paper). For time-varying systems, assumptions on strong controllability and the

gradient of the final point were made (Criterion 1.ii of their paper). These assumptions

preclude convexification for fixed final time problems between fixed points.

To summarize, the three most significant theoretical contributions involve a controlla-

bility condition plus a second condition (at the final point or free final time). A key result of

this work is that for time-invariant systems the second condition is not needed (within the

setting of [4]). Moreover, since controllable systems are dense in the space of LTI systems,

uncontrollable systems can be ‘approximately convexified.’ The main contributions of the

work are:

1. Conditions for the standard convexification to hold that are applicable to both free

and fixed final time problems (see Theorem 4.1, Corollary 4.2, and Theorem 4.2).

2. A sufficient condition for the standard convexification to hold for all final times be-

tween the minimum time and optimal time (see Theorem 4.3).

3. Establishment of controllability as a sufficient condition for solving the general fixed

time problem as a sequence of convex programs (see Theorem 4.4).
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The remainder of the chapter is organized as follows. Section 4.2 introduces the math-

ematical notation. Section 4.3 describes the problem of interest, which is an optimal control

problem with an annular control constraint. Section 4.4 provides the mathematical analysis

of the problem. The main result of the paper is presented in Section 4.5, which proves

controllability to be a sufficient condition for solving fixed final time and fixed end point

problems. The section also provides a brief background on reachable sets and minimum time

problems. Section 4.6 describes the numerical solution procedure. Section 4.7 illustrates the

application of the new convexification results to some standard problems in optimal control.

A Mars powered descent guidance example is also presented. In section 4.8, an attempt

to provide the proof for relaxation in finite dimensions is presented. Finally, Section 4.9

concludes the chapter.

4.2 Nomenclature for the Chapter

The following is a partial list of notation used; a function f ∈ Cn if its first n

derivatives exist and are continuous; R is the set of real numbers; Rn is the n-dimensional

real vector space; ||v|| is the 2-norm of the vector v; a condition is said to hold almost

everywhere in the interval [a, b], a.e. [a, b], if the set of points in [a, b] where this condition

fails to hold is measure zero; the time derivative of a function is denoted with an over-dot,

i.e. dx(t)/dt = ẋ(t); the boundary of a set S is denoted by ∂S, and the interior of the set

by intS. The open ball centered at p with radius r is Br(p).

4.3 Problem Description

The primary problem of interest is that of minimizing the control effort required to

transfer a linear time-invariant system between fixed points subject to an annular control
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constraint. The problem is described mathematically below in P0.

min J =
∫ tf
t0
`(g(u(t))) dt (P0)

subj. to ẋ(t) = Ax(t) +Bu(t)

x(t0) = x0, x(tf ) = xf

u(t) ∈ U0 = {ω : 0 < ρ1 ≤ g(ω) ≤ ρ2}

The initial time is t0. The final time is tf . The system state x : [t0, tf ]→ Rn belongs to the

set of absolutely continuous functions. The control u : [t0, tf ]→ U0 ⊂ Rm belongs to the set

of bounded measurable functions with ρ1, ρ2 ∈ R. The objective is to minimize the control

effort given by ` : [ρ1, ρ2] → R where g : Rm → R. The system dynamics are described by

the linear differential equations where A and B are constant matrices. It is assumed that g

is convex and that ` is convex, strictly increasing, and positive on its domain. The objective

function is then convex. For the moment, the final time can be free or fixed. The least final

time for which the problem is feasible is called the minimum time. The final time for which

P0 achieves a global minimum is called the optimal time. The primary challenge in solving

P0 is the non-convex control constraint U0.

The problem P1 below is the standard relaxation of P0. It is obtained by introducing

a new variable Γ and reformulating the control constraint.

min J =
∫ tf
t0
`(Γ(t)) dt (P1)

subj. to ẋ(t) = Ax(t) +Bu(t)

x(t0) = x0, x(tf ) = xf

(u(t),Γ(t)) ∈ U1 = {(ω,Ω) : ρ1 ≤ Ω ≤ ρ2, and g(ω) ≤ Ω}.

The control set U1 is a convex relaxation of U0, but because it is a relaxation, solutions of

P1 may not be feasible for P0. If it so happens that g(u(t)) = Γ(t) almost everywhere, then

solutions of P1 are solutions of P0. This leads to the definition of lossless convexification.
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Definition 4.1. P1 is a lossless convexification of P0 if for every (u,Γ) solving P1 it follows

that g(u(t)) = Γ(t) almost everywhere.

From this definition and inspection of the problems follows a necessary and sufficient

condition, albeit one that is not checkable a priori.

Lemma 4.1. Let (u,Γ) be a solution of P1. Lossless convexification holds if and only if

g(u(t)) ≥ ρ1 almost everywhere. Equivalently, it fails if and only if g(u(t)) < ρ1 on a set of

positive measure.

Proof. To prove the forward implication, suppose convexification holds. Then g(u(t)) =

Γ(t) ≥ ρ1. To prove the backward implication, suppose g(u(t)) ≥ ρ1. Then the objective is

minimized by picking Γ(t) as small as possible, i.e., Γ(t) = g(u(t)).

This leads to the definition of the hairline case.

Definition 4.2. Let (u,Γ) be a solution of P1. The hairline case is when g(u(t)) = ρ1

almost everywhere.

Lossless convexification holds in the hairline case according to the above theorem.

However, any change in problem data that causes g(u(t)) to decrease on a set of positive

measure will make convexification fail.

4.4 Mathematical Results

Problem P1 is now analyzed mathematically leading to some new results. According

to Theorem 3.1, if (x, u,Γ) is optimal for P1 then there exist a scalar p0 ∈ {0, 1}, a function
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p : [t0, tf ]→ Rn, and a scalar ν such that the following hold.

0 6= (p0, p) (4.1)

H(t) = p0`(Γ(t)) + p(t)T (Ax(t) +Bu(t)) = −ν (4.2)

ṗ(t) = −AT p(t) (4.3)

u(t) ∈ arg min
ω
pTBω s.t. g(ω) ≤ Γ (4.4)

Γ(t) ∈ arg min
Ω
p0`(Ω) s.t. ρ1 ≤ Ω ≤ ρ2 , g(u) ≤ Ω (4.5)

The first condition is called the non-triviality condition. The second condition states that

the Hamiltonian H is a constant. It is zero when the final time is free and possibly non-zero

when the final time is fixed. The third condition is the adjoint system. The fourth and fifth

conditions are the pointwise minimum conditions.

A sufficient condition for lossless convexification is stated below. In general, it cannot

be checked a priori.

Lemma 4.2. If pT (t)B is non-zero almost everywhere, then lossless convexification holds.

Proof. If pT (t)B is non-zero, then the optimal point is on the boundary of the feasible set

in Eq. (4.4), i.e., g(u(t)) = Γ(t) almost everywhere.

In other words, convexification holds if the solution is non-singular. Conversely, if

convexification fails, then the solution is singular. However, if the solution is singular, con-

vexification may or may not hold. This leads to another result for free final time problems.

Corollary 4.1. If (A,B) is controllable and the final time is free, then lossless convexifi-

cation holds.

Proof. Suppose convexification fails such that pT (t)B = 0 on a set of positive measure.

Because p is analytic and (A,B) is controllable, p(t) = 0 on this set [4]. Because the final

time is free, the Hamiltonian must be zero, which can only happen if p0 = 0 since ` is

positive. This violates the non-triviality condition. Therefore, the problem is non-singular

and lossless convexification holds.
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The following sufficient condition is true for all cases except the hairline case. This

condition and its corollary are new results.

Theorem 4.1. Let (u,Γ) be a solution of P1. If (A,B) is controllable and g(u(t)) > ρ1 on

a set of positive measure, then convexification holds.

Proof. There are two cases.

Case 1: Suppose the final time is free. Then the above corollary applies and lossless

convexification holds.

Case 2: Suppose the final time is fixed and convexification fails. Then on a set of positive

measure, pT (t)B = 0 and p(t) = 0 because of controllability. The Hamiltonian reduces

to H(t) = `(Γ(t)) = constant almost everywhere. From Lemma 4.1, we know that there

is some time where g(u(t)) < ρ1. Minimizing the Hamiltonian implies Γ(t) = ρ1 almost

everywhere since ` is strictly increasing. Thus, g(u(t)) ≤ ρ1 almost everywhere, which is a

contradiction.

This proof leads to a very useful corollary.

Corollary 4.2. Let (u,Γ) be a solution of P1. Suppose (A,B) is controllable. Lossless

convexification fails if and only if g(u(t)) ≤ ρ1 almost everywhere and g(u(t)) < ρ1 on a set

of positive measure.

For free final time problems, we have an a priori checkable sufficient condition: control-

lability. For fixed final time problems, we now derive another checkable condition from this

corollary for the common situation where g(u(t)) = ||u(t)||. Recall that the state equation

can be written as

xf − Φ(tf , t0)x0 =
∫ tf
t0

Φ(tf , t)Bu(t)dt, (4.6)
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where Φ is the state transition matrix, or matrix exponential. Norming each side and

assuming convexification fails, i.e., ||u(t)|| ≤ ρ1, then

||xf − Φ(tf , t0)x0|| = ||
∫ tf
t0

Φ(tf , t)Bu(t)dt|| (4.7)

≤
∫ tf
t0
||Φ(tf , t)Bu(t)||dt (4.8)

≤
∫ tf
t0
||Φ(tf , t)B|| ||u(t)||dt (4.9)

≤ ρ1

∫ tf
t0
||Φ(tf , t)B||dt. (4.10)

We define the following

F (tf ) = ||xf − Φ(tf , t0)x0||,

G(tf ) = ρ1

∫ tf
t0
||Φ(tf , t)B||dt,

(4.11)

so that a checkable condition for the fixed final time problem can be stated.

Theorem 4.2. Suppose that (A,B) is controllable and g(u(t)) = ||u(t)||. If F (tf ) > G(tf ),

then convexification holds.

Proof. The proof follows from the analysis above and Corollary 4.2.

Conceptually, convexification is guaranteed when the boundary conditions belong to

the open, non-convex set whose complement is the closed ellipsoid defined by F and G. As

an example, consider problems that terminate at the origin. The ellipsoid is then centered

at the origin and given by

xT0 ΦT (tf , t0)Φ(tf , t0)x0 ≤
(
ρ1

∫ tf
t0
||Φ(tf , t)B||dt

)2
, (4.12)

which can easily be calculated for given problem data.

We now prove that for fixed final time problems, convexification holds for all final times

between the minimum time and the optimal time.
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Theorem 4.3. Suppose (A,B) is controllable. Let t1 be the minimum time and t2 be the

optimal time. If the optimal cost J(tf ) =
∫ tf
t0
`(g(u(t)))dt decreases strictly on [t1, t2], then

convexification holds for any tf ∈ [t1, t2].

Proof. Because the objective is strictly decreasing, one can deduce that ν ≥ 0 and that the

Hamiltonian is a non-positive constant [55]. Suppose convexification fails such that pT (t)B

is zero on a set of positive measure. Because (A,B) is controllable, p(t) = 0 on this set.

The Hamiltonian then reduces to

p0`(Γ) + ν = 0. (4.13)

The scalar p0 is non-negative and `(Γ) is positive such that the both terms are non-negative.

Equality holds only when p0 = ν = 0, but this violates the non-triviality condition.

4.5 Main Result

The sufficient condition in Theorem 4.2 is quite conservative because it involves several

approximations. Also, Theorem 4.3 is only applicable to final times between the minimum

time and the optimal time. In this section, we show that controllability is a sufficient

condition to solve P0 as a sequence of convex programs for any fixed final time. To do so,

several facts related to reachable sets and minimum time problems are needed.

Define the point wf := xf − Φ(tf , t0)x0 and the reachable set as

R(t0, tf , U) := {
∫ tf
t0

Φ(tf , t)Bu(t)dt, ∀u(t) ∈ U}, (4.14)

where U is a compact set of all admissible controls. It is clear that wf ∈ R(t0, tf , U) is

required for any optimal control problem, no matter the objective, to be feasible. It is

known that the reachable sets are compact, convex, and continuous in both time arguments

(see Lemmas 12.1 and 12.2 in [72]).

Definition 4.3. A reachable set is expanding if for all t1 < t2, R(t0, t1, U) ⊂ int R(t0, t2, U).
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Lemma 4.3. Suppose U is compact, convex, and 0 ∈ int U . The reachable set is expanding

if and only if (A,B) is controllable. If the reachable set is expanding, then tf is the minimum

time if and only if wf ∈ ∂R(t0, tf , U).

Proof. See Corollary 17.1 and Theorem 17.3 of [72]. Also see Theorem 1 on page 301

of [18].

An illustration of the expanding reachable set and its connection with the minimum

time is given in Fig. 4.1.

w(t1)

w(t2)
w(t∗)

(a) (b) (c)

Fig. 4.1: (a) At time t1, the problem is infeasible as the point, w, is outside the reachable
set. (b) At some time t2 > t1, the point, w, is in the interior of the reachable set and the
problem is feasible. (c) At the minimum time, t∗, such that t1 < t∗ < t2, the point, w, is
on the boundary of the reachable set.

We now study the following minimum time problem.

min J =
∫ tf
t0

1 dt (P2)

subj. to ẋ(t) = Ax(t) +Bu(t) (F1)

x(t0) = x0, x(tf ) = xf (F2)

u(t) ∈ U2 = {ω : g(ω) ≤ ρ1} (F3)

We refer to the optimal control problem as P2 and the problem of only satisfying the

constraints F1-F3 as the feasibility problem, which is convex. As before, the necessary
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conditions state that if (x, u) is optimal for P2 then there exist a scalar p0 ∈ {0, 1} and a

function p : [t0, tf ]→ Rn such that the following hold.

0 6= (p0, p) (4.15)

0 = p0 + p(t)T (Ax(t) +Bu(t)) (4.16)

ṗ(t) = −AT p(t) (4.17)

u(t) ∈ arg min
ω∈U2

p(t)TBω (4.18)

Lemma 4.4. Let u be a solution of P2. If (A,B) is controllable, then g(u(t)) = ρ1 almost

everywhere.

Proof. If (A,B) is controllable, then pT (t)B 6= 0 almost everywhere (see the proof of Corol-

lary 4.1) and the optimal point is on the boundary of the feasible set, i.e., g(u(t)) = ρ1

almost everywhere.

With these facts about reachable sets and minimum time problems, the main theorem

regarding problem P0 can be stated and proved.

Theorem 4.4. Consider P0 and assume fixed final time. Assume P1 is not a lossless

convexification of P0. If (A,B) is controllable, then there exists an optimal control u for P0

such that g(u(t)) = ρ1 almost everywhere obtained by solving a sequence of convex problems.

Proof. By assumption, P1 is not a lossless convexification for P0 and (A,B) is controllable.

It follows from Corollary 4.2 that an optimal control u for P0 satisfies g(u(t)) = ρ1 almost

everywhere. Because U2 is compact, convex, and 0 ∈ int U2, Lemma 4.3 indicates that

reachable sets generated by U2 are continuous, compact, convex, and expanding such that

any point on the boundary of a reachable set must be reached in minimum time. We now

consider two cases.

Case 1: If the final time is the minimum final time, then wf ∈ ∂R(t0, tf , U2) and Lemma

4.4 implies that any feasible control u satisfies g(u(t)) = ρ1 almost everywhere. Therefore,

one must solve a single instance of the convex feasibility problem F1-F3 on [t0, tf ].
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Case 2: If the final time is greater than the minimum time, then wf ∈ int R(t0, tf , U2) since

the reachable set is expanding. By definition of interior, ∃ε > 0 such that ∀w1 ∈ Bε(0) the

point wf − w1 ∈ int R(t0, tf , U2). From closedness, convexity, and continuity (see Lemma

12.3 of [72]), ∃δ > 0 such that ∀t1 ∈ Bδ(t0) the point wf − w1 ∈ int R(t1, tf , U2).

Consider a function v1 : [t0, t1]→ ∂U2 and let w1 and t1 satisfy

w1 =
∫ t1
t0

Φ−1(t, t1)Bv1(t)dt, (4.19)

which can always be done by making t1 sufficiently close to t0. That is, w1 ∈ R(t0, t1, ∂U2).

If t1 is increased to tf and wf − w1 never leaves the reachable set, then v1 is an optimal

control for P0 since ∀t ∈ [t0, tf ], g(v1(t)) = ρ1, which results in the least possible objective

value.

If the point wf − w1 does leave the reachable set, then at the time t1 when the point

is on the boundary of the reachable set, there exists a minimum time control to wf − w1

denoted u1 : [t1, tf ]→ ∂U2. It follows that the control u : [t0, tf ]→ ∂U2 given by

u(t) =


v1(t), t0 ≤ t < t1

u1(t), t1 ≤ t ≤ tf
(4.20)

is optimal for P0 since ∀t ∈ [t0, tf ], g(u(t)) = ρ1, which results in the least possible objective

value.

By incrementally increasing t1, introducing a perturbing function v1 : [t0, t1] → ∂U2,

solving the convex feasibility problem F1-F3 from the perturbed point to the final point for

u1, and checking if u1(t) ∈ ∂U2, the optimal control u for P0 is obtained.

The proof of Theorem 4.4 is constructive and indicates that a line search for t1, selection

of a perturbing control v1, and solution of a convex constrained problem for u1 yields the

optimal control. This is similar to free final time problems where a line search for tf

is required. Lastly, since any v1 satisfying g(v1(t)) = ρ1 works, it is clear that optimal

solutions are non-unique. A specific algorithm for finding an optimal control is given below.
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4.6 Solution Procedure

This section summarizes the algorithm constructed in the proof of Theorem 4.4 and

method used to solve the feasibility problem F1-F3. Given a control u on [t0, tf ], a measure

of how close its magnitude is to ρ1 is given by the following formula.

E(u, t0, tf ) =

∫ tf

t0

||g(u(t))− ρ1|| dt (4.21)

The line search algorithm to solve P0 when Theorem 4.4 applies is now given.

Algorithm 1 (Based on Theorem 4.4)

Initialization

Choose a v ∈ Rm such that g(v) = ρ1.

Choose a t1 ∈ (t0, tf ).

Choose a tolerance ε > 0.

Set tmin = t0 and tmax = tf .

Repeat

1. Define v1(t) = v on [t0, t1].

2. Compute x(t1) generated by v1.

3. Solve F1-F3 from x(t1) to xf to find u1 on [t1, tf ].

4a. If F1-F3 is infeasible,

set tmax = t1 and t1 = 1
2(tmin + tmax)

return to 1.

4b. If F1-F3 is feasible and E(u1, t1, tf ) > ε,

set tmin = t1 and t1 = 1
2(tmin + tmax)

return to 1.

4c. If F1-F3 is feasible and E(u1, t1, tf ) ≤ ε,

output v1 and u1 as an optimal control

quit.
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To numerically solve the convex feasibility problem F1-F3, it is discretized and con-

straints are enforced at the nodes resulting in a second-order cone program that can be

solved using interior-point methods. We use a simple discretization method, which is sum-

marized below.

The time domain [t0, tf ] is uniformly discretized into N+1 nodes separated by ∆t. The

states at time ti are denoted by x[i] and they exist at all nodes i = 1, ..., N+1. The controls

at time ti are denoted by u[i] and they exist at nodes i = 1, ..., N . The controls are held

constant over every interval. The system dynamics are discretized using the fundamental

matrix resulting in

x[i+ 1] = Adx[i] +Bdu[i], i = 1, ..., N. (4.22)

The discrete system matrices Ad and Bd are given by

Ad = eA∆t, Bd =

∫ ∆t

0
eAτBdτ. (4.23)

The boundary conditions are enforced at the initial and final nodes.

x[1] = x0, x[N + 1] = xf (4.24)

The control constraints are enforced at nodes 1 to N .

||u[i] || ≤ ρ1, ∀ i = 1, ..., N (4.25)

Eqs. (4.22)-(4.25) represent a finite-dimensional second-order cone program that can be

solved using commercially available solvers.

4.7 Examples

In this section, the algorithm is demonstrated on a simple double integrator and a

harmonic oscillator system. A Mars powered descent guidance example is then solved in a

sample-and-hold scheme to emulate a real guidance system. Problems are solved using the
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Gurobi [73] solver with a MATLAB interface [74].

4.7.1 Double Integrator

Consider the following problem with double integrator dynamics and an annular control

constraint. The problem fits into the definition of P0 and is mathematically described below.

min J =
∫ tf
t0
||u(t)|| dt

subj. to ẋ1(t) = x2(t)

ẋ2(t) = u(t)

x1(t0) = 1, x1(tf ) = 0

x2(t0) = 1, x2(tf ) = 0

1 ≤ ||u(t)|| ≤ 6

Recognizing g(u(t)) = ||u(t)|| and `(g(u(t)) = g(u(t)), the standard relaxation P1 can be

stated.

min J =
∫ tf
t0

Γ(t) dt

subj. to ẋ1(t) = x2(t)

ẋ2(t) = u(t)

x1(t0) = 1, x1(tf ) = 0

x2(t0) = 1, x2(tf ) = 0

1 ≤ Γ(t) ≤ 6

||u(t)|| ≤ Γ(t)

According to Theorem 4.2, the above convexification will hold if F (tf ) > G(tf ), where

F (tf ) and G(tf ) are defined by Eq. (4.11). Fig. 4.2 shows the the difference F (tf )−G(tf )

as a function of the final time tf . By solving the problem, it was determined that the

minimum time is approximately 1.016 time units and the optimal time is approximately 2.1
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time units. The difference is positive between the minimum and optimal times and negative

for times greater than the optimal time. Consistent with Theorems 4.2 and 4.3, numerical

tests demonstrate that the standard convexification holds when the difference is positive.

1 2 3 4
−4

−3

−2

−1

0

1

2

tf

F
(t
f
)
−
G

(t
f
)

min time

optimal time

convex. holds

std.

convexification fails

std.

Fig. 4.2: The quantity F − G is positive and convexification holds for final times between
the minimum time and the optimal time of about 2.1 time units. For larger times, the
difference is negative and convexification fails.

For a final time of tf = 5 time units, standard convexification fails. With tf = 5,

Algorithm 1 is used to solve the problem. According to Theorem 4.4, since the system is

controllable, the optimal control u satisfies ||u(t)|| = 1 almost everywhere. To demonstrate

non-uniqueness, two solutions are generated using the perturbing functions v1(t) = 1 on

[0, 0.42] and v1(t) = −1 on [0, 2.38], respectively. In each case, the feasibility problem F1-

F3 is solved to find the optimal control after the perturbing period. Figures 4.3-4.5 shows

the states, controls, and reachable set.
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Fig. 4.3: State trajectories in phase plane. The solid black curve corresponds to the v1(t) = 1
solution. The gray curve corresponds to the v1(t) = −1 solution. After the perturbing
periods, a minimum time control u1(t) is computed that satisfies ||u1(t)|| = 1. The state
then follows the so-called switching curve to reach the origin.
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Fig. 4.4: The solid lines correspond to the perturbing controls v1(t). The dashed lines
correspond to the minimum time control u1(t). Color scheme is the same as Fig. 4.3.
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Fig. 4.5: Reachable set, R(t1, tf , U2), for t1 = 0.42 and tf = 5 time units (v1(t) = 1 case).
As required, the point wf − w1 lies on the boundary of the set.

For both cases, Algorithm 1 was initialized with a guess of t1 = 2.5. It turns out that

both cases required the solution of seven second-order cone programs. On a laptop with 2.2

GHz processor, each program required about 0.2 seconds to solve for a total solution time

of about 1.4 seconds.

4.7.2 Harmonic Oscillator

Consider the following problem with harmonic oscillator dynamics and an annular con-

trol constraint. The problem fits into the definition of P0 and is mathematically described
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below.

min J =
∫ tf
t0
||u(t)|| dt

subj. to ẋ1(t) = x2(t)

ẋ2(t) = −x1(t) + u(t)

x1(t0) = 2, x1(tf ) = 0

x2(t0) = 0, x2(tf ) = 0

1 ≤ ||u(t)|| ≤ 3

Given below is the standard, convex relaxation to the problem.

min J =
∫ tf
t0

Γ(t) dt

subj. to ẋ1(t) = x2(t)

ẋ2(t) = −x1(t) + u(t)

x1(t0) = 2, x1(tf ) = 0

x2(t0) = 0, x2(tf ) = 0

1 ≤ Γ(t) ≤ 3

||u(t)|| ≤ Γ(t)

Fig. 4.6 shows the variation of the difference F (tf ) − G(tf ) with the final time tf . By

solving the problem, it was determined that the minimum time is approximately 1.51 time

units and the optimal time is approximately 2 time units. The difference is positive between

the minimum and optimal times. Consistent with Theorems 4.2 and 4.3, numerical tests

demonstrate that the standard convexification holds when the difference is positive.
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Fig. 4.6: The quantity F−G is positive and convexification holds for final times between the
minimum time and the optimal time of about 2 time units. For larger times, the difference
is negative and convexification fails.

For a final time of tf = 5 time units, standard convexification fails. With tf = 5 time

units, Algorithm 1 is used to solve the problem. According to Theorem 4.4, since the system

is controllable, the optimal control u(t) satisfies ||u(t)|| = 1 almost everywhere.

Upon using the perturbing function v1(t) = 1 on [0, 3.65] and solving the feasibility

problem F1-F3 to find the optimal control after the perturbing period, we find the optimal

control u(t). Figures 4.7 - 4.9 shows the states, controls, and the reachable set.
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Fig. 4.7: State trajectory in phase plane. The dashed black curve corresponds to the
v1(t) = 1 solution. After the perturbing period, a minimum time control u1(t) is computed
that satisfies ||u1(t)|| = 1. The state then follows the so-called switching curve to reach the
origin.
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Fig. 4.8: Control trajectory. The dashed line corresponds to the perturbing control v1(t).
The solid line corresponds to the minimum time control, u1(t).
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Fig. 4.9: Reachable set, R(t1, tf ), for t1 = 3.65 and tf = 5 time units. As required, the
point wf − w1 lies on the boundary of the set.

For this case, Algorithm 1 was initialized with a guess of t1 = 2.5 and it required the

solution of seven second-order cone programs. On a laptop with 2.2 GHz processor, each

program required about 0.2 seconds to solve for a total solution time of about 1.4 seconds.

4.7.3 Mars Powered Descent Guidance

As a final example, consider a Mars powered descent guidance problem. Because the

landing mission starts at a low altitude, it is assumed that the gravitational field is uniform.

Aerodynamic forces are not considered since they are negligible compared to the propulsive

and gravitational accelerations during powered descent. An illustration of the problem is

given in [1].

The dynamics of the spacecraft are given by the following equations

r̈(t) = g +
T (t)

m(t)
, (4.26)

ṁ(t) = −α||T (t)||, (4.27)
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where r(t) ∈ R3 is the position vector of the spacecraft relative to the target, g ∈ R3 is

the constant gravitational vector, T (t) ∈ R3 is the net thrust vector, m(t) ∈ R is the

spacecraft mass, and α ∈ R is a positive constant that defines the fuel consumption rate.

The net thrust is bounded by

0 < ρ1 ≤ ||T (t)|| ≤ ρ2, (4.28)

which defines a non-convex set of feasible controls. Additional nonlinearities are present

because of the nonlinearity of Eqs. (4.26) and (4.27). To remove these nonlinearities, the

following variable transformations are introduced.

u :=
T

m
, σ :=

||T ||
m

, and z := ln(m) (4.29)

Upon defining the quantities

µ1(t) = ρ1e
−z̃(t) and µ2(t) = ρ2e

−z̃(t) (4.30)

where

z̃(t) =


ln(mwet − αρ2t), mwet − αρ2t ≥ mdry

ln(mdry), otherwise

, (4.31)
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a second-order cone program can be formed that approximates the problem of interest [1].

min J =
∫ tf

0 σ(τ) dτ

subj. to ṙ(t) = v(t)

v̇(t) = u(t) + g

ż(t) = −ασ(t)

||u(t)|| ≤ σ(t)

µ1(t)

[
1−

[
z(t)− z̃(t)

]
+ 1

2

[
z(t)− z̃(t)

]2]
≤ σ(t) ≤ µ2(t)

[
1−

[
z(t)− z̃(t)

]]
ln(mwet − αρ2t) ≤ z(t) ≤ ln(mwet − αρ1t)

m(0) = mwet, r(0) = r0, ṙ(0) = ṙ0

r(tf ) = ṙ(tf ) = 0

The following parameters are used to solve the problem.

r0 = [1500, 0, 2000]T m

ṙ0 = [−75, 0, 100]T m/s

g = [−3.7114, 0, 0]T m/s2

mdry = 1505 kg,mwet = 2110 kg

Isp = 225 s, α = 5.09 · 10−4 s/m

ρ1 = 13.151 kN, ρ2 = 19.727 kN

(4.32)

Through numerical tests, the problem has a minimum time of 45 seconds and an optimal

time of 52 seconds. Tests indicate that the standard convexification holds for final times

between 45 seconds and 72 seconds, and it fails thereafter. To demonstrate our results, the

final time is set at tf = 90 seconds and it is known that the optimal solution will have

thrust magnitude equal to ρ1 almost everywhere.
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To emulate a practical guidance implementation, the problem is solved in a sample-

and-hold manner. In each call to guidance, the feasibility problem is solved. If the control

solution has magnitude ρ1 at each node, the control at the current node is accepted and

passed to the simulation. Otherwise, a perturbing control with magnitude ρ1 is introduced

and passed to the simulation. This process is repeated every one second from 90 seconds

down to 1 second. The resulting state and control trajectories are shown in Figs. 4.10 to

4.12. The problems were solved on a laptop with a 2.2 GHz processor. Each call to guidance

requires the solution of one second-order cone program. On average, the solution time was

0.25 seconds.
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Fig. 4.10: The spacecraft’s initial position is at the tip of the dashed curve. The dashed
curve indicates the perturbed portion of the trajectory. After 43 seconds, a minimum time
control lands the spacecraft at the desired point (indicated by the solid curve).
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Fig. 4.11: The thrust magnitude is constant at the lower bound of ρ1 = 13.151 kN.
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Fig. 4.12: The three components of thrust are shown as a function of time.
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4.8 Proof for Lossless Convexification in Finite Dimensions

This section attempts to provide a proof for lossless convexification of a problem of type

P0 in finite dimensions. Consider the following discrete-time minimum energy problem

min J =
N∑
i=1

uTi ui

subj. to xi+1 = Axi +Bui, i = 1, ..., N

x1 = x0, xN+1 = xf

ρ1 ≤ ||ui|| ≤ ρ2, i = 1, ..., N.

Let xi ∈ Rn and ui ∈ Rm. Recognizing that g(ui) = ||ui|| and `(g(ui)) = (g(ui))
2 = uTi ui,

the standard relaxation P1 can be stated as below.

min J =
N∑
i=1

Γ2
i

subj. to xi+1 = Axi +Bui, i = 1, ..., N

x1 = x0, xN+1 = xf

||ui|| ≤ Γi, i = 1, ..., N

ρ1 ≤ Γi ≤ ρ2, i = 1, ..., N.

The Hamiltonian and Lagrangian functions are defined as follows

Hi = p0Γ2
i + pTi+1(Axi +Bui) (4.33)

Li = Hi + αi(u
T
i ui − Γ2

i ) + βi(ρ1 − Γi) + γi(Γi − ρ2) (4.34)
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The costate and stationary conditions are

pi =
∂Hi

∂xi
= AT pi+1 (4.35)

0 =
∂Li
∂ui

= BT pi+1 + 2αiui (4.36)

0 =
∂Li
∂Γi

= 2p0Γi − 2αiΓi − βi + γi. (4.37)

Suppose ∃ i such that uTi ui < Γi. Then,

αi = 0, Γi = ρ1, γi = 0, (4.38)

0 = BT pi+1, 2p0ρ1 = βi. (4.39)

The adjoint system is then given by the equations

pi = AT pi+1

0 = BT pi+1

(4.40)

Observability of the discrete system given by Eq. (4.40) can be determined using simple rank

tests [75–77]. Now, if the adjoint system is observable and BT pi+1 = 0 for i = 1, ..., n, then

pi = 0 ∀ i = 1, ..., N . However, we cannot guarantee that the condition BT pi+1 = 0 holds

for i = 1, ..., n. Hence, the proof for convexification cannot be done in finite dimensions.

4.9 Conclusions

This work presented new convexification results including a sufficient condition for the

standard convexification to hold for both free and fixed final time problems, a sufficient

condition for the standard convexification to hold for all final times between the minimum

time and the optimal time, and a perturbation technique to solve the general fixed time

problem as a sequence of convex programs when the final time is greater than the optimal

time. In short, the perturbation technique works as follows: perturb the initial point, solve

a feasibility problem to the final point, and repeat until convexification works (so that
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the control is on the boundary of the control set almost everywhere), which is guaranteed

to happen. This results in a globally minimizing control. The perturbation technique

has practical applications as demonstrated in the Mars landing example. In each call to

guidance, the problem was solved in less than one second without customization, suggesting

that the new perturbation technique is suitable for real-time guidance applications.
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CHAPTER 5

APPLICATION TO MARS ASCENT GUIDANCE

5.1 Introduction

This chapter analyzes three guidance strategies for the second stage of the Mars Ascent

Vehicle (MAV). One of the guidance laws is computational and based on the developments

in the previous chapter. One goal is to test the law (which assumes linear dynamics)

in the nonlinear ascent setting. This chapter evaluates the performance of the proposed

computational guidance law in nominal and Monte Carlo settings, and a comparison of the

results to those with the traditional Q-guidance (NASA’s current choice) and a variant of

the Powered Explicit Guidance (referred herein as LVLH-guidance).

NASA marked the beginning of its Mars Sample Return (MSR) campaign with the

launch of the Mars 2020 Perserverance rover. The rover, upon landing at the Jezero Crater,

will spend the next six years collecting Martian surface samples and preparing them for

collection and return to Earth. In 2026, a Mars Ascent Vehicle (MAV) will be launched

from Earth, stowed upon a Sample Retrieval Lander (SRL). Upon arrival at Mars, a Sample

Fetch Rover (SFR), housed inside the lander collects the deposited samples and inserts them

into the Orbiting Sample (OS), which is the payload for the MAV. The MAV then launches

from the surface and upon reaching a target orbit, ejects the OS, which will then be captured

and returned to Earth by the Earth Return Orbiter (ERO) [78].

The target orbit is a 343 km circular orbit with an inclination of 25◦. However, an

absolute lower bound of 300 km and a soft upper bound of 375 km is needed to interface

with the ERO. Also, an eccentricity of less than 0.006 and a semi-major axis of ± 9 km

are desired [79]. The solid configuration MAV consists of two stages, each equipped with a

Solid Rocket Motor (SRM). The first stage SRM launches the MAV from the Jezero Crater

(18.43◦ N 77.50◦ E) using an open-loop guidance scheme based on altitude. Following the
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first stage cut off, the MAV coasts on a ballistic trajectory with an apoapse of 343 km and

an inclination of 25◦. As the vehicle approaches the apoapse, second stage guidance targets

are loaded and closed-loop guidance calculations are performed continuously. Based on an

ignition trigger, the second stage SRM, which has a burn time of 24.45 seconds, is then

ignited to perform the circularization manuever. This work focuses on the performance of

potential ignition triggers and the second stage guidance strategies with an objective to

increase payload capacity, reduce fuel cost, and improve orbit insertion accuracy.

Traditional guidance laws have been simple – making many assumptions so that desired

controls can be calculated in real-time onboard a basic flight computer. Assumptions typi-

cally include constant gravity, perfect state knowledge, and negligible aerodynamics. Exam-

ples of such “analytical guidance” schemes include Apollo lunar descent guidance [24–26,59],

Iterative Guidance Mode (IGM) for Saturn V ascent [60,61], and Powered Explicit Guidance

(PEG) for Shuttle [62,63]. In this work, the traditional Q-guidance as described in [80] and

a PEG-like guidance (LVLH-guidance) as described in [81] are used to establish baselines

for comparison.

Computational guidance schemes for Mars entry, descent, and landing (EDL) were

first developed in 2005 at the Jet Propulsion Laboratory (JPL) by staff members Behçet

Açıkmeşe and Scott Ploen [1,41,57]. They formulated the landing problem as a non-convex

optimization problem, transformed it to a convex form, and solved it using convex solvers.

This technology made it on-board the flight computer for abort situations but was never

needed [12,82]. Computational guidance for ascent has not received the same attention and

is an ongoing area of work.

However, it must be noted that since the LVLH-guidance provides an analytical solution

to the nonlinear ascent problem, its performance is expected to be better than the proposed

computational guidance law. To summarize, the current work focuses on formulating the

second stage MAV ascent guidance problem as an optimal control problem, transforming it

into a convex form, and comparing its performance to the Q-guidance and LVLH-guidance

schemes. The main contributions of this work are:
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1. Establishment of burn time, time of ignition, and configuration type of the SRM as

critical factors that affect the performance of a computational guidance scheme (See

Section 5.7.3).

2. Introduction of an alternative ignition trigger (called box-trigger) for Q-guidance with

improved dispersion performance and mass reduction (See Section 5.7.1).

3. Establishment of LVLH-guidance with uhat-trigger as a guidance scheme with best

performance results (See Section 5.7.2).

The chapter is organized as follows. Section 5.2 introduces the mathematical notations

used. In Section 5.3, equations of motion for the vehicle are described. Section 5.4 dis-

cusses the coordinate transformations used. Section 5.5 gives a detailed description of the

different guidance laws. The different ignition triggers are discussed in Section 5.6 followed

a comparison of their performance results in Section 5.7. Section 5.8 dicusses the potential

benefits of possible trigger changes. Finally, Section 5.9 concludes the chapter.

5.2 Nomenclature for the Chapter

The following is a partial list of notation used; R is the set of real numbers; Rn is the

n-dimensional real vector space; ||v|| is the 2-norm of the vector v and the time derivative

of a function is denoted with an over-dot, i.e. dx(t)/dt = ẋ(t).

5.3 Equations of Motion

The nonlinear equations of motion for the vehicle are written in a local vertical local

horizontal (LVLH) frame shown in Figure 5.1. The equations assume a non-rotating spher-

ical primary body and have been derived using spherical coordinates – (r, φ, λ). The radius

is given by r = R + y where R is the radius of the planet. φ is the longitude and λ is

the latitude. The quantities x and y are the in-plane curvilinear distance and altitude; u
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and v are the in-plane horizontal and vertical velocity components; and z and w are the

out-of-plane curvilinear distance and velocity components.

ẋ = Ru/r

ẏ = v

ż = Rw/r

u̇ = τ cos θ cosψ + (uv/r) tan(z/R)− uv/r + ax

v̇ = τ sin θ − g + u2/r + w2/r + ay

ẇ = τ cos θ sinψ − (u2/r) tan(z/R)− vw/r + az

(5.1)

The gravitational constant is denoted by µ and the gravitational acceleration is given

by g = µ/r2. Also, τ is the thrust acceleration T/m; θ is the thrust pitch angle; and ψ is

the thrust yaw angle. For operation at constant thrust, T = βVe where β is the propellant

mass flow rate and Ve is the exhaust velocity. The mass equation can be integrated to

obtain m = m0 − βt so that the mass equation can be eliminated from the problem. Thus,

τ = −Ve/(t− α) where α = m0/β.

Perturbing accelerations are captured componentwise in ax, ay, and az. Perturbations

can include higher-order gravitational affects and atmospheric drag based on an exponential

atmospheric model.

R

y

T
θ

x

Fig. 5.1: LVLH reference frame.
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However, since the current work is focused on the relatively short duration of powered

flight during the second burn near apoapse, primary perturbations are not dynamic but

related to the vehicle (mass and deliverable delta-v) and ignition trigger logic. As such,

several simplifying assumptions can be made. First, it is observed that y/R << 1 so that

r ≈ R and g ≈ µ/R2. Second, the out-of-plane components z and w are sufficiently small

that z/R and w/R can be neglected. This is true because the plane change is done during

the first burn. Third, during thrusting arcs, uv/R << T/m so that the third term in

the u̇ equation can be neglected. Fourth, the perturbing accelerations are neglected. The

resulting equations are given by

ẋ = u

ẏ = v

ż = w

u̇ = τ cos θ cosψ

v̇ = τ sin θ − g + u2/r

ẇ = τ cos θ sinψ

(5.2)

5.4 Coordinate Transformations

Given inertial position and velocity vectors r0 ∈ R3 and v0 ∈ R3, the LVLH components

can be found using the equations:

r̂ = r0/||r0|| (5.3a)

φ = tan−1(r̂2, r̂1) (5.3b)

λ = sin−1(r̂3) (5.3c)

x = Rφ (5.3d)

y = ||r0|| −R (5.3e)

z = Rλ (5.3f)

[v, u, w]> = T>v0 (5.3g)
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T is the rotation matrix given by

T =


cosφ cosλ − sinφ − cosφ sinλ

sinφ cosλ cosφ − sinφ sinλ

sinλ 0 cosλ

 . (5.4)

where φ is the longitude and λ is the latitude.

5.5 Guidance Laws

In this section, we discuss the three guidance laws that have been implemented and

compared in this study – 1) Q-guidance (analytic in nature), 2) LVLH-guidance (analytic in

nature and a PEG variant), and 3) SOCP-guidance (computational in nature). Q-guidance

is NASA’s current choice. Q-guidance and LVLH-guidance have a long history of space-use

whereas something similar to SOCP-guidance has only been recently used by SpaceX. The

third guidance requires the solution of a second-order cone program (SOCP) – hence the

name.

5.5.1 Q-guidance

Q-guidance or Cross Product Steering (CPS) is a guidance technique which is fuel

optimal for constant gravity fields [83] and very nearly optimal for non-constant gravity

fields [84,85]. The guidance law is based on the concept of “velocity-to-be-gained”

vg = vr − v (5.5)

where v ∈ R3 is the inertial velocity of the vehicle, and vr ∈ R3 is the velocity required

to satisfy a set of stated mission objectives. In other words, vr is the velocity that the

vehicle would have if it coasts on a trajectory to reach the desired target. By intuition,

any steering law that drives vg to zero will be successful but may not be optimal. The

differential equation for vg can be found by differentiating Eq. (5.5) with respect to time.
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We know

v̇ = g(r) + aT (5.6)

where g(r) ∈ R3 is the gravitational vector corresponding to the current vehicle position

r ∈ R3, and aT ∈ R3 is the thrust acceleration acting on the vehicle. Recalling that vr is a

function of r and time t, the time derivative of velocity-to-be-gained can be written in the

form

v̇g =
∂vr
∂t

+
∂vr
∂r

v − g(r)− aT (5.7)

Substituting v = vr − vg into Eq. (5.7) yields

v̇g =
∂vr
∂t

+
∂vr
∂r

vr −
∂vr
∂r

vg − g(r)− aT (5.8)

Noting that vr is the velocity of the vehicle on a coasting trajectory,

∂vr
∂t

+
∂vr
∂r

vr = g(r) (5.9)

Hence, Eq. (5.8) becomes

v̇g = −∂vr
∂r

vg − aT (5.10)

The term ∂vr
∂r vg is often labeled as Q and the guidance scheme is referred to as Q-guidance.

According to Battin [80], an effective way to drive all three components of vg to zero

simultaneously is to align the time of rate of change of vg with itself. This insight results

from the analysis of a constant gravity scenario of the problem. Mathematically, this is

equivalent to choosing aT such that

v̇g × vg = 0. (5.11)

By introducing the notation

p = −∂vr
∂r

vg = −Qvg (5.12)
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Eq. (5.10) can be written as

v̇g = p− aT . (5.13)

The steering law is then equivalent to choosing aT such that

aT × vg = p× vg (5.14)

Postmultiplying Eq. (5.14) by vg and using the identity (a× b)× c = (a · c)b− (b · c)a yields

(aT · vg)vg − ||vg||2aT = (p · vg)− ||vg||2p. (5.15)

Dividing by ||vg||2 and denoting ig = vg/||vg|| gives

aT = p+ (q − p · ig)ig (5.16)

where q = aT · ig. The scalar quantity q can be calculated by squaring both sides of Eq.

(5.16).

aTTaT = pT p+ 2(q − p · ig)pT ig + (q − p · ig)2

||aT ||2 = ||p||2 + 2q(p · ig)− 2(p · ig)2 + q2 − 2q(p · ig) + (p · ig)2

= ||p||2 + q2 − (p · ig)2

(5.17)

Therefore, we have

q =
{
||aT ||2 − ||p||2 + (p · ig)2

} 1
2 . (5.18)

Note that in Eq. (5.18), ||aT || must be sufficiently large for q to be real. In other words, if

||aT || is not sufficiently large, it will not be possible to align the vector vg with its derivative.

However, for rockets with burn times that are short (24.45 seconds in the current problem),

no difficulty is encountered with this guidance scheme.

Since the MAV ascent problem assumes a constant thrust, the thrust acceleration

magnitude ||aT || can be computed at each time instant. Thus, Eq. (5.18) can be used to
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calculate q and then Eq. (5.16) to compute aT . The calculation of vr and Q depends on

the target orbit. Since in our case, the target orbit is circular, the expression for vr is given

by

vr =

√
µ

||r||
in × ir (5.19)

where in is the unit normal to the target orbital plane, ir is the unit vector in the direction

of vehicle’s current position r, and µ is the gravitational constant for Mars. However, by

using this approach to drive vg to zero, one could control the shape and orientation of the

final orbit, but no direct control of the radius of the orbit is possible [80].

By rewriting Eq. (5.19) as

vr = Snr

√
µ

||r||3
(5.20)

with

Sn =


0 −nz ny

nz 0 −nx

−ny nx 0

 (5.21)

where nx, ny, and nz are the direction cosines of in, we obtain

Q =

√
µ

||r||3
Sn(I − 3

2 iri
T
r ) (5.22)

5.5.2 LVLH-guidance

The LVLH-guidance law was developed by David G. Hull and Matthew W. Harris in

2012 [81]. The guidance scheme is fuel optimal for the free final time transfer of a rocket

between two fixed points under the assumptions of constant thrust, quasiplanar flight in the

neighborhood of a spherical primary body, and small thrust angles. Due to the assumptions

imposed, the equations of motion for the vehicle are described by Eq.(5.2).

For constant thrust, the problem of minimizing fuel consumption is the same as mini-

mizing flight time if the engine can be shutoff. The engine cannot be shutoff early, however,
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there is flexibility in the ignition time. Hence, we consider a minimum time problem.

J = tf (5.23)

For the moment, we set the initial time to zero, and all of the initial states are specified.

The final time is free, and all of the final states are specified except for the downrange, xf ,

which is free. Since the final time cannot actually be free, we will subsequently choose the

ignition time to match the desired uf , but this is not part of the optimal control analysis.

Solution of the optimal control problem begins with the formation of the Hamiltonian

and the endpoint function

H = λ1u+ λ2v + λ3w + λ4τ cos θ cosψ + λ5(τ sin θ − gm + u2/rm) + λ6τ cos θ sinψ

G = tf + ν2(yf − yfs) + ν3(zf − zfs) + ν4(uf − ufs) + ν5(vf − vfs) + ν6(wf − wfs).
(5.24)

The differential equations for the multipliers are derived from the condition λ̇ = −HT
x

and are given by

λ̇1 = 0, λ̇2 = 0, λ̇3 = 0

λ̇4 = −2λ5u/rm, λ̇5 = −λ2, λ̇6 = −λ3.
(5.25)

With the exception of λ4, these equations can be integrated to obtain

λ1 = Const, λ2 = Const, λ3 = Const

λ5 = −λ2t+ C2, λ6 = −λ3t+ C3

(5.26)

where C2 and C3 denote constants of integration. Because of the boundary conditions

λf = GTxf and Hf = −Gtf , it is seen that λ1 = 0 and that Hf = −1.

The optimal controls are obtained from the condition HT
u = 0 which leads to

Hθ = −λ4τ sin θ cosψ + λ5τ cos θ − λ6τ sin θ sinψ = 0

Hψ = −λ4τ cos θ sinψ + λ6τ cos θ cosψ = 0.
(5.27)
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From the latter, it is seen that

λ4 tanψ − λ6 = 0 (5.28)

so the former can be rewritten as

(λ4 cosψ + λ6 sinψ) tan θ − λ5 = 0. (5.29)

The solution of these equations involves a sign ambiguity that can be resolved by

applying the Legendre-Clebsch condition or equivalently

Hθθ ≥ 0, Hψψ ≥ 0, HθθHψψ −H2
θψ ≥ 0. (5.30)

Consequently, if it is assumed that cos θ > 0, which is logical for ascent, the optimal thrust

yaw angle is given by

sinψ =
−λ6√
λ2

4 + λ2
6

, cosψ =
−λ4√
λ2

4 + λ2
6

(5.31)

and the optimal thrust pitch angle becomes

sin θ =
−λ5√

λ2
4 + λ2

5 + λ2
6

, cos θ =

√
λ2

4 + λ2
6√

λ2
4 + λ2

5 + λ2
6

. (5.32)

Based on the results from Q-guidance, we assume that both thrust angles are small for

lunar ascent so that a zeroth-order approximation (sinφ ≈ φ, cosφ ≈ 1) is reasonable. Note

that cosψ is expected to be positive so that λ4 must be negative, and
√
λ2

4 = −λ4. Hence,

the equations for the controls can be rewritten as

sinψ = λ6/λ4√
1+(λ6/λ4)2

, cosψ = 1√
1+(λ6/λ4)2

sin θ = λ5/λ4√
1+(λ5/λ4)2+(λ6/λ4)2

, cos θ =

√
1+(λ6/λ4)2√

1+(λ5/λ4)2+(λ6/λ4)2

(5.33)
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indicating that the small angle approximations are

(λ6/λ4)2 << 1, (λ5/λ4)2 << 1. (5.34)

Finally, after the small angle assumptions are made, the controls are given by

sinψ = λ6/λ4, cosψ = 1, sin θ = λ5/λ4, cos θ = 1. (5.35)

Next, the state equations are combined with the control and multiplier equations to

obtain the following differential equations for a two-point boundary value problem (TP-

BVP):

ẋ = u, u̇ = τ

ẏ = v, v̇ = τ [(−λ2t+ C2)/λ4]− gm + u2/rm (5.36)

ż = w, ẇ = τ [(−λ3t+ C3)/λ4]

λ̇4 = −2(−λ2t+ C2)u/rm.

The solution process begins by integrating the u̇, ẋ, and λ̇4 equations. The results for

u and x are given by

u = u0 − Ve ln(1− t/α) (5.37)

x = x0 + u0t+ Ve(α− t) ln(1− t/α) + Vet. (5.38)

Then, with u from Eq. (5.37), the λ̇4 equation leads to

λ4 = C1 − (2u0/rm)(−λ2t
2/2 + C2t)

− (Veλ2/(2rm)[2(t2 − α2) ln(1− t/α)− 2αt− t2]

− (2VeC2/rm)[(α− t) ln(1− t/α)− t]

(5.39)

where α = m0/β and C1 is the initial value (t0 = 0) of λ4.
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At this point, it is seen that the unknowns λ2, C2, λ3, C3 can be divided by C1, and the

need for the final condition Hf = −1 is eliminated. Division by C1 is denoted by an over

bar. Hence, Eq. (5.39) becomes

λ̄4 = 1− (2u0/rm)(−λ̄2t
2/2 + C̄2t)

− (Veλ̄2/(2rm)[2(t2 − α2) ln(1− t/α)− 2αt− t2]

− (2VeC̄2/rm)[(α− t) ln(1− t/α)− t],

(5.40)

where λ̄4 is a function of t, λ̄2, C̄2 The remaining equations of motion are rewritten as

ẏ = v, v̇ = τ(λ̄5/λ̄4)− gm + [u0 − Ve ln(1− t/α)]2/rm

ż = w, ẇ = τ(λ̄6/λ̄4)
(5.41)

where

λ̄5 = −λ̄2t+ C̄2, λ̄6 = −λ̄3t+ C̄3. (5.42)

Solution of the v̇ and ẏ equations involves the first and second integrals of τ which lead

to the modified thrust integrals J ′(tf , λ̄2, C̄2), L′(tf , λ̄2, C̄2), Q′(tf , λ̄2, C̄2), and S′(tf , λ̄2, C̄2)

(Appendix: A). Also needed are the first and second integrals of the centrifugal acceler-

ation u2/rm. These integrals, denoted F (tf ) and G(tf ), can be obtained analytically by

substituting the already known u (Appendix: B). Then, the v and y equations become

v = −v0 − λ̄2Ĵ
′ + C̄2L̂

′ − gmt+ F̂

y = −y0 − v0t− λ̄2Q̂
′ + C̄2Ŝ

′ − gmt2/2 + Ĝ,
(5.43)

where the over hat denotes the corresponding integral evaluated at t instead of tf . Similarly,

the ẇ and ż equations can be integrated to obtain

w = w0 − λ̄3Ĵ
′ + C̄3L̂

′

z = z0 + w0t− λ̄3Q̂
′ + C̄3Ŝ

′.
(5.44)
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At this point, the prescribed boundary conditions are applied to obtain the equations

to be solved for the unknown constants tf , λ̄2, C̄2, λ̄3, C̄3 using the definitions

Vx = uf − u0

Vy = vf − v0 + gmtf − F, Y = yf − y0 − v0tf + gmt
2
f/2−G

Vz = wf − w0, Z = zf − z0 − w0tf .

(5.45)

First, Eq. (5.37) applied at the final time can be solved for tf as

tf = α[1− exp(−Vx/Ve)]. (5.46)

Then, Eq. (5.43) can be rewritten as

Vy = −λ̄2J
′(tf , λ̄2, C̄2) + C̄2L

′(tf , λ̄2, C̄2)

Y = −λ̄2Q
′(tf , λ̄2, C̄2) + C̄2S

′(tf , λ̄2, C̄2).
(5.47)

For known values of Vy and Y , these equations can be solved iteratively for λ̄2 and C̄2.

Finally, Eq. (5.44) can be applied at tf and solved analytically for λ̄3 and C̄3 as

λ̄3 = (VzS
′ − ZL′)/(L′Q′ − J ′S′)

C̄3 = (VzQ
′ − ZJ ′)/(L′Q′ − J ′S′).

(5.48)

In conclusion, there are only two implicit equations to be solved to obtain the five unknowns.

Finally, the approximate optimal controls are obtained from Eq. (5.33) as

sinψ = (−λ̄2t+ C̄2)/λ̄4, cosψ = 1

sin θ = (−λ̄3t+ C̄3)/λ̄4, cos θ = 1.
(5.49)

However, in a simulation, the controls should be calculated as in Eq. (5.33) with a bar over

each multiplier. This ensures that sine squared plus cosine squared equals one.

Based on other analysis, we know that λ̄4 is very nearly equal to one, so that an

approximate solution with λ̄4 = 1 is possible. The effect of this assumption is that the
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modified thrust integrals become the standard thrust integrals which are functions of the

final time only. Hence, the equations to be solved for the unknown constants become the

following:

Vx = L

Vy = −λ̄2J + C̄2L, Y = −λ̄2Q+ C̄2S

Vz = −λ̄3J + C3L Z = −λ̄3Q+ C̄3S.

(5.50)

The Vx equation can be solved for the final time

tf = α[1− exp(−Vx/Ve)] (5.51)

as before. Given tf , the thrust integrals are known so that the Vy and Y equations can be

solved for λ̄2 and C̄2 as follows:

λ̄2 = (VyS − Y L)/(LQ− JS)

C̄2 = (VyQ− Y J)/(LQ− JS).
(5.52)

Finally, the Vz and Z equations can be solved for λ̄3 and C̄3, that is,

λ̄3 = (VzS − ZL)/(LQ− JS)

C̄3 = (VzQ− ZJ)/(LQ− JS).
(5.53)

Note that the solution is completely analytical in that no quadratures or iterations are

necessary.

With λ̄4 = 1, the optimal controls are obtained from Eq. (5.33) as

sinψ = λ̄6√
1+λ̄2

6

, cosψ = 1√
1+λ̄2

6

sin θ = λ̄5√
1+λ̄2

5+λ̄2
6

, cos θ =

√
1+λ̄2

6√
1+λ̄2

5+λ̄2
6

.
(5.54)

In a practical implementation, the final time tf is not free and the final downrange

velocity constraint on u cannot be met exactly. Thus, an effective trigger for LVLH-guidance

must ignite the second-stage to minimize error in the downrange velocity.
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5.5.3 SOCP-guidance

To do real-time optimization within guidance, the underlying optimization problems

must be solvable by numerical methods that offer convergence guarantees. One of the

more general classes of problem for which such solvers exist are second-order cone programs

(SOCPs). Notably, SOCPs are convex and they can be solved to global optimality in

polynomial time. The optimization problem formulated in the LVLH-guidance section is

not convex because of the nonlinear dynamics and annular thrust magnitude constraint.

Relaxation techniques exist to transform the annular constraint, but there are no similar

workarounds for nonlinear dynamics. One must either make an approximation to induce

convexity or rely on nonlinear solvers that do have the needed convergence guarantees.

Here, convexity is induced by approximating the u2/r term – ignoring it is too big of an

assumption – by a linearly time varying estimate denoted ûr. Hence the dynamics are given

by

ẋ = u

ẏ = v

ż = w

u̇ = τx

v̇ = τy − g + ûr

ẇ = τz

(5.55)

where the thrust components have now been used in place of the thrust angles. The equa-

tions are linear and time-varying because of the ûr term. Once ignition occurs, the burn

time is fixed. The goal is to minimize error in the final state while adhering to the above

equations of motion and constant thrust magnitude constraint. Mathematically, the objec-

tive is

J = (yf − yd)2 + (zf − zd)2 + · · ·+ (wf − wd)2 (5.56)

where the subscript f denotes the value at the final time and subscript d denotes the desired
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value at the final time. In the LVLH frame, the final x position is free since it represents

downrange position (analogous to anomaly in the orbital elements). Several formulations

have been investigated. For example, hard constraints can be imposed to force the final

orbital elements within their feasible region. However, doing so might make the optimization

problem infeasible particularly as the time-to-go approaches zero. In an attempt to balance

performance with numerical stability, the objective given in Eq. (5.56) is chosen.

Constant thrust is assumed so that thrust acceleration τ is known but time-varying.

The control constraint is

τ2
x + τ2

y + τ2
z = τ2 (5.57)

which must hold pointwise in time. This constraint is non-convex and presents the main

challenge in solving the optimal control problem. Based on the results from the chapter 4,

the following simple relaxation is proposed.

τ2
x + τ2

y + τ2
z ≤ τ2 (5.58)

This weaker constraint is convex but may not yield feasible solutions. However, because the

system is controllable with zero thrust in the interior of the control set, the reachable set

is expansive and any minimum time solution will satisfy the constraint with equality. The

fixed final time may not correspond to the minimum time. But one may apply feasible (but

otherwise arbitrary) controls during the time difference to achieve optimal controls (refer

back to Theorem 4.4). Hence, the numerical optimization problem is solvable as a SOCP.

The resulting optimization model is a continuous time optimal control problem. To

couple with a solver, a basic discretization is applied by assuming a zero-order hold on the

controls. This is appropriate since guidance issues zero-order hold commands to the control

system. Because of linearity, the discretization is exact. The problem is then parsed using

YALMIP and solved using Gurobi. Theoretically, the LVLH-guidance thrust angles vary

linearly with time as do the SOCP-guidance thrust angles. Using a first-order hold in these

guidance implementations may improve the results, but this was not performed in order to
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be consistent with the Q-guidance scheme.

5.6 Ignition Triggers

Ignition triggers determine the starting time/location of the circularization burn. Un-

der nominal conditions, the lowest-energy point to perform this maneuver is at the apoapse

of the ballistic trajectory. However, in the presence of dispersions such as initial mass varia-

tions or SRM performance/delta-v variations, burning at apoapse causes large discrepencies

in final semi-major axis and eccentricity [78,86]. As such, the second stage SRM is designed

such that it carries excess delta-v to account for such off-nominal conditions or intrinsic

solid motor performance variations.

For circularization at apoapse, approximately 1,689 m/s of delta-v is required. The

second stage SRM can deliver 1,696 m/s of delta-v. Thus, the nominal case carries 7

m/s of excess delta-v. This is shown graphically in Figure 5.2. The dashed horizontal line

corresponds to the available delta-v. The dotted vertical line identifies the point of apoapse.

The solid curve identifies the required delta-v as a function of time.
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Fig. 5.2: Required ∆v vs. time
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To account for this excess energy, a trigger logic must be implemented to ignite the

second stage SRM at some point prior to the apoapse while minimizing the dispersions in

final semi-major axis and eccentricity. That is, the burn should be intentionally performed

at a sub-optimal point/time. A practical implementation requires closed-loop guidance

calculations to be continuously performed as the vehicle approaches the apoapse. Three

ignition triggers are analyzed in this work – 1) Q-trigger (NASA’s current choice), 2) Box-

trigger, and 3) uhat-trigger.

5.6.1 Q-trigger

This trigger was developed by NASA and is based in Q-guidance. The approach of im-

plementating the trigger along with Q-guidance is collectively termed Simple Cross-product

Steering (SXS) by NASA [86]. According to this trigger logic, ignition should occur when

the magnitude of the velocity-to-be-gained vector (vg) computed onboard matches the pre-

dicted onboard delta-v capability of the SRM.

Thus, the trigger aims at finding the time tig after the current mission elapsed time t,

such that ignition occurs at tb = t+ tig. This requires solving the equation

f(tig) = ||vg(tig)|| − vcap, (5.59)

where vcap is the predicted onboard delta-v capability of the SRM. The solution can be

found using the Newton-Raphson method, where tig can be iterated in the following fashion

tigk+1
= tigk −

f(tig)

ḟ(tig)
= tigk −

(
||vg(tig)|| − vcap

)(∂||vg ||
∂tig

) . (5.60)

Note that the partial of ||vg|| with respect to time in Eq. (5.60) can be written as

∂||vg||
∂t

= ig ·
∂vg
∂t

(5.61)

The computations are performed in a guidance target frame (ix, iy, iz), which shares sim-

ilarities to the LVLH frame. The vector iy represents the out-of-plane component, and is
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defined as the anti-parallel direction to the angular momentum vector of the target orbit

,i.e., iy = −in . The radial component ix is represented by the current inertial position

vector projected onto the target plane.

ix =
r − (r · iy)
||r − (r · iy||

(5.62)

Finally, the downrage component iz completes the right-handed coordinate system. Now,

the partial of the vector vg with repect to time in Eq. (5.61) is given by

∂vg
∂t

= − µ

||vr||||r||2
[ir · v]iz − ||vr||

(v · iz)
(r · ix)

ix +
µ

||r||3
r (5.63)

The derivation for Eq. (5.63) is given in Appendix: D.

5.6.2 Box-trigger

This trigger makes use of the following logic – as the vehicle approaches apoapse,

1) guidance calculations are performed at each time instant t assuming that the ignition

time is t, i.e., tb = t, followed by 2) a computation for the estimates of final semi-major

axis and eccentricity, and 3) activating the trigger instantly if the final values meet the

predefined mission objectives. Because the trigger activates when the state first enters the

apoapse-eccentricity box, we call it the box-trigger. A key advantage of the trigger is that it

replaces the Newton iterations in the Q-trigger with an integration. Moreover, the trigger

is applicable to all guidance schemes discussed in Section 5.5.

5.6.3 uhat-trigger

As noted in Section 5.5.2, an effective trigger for LVLH-guidance must ignite the second-

stage to minimize error in the downrange velocity u. We call such a trigger the uhat-trigger

since it is based on an estimate of u. The trigger logic can be summarized as follows – as

the vehicle approaches the apoapse, at each time instant t,

1. Compute λ̄2, C̄2, λ̄3, C̄3 using Eq. (5.52)-(5.53).
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2. Compute λ̄5 and λ̄6 ∀ t ∈ [0, tf ], where tf = 24.45 seconds.

3. Compute sinψ, cosψ, sin θ, and cos θ using Eq. (5.54) ∀ t ∈ [0, tf ].

4. Integrate the u̇ equation in Eq. (5.2) using a standard quadrature technique such as

the trapezoidal rule to find the estimate û.

5. Activate the trigger if û ≥ ud, where the ud is the desired downrange velocity.

Thus, the computation of û involves one quadrature and the trigger is iteration free. Hence,

there are no convergence concerns. Aside from the fact that u must be estimated, this

trigger logic is optimal for LVLH-guidance law.

5.7 Performance Comparison

This section compares the performance of the different guidance schemes discussed

in Section 5.5 coupled with the different ignition triggers discussed in Section 5.6. The

performance is evaluated under both nominal and off-nominal (Monte Carlo) settings.

5.7.1 Q-guidance Performance

To establish a baseline for comparison, NASA’s current guidance choice Q-guidance is

implemented along with the current ignition trigger (Q-trigger) logic for energy management

(required to bleed the excess delta-v capability). Note that while Q-guidance is analytic

Q-trigger is not as it requires Newton iterations. Nominal pitch and yaw angles are shown

in Figures 5.3 and 5.4 respectively.
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Fig. 5.3: Thrust pitch angle using Q-guidance.
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Fig. 5.4: Thrust yaw angle using Q-guidance.
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After the second burn, the orbit has been successfully circularized. The semi-major

axis, eccentricity, and inclination are below and within tolerances specified by NASA.

sma = 3.445340870281458e+05 km

ecc = 0.001312904482567

inc = 24.999996433414527 deg

To verify that the Q-guidance implemented in this work is similar to that of NASA’s,

normally distributed mass at launch and stage-2 delta-v capacity are introduced, and the

results are compared. These distributions have a 3σ range of about 1 kg and 1 percent

respectively. It is observed that the mass dispersions place the final orbit semi-major axis

within a range of about 80 km and the delta-v dispersions place the final orbit semi-major

axis within a range of about 60 km. NASA reports 1-D sensitivities of 90 km and 75 km,

respectively, and notes that these are an order of magnitude greater than other parameter

affects [78]. The dispersion for each case are shown in Figures 5.5 and 5.6.
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Fig. 5.5: Final orbital elements for mass dispersions. The boxes denote the feasible region
defined by NASA.
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Fig. 5.6: Final orbital elements for delta-v dispersions. The boxes denote the feasible region
defined by NASA.

It is evident from the number of points outside of the feasible regions in Figures 5.5 and

5.6 that the 3σ limits on mass and delta-v must be reduced to ensure feasibility with high

probability. When they are reduced to 1/3 kg and 1/3 percent, the final orbital elements are

well within the feasible region as seen in Figure 5.7. Given our under-prediction of the 1-D

sensitivities, these dispersion levels will be used for comparison with other guidance laws

in the upcoming sections. Although not shown, 99% of the cases were within the feasible

region when the mass dispersion was increased to 1/2 kg.

280 300 320 340 360 380
300

320

340

360

380

400

HP (km)

H
A

(k
m

)

0 2 4 6

·10−3

300

320

340

360

380

Eccentricity

S
M

A
A

lt
it

u
d

e
(k

m
)

Fig. 5.7: Reducing 3σ dispersion levels to 1/3 kg and 1/3 percent places the final orbital
elements well within the feasible region.
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Based on these plots, it appears that the Q-trigger is primarily associated with the

periapsis altitude since dispersions are mostly vertical in the left-hand plot. As such, the

eccentricity dispersions are larger than required and exceed 0.004.

The final orbital elements using Q-guidance with the box-trigger are shown in Fig-

ure 5.8, in which it is evident the dispersions are tighter. The trigger has the affect of

distributing the dispersion along lines of constant apoapsis and periapsis, and decreasing

the dispersions in periapsis and eccentricity.

Although testing has not been done in high fidelity simulations, the box-trigger may

provide an opportunity to reduce the excess delta-v (and hence mass) carried for the second-

stage and weaken the navigation requirements.
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Fig. 5.8: Changing from the Q-trigger to the box-trigger reduced dispersion levels by about
half in eccentricity and apoapsis altitude. Additionallly, the box-trigger is analytic.

5.7.2 LVLH-guidance Performance

Now we provide performance results for LVLH-guidance in the nominal case (without

dispersions). For this study, an analytic version of LVLH-guidance with the uhat-trigger

was implemented. The resulting thrust pitch and yaw angles are shown in Figures 5.9 and

5.10 respectively.
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Fig. 5.9: Thrust pitch angle using LVLH-guidance.
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Fig. 5.10: Thrust yaw angle using LVLH-guidance.
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After the second burn, the orbit has been successfully circularized. The semi-major

axis, eccentricity, and inclination are below and within tolerances specified by NASA.

sma = 3.448382806278444e+05 km

ecc = 5.089799571866628e-04

inc = 25.000002551429098 deg

Two importants observations can be made. First, in the nominal case, both Q-guidance

and the LVLH-guidance perform equally well. Second, the LVLH-guidance naturally offers

some energy management as it has a nearly symmetric burn angle with both positive and

negative values in both pitch and yaw.

Now, similar dispersions as those used in Q-guidance with 3σ levels of 1/3 kg for mass

and 1/3 percent for delta-v capacity are introduced. The final orbital elements are shown

in Figure 5.11, and it is evident that LVLH-guidance performance is about the same as

Q-guidance with the box-trigger.
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Fig. 5.11: Final orbital elements dispersions for LVLH-guidance using the uhat-trigger.
Performance is similar to Q-guidance using the box-trigger

This analysis indicates that LVLH-guidance using the uhat-trigger is a solid competitor

to Q-guidance using the box-trigger and that both perform better than Q-guidance with the

Q-trigger. However, note that this conclusion is based on a relatively low fidelity simulation

and dispersions on the most sensitive parameters. Hence, further analysis by NASA in high
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fidelity simulations with additional dispersions is needed to conclude which guidance and

trigger are best.

5.7.3 SOCP-guidance Performance

The computational guidance scheme also naturally bleeds energy and matches the

desired final conditions in both nominal and off-nominal cases. Thrust pitch and yaw

angles for the nominal case are shown in Figures 5.12 and 5.13 respectively.
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Fig. 5.12: Thrust pitch angle using SOCP-guidance.
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Fig. 5.13: Thrust yaw angle using SOCP-guidance.

The final conditions meet specifications.

sma = 3.447602502201293e+05 km

ecc = 7.640199463441428e-04

inc = 24.999998329235272 deg

In each call to guidance, the computational guidance algorithm solves a second-order cone

program. The average solution time is 0.17 seconds. Previous work indicates that solve

times on RAD hard flight computers are 2-3 orders of magnitude slower; however, a cus-

tomized algorithm accelerates solve time by an order of magnitude. Hence, estimated solve

time on a flight computer is approximately one second, which is appropriate for guidance

applications.

Next, similar dispersions as those used in Q-guidance and LVLH-guidance with 3σ

levels of 1/3 kg for mass and 1/3 percent for delta-v capacity are introduced. The final

orbital elements are shown in Figure 5.14. Results are similar when using either the uhat-

trigger or box-trigger, and it is evident that SOCP-guidance performance is about the same
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as Q-guidance with the Q-trigger but worse than the other guidance methods presented.
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Fig. 5.14: Final orbital elements dispersions for SOCP-guidance using the box-trigger. Per-
formance is similar to Q-guidance using the Q-trigger.

Although not further explored, the study suggests that a different trigger exist for

SOCP-guidance that will distribute the dispersions along periapsis and apoapsis. In any

case, the current analysis do not warrant the results to be significantly different than those

presented for Q-guidance or LVLH-guidance. It seems that the short, fixed burn time

and non-throttleable engine have eliminated the degrees of freedom that a computational

guidance algorithm could leverage for benefit.

5.8 Possible Benefits of Guidance or Trigger Changes

In this section, we briefly discuss possible benefits of changing triggers or guidance laws.

Refer to Figures 5.5 and 5.6 to see the independent effects of mass and delta-v dispersions on

the final orbital elements using Q-guidance with the Q-trigger (both in the current NASA

plan). There are many instances outside of the feasible region and the combined effects are

worse. By switching to the box-trigger, about 95% of the cases are feasible. This is shown

in Figure 5.15.
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Fig. 5.15: Final orbital elements dispersions for Q-guidance using the box-trigger. As in
Figures 5.5 and 5.6, the 3σ levels are 1 kg and 1 percent. Based on these simulations, the
box-trigger improves Q-guidance.

We now investigate possible reductions in mass. Refer to Figure 5.7 to see Q-guidance

performance using the Q-trigger with 3σ dispersions of 1/3 kg and 1/3 percent, respectively

for mass and stage-2 delta-v capacity. These are with the nominal delta-v capacity of 1,696

m/s. Even at higher dispersion levels, using Q-guidance with the box-trigger can reduce the

nominal delta-v while maintaining a high probability of being in the feasible region. This

is shown in Figure 5.16 with a nominal delta-v capacity of 1,690 m/s.
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Fig. 5.16: Final orbital elements dispersions for Q-guidance using the box-trigger and a
nominal delta-v of 1,690 m/s. The 3σ levels are 1 kg and 1/2 percent on mass and delta-v.
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Lastly, similar statements can be made about LVLH-guidance using the uhat-trigger as

performance is similar to Q-guidance with the box-trigger. Based on analysis, the LVLH-

guidance with the uhat-trigger is a guidance scheme that demands further consideration. It

is theoretically the best since it matches five of six states in guidance and attempts to match

the sixth in the trigger logic. It also performs better in Monte Carlo analyses compared to

the other guidance schemes.

5.9 Conclusions

Given the short duration of the second burn, all guidance approaches behave about

the same in nominal circumstances and they are all sensitive to the trigger (ignition) logic.

Monte Carlo analyses have focused on the three most sensitive parameters: mass at launch,

stage-2 delta-v, and trigger logic. Results indicate that Q-guidance and LVLH-guidance

have different thrust profiles but similar dispersions in the final orbit. Because it relies on a

lower fidelity dynamic model, SOCP-guidance has a thrust profile similar to LVLH-guidance

but has higher dispersion levels in the final orbit. Notably, changing the Q-guidance trigger

to box-trigger reduces the final orbit dispersions compared to NASA’s current approach

(Q-trigger). Further, the box-trigger does not require Newton iterations. LVLH-guidance

and its trigger perform the best and are the most simple. A hypothesis was that SOCP-

guidance would offer improved fuel and dispersion performance. However, it seems that the

short duration of the second burn, sensitivity to the trigger time, and selection of a solid

(non-throttleable) rocket negates much of the hypothesized improvements.
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CHAPTER 6

STRONG OBSERVABILITY AS A SUFFICIENT CONDITION FOR

NON-SINGULARITY IN OPTIMAL CONTROL WITH MIXED CONSTRAINTS

6.1 Introduction

This chapter analyzes a class of finite horizon optimal control problems with linear

time-varying dynamics defined on a smooth manifold with a mixed constraint (a constraint

involving both the state and control) and additional control constraints. The main con-

tribution of the chapter is the identification of sufficient conditions for non-singularity of

optimal control for this particular class of problems. In particular, it is shown that strong

observability of the dual system is sufficient for there to be no non-degenerate intervals

on which the control is always in the interior of its constraint set. Singular solutions are

characterized as zero directions for the dual system, and they are easy to calculate for linear

time-invariant systems. Knowing an optimal control is on the boundary simplifies controller

design, enables exact and approximate relaxations, and helps to choose an appropriate nu-

merical method.

Motivation for this work is real-time control of mechanical and aerospace systems that

are highly constrained by operational, environmental, and mission constraints. One such

problem is the atmospheric reentry of the space shuttle [38–40]. As previously stated in

Section 2.2, the heating constraint is a mixed constraint that is a function of the states

and the control. Another particularly relevant example is that of planetary descent [1,

41]. The spacecraft is powered with a chemical propulsion system that provides thrust

magnitudes between a non-zero lower bound and an upper bound, and the mission requires

the spacecraft to approach the landing site at a specific angle. Such constraints on the thrust

levels, commonly referred to as “annular constraints”, make the problem non-convex. Also,

state constraints such as the glide slope constraint introduce additional complexity to the
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problem. Proving non-singularity enables a convex relaxation as described in Section 6.7.

The importance of non-singularity and controllability/observability in optimal control

is evident in the seminal work of Pontryagin [21]. They showed that controllability is

related to non-singularity, uniqueness, and regularity of the control [21]. For time optimal

problems, they used normality (a controllability-like concept) to show when controls are on

the boundary of a parallelepiped constraint [21]. Normality has been used more generally

to show when controls are at the extreme points of a constraint set [87]. Similar results

have been provided for other classes of problems [88]. We view this work as a continuation

of such results.

Key to our results are a recent statement of a maximum principle on manifolds with

mixed constraints [53] and a recent test for strong observability of linear-time varying sys-

tems with non-zero feedthrough matrix [89]. This test enables one to practically check

the sufficient condition. Strong controllability and strong observability are dual concepts

and the primal system being strongly controllable is equivalent to the dual system being

strongly observable [47]. There are numerous tests for strong observability of linear time-

invariant systems and means for characterizing their zeros and zero directions. One way to

characterize zeros of time-varying systems is by transformation. As an example, Wu [90]

introduces transformations for invariable systems. In Theorem 6.1, we introduce a time

transformation technique that is sufficient for time-varying systems to have the same zeros

and zero directions as a time-invariant system. Hence, the time-varying system is said to

be “effectively” time-invariant.

The requirement for non-singularity is related to the idea of lossless convexification.

The results herein subsume those of Harris and Açıkmeşe [16] as they focused on annularly

constrained problems in Euclidean space. Moreover, their method of proof required a specific

coordinate representation. Our proof is coordinate independent leveraging only the concepts

of strong observability, the weakly unobservable subspace, and the cotangent space.
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The main contributions of the chapter are the following:

1. Sufficient conditions for linear time-varying systems to be “effectively” time-invariant

for the purpose of determining strong observability (see Theorem 6.1).

2. Sufficient conditions for non-singular optimal control of systems evolving on a smooth

manifold subject to mixed constraints and additional control constraints (see Theorem

6.2).

3. Sufficient conditions for non-singular optimal control of systems defined on Rn sub-

ject to an explicit linear state constraint, mixed constraints, and additional control

constraints (see Section 6.5.1).

4. Application of the results to time optimal and fuel optimal control problems (see

Sections 6.6-6.7).

The chapter is organized as follows. Section 6.2 introduces the mathematical notation.

Section 6.3 describes the primary problem of interest, which is an optimal control problem

on a manifold with additional mixed constraints and control constraints. This section

also includes the assumptions imposed on the problem and a geometric motivation for the

current work. Section 6.4 presents some of the linear systems theory concepts crucial to

the mathematical analysis of the problem. A new time transformation technique is also

presented here. The main results are presented in Section 6.5, which states the sufficient

conditions for non-singularity. Sections 6.6 and 6.7 apply the results to minimum time and

minimum fuel problems. In Section 6.8, we present a time-transformation example. In

Section 6.9, a discussion on how singular solutions can be charaterized as zeros for time-

invariant systems is provided. Finally, Section 6.10 concludes the chapter.

6.2 Nomenclature for the Chapter

The topic of this chapter is optimal control of a dynamical system evolving on a smooth

manifold. A topological k-dimensional manifold X is a topological space which is Hausdorff,

second-countable, and such that for every x ∈ X there is a neighborhood U ⊂ X containing
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x that is homeomorphic to Rk via the coordinate map ϕ : U → Rk. The pair (U,ϕ) is called

a coordinate chart. Two charts (U,ϕ) and (V, ψ) are smoothly compatible if either U∩V = ∅

or ψ ◦ϕ is a diffeomorphism. A family of smoothly compatible charts whose domain covers

X is a smooth atlas for X. A smooth k-dimensional manifold X is a topological manifold

with a smooth atlas. Any open subset X ′ ⊂ X is a submanifold of X. For any point x ∈ X,

the tangent and cotangent spaces at x of X are denoted TxX and T ∗xX. The tangent and

cotangent bundles are denoted TX and T ∗X. A dynamical system on X is characterized

by a continuous mapping f : R ×X × Rm → TX such that f(t, x, u) ∈ TxX and which is

smooth with respect to (t, x).

The following is a partial list of notation used: Ck(I) is the set of k-times continuously

differentiable maps on I; C is the set of complex numbers; R is the set of real numbers; R+

is the set of non-negative real numbers; Rn is the set of real n-tuples; CL+
∞ is the set of

continuous, uniformly bounded functions over the set of non-negative real numbers; CL>∞ is

the set of functions v ∈ CL+
∞ such that ||v(t)|| does not decay to zero as t→∞; a condition

is said to hold almost everywhere (a.e.) in the interval [a, b] if the set of points in [a, b]

where this condition fails to hold is measure zero; a map x is identically zero if it is zero for

every point in its domain and denoted x ≡ 0; an over-dot denotes the the time derivative

of a function, i.e. dx(t)/dt = ẋ(t); the partial of φ with respect to vector x ∈ Rn is denoted

∇xφ and is a column vector; im A is the image of A; int S is the interior or set S; ∂S is

the boundary of set S; the extreme points of a set S are those that cannot be written as

convex combinations of other points in S and denoted ex(S).

6.3 Problem Description

In this section, we introduce the primary problem of interest, which is an optimal con-

trol problem defined on a smooth manifold X subject to a mixed constraint and additional
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control constraints. It is labeled as P0.

min J = φ(tf , xf ) +

∫ tf

t0

`(w(t)) dt (P0)

subj. to ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

u(t) ∈ U(w(t))

w(t) ∈W

x(t0) = x0 ∈ X, x(tf ) ∈ Xf .

The initial time is t0. The final time is tf . They form a non-degenerate interval I =

[t0, tf ] ⊂ R+. The system state is an absolutely continuous function x : I → Rn that

evolves on a smooth manifold X with dynamics f(t, x(t), u(t)) = A(t)x(t) +B(t)u(t). The

system matrices are A,B ∈ C2n−3(I). The initial state is the point x0 ∈ X and the final

state is the point x(tf ) ∈ Xf , which is a submanifold of X. The terminal constraint can

also be written in the functional form ψ(tf , x(tf )) = 0.

The control input u : I → Rm belongs to the set of bounded measurable functions.

It is pointwise constrained to the set U(w(t)) = {u ∈ Rm : g(u,w(t)) ≤ 0}. The set is

parameterized by a second control w : I → R where w(t) ∈ W = {w ∈ R : s(w) ≤ 0}. The

reason for having the second control will become evident in Section 6.7 where the results of

this chapter are connected with results from chapter 4. The function y : I → Rr is given.

The mixed constraint is given by h(t) = C(t)x(t) + D(t)u(t) − y(t) = 0. The matrices

C,D ∈ C2n−2(I). The smooth terminal cost function is φ : R+ ×X → R and the smooth

integral cost function is ` : R → R. The objective is to minimize the sum of the terminal

and the integral costs. The final time can be free or fixed.

A special case of this problem has a minimum time objective, dynamics in Rn, no mixed

constraint, and a bounded control of the form ||u|| ≤ ρ. This special case has been studied

extensively, and it is well known that a sufficient condition for the control to (almost) always

be on the boundary of the control set is controllability [88]. It is also well documented that a
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sufficient condition for the control to (almost) always be at an extreme point of the control

set is normality [21, 87]. The primary purpose of this paper is to develop a generalized

sufficient condition that applies to P0. The challenge in doing so is described below, and

it is also seen why generalizing the normality condition cannot be done without additional

strong assumptions.

For visual purposes, consider the case with a two-dimensional control (m = 2) and

one-dimensional mixed constraint (r = 1). Suppose U is the polyhedral set shown in Fig.

6.1. At a given instant of time, the mixed constraint D(t)u(t) = y(t) − C(t)x(t) appears

as a line cutting through U . The line can translate and/or rotate with time. As such, the

admissible control set at this time instant is the line segment ab.

u2

u1

D(t)u(t) = y(t)− C(t)x(t)

a

b

U

Fig. 6.1: The admissible set of controls is the line segment ab. The dashed lines indicate
lines of constant cost for the pointwise objective λT (t)B(t)u(t).

For a control u to be optimal, it must minimize the Hamiltonian pointwise in time, i.e.,

u(t) ∈ arg min λT (t)B(t)u(t)

subj. to D(t)u(t) = y(t)− C(t)x(t), u(t) ∈ U.
(6.1)

In Fig. 6.1, the dashed lines represent the contours of constant cost for the pointwise objec-

tive λTBu. The optimal point will be at a or b provided those contours are not parallel to
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ab. If the contours are parallel to ab, the optimal point is anywhere along ab and hence in

the interior of U . Because the contours of constant cost depend on λ and because the mixed

constraint depends on x, neither of which are known a priori, proving that the contours

are never parallel to the mixed constraint seems unlikely. However, a sufficient condition

is given in Theorem 6.2 requiring strong observability of the adjoint system and indicating

that singular solutions correspond to system zeros. Relevant background from linear system

theory is provided in Section 3.

To show that the control is always at an extreme point, the line segment ab must always

pass through an extreme point of U . For polyhedral U , this means that the line segment

cannot translate, i.e., y(t)−C(t)x(t) must remain constant over the whole trajectory. This

assumption is too strong for the applications in mind. Alternatively, if ex U = ∂U then

being at the extreme points is the same as being on the boundary, and the aforementioned

theorem applies.

6.4 Linear Systems Theory

Important concepts from linear systems theory include system zeros, strong observabil-

ity, and various tests for strong observability of LTI and LTV systems. In this section, the

linear system of interest Σ = (A,B,C,D) is defined on R+ and is given by:

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0

y(t) = C(t)x(t) +D(t)u(t)

(6.2)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp.

Definition 6.1. A point x0 is called weakly unobservable if there exists an input func-

tion u such that the corresponding output function satisfies y ≡ 0. The set of all weakly

unobservable points at t0 is denoted V(Σ, t0).

Definition 6.2. A system Σ is called strongly observable if for every input function u the

output y ≡ 0 implies x ≡ 0, i.e., V(Σ, ·) ≡ 0.
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The point x0 is also called a zero state direction and the associated input u is a zero

control direction. The zeros and zero directions are related to the observability properties

of the system. For LTV systems, we give precise definitions of zeros and zero directions and

a tool to determine them using the W-transform as reported by O’Brien [91].

Definition 6.3. A function q is a transmission zero for Σ if there exist an initial state x0

and an input direction r ∈ CL>∞ such that the output of Σ is zero for all t ≥ 0 when the

input is r(t)φq(t, 0), where φq is the scalar transition function for q(t).

Definition 6.4. A function q is an ordinary zero for Σ if there exist an initial state x0 and

a constant input direction r such that the output of Σ is zero for all t ≥ 0 when the input is

rφq(t, 0), where φq is the scalar transition function for q(t).

Definition 6.5. Suppose that Σ has an impulse response function g. The directional W-

transform of Σ with respect to a function q in the direction r is defined as

Σ̂(q(.), r(.), t) =

∫ t

−∞
g(t, τ)r(τ)φq(τ, t)dτ (6.3)

whenever the integral converges.

Using the W–transform, the transmission zeros and ordinary zeros of a time–varying

system can be determined. The result is taken from Corollary 23 of the paper by O’Brien [91].

Lemma 6.1. Suppose that

x̄0 =

∫ 0

−∞
ΦA−qI(0, σ)B(σ)r(σ)dσ (6.4)

is well defined for a given q and a direction r ∈ CL>∞. Then, q is a transmission zero for

Σ with a direction r and an initial state x0 if and only if

Σ̂(q(.), r(.), t) = C(t)ΦAU−qI(t, 0)x̃0 (6.5)

where x̃0 = x̄0 − x0.
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While the above lemma provides a test for zeros and zero directions, it is challenging

to use as a synthesis tool. Proving the non-existence of zeros can be done with a rank test

provided D(t) is a constant rank matrix. For constant rank matrices, we have the following

decomposition.

Lemma 6.2. Let G : R+ → Rn×n such that G ∈ C`(R+) and rank G(t) ≡ g. Then there

exist matrix-valued maps L,R ∈ C`(R+) that are non-singular for all t such that

L(t)G(t)R(t) =

Ig 0

0 0

 (6.6)

where Ig is the g-dimensional identity matrix [92].

Suppose that p = m such thatD(t) is square with constant rank d. (This dimensionality

can always be achieved by adding rows of zeros in the output equation or adding columns

of zeros to the B(t) and D(t) matrices.) From the above lemma, there exist non-singular

L(t) and R(t) matrices associated with D(t). Define

B̂(t) = B(t)R(t) = [B̂1(t) B̂2(t)] (6.7)

where B̂1(t) ∈ Rn×d and B̂2(t) ∈ Rn×(p−d). Define

Ĉ(t) = L(t)C(t) =

[
ĈT1 (t) ĈT2 (t)

]T
(6.8)

where Ĉ1(t) ∈ Rd×n and Ĉ2(t) ∈ R(p−d)×n. Lastly, define

Â(t) = A(t)− B̂1(t)Ĉ1(t). (6.9)

Lemma 6.3. Suppose that D(t) is a constant rank matrix. The system Σ = (A,B,C,D)

is strongly observable if and only if Σ̂ = (Â, B̂2, Ĉ2) is strongly observable [89].
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A simple rank test now applies to Σ̂ involving the observability and invertibility ma-

trices, Q(t) and W (t), respectively. The observability matrix is characterized by

Q(t) = [CT1 (t), . . . , CTn (t)]T (6.10)

where

C1(t) = Ĉ2(t)

Cµ+1(t) = Ċµ(t) + Cµ(t)Â(t) for µ = 1, . . . , n− 1.

(6.11)

The invertibility matrix is characterized by

W (t) =



0 0 · · · 0

B10(t) 0 · · · 0

B20(t) B21(t) · · · 0

...
...

. . .
...

Bn−1,0(t) Bn−1,1(t) · · · Bn−1,n−2(t)


(6.12)

where

Bµ+1,µ(t) = Ĉ2(t)B̂2(t) for 0 ≤ µ ≤ n− 1 (6.13)

Bµ+1,0(t) = Cµ+1(t)B̂2(t) + Ḃµ0(t) for 1 ≤ µ ≤ n− 1

Bµ+1,ν(t) = Bµ,ν−1(t) + Ḃµν(t) for 1 ≤ ν < µ ≤ n− 1

Lemma 6.4. The system Σ̂ = (Â, B̂2, Ĉ2) is strongly observable if and only if

rank[Q(t) W (t)] = rank

 In 0

Q(t) W (t)

 (6.14)

for all t ∈ R+ except a nowhere dense subset and where In is the n-dimensional identity

matrix [93].
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The synthesis of zeros, zero directions, and strong observability is much simpler for

time-invariant systems. For LTI systems, the system matrix is given by

PΣ(λ) =

λIn −A −B

C D

 (6.15)

where λ ∈ C.

Definition 6.6. A time-invariant system Σ has a transmission zero λ ∈ C if there exist

u0 6= 0 ∈ Rm and x0 ∈ Rn such that

PΣ(λ)

x0

u0

 = 0 (6.16)

The zero λ defines an input u0e
λt and an initial state x0 such that the corresponding output

of Σ will be zero for all t [47].

Analogous to time-varying systems, the point x0 is a zero state direction and u0 is a

zero control direction. They are now easy to find when they exist since one must simply

check the null space of PΣ(λ).

The non-existence of zeros and zero directions is equivalent to strong observability.

There are numerous equivalent tests for LTI systems [47].

Lemma 6.5. The following statements are equivalent to strong observability of time-invariant

Σ:

(i) V(Σ) = 0.

(ii) (C +DF, A+BF ) is observable for all F .

(iii) rank PΣ(λ) = n+ rank [BT DT ]T for all λ ∈ C.

(iv) the Smith form of PΣ is equal to the constant matrix

Q =

I 0

0 0

 . (6.17)
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(v) the rank test in Lemma 6.4 holds.

Given the simplicity of these tests and the characterization of zeros for LTI systems,

we provide a new result in Theorem 6.1 stating when LTV systems are “effectively” time-

invariant.

Theorem 6.1. Suppose there exists a linear time-varying system system

Σ1 = (A(t), B(t), C(t), D(t)) and a linear time-invariant system Σ2 = (A,B,C,D). If Σ2

is strongly observable and there exists a F (t) such that the following relations hold

B(t) = B

D(t) = D

A(t) = A+BF (t)

C(t) = C +DF (t)

(6.18)

then Σ1 is strongly observable.

Proof. Suppose Σ2 is strongly observable and Σ1 = (A + BF (t), B, C + DF (t), D) is not

strongly observable. Let (x, u) be zero directions for Σ1 with x 6≡ 0. This implies

ẋ(t) = (A+BF (t))x(t) +Bu(t)

0 = (C +DF (t))x(t) +Du(t)

(6.19)

Introducing v(t) = u(t) + F (t)x(t), Equation (6.19) becomes

ẋ(t) = Ax(t) +Bv(t)

0 = Cx(t) +Dv(t)

(6.20)

Equation (6.20) defines Σ2. Hence, x ≡ 0, which is a contradiction.
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Example: Consider the time-varying system with

A =


02×2

1 0

0 2

−1 0

0 −2
02×2


, B = 04×1,

C(t) =

 02×2

1 + t sin t

2t 1 + 2 sin t

 , D =

1

2

 .
According to Theorem 6.1, the above system is strongly observable if there exists a strongly

observable time-invariant system (A,B,C,D) and a F (t) such that Eq. (6.18) is satisfied.

Let A,B, and D equal those above with

C =

[
02×2 I2×2

]
and F (t) =

[
0 0 t sin t

]
.

It is easily verified that (A,B,C,D) is strongly observable and that the two systems are

equal using F (t). This implies the time-varying system is strongly observable, which can

be confirmed using the rank test described in Lemma 6.4.

We conclude this section with a modified definition of strong observability for systems

in a subspace S ⊂ Rn.

Definition 6.7. A system is strongly observable on subspace S(t) ⊂ Rn if the intersection

of the weakly unobservable subspace with S is zero, i.e.

V(Σ, t) ∩ S(t) ≡ 0. (6.21)

6.5 Mathematical Results

In this section, we analyze Problem P0 in an effort to understand when the optimal

controls are on the boundary of the control set. In some contexts, controls belonging

to the interior of the control set are called singular, and so the conditions obtained here
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are sufficient conditions for non-singularity of optimal control problems on manifolds with

mixed constraints. They are generalizations of well-known results involving observability for

problems without mixed constraints. In the absence of the mixed constraints, they reduce

to the well known results [21,87,88,94].

Two cases of P0 are analyzed here. First, we consider the case where the system intrin-

sically evolves on a smooth manifold, and secondly, when the system does not intrinsically

evolve on a manifold but is subjected to an explicit linear state constraint. In both cases,

we provide results for time-invariant and time-varying systems. We define the system in P0

as Σ = (A,B,C,D).

Definition 6.8. The problem is said to be time-invariant if Σ, y, and ψ do not depend on

time. Otherwise, the problem is time-varying.

The Hamiltonian, Lagrangian, and endpoint functions are defined for P0 as given below.

H = p0`(w) + pT (Ax+Bu) (6.22)

L = H+νT (Cx+Du− y) + µT g(u,w) + ηT s(w) (6.23)

G = p0φ+ ξTψ. (6.24)

The sufficient conditions for the optimal control to be on the boundary of its control

set are now stated.

Assumption 6.1. The dual linear system Σ> = (−AT ,−CT , BT , DT ) is strongly observable

on the cotangent space T ∗x(t)X for all t ∈ [t0, tf ].

Assumption 6.2. At least one of the following holds:

a) the problem is time-invariant and

`(w(t)) +∇tfφ(tf , xf ) 6= 0 for all t ∈ [t0, tf ].
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b) the problem is time-varying, C(t) = 0, and the matrix

T =

 −`(w(tf ))−∇tfφ(tf , xf ) −∇tfψ(tf , xf )

∇xfφ(tf , xf ) ∇xfψ(tf , xf )


is full column rank.

Theorem 6.2. If Assumption 6.1 and Assumption 6.2 hold, then there are no non-degenerate

time intervals I = [τ1, τ2] where u(t) ∈ int U ∀t ∈ I.

Proof. Assuming that an extremal solution exists, the relevant necessary conditions (as per

Theorem 3.2) are given by

p0 ∈ {0, 1} (p0, p(t)) 6= 0 ∀t ∈ [t0, tf ] (6.25)

ẋ(t) = Ax(t) +Bu(t) (6.26)

ṗ(t) = −AT p(t)− CT ν(t) (6.27)

0 = BT p(t) +DT ν(t) + µ∇ug (6.28)

a) Suppose the system Σ> is strongly observable on T ∗x(t)X for all t and the problem is

time-invariant with `(w(t)) + ∇tfφ 6= 0. Suppose there exists a non-degenerate interval

I = [τ1, τ2] ∈ [t0, tf ] where u(t) ∈ int U ∀t ∈ I. Then, on this interval µ = 0 because of

complementary slackness. This results in the linear system

ṗ(t) = −AT p(t)− CT ν(t), p(t) ∈ T ∗x(t)X

0 = BT p(t) +DT ν(t).

(6.29)

Since p(t) ∈ T ∗x(t)X, strong observability on T ∗x(t)X implies p(τ1) = 0. Also, because the

problem is time-invariant, the Hamiltonian is a constant ∀t ∈ [t0, tf ] and ∇tfψ(tf , xf ) = 0.

Therefore, the constant value of the Hamiltonian is

H(τ1) = −p0∇tfφ(tf , xf ) (6.30)
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This implies that

− p0∇tfφ(tf , xf ) = p0`(w(τ1)) + pT (τ1)(Ax(τ1) +Bu(τ1)) (6.31)

This means p0 must be zero since `(w(τ1)) + ∇tfφ(tf , xf ) 6= 0. This contradicts the non-

triviality condition. Hence, there are no non-degenerate time intervals I ⊂ [t0, tf ] where

the optimal control u(t) ∈ int U ∀t ∈ I.

b) Suppose the system Σ> is strongly observable on T ∗x(t)X, the problem is time-varying,

C(t) = 0, and the matrix T is full rank. Suppose there exists a non-degenerate interval

I = [τ1, τ2] ∈ [t0, tf ] where u(t) ∈ int U ∀t ∈ I. With C(t) = 0, Eq. (6.27) becomes

ṗ(t) = −AT p(t), p(t) ∈ T ∗x(t)X

0 = BT p(t) +DT ν(t)

(6.32)

Again, strong observability on T ∗x∗(t)X implies p(τ1) = 0. Since p(·) is the solution of

a homogeneous system, p(t) = 0 ∀t ∈ [t0, tf ]. Hence p(tf ) = 0. As a result, we have

H = p0`(w(t)) ∀t ∈ [t0, tf ]. Now the transversality conditions result in the following system

of equations

− p0`(w(tf ))− p0∇tfφ(tf , xf ) = ξT∇tfψ(tf , xf ) (6.33)

p0∇xfφ(tf , xf ) + ξT∇xfψ(tf , xf ) = 0 (6.34)

Since the matrix T is full rank, p0 = 0, which contradicts the non-triviality condition.

Therefore, there are no non-degenerate time intervals I ⊂ [t0, tf ] where the optimal control

u(t) ∈ int U ∀t ∈ I.

Remark 6.1. The theorem states that there are no intervals with the control in the interior

rather than the stronger statement that the control is almost always on the boundary. This

is because the definition of strong observability requires zero output everywhere. Further-

more, in Lemma 6.4, it is possible to construct infinitely differentiable systems for which
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the exceptional set has positive measure.

6.5.1 Problem with Explicit Linear State Constraint

It is not uncommon in engineering problems for the system to evolve in Rn and be

constrained to a manifold X. Such a problem is considered in this section. The system

dynamics are given by f : R×Rn×Rm → Rn, where f(t, x(t), u(t)) = A(t)x(t)+B(t)u(t) and

the state is restricted to evolve on a linear manifold, i.e., x(t) ∈ X = {γ : Eγ = z}, where

E is a constant matrix and z is a constant – both given. The problem is mathematically

described below and is labeled as P1.

min J = φ(tf , xf ) +

∫ tf

t0

`(w(t)) dt (P1)

subj. to ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

z = Ex(t)

g(u(t), w(t)) ≤ 0

s(w(t)) ≤ 0

x(t0) = x0, ψ(tf , xf ) = 0.

The strategy in this section is to transform P1 back to P0 so that there is no explicit

manifold constraint and the system intrinsically evolves on one. To do so, differentiate the

state constraint z = Ex(t) w.r.t. time.

Eẋ(t) = 0 (6.35)

The parallel projection of ẋ is given by

ẋ||(t) = ET (EET )−1Eẋ(t) (6.36)



109

such that the orthogonal projection is

ẋ⊥(t) = A(t)x⊥(t) +B(t)u(t)− ET (EET )−1E
(
A(t)x⊥(t) +B(t)u(t)

)
(6.37)

Defining the following quantities

F = I − ET (EET )−1E

Ā(t) = FA(t)

B̄(t) = FB(t)

(6.38)

allows the above differential equation to be rewritten as

ẋ⊥(t) = Āx⊥(t) + B̄u(t) (6.39)

for which x⊥(t) evolves on the manifold. Secondly, we use Eq. (6.35) to rewrite the state

constraint as a mixed constraint

0 = EA(t)x⊥(t) + EB(t)u(t) (6.40)

When this mixed constraint holds, the (A,B) and (Ā, B̄) systems are the same. Thus, the

original mixed constraint is augmented as

ȳ(t) = C̄(t)x⊥(t) + D̄(t)u(t) (6.41)

where

ȳ(t) =

y(t)

0

 , C̄(t) =

 C(t)

EA(t)

 , D̄(t) =

 D(t)

EB(t)

 (6.42)
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Problem P1 can now be written in the form P2.

min J = φ(tf , xf ) +

∫ tf

t0

`(w(t)) dt (P2)

subj. to ẋ(t) = Ā(t)x(t) + B̄(t)u(t)

ȳ(t) = C̄(t)x(t) + D̄(t)u(t)

g(u(t), w(t)) ≤ 0

s(w(t)) ≤ 0

x(t0) = x0, ψ(tf , xf ) = 0.

Problem P2 now has the form of Problem P0. Assumptions 6.1 and 6.2 and Theorem 6.2

now apply to the barred linear system. If those assumptions are satisfied, then there are no

non-degenerate intervals for which the optimal control in P1 is in the interior of its set.

Remark 6.2. Checking that the system is strongly observable on the cotangent space at

each time can be difficult, in general, since doing so requires one to know the optimal state

trajectory. However, when the manifold is linear, the cotangent space is constant and the

check is straightforward.

Testing for strong observability can be done using Lemma 6.1, Lemma 6.3, Lemma

6.4, Lemma 6.5, or Theorem 6.1. Furthermore, if the dual system is not strong observable,

singular solutions are characterized as zeros of the system. The zeros and zero directions

can be found through Lemma 6.1 or Definition 6.6. Lastly, strong observability and strong

controllability are dual concepts. Hence, the requirement that the dual system be strongly

observable is equivalent to one requiring the primal system be strongly controllable.

6.6 Application to Time Optimal Control

This section emphasizes the importance of the above results to time optimal control

problems. It is straightforward to see that Problem P0 can be cast as a time optimal

problem by setting φ(tf , xf ) = tf and setting the integral cost to zero. As such, the

problem becomes a fairly general time optimal control problem evolving on a manifold with
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additional mixed and control constraints. The same applies to problem P1 for which the

dynamics are restricted to evolve on a linear manifold. Theorem 6.2 states that for time-

invariant systems, the system ΣT being strongly observable is sufficient for the optimal

control to be on the boundary of the control set. This generalizes the classical results

for problems in Rn without mixed constraints since our condition reduces to (A,B) being

controllable in this setting.

Example: Consider the following minimum time problem with double integrator dynamics.

min J = tf

subj. to ẋ(t) = Ax(t) +Bu(t)

0 = Cx(t) +Du(t)

||u(t)|| ≤ 5

x(t0) = x0, x(tf ) = 0.

The system matrices are

A = [0 I; 0 0], B = [0 I]T , C = [1 2 1 1], and D = [1 1].

The initial state is x0 = [1 1 1 1]T . The dual system Σ> is strongly observable. One should

expect an optimal control whose magnitude is always five (max thrust in nature). The

problem was numerically solved using SDPT3 [7]. The control magnitude is shown in Fig.

6.2. The small blips away from five are a result of discretization as described in Appendix

C.



112

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

Time (s)

||u
(t

)||

Fig. 6.2: Magnitude of a time optimal controller with a mixed constraint.

6.7 Application to Fuel Optimal Control and Connection to Prior Results

In this section, the minimum fuel planetary descent problem is solved. Chemical

thrusters do not have deep throttle or reliable restart capabilities such that a non-convex,

annular control constraint must be included. It is demonstrated that the results herein

encompass previous “lossless convexifications” for problems with mixed constraints [16].

In the final powered decent phase of a Mars landing, the spacecraft is close enough to the

surface of Mars so that (1) the gravity is assumed constant and (2) the aerodynamic forces

are considered negligible compared to the thrust forces. The dynamics of the spacecraft are

given by

ẍ(t) = −g + u(t). (6.43)

The state vector is given by x. The range, altitude, and cross range are denoted by the

components x1, x2, and x3, respectively. Their corresponding rates are given by x4, x5, and

x6, respectively. The gravity vector is assumed constant with g = [0 3.71 0]T m/s2 and u

is the control thrust acceleration. The problem is to minimize the fuel required to transfer

the spacecraft from an initial state to the landing site (origin) with zero final velocity.
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The spacecraft is required to approach the landing site on a 45 degree glide slope angle

in the altitude/range plane.

x1(t)− x2(t) = 0. (6.44)

The control magnitude is constrained with an upper-bound and a non–zero lowerbound.

The lower bound exists since the thrusters fail to operate reliably below this bound.

6 ≤ ||u(t)|| ≤ 10 m/s2. (6.45)

The annular control constraint in Eq. (6.45) makes the feasible control set non-convex. A

convex relaxation proposed in [16] requires introducing a second control w and lifting the

dimension of the control set to a higher dimension thereby making the set convex. The

optimal solution to the relaxed problem is then optimal to the original problem provided

u(t) is on the boundary of U(w(t)).

The resulting optimal control problem is mathematically described below:

min J =

∫ tf

0
w(t) dt

subj. to ẍ(t) = −g + u(t)

0 = x1(t)− x2(t)

||u(t)|| ≤ w(t)

6 ≤ w(t) ≤ 10

x(t0) = x0, x(tf ) = 0.

The above problem fits the definition of Problem P1 with C = 0, D = 0, and E = [1 −

1 0 0 0 0]. To solve this problem, we construct F , Ā, B̄, C̄, and D̄ as in Eqs. (6.38)

and (6.42). If the adjoint system Σ̄> = (−ĀT ,−C̄T , B̄T , D̄T ) is strongly observable on

the cotangent space T ∗xX, then there are no intervals where ||u(t)|| < w(t). Hence, the

relaxation is exact and termed a lossless convexification. To verify the conditions, the

weakly unobservable subspace for the adjoint system and a basis for the cotangent space
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T ∗xX in matrix form are calculated.

V(Σ̄>) =



−1

1

0

0

0

0


T ∗xX =



√
2 0 0 0 0
√

2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2


Hence, the requirement, V(Σ̄) ∩ T ∗xX = 0, is satisfied and the system is strongly observable

on the cotangent space. The problem is numerically solved using the Gurobi [73] solver with

a MATLAB [74] interface. Fig. 6.3 shows the state trajectory. The trajectory begins at the

top right, ends at the origin in the bottom left, and evolves on the 45 degree plane. The

evolution on the 45 degree plane is shown in Fig. 6.4. The control magnitude is shown in

Fig. 6.5. The discretization is described in Appendix C.
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Fig. 6.3: State trajectory.
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6.8 Time Transformation Example

In this section, a minimum time problem with coupled harmonic oscillator dynamics

and time-varying control influence matrix is considered.

min J = tf

subj. to ẋ(t) = Ax(t) +Bu(t)

0 = Cx(t) +Du(t)

||u(t)|| ≤ 5

x(t0) = x0, x(tf ) = 0.

where,

A =


02×2

1 0

0 2

−1 0

0 −2
02×2


, B(t) =



0 0

0 0

1 + t sin t

2t 1 + 2 sin t


,

C = 01×4, D = [1 2], and x0 = [10 10 1 1]T .

Note that the dual system is strongly observable as shown in the example of Theorem 6.1 in

Section 6.4. As such, the optimal control will be bang-bang as shown in Fig. 6.6. Again, the

blips away from five are caused by the particular discretization as described in Appendix

C.



117

0 0.5 1 1.5 2 2.5 3 3.5 4
2

2.5

3

3.5

4

4.5

5

Time (s)

||u
(t

)||

Fig. 6.6: Control magnitude

6.9 Characterizing Singular Solutions as System Zeros

According to Theorem 6.2, there are no degenerate intervals with the control in the

interior for strongly controllable time-invariant systems. In other words, strongly observable

adjoint systems do not permit singular solutions. In this section, we attempt to characterize

the singular solutions as zeros of the system. This is done with the help of two examples.

Example 1. Consider an invertible double integrator system with

A =

0 1

0 0

 , B =

0

1

 , C =

[
1 2

]
, D =

[
1

]
.

The adjoint system Σ> that satisifies Eq. (6.29) is then given by

−AT =

 0 0

−1 0

 , −CT =

−1

−2

 , BT =

[
0 1

]
, DT =

[
1

]
.
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The adjoint system matrix can be computed as

PΣ>(λ) =

λI +AT CT

BT DT

 =


λ 0 1

1 λ 2

0 1 1

 .

Since the characteristic polynomial of this system is λ2− 2λ+ 1, we know the system has a

double root at λ = 1. The zero direction is then [−1 −1 1]T . Thus, for any p(t0) = [−α −α]T

and any ν(t) = αe(t−t0), where α ∈ R, the output must be zero. This can be easily verified

as follows.

Using the equation for ṗ(t) in Eq. (6.29), we find

p(t) = e−A
T (t−t0)p(t0)−

∫ t

t0

e−A
T (t−τ)CT ν(τ)dτ

=

 1 0

t0 − t 1


−α
−α

− ∫ t

t0

 1 0

τ − t 1


1

2

αeτdτ
= et−t0

−α
−α


Then, the output is given by

BT p(t) +DT ν(t) = −αet−t0 + αet−t0 = 0. (6.46)

Since the system is invertible with D = [1], the state equations (Eq. (??)) can be

rewritten as

u(t) = y − Cx(t)

ẋ(t) = (A−BC)x(t) +Byu(t) = Aix(t) +Byu(t)

(6.47)
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The solution to this system is

x(t) = eAi(t−t0)x0 +

∫ t

t0

eAi(t−τ)Bydτ

= et−t0

 (t− t0 + 1) (t− t0)

(t0 − t) (t0 − t+ 1)

x0 +

−tet0−t + (t0 − 1)et0−t + 1

(t− t0)et0−t

 y
For simplicity, we assume y = 0. Also, we assume that there exists a final time tf such

that the above equation holds, and a control set such that the resulting control is feasible.

Now, since the system is time-invariant, the Hamiltonian is a constant. It then follows that

pT (t)ẋ(t) is a constant, i.e.,

ẋ(t) = −et−t0

 (t− t0 + 1) (t− t0)

(t0 − t) (t0 − t+ 1)

x0 + et−t0

 1 1

−1 −1

x0

and by letting x0 = [a b]T , we have

pT (t)ẋ(t) = α(a+ b) = const. (6.48)

It can also be inferred from Eq. (6.48) that abnormal solutions occur when a+ b = 0. The

above example shows how singular costate trajectories can be computed as adjoint system

zeros for both normal and abnormal solutions.

Example 2. Now, we consider the case of a non-invertible system – two integrators linked

through a mixed constraint.

A =

0 1

0 1

 , B =

1 0

0 1

 , C =

[
1 1

]
, D =

[
1 1

]
.
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The adjoint system Σ> that satisifies Eq. (6.29) is then given by

−AT =

−1 0

0 −1

 , −CT =

−1

−1

 , BT =

1 0

0 1

 , DT =

1

1

 .
The adjoint system matrix can be computed as

PΣ>(λ) =

λI +AT CT

BT DT

 =



λ+ 1 0 1

0 λ+ 1 1

1 0 1

0 1 1


.

It can be found that the system has a zero at λ = 0 with corresponding zero directions of

[−1 − 1 1]T . Thus, for any p(t0) = [−α − α]T and any ν(t) = αe(t−t0), where α ∈ R, the

output must be zero. Following a similar analysis as in the above example,

p(t) = e−A
T (t−t0)p(t0)−

∫ t

t0

e−A
T (t−τ)CT ν(τ)dτ

=

et0−t 0

0 et0−t


−α
−α

+ α(et0−t − 1)

1

1


=

−α
−α


Then, the output is given by

BT p(t) +DT ν(t) =

1 0

0 1


−α
−α

+

1

1

α = 0. (6.49)

Now, since the Hamiltonian is a constant, pT (t)ẋ(t) is a constant, i.e.,

pT (t)ẋ(t) = −
[
α α

]x1 + u1

x2 + u2

 = x1 + u1 + x2 + u2 = const. (6.50)
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However, this appears to be an infinite-order singular problem for which we have do not

have enough information to synthesize a solution.

In the event that the system Σ> is not strongly observable, it may be possible to intro-

duce system dynamic perturbations so that the perturbed system Σ>ε = (−ATε ,−CT , BT
ε , D

T )

is strongly observable. This is motivated by the fact that full rank matrices are dense in

the metric space of all matrices with metric ||A1 − A0|| + ||B1 − B0||. Since the solutions

of ordinary differential equations vary continuously with parameters in the problem [95],

the error caused by the perturbation can be made arbitarily small by reducing the size of

the perturbation. This technique was introduced by Harris in [67] for non-normal linear

time-invariant systems and rigorously justified by Lemma 4 in the paper.

Now, consider the following perturbed adjoint system Σ>ε

−ATε =

−1 ε

0 −1

 , −CT =

−1

−1

 , BT
ε =

1 0

0 1

 , DT =

1

1

 .
The adjoint system matrix can be computed as

PΣ>ε
(λ) =

λI +AT CT

BT DT

 =



λ+ 1 ε 1

0 λ+ 1 1

1 0 1

0 1 1


.

The system is now strongly observable, i.e., the zeros have been eliminated. This can be

verified using any of the tests listed in Lemma 6.5. For example, according to test (iii),

rank PΣ>ε
(λ) = 3 = n+ rank [−C D]T = 2 + 1 = 3, for all λ ∈ C.

6.10 Conclusions

Sufficient conditions for non-singular optimal control of systems defined on a smooth

manifold with mixed constraint and additional control constraints has been presented. This

was done in a geometric framework using a minimum principle for problems defined on
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manifolds with mixed constraints. It was found that strong observability of the adjoint

system is one key property that ensures non-singularity, and the new results generalize a

particular lossless convexification result related to annularly constrained systems. It also

generalizes the classic controllability/observability conditions for non-singularity in time-

optimal and fuel-optimal control problems. Consequently, the main theorem applies to a

number of trajectory optimization problems.
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CHAPTER 7

FINAL REMARKS

The dissertation presented new developments in the field of relaxations and its appli-

cations to some of the important practical problems. In chapter 4, a relaxation technique

for solving fixed final time problems between fixed points for annularly constrained systems

was presented. This was done by establishing controllability as a sufficient condition for the

problem to be solvable as a sequence of convex programs. In chapter 5, relaxation techniques

were applied to the Mars ascent problem. This involved transforming the annular thrust

acceleration magnitude constraint and approximating the nonlinear centripetal acceleration

term with a linearly time-varying estimate. Chapter 6 presented sufficient conditions for

non-singular optimal control for problems on a smooth manifold with a mixed constraint

and additional control constraints. Each of the above is a unique contribution to the field of

relaxations. However, as with any research, this work has identified areas of further interest

and potential improvement.

First, the analysis in chapter 5 indicates that the selection of a solid rocket motor,

an ignition trigger, and a relatively short burn time negated much of the anticipated im-

provements from computational guidance. It would be interesting to find how computa-

tional guidance performs for a hybrid/liquid configuration of the vehicle and for longer burn

times. Also, it might be possible that there exists a different ignition trigger that maximizes

SOCP-guidance performance.

Secondly, the results presented in chapter 6 required the dual system to be strongly

observable on the cotangent space. For linear manifolds, performing this check is straight-

forward since the cotangent space is constant and does not evolve with time. However,

for higher dimensional manifolds such as quadratic manifolds, this becomes a difficult task

as the cotangent space evolves with time and this requires one to know the optimal state
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trajectory. Further research is required on how to perform the strong observability check

for systems on quadratic manifolds.

Third, earlier work has proved that the normality property of the system can be estab-

lished as a sufficient condition for non-singular optimal control for problems with discon-

nected sets [67]. It was also proved that non-normal systems can be approximated as normal

systems by introducing system dynamic perturbations [67]. However, earlier work consid-

ered systems with linear dynamics. Proving the same for nonlinear systems still remains an

open challenge.

Finally, the choice to implement an analytical or a computational guidance scheme

depends on the complexity of the vehicle under consideration and the mission objectives.

However, successful demonstrations through the flight tests [69, 70, 82, 96] and the recent

SpaceX landings [58] shows that computational guidance is a powerful tool that should be

further exploited when complex actuator models are involved and when stringent mission

objectives need to be met.
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[4] Açıkmeşe, B. and Blackmore, L., “Lossless convexification for a class of optimal control
problems with nonconvex control constraints,” Automatica, Vol. 47, 2011, pp. 341–347.

[5] Boyd, S. and Vandenberghe, L., Convex Optimization, Cambridge University Press,
2004.

[6] Nesterov, Y. and Nemirovsky, A., Interior-point Polynomial Methods in Convex Pro-
gramming , SIAM, 1994.

[7] Toh, K. C., Todd, M. J., and Tutuncu, R. H., “SPDT3- A matlab software package
for semidefinite programming,” Optimization Methods and Software, Vol. 11, 1999,
pp. 645–681.

[8] Mattingley, J. and Boyd, S., “Cvxgen-A code generator for embedded convex optimiza-
tion,” Optimization and Engineering , Vol. 13, 2012, pp. 1–27.

[9] Chu, E., Parikh, N., Domahidi, A., and Boyd, S., “Code Generation for Embedded
Second-Order Cone Programming,” European Control Conference (Zurich, Switzer-
land), 2013.

[10] Domahidi, A., Chu, E., and Boyd, S., “ECOS: An SOCP Solver for Embedded Sys-
tems,” European Control Conference (Zurich, Switzerland), 2013.

[11] Lu, P., “Introducing computational guidance and control,” Journal of Guidance, Con-
trol, and Dynamics, Vol. 40, 2017.
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[41] Açıkmeşe, B. and Ploen, S. R., “A powered descent guidance algorithm for mars pin-
point landing,” AIAA Guidance, Navigation, and Control Conference (San Francisco,
California), 2005.

[42] Augugliaro, F., Schoellig, A. P., and D’Andrea, R., “Generation of Collision-Free Tra-
jectories for a Quadrocopter Fleet : A Sequential Convex Programming Approach,”
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2012.



128

[43] Mellinger, D., Michael, N., and Kumar, V., “Trajectory Generation and Control for
Precise Aggresive Maneuvers with Quadrotors,” Int. Journal of Robotics Research,
Vol. 5, 2012, pp. 664–674.

[44] Shen, S., Mulgaonkar, Y., Michael, N., and Kumar, V., “Vision–Based State Estima-
tion and Trajectory Control Towards High–Speed Flight with a Quadrotor,” Robotics:
Science and Systems, 2013.

[45] Watterson, M., Liu, S., Sun, K., Smith, T., and Kumar, V., “Trajectory Optimization
on Manifolds with Applications to SO(3) and R3XS2,” Robotics: Science and Systems,
2018.

[46] Misra, G. and Bai, X., “Task–Constrained Trajectory Planning of Free–Floating Space-
Robotic Systems using Convex Optimization,” AIAA Journal of Guidance, Control,
and Dynamcis, Vol. 40, 2017, pp. 2857–2870.

[47] Trentelman, H. L., Stoorvogel, A. A., and Hautus, M., Control Theory for Linear
Systems, Springer, 2001.

[48] Liberzon, D., Calculus of Variations and Optimal Control theory , Princeton University
Press, 2012.

[49] Guillemin, V. and Pollack, A., Differential topology , Prentice Hall, 1974.

[50] Milnor, J. W., Topology from the Differential Viewpoint , University Press of Virginia,
1963.

[51] Carmo, M. P. D., Riemannian Geometry , Birkhauser, 1992.

[52] Boothby, W. M., An Introduction to Differentiable Manifolds and Riemannian Geom-
etry , Academic Press, 1986.

[53] Bonalli, R., Optimal Control of Aerospace Systems with Control-State Constraints and
Delays, Ph.D. thesis, Sorbonne Université, UPMC University of Paris 6, ONERA –The
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APPENDIX A

Thrust Integrals

The standard thrust integrals L, S, J , and Q are first and second integrals of the thrust

to mass ratio τ , that is,

L =
∫ tf

0 τ dt = −Ve ln(1− tf/α))

S =
∫ tf

0

∫ t
0 τ dt dt = (−α+ tf )L+ Vetf

J =
∫ tf

0 τt dt = −S + tfL

Q =
∫ tf

0

∫ t
0 τt dt dt = −Vet2f/2 + αS.

(A.1)

The thrust integrals are functions of tf .

The modified thrust integrals (denoted by primes) are analogous to the ordinary thrust

integrals and are defined as

L′ =
∫ tf

0 τ/λ̄4 dt, S′ =
∫ tf

0

∫ t
0 τ/λ̄4 dt dt

J ′ =
∫ tf

0 τt/λ̄4 dt, Q′ =
∫ tf

0

∫ t
0 τt/λ̄4 dt dt.

(A.2)

The modified thrust integrals are functions of tf , λ̄2, C̄2. These integrals cannot be evalu-

ated analytically because of the division by λ̄4 in the integrand. They must be evaluated

numerically.

The single integrals can be evaluated using any standard quadrature technique such

as the trapezoidal rule or Simpson’s rule. Fortunately, double integrals can be rewritten as

single integrals by applying integration by parts as

∫ tf

0

∫ t

0
f(t) dt dt = tf

∫ tf

0
f(t) dt−

∫ tf

0
tf(t) dt. (A.3)

With the following definition:

H ′ =

∫ tf

0
τt2/λ̄4 dt, (A.4)
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the two double integrals can then be evaluated using three quadratures, that is,

S′ = tfL
′ − J ′, Q′ = tfJ

′ −H ′. (A.5)
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APPENDIX B

Integrals of Centrifugal Acceleration

The centrifugal acceleration integrals F and G are the first and second integrals of the

function

f(t) = [u0 − Ve ln(1− tf/α)]2/rm. (B.1)

The integrals are given by

F =
∫ tf

0 f dt = (u2
0tf − 2u0VeI1 + V 2

e I2)/rm

G =
∫ tf

0

∫ t
0 f dt dt = (u2

0t
2
f/2− 2u0VeI3 + V 2

e I4)/rm

(B.2)

and are functions of tf , since the integrals I1 through I4 are the following functions of tf :

I1 = −α[(1− tf/α) ln(1− tf/α)− (1− tf/α) + 1]

I2 = −α[(1− tf/α) ln2(1− tf/α)− 2(1− tf/α) ln(1− tf/α)

+2(1− tf/α)− 2]

I3 = −α[I5 − I6 + tf ]

I4 = −α[I7 − 2I5 + 2I6 − 2tf ]

I5 = −α[2(1− tf/α)2 ln(1− tf/α)− (1− tf/α)2 + 1]/4

I6 = −α[(1− tf/α)2 − 1]/2

I7 = −α[2(1− tf/α)2 ln2(1− tf/α)− 2(1− tf/α)2 ln(1− tf/α)

+(1− tf/α)2 − 1]/4.

(B.3)
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APPENDIX C

Numerical Solution Method

To numerically solve an infinite-dimensional problem, it is converted to a finite-dimensional

parameter optimization problem. This is done by discretizing the problem and enforcing

the constraints at the nodes. Note that the constraints in all of the examples are first or

second-order cone constraints. Therefore, the resulting problems after discretization are

finite-dimensional second-order cone programs that can be solved to global optimality us-

ing the powerful interior-point methods in convex optimization [5, 7]. We use a simple

discretization method which is summarized below.

The time domain [0, tf ] is discretized into N + 1 nodes separated by ∆t.

ti = (i− 1)∆t, i = 1, ..., N + 1

The states at time ti are denoted by x[i] and they exist at all nodes i = 1, ..., N + 1.

The controls at time ti are denoted by u[i] and they exist at nodes i = 1, ..., N . The

controls are held constant over every interval. The system dynamics are discretized using

the fundamental matrix resulting in

x[i+ 1] = Adx[i] +Bdu[i], i = 1, ..., N

where Ad and Bd are matrices given by

Ad = eA∆t, Bd =

∫ ∆t

0
eAτBdτ.
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The integral cost can be approximated by using any numerical integration technique, e.g.,

trapezoidal integration:

∫ tf

0
`(w(t)) ≈ ∆t

2

N∑
i=1

(
`(w[i+ 1]) + `(w[i])

)
.

All other constraints are enforced at the nodes. For example, control constraints are written

as

||u[i]|| ≤ w[i], ∀ i = 1, ..., N

ρ1 ≤ w[i] ≤ ρ2, ∀ i = 1, ..., N

The result is a finite-dimensional approximation to the infinite-dimensional optimal control

problem.
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APPENDIX D

Velocity-to-go First Order Partial

The partial of the magnitude of the velocity-to-go vector
∂||vg ||
∂t can be re-written as

∂||vg||
∂t

= ig ·
∂vg
∂t

(D.1)

Noting that

vg = vr − v = ||vr||iz − v, (D.2)

its derivative can be written as

∂vg
∂t

=
∂||vr||
∂t

iz + ||vr||
∂iz
∂t
− ∂v

∂t
. (D.3)

Now, the individual components of Eq. (D.3) are derived.

Assuming a spherical gravity model,

∂v

∂t
= − µ

||r||3
r. (D.4)

Next,

∂||vr||
∂t

=
∂||vr||
∂r

∂r

∂t
=
∂||vr||
∂r

(
ir ·

∂r

∂t

)
=
∂||vr||
∂r

(ir · v). (D.5)

Noting that

||vr|| =

√
µ

(
2

||r||
− 1

ad

)
(D.6)

where ad is the desired semi-major axis,

∂||vr||
∂r

=
1

2||vr||
(
− 2µ

||r||2
)

= − µ

||vr||||r||2
. (D.7)
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Therefore, Eq. (D.3) becomes

∂vg
∂t

= − µ

||vr||||r||2
(ir · v)iz + ||vr||

∂iz
∂t

+
µ

||r||3
r. (D.8)

The last term to be found is ∂iz
∂t . Re-writing iz as

iz =
r × iy
||r × iy||

, (D.9)

and noting the following derivatives,

∂

∂t
(r × iy) = v × iy

∂

∂t
(||r × iy||) =

r × iy
||r × iy||

(v × iy)

an expression for ∂iz
∂t is obtained as follows

∂iz
∂t

=
(v × iy)
||r × iy||

− (r × iy)
||r × iy||2

(
(r × iy)
||r × iy||

(v × iy)

)
(D.10)

Eq. (D.10) is further simplied using vector cross product identities. More details can be

found in [86]. The resulting expression for ∂iz
∂t is given by

∂iz
∂t

= −v · iz
r · ix

ix. (D.11)

Finally, Eq. (D.8) can be written as

∂vg
∂t

= − µ

||vr||||r||2
[ir · v]iz − ||vr||

(v · iz)
(r · ix)

ix +
µ

||r||3
r. (D.12)
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