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ABSTRACT

Control of Series Connected Battery Powered Modules

by

Joshua K. Wooten, Master’s Thesis

Utah State University, 2021

Major Professor: Regan Zane, Ph.D.
Department: Electrical and Computer Engineering

Second life battery implementation is a method to reuse battery cells and help the

environment. Voltage of a single battery cell is much lower than the total output voltage for

high-voltage (HV) and high-powered systems. Due to this, many cells need to be connected

in series to achieve higher voltage. As a result of the unavoidable mismatch in cell charge

in the second life batteries, there is different amounts of degradation that happens within

each cell, causing the entire battery pack to fail once the lowest performing battery cell

fails. For this reason, systems that employ many cells connected in series utilize a battery

management system (BMS). This BMS sends commands and employs the use of a direct

current (DC/DC) converter to achieve the desired output voltage. Designing this system to

be modular allows for the scalability eventually needed in the future with larger systems.

This thesis looks to explain the control strategy for implementing active cell balancing

among multiple cells connected in series. This is done by regulating the output voltage and

utilizing voltage sharing among the multiple modules.

(96 pages)
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PUBLIC ABSTRACT

Control of Series Connected Battery Powered Modules

Joshua K. Wooten

Batteries are a very common type of power source used for all sorts of applications.

However, these batteries do not last forever. The purpose of this thesis is to explain and

implement a strategy which allows batteries to have a second life; to be able to be re-

charged and re-used for another set period of time once they no longer meet a system’s

requirements. The preferable way to do this is to make each cell have the same state of

charge (SOC) which will lead to a longer lasting battery pack. These batteries will be

hooked up to a battery powered module (BPM) for charging, and these BPMs will need

to be controlled by a battery management system (BMS). This BMS, also known as string

controller board, sends commands to the several BPMs connected. This thesis goes over the

strategy implemented to achieve this objective, with the result focusing on the regulation

of output voltage and cell SOC.
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CHAPTER 1

INTRODUCTION

Power systems that have bidirectional power flow require a certain control technique to

achieve direct current (DC) bus voltage regulation and output voltage sharing among the

power converters. The control strategy for this thesis looks to achieve cell balancing and

distribute power equally among each modules’ converter. This will be done according to

each modules’ state of charge (SOC) and state of health (SOH). [1] Balancing lithium-ion

battery cells is a crucial factor in power electronics. It is frequently discussed when multiple

cells are used in a battery pack. Balancing these cells’ SOC allows for a longer lifespan for

the batteries. This increases efficiency and reliability for these batteries. Having many of

these battery cell interfacing modules connected in series presents challenges to control that

will be covered in this thesis.

This thesis aims to create a scalable, robust, and modular system to realize large

lithium-ion battery packs with active cell balancing. More specifically, the project strives

to implement this for second life batteries. This will allow for batteries that wear down and

don’t meet their initial requirements to have a second life. Second life opportunities for

batteries will help the world in many ways. First, it is Eco-friendly due to the fact that not

as many batteries will need to be made each year. Each battery saved and reused is one less

battery that needs to be manufactured. Second, this will increase technology for electric

batteries and incentive these over the more harmful for the environment lithium batteries.

Third, this advancement in balancing second life batteries will also help with taking battery

cells from different companies, manufacturers, and systems and combining them into one

battery pack for another system.

This thesis looks to analyze and develop the most effective way to use a microcontroller

to communicate information back and forth between itself and another microcontroller and

control what happens. This controller (on the BPM) needs to know each cell’s respective
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available power and SOC. [4] This is done by measuring each cell’s current and voltage

then communicating the information through a controller area network (CAN). Another

key objective of the string controller is to control the droop current. This will be directly

dependent on the power and SOC available in each cell.

1.1 Objectives

The main objective of this thesis is to show optimal and functional control of series

connected modules which are also connected to battery cells.

To achieve this major objective, this thesis will prove the completion of the following

three objectives:

• Design, develop, and build a hardware controller that is able to perform the functions

necessary as stated in the beginning of the introduction 1.

• Develop software to realize sensing the bus voltage of the series connected battery

power modules (BPM)s and communicate this, along with other information through

CAN.

• Develop control algorithms to achieve desired SOC and cell balancing among cells, as

well as droop control among the modules.

These objectives are important to accomplish so that the final system has active cell

balancing which will lead to batteries having a second life with better efficiency.

1.2 Overview

The remaining chapters of this paper discusses details pertaining to the project. Chap-

ter 2 reviews the current work and research that has already been explored and published

by credible researchers. It discusses converter topology and control schemes previously

explored by other engineers. Chapter 3 discusses the approaches and techniques used to

achieve this thesis’ objectives. Chapter 4 discusses and shows the results obtained from

the system as well as how the tests are performed It also proves that the objectives were
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met. Chapter 5 summarizes and reiterates the impact and importance of this project on

the world today.
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CHAPTER 2

LIT REVIEW AND BACKGROUND

This chapter talks about the work done by other great students, professors, and spe-

cialists in this particular field. This work helps pave a way for the accomplishment of the

objectives previously stated in Chapter 1. A battery powered module (BPM) is a processing

DC/DC converter that integrates the battery management system (BMS) [2]. The purpose

for using a DC/DC converter and BMS is to achieve cell balancing with battery cells that are

connected to the modules. The idea of using DC/DC converters to perform active battery

cell balancing is discussed thoroughly in [5–9]. While the actual full approach is complex,

the main idea is to charge and discharge each cell at different rates based on the cells’ SOC.

After enough time and cycles, each cell will be at the same SOC which accomplishes the

goal of active cell balancing.

Second life battery applications have been looked into by many great researchers.

Lithium-ion batteries typically preserve 70%-80% of their initial capacity when retired from

their electric vehicle (EV) use [10]. While these batteries are no longer capable for their

initial use, they can still provide energy storage services in less-demanding applications.

Balancing the uniformity of capacity among the battery cells is crucial to the success of sec-

ond life applications. [10] talks in detail about the effects and results of lithium-ion batteries

SOH and ageing history over second life performances.

2.1 Control of DC/DC Converters

A very similar topology has already been looked into thoroughly [1]. The difference

being that the experiments and data collected are only done to a converter with three

primary ports instead of four. The module controller topology is illustrated in Fig. 2.1.

Along with this, the beginning stages of development for this type of topology using multiple

input ports to a DC/DC converter are discussed in [11, 12]. Here the idea of using a two-
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phase interleaved operation using pulse width modulation (PWM) is discussed. In these

papers, the idea of using differential dual-active bridge converter is discussed as well. More

topology options are introduced in [13, 14]. These papers focus on improvements that can

be made to achieve active cell balancing cheaper, more efficient, and with less components.

Fig. 2.1: Module Controller Topology [1]

Even though the converter topology is not the same, most of the same data and findings

can be applied to the work of this thesis. One main finding that this paper discusses is the

idea of switching from multiple secondary ports (one for each primary port) to just one

secondary port. While the first technique does technically work, it leads to a much larger

power loss. This is because each secondary winding would need to make connections between

adjacent terminals, causing the winding length and overall resistance for the transformer to

increase.

A complete derivation for this topology seen in Fig. 2.1 can be found in [1]. This thesis

focuses on the concepts discovered and main control methods that will be useful for this

thesis. The end equations are referenced below:
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Vp,k = 4/π ∗ sin(αk/2) (2.1)

Where Vpk is the amplitude of the fundamental phasor for that specific primary input

port. k is referenced as the specific port number.

vp,k = Vp,k (cosφk + jsinφk) (2.2)

Ig,k = 1/2Xs ∗ [Vssin(φk)+Vp1sin(φ1−φk)+Vp2sin(φ2−φk)+ ...+Vpmsin(φm−φk] (2.3)

Where Xs is the impedance of the resonant tank and is given by the equation 2.4

Xs = wsL− 1/w − nC (2.4)

Pout = Vout/2Xs ∗ [Vp1sinφ1 + Vp2sinφ2 + ...+ Vpmsinφm] (2.5)

Iout = 1/2Xs ∗ [Vp1sinφ1 + Vp2sinφ2 + ...+ Vpmsinφm] (2.6)

For equations 2.3, 2.5, and 2.6 m is represented as the total number of input ports.

The primary port has two control parameters, which are the duty cycle and the phase-

shift. The power delivered to the secondary depends on both values. [1]. The secondary port

is kept constant and not used as a control parameter. Since each primary port has a different

duty cycle, but all share a rising edge, all the primary bridges are zero voltage switched

(ZVS). This means that they are all turned on at the same time. Using this approach

allows for the control of the relative duty cycles, which in turn controls the relative loading

between cells by applying a direct relationship to the current. It is important to know each

port’s duty cycle α to calculate the current Igk.
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This approach is accomplished using a weighted system control loop. A figure of this

can be seen in Fig. 2.2. The first step is to determine which port has the highest duty

cycle. This is given the weight of 1 and given the highest input current that is also used as

the base current ibase. The weight reference is then calculated for each other port based on

their respective duty cycle and used in a control loop to achieve the desired current. This

achieves the goal of cell balancing.

Fig. 2.2: Control approach [1]

2.2 Control of Series DC/DC converters

There are two ways that a higher output voltage for the system can be achieved. The

turns ratio for the converter can be increased on the secondary side, or more converters

can be placed in series. The series connected converters option is chosen because it allows
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for a higher efficiency system. While increasing the turns ratio does technically achieve

the same goal, the efficiency drastically drops for this case. Section 2.1 has discussed the

idea of BPM as a building block for larger battery packs. This section focuses on placing

another BPM in series and the control approach behind this. The first step for control of

series DC/DC converters is to regulate each DC/DC modules’ voltage. This can be done

for each individual module by comparing its output voltage to a desired reference. The

overall output voltage of the system can then be increased by adding more modules in

series. [2]. In order to allow for more modular designs, which allows for a larger DC bus

voltage range and Plug-and-Play(PnP) operation, it is necessary to integrate SOC control,

current control, and droop control. These topics will be covered more in depth in section

2.2.1, section 2.2.2, and section 2.2.3.

The topic of control for balancing battery cells has been the focus of many electric

vehicle researchers for quite some time. [15, 16] discusses the basics of a BMS and the

techniques used for battery balancing. [17] presents an energy sharing SOC balancing control

scheme. [18] discusses a control technique for cell balancing with a two stage converter. [6]

discusses a module-integrated distributed battery energy storage and management system

without the need for additional battery equalizers. This is important because it allows

multiple cells to be controlled through a single DC/DC converter. [19–22] present additional

control techniques for various converter topologies.

2.2.1 Power Management With A Voltage Map

The idea behind using a voltage map is to be able to see a cell’s voltage and figure out

the rate at which that cell needs to be charged or discharged. Fig. 2.3 shows an example

of a voltage map that is divided into both a charging and discharging section.

To find the value Kchg, it is necessary to find the linear slope. This can be seen in

equation 2.7

Kchg = (SOCmax − SOCmin)/(V4 − V3) (2.7)
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Fig. 2.3: Voltage map [2]

Kchg value allows for SOCchg to be calculated. This makes it so that SOCavg can be

regulated. An example of this is demonstrated in 2.4.

SOCchg = Kchg(Vbus − V3) + SOCmin (2.8)

Kdis follows the same approach as Kchg, and in the end it can be seen that they are

equivalent. This can be seen in equation 2.11.

Kdis = (SOCmax − SOCmin)/(V2 − V1) (2.9)

SOCdis = Kdis(Vbus − V1) + SOCmin (2.10)

Kmap is the same for discharging and charging.

Kmap = Kdis = Kchg (2.11)
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SOCref = KmapVbus (2.12)

2.2.2 Current Regulation Approach

The values of each cells’ SOC is sent over CAN and used by the string controller to

find the SOCavg. The SOCavg is then regulated to SOCtarget which is determined based

on the bus voltage that is sensed and the corresponding kmap value that has been discussed

in section 2.2.1. The string controller is then able to calculate iall.

iall = Gscoc(SOCavg −Kmapvbus) (2.13)

Due to the fact that SOCref = KmapVbus as seen in 2.12, plugging this into 2.13 gives

2.14

iall = Gscoc(SOCavg − SOCref ) (2.14)

This iall value is then transmitted over CAN to each module controller. This will be

used by each corresponding module controller to determine the rate the cells are charged/dis-

charged. Essentially the current reference is used to regulate the pack average SOC. The

control structure can be seen in Fig. 2.4. iall is then used as one of the main inputs within

the BPM.

2.2.3 Droop control

In order to help regulate the output voltage and make sure that the bus voltage is

shared equally with all modules, a droop loop is added. Fig. 2.4 is then modified with

the addition of the droop loop. This addition can be seen in Fig. 2.5. Droop control is

enabled to bring this particular module output voltage closer to the desired reference of

vavg which is then passed through a gain Gd. See [2] for finding Gd. This droop loop will

add or subtract a small amount of current depending on the relation between the output
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Fig. 2.4: Current Control [2]

voltage and vavg. This current is called the delta current command and can be seen in the

figure as idN , where N represents which number module it is.
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Fig. 2.5: Current Control with droop [2]
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CHAPTER 3

METHODS AND MATERIALS

This chapter focuses on the system setup, techniques used, and methods performed

to obtain the project objectives as stated in Chapter 1. The project takes the techniques

used for implementing series BPM control as addressed in Chapter 2 and applies it to

this project’s specific system. It also makes some adjustments for what the system needs.

This is accomplished by developing a controller to communicate commands back and forth

between the battery powered modules (BPM)s and site controller. The site controller and

other parts of the system will be explained in section 3.1 as it gives an overview of the entire

system.

This thesis proposes an isolated multi-port converter that has eight primary ports with

the use of H-bridges to one secondary ports. The purpose for this topology is to achieve

active cell balancing and allow four, 4V cells to reach 32V output on the secondary side,

while not needing a DC/DC converter for each cell. The advantages for this topology are

as stated:

• Allows use of the same ground reference for all cells, eliminating the need for isolated

communications between active balancing converters.

• Reduced component count due to the fact that there is only one secondary port.

• The magnetics are efficient since the converters are physically close, the secondary

winding can be wound continuously through all the cores reducing the winding length.

• Elimination of contact resistance since multiple cells are able to connect to one DC/DC

converter.

[1]

The rest of the sections in this chapter break down the steps needed to accomplish

these tasks. They are organized as follows: Section 3.1 gives an overview of the system and
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discusses the options for the controller implementation. Section 3.2 discusses the process of

designing and developing the PCB for the controller. Section 3.3 talks about implementing

the communication protocol and sensing done through the ADC. Section 3.4 discusses the

control techniques to send the correct current command to the multiple BPMs.

3.1 Background

The full 100 kilo-watt (kW) power system layout can be seen in figure 3.1. The full

power system entails a site controller that will control all of the string controllers. Every

string controller controls and communicates with six module controllers. Each module

controller has sixteen battery cells that it is connected to and senses. These cells have been

previously used and provided from Nissan and Tesla. This thesis focuses on one branch

of string controller that is connected to two module controllers. Two module controllers

interfacing with a string controller is what is needed to show series connection control. Each

module controller for this thesis will be connected to four battery cells. This is what is called

a proof of concept (POC) system which focuses on demonstrating capability. Chapter 1

goes over the full objectives for this thesis.

Fig. 3.1: Full power system.

There are several ways to approach the challenge of control. The first choice is to



15

have everything done in the string controller. This entails having every control loop, all

the calculations, and all the sensing done on one device. The string controller then sends

out any command or information to the module controller. This allows for every control

loop to be on the same frequency and everything to be rather quick. The downside to this

approach is the fact that later, the system would not be able to be scaled upward. There

would be issues when adding more BPMs in series or additional strings in parallel. The flip

side of this strategy is to do everything in the BPM and eliminate the string controller all

together. This eliminates confusion on which controller will perform each task, connection

issues, and causes there to be less noise among the communication lines. The reason this

approach is not ideal is because it is very difficult for the module controllers to be able to

coordinate, especially during start up. It is very important to be able to ramp up the duty

cycle and output voltage at the same time.

The approach chosen lies somewhere in the middle. Some aspects are controlled in the

BPM and some are controlled in the string controller. This happy middle ground allows

for some of the pros while avoiding the worst cons. It is possible that in the future an

alternative solution proves to be more effective.

3.2 PCB Design

The string microcontroller requires a PCB with additional circuits to fulfil its functions.

The first step in designing a PCB for a controller is to think of all the purposes that are

needed for the board and lay it all out in a schematic. For the case of this project, the

string controller needs several things. First, a microcontroller that allows code to process

information and send out commands to the module controller. Second, transformers that

step down the voltage from the 12V auxiliary input to 5V and 3.3V. This was used to

power other devices on the PCB, with one of those being the microcontroller. Third,

isolated communication area network (CAN) transceivers for the CAN communication that

is discussed further in section 3.3. Fourth, a circuit used to implement ADC sensing of the

series connected bus voltage. This is discussed more in depth in section 3.3. Lastly it is

necessary to include additional smaller items such as a debug port, crystal oscillator that is
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used for the microcontroller clock, and additional headers that are used to connect hardware

to the board. It is important to show how all of this is connected to the microcontroller and

take note of which pins are to be used [1]. The finished schematic for this project’s PCB is

illustrated in Fig.3.2. Altium has a great resource for getting started with schematics. [23]

Fig. 3.2: Schematic.

The next step with the PCB process is to import the schematic into a PCB file. This

places all the components and a highlighted net showing which components are connected

and an outline of a board with dimensions specified by the user. The next step is to specify

the number of layers needed for the board and decide which components will go on the

top layer or the bottom layer. Component placement takes some time but becomes easier

with time and experience. A good practice is to review component schematics which may

have example layouts shown. Another tip is to start with components that need to be close

together and even consider placing those components right on top of each other, just on

opposite sides of the board. Following this, copper traces between components are added.
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It is important to verify that the traces are large enough if power is to be flowing through

them. The final step is to run the debugger and check that there are no issues that will

be seen by the manufacture and to add a keep out layer for them to see. This project has

ensured the following of these steps to avoid major issues with the completed board. The

finished PCB layout is illustrated in Fig. 3.3.

Fig. 3.3: PCB in Altium.

3.2.1 PCB Fabrication

Upon completion of the PCB layout, the next step is to order the fabrication of the

board and the components that would then be placed onto it such as resistors, capacitors,

and integrated circuits (IC). There are three options that this task can be carried out. They
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Table 3.1: PCB costs.

PCB order method Cost

PCB with populated components 8,526.6

PCB with stencil 4,354.08

PCB 4,154.08

are as follows:

• The PCB is ordered along with the bill of materials needed for the components on the

board. The manufacturer is responsible for the board’s population for an extra cost.

• A stencil is ordered along with the PCB that has cutouts of all the components. This

will allow for the engineer to use solder paste to place all components quicker than all

by hand.

• Nothing additional to the PCB is ordered, and the components are all soldered by

hand by the engineer ordering it.

These three options all come with different price points and a different amount of work

needed by the engineer ordering it to get the PCB completed. An analysis for the full power

system PCB showing the different costs for the three different price points is shown in table

3.1. This analysis consists of 10 PCBs instead of one.

The second option, which includes the PCB and stencil, is chosen. This is another

example of how this project lies in a happy middle ground. The company can save on costs

while also assisting the engineer with time by using the stencil to solder both sides of the

board. There are cases where each option is the most preferred, depending on the status of

the project and desires of those funding it.

An additional thing to note is that due to the second method being chosen, the com-

ponents need to be ordered around the same time as the PCB. This allows for everything

to arrive at about the same time. Using the stencil makes it so the components can be

placed gently on the board and then once the entire side of components have been place,
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re-flowed in the oven. This heats the paste and causes the paste to behave like actual sol-

der to form an electrical connection between the board and components. Using the stencil

allows for much cleaner looking connections then what one would be able to do by hand.

The populated (PCB) is illustrated in Fig. 3.4.

Fig. 3.4: Populated PCB.

3.3 CAN Communication and ADC code implementation

CAN is a communication protocol that allows microcontrollers and devices to commu-

nicate with each other without a host computer. For this project, CAN allows the string

controller the ability to talk with multiple module microcontrollers and send commands

back and forth across the CAN bus. The CAN bus is illustrated in Fig. 3.5. This is done

by connecting these module microcontrollers to the same CAN bus line using an unshielded

twisted pair (UTC).

The CAN bus line allows unique messages that are meant for one specific device to be
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Fig. 3.5: CAN bus [3].

received by that device. This is done by using an 11-bit unique identifier. This identifier

also represents the message priority of the device. The lower the number, the higher the

priority and quicker that that message will be sent/received. [3] A full diagram of a CAN

message can be seen in Fig. 3.6.

Fig. 3.6: CAN message breakdown [4]

To set this communication up in code, two main steps are required. The first step is to

initialize the CAN bus. This includes setting up the clock source, choosing desired settings

for the CAN communication and setting up mailboxes which are all the parts needed in a

CAN message. This again can be seen in Fig. 3.6. The second step is to enable and configure

the Interrupt Service Routine (ISR). This will allow for certain code to be executed when

the microcontroller detects data meant for it on the CAN bus. Within the ISR it stores
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the data it receives into local variables and performs any other task that is chosen by the

programmer. This project sends important values over the CAN bus that are needed in

within the module controller and site controller. The communication needed between the

string controller and the DC/DC converter can be seen in Fig. 3.7. Those communication

lines are marked with a red check mark. This diagram also shows the larger system. See

section 3.1

Fig. 3.7: CAN communication.

There are a few different CAN messages sent to the module controller, string controller,

and the personal computer (PC) console. The various messages sent to the PC console can

be seen below in table 3.2.

The same values for any number of module controllers are also sent to the PC console.

The CAN message structure for string controller and module controller can be seen in table

3.3

As seen in table 3.2 and table 3.3, the values for a single variable are sent in two data

positions of the array. As the message is received, the microcontroller unpacks the data

using IQ wrapping. IQ wrapping is used to avoid losing precision with data sent. Since the

data is sent over CAN as integers 8 bits at a time, IQ wrapping is a way around this and

allows the user to send decimal numbers. In this project’s case it is very crucial that this
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Table 3.2: CAN message structure 1.

Destination Array number Variable

MATLAB 0 SOC value for cell 1

1 SOC value decimal portion for cell 1

2 SOC value for cell 2

3 SOC value decimal portion for cell 2

4 SOC value for cell 3

5 SOC value decimal portion for cell 3

6 SOC value for cell 4

7 SOC value decimal portion for cell 4

MATLAB 0 Voltage value for cell 1

1 Voltage value decimal portion for cell 1

2 Voltage value for cell 2

3 Voltage value decimal portion for cell 2

4 Voltage value for cell 3

5 Voltage value decimal portion for cell 3

6 Voltage value for cell 4

7 Voltage value decimal portion for cell 4

MATLAB 0 Current value for cell 1

1 Current value decimal portion for cell 1

2 Current value for cell 2

3 Current value decimal portion for cell 2

4 Current value for cell 3

5 Current value decimal portion for cell 3

6 Current value for cell 4

7 Current value decimal portion for cell 4

is implemented. For example, it is undesirable to send the number 4 as the voltage for a

particular cell, when it is actually 4.01687.

IQ wrapping works by placing the value in a variable type ”IQ12”. The number after

IQ represents how many bits make up the data after the decimal. The rest of the bits make

up the data before the decimal. For this case, the remaining bits would be 4, since 16 bits of

data are being sent. An example of 4.01687 is discussed further. The way this data would
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Table 3.3: CAN message structure 2.

Destination Array number Variable

String 0 Module number

1 Voltage value

2 Voltage value decimal portion

3 Current value

4 Current value decimal portion

5 SOC value

6 SOC value decimal portion

7 Battery cell identifier for module

Module 0 Module number

1 Iall current command

2 Iall current command decimal portion

3 Vref voltage value

4 Vref voltage value decimal portion

5 Empty

6 Empty

7 Start up bits command

be sent in binary can be seen in equation 3.1

0100.000001000101 (3.1)

Where the first 4 bits of binary equal 4. And the 12 remaining bits equal .0168. As

mentioned above, CAN messages are sent as 8-bit integers. The two bytes of data sent can

be seen in equation 3.2

(01000000) < −− > (01000101) (3.2)

To the processor at first this looks like two integer numbers of 128 and 69 respectively,

but since they are IQ, they can be unwrapped as the correct value that is sent. The code for

the string controller unpacking the data can be seen in figure 3.8, as well as in the Appendix

where the whole file of code is located.
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Fig. 3.8: IQ wrapping.

3.3.1 ADC implementation

An analog to digital converter (ADC) converts analog signals to a digital format. It

takes an analog signal and samples the value at a certain frequency. This allows it to have

one specific digital value that is updated at a fast rate. This is important because the

microcontroller needs data in this format to execute its code. To set up an ADC in code

there is a lot that first needs to be initialized. This initialization sets up certain parameters

that the ADC follows. The most important of these parameters being the frequency at

which it samples the analog signal. The ADC uses an interrupt (just like the CAN does).

As the pin on the microcontroller senses a signal, it will read that data in and store it as a

digital value. This digital value can be anywhere from 0 to 4096. The next step to using this

digital number is to linearize it by recording the ADC value at various voltage values that

are being sensed and plotting this out in MATLAB or Excel. The values for this project can

be seen in table 3.4. Adding a trendline to these plots allows for an estimation to come up

with an equation. The values plotted out in Excel can be seen in figure 3.9. This equation

then is implemented in code to find the original voltage value that is sensed. This equation

used in the code can be seen in equation 3.3.

V bus = ADCresult − 6.8571/40.68 (3.3)

Where ADCresult is the discrete value that the ADC reads in. This formula is taken

from the trendline formula in figure 3.9, and then rearranged to solve for x.

3.4 Control of series connected BPMs

Since the first step of controlling multiple modules is to start them up at the same
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Table 3.4: ADC Linearization.

Bus Voltage Digital Value

0 8

5 209

10 413

15 617

20 822

25 1023

30 1227

35 1433

40 1634

45 1838

50 2040

55 2245

60 2448

time, it is necessary to have the string controller send out these commands simultaneously.

This allows for each module to receive the commands at the same time and avoid issues in

ramping up the duty cycle. The startup bits consist of 6 bits that are either a one or a zero.

These bits and their functions are as follows.

• RSTEN. This bit controls whether the field programmable gate array (FPGA), which

is located on the BPM, is in reset mode. Reset mode prevents the FPGA from

executing any code or computation.

• SWEN. This bit controls the switching of the converters on the BPMs. While it is

enabled, the ramping of the duty cycle is possible.

• CTLEN. This bit enables the control for closed loop which is essential for showing

droop control is working.

• DIFEN. This bit enables the differential current command to account for differences

among the cells in terms of charge. This allows for different charge/discharge rates.
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Fig. 3.9: ADC Linearization plot.

• RMPDTY. This bit enables the ramp of the duty cycle for the converters. This

is essentially what enables the output voltage to be increased through the DC/DC

converter.

• SOCESTEN. This bit allows for the BPM to use coulomb counting to estimate the

SOC of each cell.

• DROOPEN. This bit enables the droop which allows for current regulation.

Each of these control bits are enabled one by one in a specific order to carry out the

active balancing of the battery cells.

3.4.1 Droop control and delta current command

For the balancing of different cells with different SOCs, droop current needs to be

implemented. See section 2.2.3. Depending on the SOC and the difference between output

voltage and average voltage, the module may need more or less current than the other

modules to charge or discharge. This statement can be reflected in equation 3.6.
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IcommonRef = IAll +Gdroop ∗ (Vdcref0 − Vsec) (3.4)

The delta current command is a part of this equation. Delta current command is the

additional current to be added or subtracted while charging or discharging. This can be

seen as shown in equation 3.5 and in figure 2.5.

∆I = Gdroop ∗ (Vdcref0 − Vsec) (3.5)

Simplifying equation 3.6 and 3.5 for IcommonRef gives

IcommonRef = IAll + ∆I (3.6)

An important aspect to note is that IAll can be positive or negative depending on the

direction power is flowing. Gdroop is different for each direction of power. Implementing this

in code is done with a few conditional statements and equations. If IAll is positive, then

Gdroop is seen in equation 3.7.

Gdroop = Gmin (3.7)

Where Gmin for this topology is calculated to be .2.

If IAll is negative, then Gdroop is seen in equation 3.8.

Gdroop = Gmin + (Gmin −Gmax)/Iallmax ∗ Iall (3.8)

Where Gmax must be greater than .25 due to the conditions of the system. The

parameter chosen for this project for Gmax is .5. Iallmax is 10 A because this is a 100 W

system and there are 4 ports each at 2.5V.

Iallmax = 100/4/2.5 (3.9)
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Implementing all these concepts proves that the string controller is working to control

series connected BPMs and to actively balance the battery cells. See chapter 4 for these

results.
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CHAPTER 4

RESULTS AND ANALYSIS

This chapter focuses on the results obtained through various tests performed and dis-

cusses how these results fulfill the previously stated objectives set in chapter 1. The chapter

is broken down into 3 sections. In section 4.1 the objective of designing, developing, and

building a hardware controller that can perform the functions necessary is shown and dis-

cussed. In section 4.2 the objective of developing software to realize sensing the bus voltage

of the series connected battery power module (BPM)s and communicate this, along with

other information through CAN is shown and discussed. In section 4.3 the objective of

developing control algorithms to achieve desired SOC and cell balancing among cells, as

well as droop control among the modules.

4.1 String controller

The process for designing and implementing the string controller board can be found

in chapter 3. In order to make sure the board is working properly after fabrication and

population; a few tests are needed. The first test can be seen in Fig. 4.1 as 12V is applied

across the board’s input terminals. It is essential to determine that the correct voltage is

applied to the various components on the board. Whether this be 3.3 V, 5 V, etc. A couple

key locations can be seen as functioning with lit light emitting diodes (LED)s, and other

locations can be probed by hand using a voltage meter.

Another test that is necessary is many continuity checks. In order to verify that

components are soldered correctly, and the traces are working properly, one probe is placed

at the port where an input signal goes in with the other probe testing the final destination

of the signal. Using a multi-meter in continuity mode, a beep should be emitted from the

device if the connection is secure. An example of this can be seen in Fig. 4.2 as the input

signal of an Ethernet cable is verified to reach its specific integrated circuit (IC). These tests
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Fig. 4.1: Power test.

give confidence that the data being transmitted is received correctly by the microcontroller.

The last test for the string controller board is to make sure the ADC sensing circuit is

working properly. As seen in Fig. 4.3a it is desired to read the same voltage that the power

supply is set to. As seen in Fig. 4.3b it is desired to read the input voltage divided by 30,

which in this example is true as the voltage meter reads .65 V. This is due to the voltage

divider integrated in the circuit. The voltage divider is necessary because this voltage being

sent to the microcontroller needs to be between 0 V and 3.3 V. This allows this board,

theoretically, to have a 100 V input.

4.2 CAN communication and ADC sensing

The process for developing software to realize sensing the bus voltage of the series con-

nected battery power module (BPM)s and communicate this, along with other information

through CAN can be seen in chapter 3. This section focuses on the tests performed to verify

the ADC sensing and CAN communication properly functions. To verify the functionality

of the ADC, two different input voltages are applied across the terminal of the ADC circuit.

As seen in table 4.1 a 30 V and 60 V input are applied to the terminal, and a digital value of

1229 and 2449 is read into the microcontroller. This number is then converted using equa-
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Fig. 4.2: Continuity checks.

Table 4.1: ADC test.

Input voltage Read digital result Calculated Voltage

30 1229 30.03767

60 2449 59.9981

tion 3.3. This proves that the ADC is working as intended and that it is qu ite accurate.

This also shows that the linearization performed on the ADC is working properly.

One challenge that came into play while implementing the ADC was the sampling

frequency. With just default initialization, the sample rate was around 12kHz. Due to the

fact it would send that value over CAN every time the ADC sampled in a value, it left

little-to-no time for any other message to be sent/received on that CAN bus. This problem

was fixed by adjusting the period of the PWM that controlled the ADC sample time. It was

found that a sample rate of 1kHz works much better and allows time for other messages to

get through.

To test the CAN communication, it is important to connect the string controller to

both module controllers. This can be seen in fig 4.4. This allows for the string controller

to send a message to one module, and a very similar but slightly different message to the
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(a) ADC circuit 1. (b) ADC circuit 2.

Fig. 4.3: ADC circuit tests

second module. Each module then receives that message through CAN, stores the data in

its own respective registers, and then sends the data back. If the right data comes back

from each module and is seen in the string controller’s ISR, then the CAN is working great.

The test results for this test can be seen in 4.5, where the data circled in orange are the

two separate messages sent out, and the data circled in blue, are the messages received

back. These messages reflect what is expected and prove that the CAN communication is

working. It is important to note that the CAN sample rate needs to be slow enough that

it does not clog the CAN network for all other messages.

4.3 System Control

4.3.1 Single module control

The first step in testing the control loop for one module is to connect the four battery

cells and electronic load to the DC-DC converter. The electronic load is connected to allow

for power to dissipate when the cells discharge. This converter is then connected to the

string controller. The idea for this initial test it to focus on the operation for one DC-DC

converter. The test set up can be seen in Fig. 4.6a and in Fig. 4.6b. The user performing

the test can use MATLAB to send start up commands as mentioned in section 3.4 that
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Fig. 4.4: CAN test setup.

Fig. 4.5: CAN test results.

the string controller then passes on to the module controller. On the flip side, the module

controller sends the cells’ data to the string controller that is passed on to the user through

MATLAB.

The startup commands sent from MATLAB enables switching and ramp of the duty

cycle to the DC/DC converter. The results obtained can be seen in Fig. 4.7a. This is the

result before the droop current loop is implemented as talked about in section 3.4. The

module bus voltage is read to be 31.3 V and the current read is 6.02 A. As the droop current

loop is added as seen in Fig. 4.7b the voltage is now 32.6 V and the current is 6.33A. This

is exactly what is expected due to the fact that the voltage increased closer to the reference

of vavg, which is 33 V. See Fig. 2.5. While the modules are not connected in series, the

droop will cause the bus voltage to approach closer to the reference. The increase in current
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(a) One module test set up diagram.

(b) One module test set up.

Fig. 4.6: Initial module test

that is seen is due to the difference in voltage passing through the gain Gd. This difference

in voltage causes there to be a slight increase or decrease in current when droop is enabled.

This addition of current can be seen in the figure as the variable idN .

To ensure that droop is fully working and validates the equations for droop presented in

3.4.1, it is necessary to perform a dc voltage reference sweep. The different voltage reference

values plotted with the sensed current values shows the slope of Gdroop. The test set up can

be seen in Fig. 4.8
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(a) Test without droop.

(b) Test with droop.

Fig. 4.7: Module Voltages.

Gdroop is represented by Fig. 4.9a, 4.9b, and 4.9c, which is a plot of data shown in table

4.2. The data in the table shows droop is working as expected due to the linear relationship.

The sweep of the voltage reference shows the Gd droop to have a slope of .2 for positive

and zero reference currents, and a larger slope for negative reference currents. (Around .4)

The results show tests done for -10 A, 0 A, 6 A, 10 A of reference current. The data show the

fluctuation of total current around these four current references depending on the voltage.

With control of a single module controller working, active cell balancing is tested.

Balancing the cells consists of charging and discharging the cells at different rates based on

each cells’ SOC. This allows for the SOC of each cell to eventually be at the same point.

This is shown in Fig. 4.10. The balancing capability results proves that the lithium-ion

batteries are acceptable for second life applications.

4.3.2 Series connected module control

Once one module is controlled correctly with current control, the next step is to test
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Fig. 4.8: Droop test set up.

the control with two modules connected in series. The set up for this test can be seen in Fig.

4.11a and 4.11b. It is important to note that the bus voltage now consists of connecting one

end to the positive output terminal of one board and the other end to the negative output

terminal of the second board. The test performed here is just with two module boards, but

this test works with many more boards in series.

For the series test, the battery cells lowered to 2.5 V each due to the 60 V limit on

the electronic load and power supply. This allows for the output voltage to be 20 V after

ramping up the duty cycle. With two modules connected in series, this leads to 40 V output

instead of 64 V. The results of this connection are shown in Fig. 4.12. The three figures

show tests transitioning from open loop to closed loop. 4.12a shows open loop without

droop, 4.12b shows closed loop with droop enabled, and 4.12c shows closed loop without

droop enabled which becomes unstable. The bus current changes as droop is enabled due

to current that is dissipated by the load resistor.

The DC voltage sweep is once again performed for a positive current reference. This

can be seen in Fig. 4.13 and table 4.3. The results for series connected modules are in

line with the results of a single module proving that droop still works for series connected

modules. The relationship is linear, and the results show a slope of 0.2. These results once

again show the capability of SOC balancing and proves the systems capability of series

controlled battery powered modules. This confirms the usage of these lithium-ion batteries

for second life applications.
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(a) Positive reference current with droop.

(b) Zero reference current with droop.

(c) Negative reference current with droop.

Fig. 4.9: Droop results.



38

Table 4.2: Droop results

Reference current Total current Voltage reference

-10 -12.621 15

-10 -12.128 16

-10 -11.574 17

-10 -11.082 18

-10 -10.589 19

-10 -10.097 20

-10 -9.605 21

-10 -9.339 22

-10 -9.113 23

-10 -8.617 24

-10 -8.125 25

0 -1.042 15

0 -0.859 16

0 -0.675 17

0 -0.429 18

0 -0.246 19

0 -0.058 20

0 0.054 21

0 0.300 22

0 0.488 23

0 0.671 24

0 0.855 25

10 8.859 15

10 9.046 16

10 9.292 17

10 9.476 18

10 9.660 19

10 9.847 20

10 10.093 21

10 10.277 22

10 10.460 23

10 10.648 24

10 10.894 25
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Fig. 4.10: Two cycles of cell balancing.

Table 4.3: Series control droop results

Reference current Total current Voltage reference

6 5.1679 15

6 5.4140 16

6 5.5351 17

6 5.5976 18

6 5.9062 19

6 6.0898 20

6 6.2734 21

6 6.4609 22

6 6.7070 23

6 7.1992 24

6 7.3203 25
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(a) Multiple module test set up diagram.

(b) Multiple module test set up.

Fig. 4.11: Two module set up.
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(a) Series control without droop. (b) Series control with droop.

(c) Series control without droop with
control enabled.

Fig. 4.12: Series control.

Fig. 4.13: Series control with droop sweep.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

As previously stated in chapter 1, the objectives for this thesis are to design, develop,

and build a hardware controller that will be able to perform all necessary functions, develop

software to realize sensing the bus voltage of the series connected battery power module

(BPM)s and communicate this, along with other information through CAN, and to develop

control algorithms to achieve desired SOC and cell balancing, as well as droop control among

the modules. The results showing these completed objectives can be seen in chapter 4.

The results of the cells balancing and communicating information back and forth be-

tween the modules and string controller proves that the objectives are met. The result of

active cell balancing allows for batteries to have a second life and battery packs to have a

much longer lifespan. In addition, this work can be used in many other applications within

the field of power electronics. Any other company that makes use of battery packs will

be able to use these methods and results to use second life batteries and make the world

greener.

5.1 Future work

This thesis has mostly focused on a smaller subsection of what will be the full system.

The full system will be a full scale 100 kW battery pack. This thesis gives a good guide on

how to continue and complete the full-scale system by using this thesis as a building block.

Another thing that can be improved upon afterwards is commercializing these technologies.

The world is heading toward more electric vehicles with more and more green initiative

programs, and second life batteries will play an important role in this transition. Companies

with similar needs will be able to use this thesis and these findings as a starting point.

One improvement that could be made to this system is adjusting and making improve-

ments to the communication process. Even though it works fine how it is, there are always
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more improvements to be found and implemented. Finding out the perfect frequency at

which data should be transmitted is one example of how it could be improved. Another

improvement for future work is diving into the options of using a string controller or not.

Along with this, research could be done to see what more the string controller could oversee

to make the system more efficient. Another improvement idea is spreading the module

board into three separate boards for the three main functions of the board: power board,

FPGA circuitry, and microcontroller circuitry. This design could allow for the module

microcontroller to control more than four cells.
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APPENDIX A

String controller code

// ##########################################################################

// * main.c

// * Author: Josh & Mohamed

// * Created on: May, 2019

// * Modified by Josh W 2020

// ##########################################################################

#include "global.h"

#include "CONV_ControlLaw_shared_data.h"

#include "F28x_Project.h"

#pragma CODE_SECTION(CONV_timeline_isr, ".TI.ramfunc");

extern uint16_t RamfuncsLoadStart, RamfuncsLoadSize, RamfuncsRunStart;

// Define some local functions

interrupt void CONV_timeline_isr(void);

interrupt void cpuTimer1ISR(void);

interrupt void cpuTimer2ISR(void);

interrupt void canaISR(void);

interrupt void canbISR(void);

interrupt void CONV_adc_isr(void);

void ATREX_CAN_Communication(void);

void OneSecondHandle(void);

void ONeSecondSOCEstimator(void);

void SOCInitialization(void);

void initADC();
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void initADCSOC();

void initEPWM();

uint16_t EnableSense = 0;

int ProtectionCurrent = 0;

float CurrentInputInFloat = 0;

_iq VuMinusVariable = 0;

_iq VLVariable = 0;

_iq VbusVariable = 0;

uint16_t BadCommunicationCounter = 0;

uint16_t SOC_Initialize = 0;

uint16_t Timer1Flag = 0;

uint16_t SOC_Estimate = 0;

uint16_t count = 0;

uint16_t DebugCount = 0;

uint16_t counter0 = 0;

uint16_t counter1 = 0;

uint16_t counter2 = 0;

uint16_t counter3 = 0;

float VbusCalculated = 0;

float Vmodule = 0;

float Iref = 30.0f;

uint16_t a = 5;

float b = 0;

uint32_t c = 0;

uint16_t d = 0;

float module1Cell1[8];
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float module1Cell2[8];

float module1Cell3[8];

float module1Cell4[8];

float module2Cell1[8];

float module2Cell2[8];

float module2Cell3[8];

float module2Cell4[8];

int startupbits;

// startup commands

//int16_t DiffEn = 0;

//int16_t RST = 1;

//int16_t CTLEn = 0;

//int16_t SWEn = 0;

//int16_t rampDuty = 0;

int16_t SOC_Est_En = 0;

int16_t DroopEn = 0;

//Josh’s variables for CAN

int16_t MATLABmsg[8];

//uint32_t c = 0;

float IALL = 0.0f;

float Vdcref = 0.0f;

uint16_t myResults[100];

uint16_t index2 = 0;

uint16_t testResult = 0;

uint16_t testResultMean = 0;

// Added in for ADC ISR

#define RESULTS_BUFFER_SIZE 256
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uint16_t adcCResults[RESULTS_BUFFER_SIZE]; // Buffer for results

uint16_t index; // Index into result buffer

volatile uint16_t bufferFull; // Flag to indicate buffer is full

//##############################################################################

// ------ main function --------------------------------------------------------

// * system initialization

// -----------------------------------------------------------------------------

void main(void)

{

//==========================================================================

//---------- Step 1. Initialize System Control -----------------------------

memcpy((uint16_t *)&RamfuncsRunStart,(uint16_t *)&RamfuncsLoadStart, (unsigned

long)&RamfuncsLoadSize);

InitSysCtrl(); // PLL, Flash, WatchDog, enable Peripheral Clocks- External

oscillator, 100MHz system clock

// Initialize GPIO

InitGpio();

//==========================================================================

//---------- Step 2. Initialize GPIO ---------------------------------------

OpenLoopGPIOsNewPack();

DELAY_US(500000); // This Delay is critical with the LTC2955 Pushbutton

Control. The Blanking time ignores and seems to oppose/invert ;any changes

to PB or Kill during that half second.

//==========================================================================

//---------- Step 3. Initialize PIE vector table ---------------------------

// Disable CPU interrupts and clear all CPU interrupt flags:

DINT;

IER = 0x0000;

IFR = 0x0000;
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// IER and IFR are special registers and are defined by "

cregister".

// The compiler handles cregisters differently because they

require special assembly output.

// They are not defined similarly as other registers in the

header files.

InitPieCtrl(); // Initialize PIE control registers to their default state

InitPieVectTable(); // Initialize the PIE vector table with pointers to the

shell Interrupt

// * Re-mapped interrupts to ISR functions found within this file:

EALLOW;

PieVectTable.TIMER0_INT = &CONV_timeline_isr;

//PieVectTable.TIMER1_INT = &cpuTimer1ISR;

//PieVectTable.TIMER2_INT = &cpuTimer2ISR;

PieVectTable.CANA0_INT = &canaISR;

PieVectTable.CANB0_INT = &canbISR;

PieVectTable.ADCC1_INT = &CONV_adc_isr; // Set this to C1 ADC which is pin 18

for our microcontroller

EDIS;

//==========================================================================

//---------- Step 4.0. Initialize CLA --------------------------------------

//InitializeCLA();

//==========================================================================

//---------- Step 5. Initialize all the Device Peripherals -----------------

// * Configure CPU-Timer 0 to interrupt at 10kHz (with 100Mhz CPU):

InitializeTimers();

// * Initialize EPWM module:

//CONV_InitEPwm();

initEPWM(); // Start up example code implemented by Josh

// * Initialize ADC module:

CONV_InitAdc();
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//initADC(); // Start up example code implemented by Josh

// * Initialize ADC SOC:

initADCSOC();

// Initialize the state structure SOC ESTIMATION

vBmsInit( xCell );

// * Initialize CAN bus:

CONV_InitECana();

CONV_InitECanb();

// * Initialize global variables:

InitGlobalVariable();

//==========================================================================

//---------- Step 6. Enable interrupts -------------------------------------

// * Enable specific interrupts in the PIE table:

PieCtrlRegs.PIECTRL.bit.ENPIE = 1; //*0. Enable the PIE block

PieCtrlRegs.PIEIER1.bit.INTx3 = 1; //*1. Enable ADCC1 in the PIE: Group 1

interrupt 3

PieCtrlRegs.PIEIER1.bit.INTx7 = 1; //*1. Enable TINT0 in the PIE: Group 1

interrupt 7

PieCtrlRegs.PIEIER9.bit.INTx5 = 1; //*1. Enable CANA0 in the PIE: Group 9

interrupt 5

PieCtrlRegs.PIEIER9.bit.INTx7 = 1; //*1. Enable CANB0 in the PIE: Group 9

interrupt 7

// * Enable interrupt:

IER |= M_INT1; // Enable group 1 interrupts - ADC interrupts - External

interrupt 1 and 2 - and Timer 0

//IER |= M_INT13; // Enable group 14 interrupts - Timer1

//IER |= M_INT14; // Enable group 14 interrupts - Timer2

IER |= M_INT9; // Enable group 9 interrupts - CANA0 and CANB0 interrupt

// * Enable global Interrupts and higher priority real-time debug events:

EINT; // Enable Global interrupt INTM

ERTM; // Enable Global realtime interrupt DBGM
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//==========================================================================

//---------- Step 7. User specified code -----------------------------------

//StartTimer(0);

SOC_Estimate = 0;

DebugCount = 0;

EALLOW;

// Sync ePWM

CpuSysRegs.PCLKCR0.bit.TBCLKSYNC = 1;

while(1)

{

// // SOC Functions/1 Second interrupt Enabled

// if (Timer1Flag == 1)

// {

// OneSecondHandle();

// // Clear the timer interrupt here!

// Timer1Flag = 0;

//// if (count > 1){count = 2;SOC_Estimate = 1;DebugCount++;}

//// PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

// }

//

// Start ePWM

//

EPwm1Regs.ETSEL.bit.SOCAEN = 1; // Enable SOCA

EPwm1Regs.TBCTL.bit.CTRMODE = 0; // Unfreeze, and enter up

count mode

//

// Wait while ePWM causes ADC conversions, which then cause

interrupts,
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// which fill the results buffer, eventually setting the

bufferFull

// flag

//

while(!bufferFull)

{

}

bufferFull = 0; //clear the buffer full flag

//

// Stop ePWM

//

// EPwm1Regs.ETSEL.bit.SOCAEN = 0; // Disable SOCA

// EPwm1Regs.TBCTL.bit.CTRMODE = 3; // Freeze counter

//

// //

// // Software breakpoint. At this point, conversion results

are stored in

// // adcAResults.

// //

// // Hit run again to get updated conversions.

// //

// ESTOP0;

}

}

//##############################################################################

interrupt void CONV_adc_isr(void)

{

_iq8 IQ_Iref, IQ_Vref;

c++;
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// This is from example code. Basic ISR functionality

// Add the latest result to the buffer

// ADCRESULT0 is the result register of SOC0

adcCResults[index++] = AdccResultRegs.ADCRESULT0;

VbusCalculated = ((AdccResultRegs.ADCRESULT0-6.8571)/40.687); //equation

calculated from linearizing ADC results and plotting them to find trendline

formula

//

// Set the bufferFull flag if the buffer is full

//

if(RESULTS_BUFFER_SIZE <= index)

{

index = 0;

bufferFull = 1;

}

//

// Clear the interrupt flag

//

AdccRegs.ADCINTFLGCLR.bit.ADCINT1 = 1;

//

// Check if overflow has occurred

//

if(1 == AdccRegs.ADCINTOVF.bit.ADCINT1)

{

AdccRegs.ADCINTOVFCLR.bit.ADCINT1 = 1; //clear INT1 overflow flag

AdccRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; //clear INT1 flag

}
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//

// Acknowledge the interrupt

//

PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

Vmodule = VbusCalculated / 2; // Divide by the number of modules connected in

series

Vmodule = Vdcref;

// startupbits = (DroopEn<<6) + (SOC_Est_En<<5) + (rampDuty<<4) + (DiffEn<<3) +

(RST<<2) + (CTLEn<<1) + SWEn;

// Test sending data through CAN

IQ_Iref = _IQ8(IALL); //Brooks changed this from Iref to IALL due to MATLAB

sending the command

IQ_Vref = _IQ8(Vmodule);

// Brooks changed all of these to canmsg_string (declarations in global files)

canmsg_string.txMsgData[0] = 1; // Message ID Send to Module 1

canmsg_string.txMsgData[1] = (uint16_t)IQ_Iref>>8; //Iall current that is

currently changed by the user

canmsg_string.txMsgData[2] = (uint16_t)IQ_Iref; //Voltage of one cell

canmsg_string.txMsgData[3] = (uint16_t)IQ_Vref>>8; //this is start up command

canmsg_string.txMsgData[4] = (uint16_t)IQ_Vref;

canmsg_string.txMsgData[5] = 0;

canmsg_string.txMsgData[6] = 0;

canmsg_string.txMsgData[7] = startupbits;

CAN_sendMessage(CANB_BASE, 1, MSG_DATA_LENGTH, canmsg_string.txMsgData);

canmsg_string.txMsgData2[0] = 2; // This is a test varriable
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canmsg_string.txMsgData2[1] = (uint16_t)IQ_Iref>>8; //Iall current that is

currently changed by the user

canmsg_string.txMsgData2[2] = (uint16_t)IQ_Iref; //Voltage of one cell if they

are equal

canmsg_string.txMsgData2[3] = (uint16_t)IQ_Vref>>8; //The rest are start up

commands

canmsg_string.txMsgData2[4] = (uint16_t)IQ_Vref;

canmsg_string.txMsgData2[5] = 0;

canmsg_string.txMsgData2[6] = 0;

canmsg_string.txMsgData2[7] = startupbits;

CAN_sendMessage(CANB_BASE, 1, MSG_DATA_LENGTH, canmsg_string.txMsgData2);

}

//##############################################################################

// ------ timeline interrupt function ------------------------------------------

// * interrupt generated every 100us

// -----------------------------------------------------------------------------

interrupt void CONV_timeline_isr(void)

{

// The flag is cleared in OneSecondHandle function

Timer1Flag = 1;

count++;

PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

// ////debugx.timer0[1] = 5999 - CpuTimer0.RegsAddr->TIM.all;

// //==========================================================================

// // Acknowledge this interrupt to receive more interrupts from group 1

// PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

// return;

//

}

//##############################################################################
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// ------ cpuTimer1ISR interrupt function

------------------------------------------

// * interrupt generated every 1 s

// -----------------------------------------------------------------------------

interrupt void cpuTimer1ISR(void)

{

// // Whatever!

// Atrexmsg.txMsgData[0]++;

// Atrexmsg.txMsgData[3]++;

// EnableSense++;

// CAN_sendMessage(CANA_BASE, Atrex_Tx_SOC_SOH, MSG_DATA_LENGTH, Atrexmsg.

txMsgData);// Transmit arbitrary response debugging

//

// CAN_sendMessage(CANA_BASE, Atrex_Tx_Vout, MSG_DATA_LENGTH, Atrexmsg.

txMsgData);// Transmit arbitrary response debugging

//

//

// CAN_sendMessage(CANA_BASE, Atrex_Tx_Capacity, MSG_DATA_LENGTH, Atrexmsg.

txMsgData);// Transmit arbitrary response debugging

//

// CAN_sendMessage(CANA_BASE, Atrex_Tx_Currents, MSG_DATA_LENGTH, Atrexmsg.

txMsgData);// Transmit arbitrary response debugging

//

//

// CAN_sendMessage(CANA_BASE, Atrex_Tx_Temperature, MSG_DATA_LENGTH, Atrexmsg.

txMsgData);// Transmit arbitrary response debugging

// uint16_t MOduleIndex = 0;

// for(MOduleIndex=0; MOduleIndex<10; MOduleIndex++)
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// {

// SOCMessages.txMsgData[0] = 1; // This is SOC information

// SOCMessages.txMsgData[1] = 0;// This is the module average

// SOCMessages.txMsgData[2] = (uint16_t)Pack_IQ.CellSOC_CAN[3*MOduleIndex

]>>8; // This is the first cell in this Module

// SOCMessages.txMsgData[3] = (uint16_t)Pack_IQ.CellSOC_CAN[3*MOduleIndex

];// This is the first cell in this Module

// SOCMessages.txMsgData[4] = (uint16_t)Pack_IQ.CellSOC_CAN[3*MOduleIndex +

1]>>8; // This is the second cell in this Module

// SOCMessages.txMsgData[5] = (uint16_t)Pack_IQ.CellSOC_CAN[3*MOduleIndex +

1]; // This is the second cell in this Module

// SOCMessages.txMsgData[6] = (uint16_t)Pack_IQ.CellSOC_CAN[3*MOduleIndex +

2]>>8; // This is the third cell in this Module

// SOCMessages.txMsgData[7] = (uint16_t)Pack_IQ.CellSOC_CAN[3*MOduleIndex +

2]; // This is the third cell in this Module

// CAN_sendMessage(CANA_BASE, MOduleIndex+14, MSG_DATA_LENGTH, SOCMessages.

txMsgData);

// }

}

//##############################################################################

// ------ cpuTimer2ISR interrupt function

------------------------------------------

// * interrupt generated every 1 s

// -----------------------------------------------------------------------------

interrupt void cpuTimer2ISR(void)

{

}

interrupt void canbISR(void)
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{

d++;

canbmsg.status = CAN_getInterruptCause(CANB_BASE); // Read the CAN-B interrupt

status to find the cause of the interrupt

CAN_readMessage(CANB_BASE, canbmsg.status, canbmsg.rxMsgData);

int cellIndex = (canbmsg.rxMsgData[0]<<2) + canbmsg.rxMsgData[7];

// xCell[cellIndex].fCellVoltage = _IQ12toF(_IQ12((canbmsg.rxMsgData[1]<<8)>>8)

+ (_IQ12(canbmsg.rxMsgData[2])>>12));

xCell[cellIndex].fCellVoltage = _IQ12toF(_IQ12((((int16_t)canbmsg.rxMsgData

[1])<<8) + (int16_t)canbmsg.rxMsgData[2])>>12);

xCell[cellIndex].fCellCurrent = _IQ8toF (_IQ8 ((((int16_t)canbmsg.rxMsgData

[3])<<8) + (int16_t)canbmsg.rxMsgData[4])>>8);

xCell[cellIndex].fCellSoc = _IQ15toF(_IQ15((((int16_t)canbmsg.rxMsgData[5])

<<8) + (int16_t)canbmsg.rxMsgData[6])>>15);

if(canbmsg.rxMsgData[7]==0)

{

counter0++;

}

if(canbmsg.rxMsgData[7]==1)

{

counter1++;

}

if(canbmsg.rxMsgData[7]==2)

{

counter2++;

}

if(canbmsg.rxMsgData[7]==3)

{

counter3++;
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}

// if(canmsg_string.rxMsgData[0]==1) //if the identifier is 1, the data is from

module 1

// {

// if(canmsg_string.rxMsgData[7]==1) //if identifier in 8th spot is 1, it is

from cell 1

// {

// module1Cell1[0] = canmsg_string.rxMsgData[0];

// module1Cell1[1] = canmsg_string.rxMsgData[1];

// module1Cell1[2] = canmsg_string.rxMsgData[2];

// module1Cell1[3] = canmsg_string.rxMsgData[3];

// module1Cell1[4] = canmsg_string.rxMsgData[4];

// module1Cell1[5] = canmsg_string.rxMsgData[5];

// module1Cell1[6] = canmsg_string.rxMsgData[6];

// module1Cell1[7] = canmsg_string.rxMsgData[7];

// }

// if(canmsg_string.rxMsgData[7]==2) //if identifier in 8th spot is 1, it is

from cell 2

// {

// module1Cell2[0] = canmsg_string.rxMsgData[0];

// module1Cell2[1] = canmsg_string.rxMsgData[1];

// module1Cell2[2] = canmsg_string.rxMsgData[2];

// module1Cell2[3] = canmsg_string.rxMsgData[3];

// module1Cell2[4] = canmsg_string.rxMsgData[4];

// module1Cell2[5] = canmsg_string.rxMsgData[5];

// module1Cell2[6] = canmsg_string.rxMsgData[6];

// module1Cell2[7] = canmsg_string.rxMsgData[7];

// }

// if(canmsg_string.rxMsgData[7]==3) //if identifier in 8th spot is 1, it is

from cell 3

// {

// module1Cell3[0] = canmsg_string.rxMsgData[0];
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// module1Cell3[1] = canmsg_string.rxMsgData[1];

// module1Cell3[2] = canmsg_string.rxMsgData[2];

// module1Cell3[3] = canmsg_string.rxMsgData[3];

// module1Cell3[4] = canmsg_string.rxMsgData[4];

// module1Cell3[5] = canmsg_string.rxMsgData[5];

// module1Cell3[6] = canmsg_string.rxMsgData[6];

// module1Cell3[7] = canmsg_string.rxMsgData[7];

// }

// if(canmsg_string.rxMsgData[7]==4) //if identifier in 8th spot is 1, it is

from cell 4

// {

// module1Cell4[0] = canmsg_string.rxMsgData[0];

// module1Cell4[1] = canmsg_string.rxMsgData[1];

// module1Cell4[2] = canmsg_string.rxMsgData[2];

// module1Cell4[3] = canmsg_string.rxMsgData[3];

// module1Cell4[4] = canmsg_string.rxMsgData[4];

// module1Cell4[5] = canmsg_string.rxMsgData[5];

// module1Cell4[6] = canmsg_string.rxMsgData[6];

// module1Cell4[7] = canmsg_string.rxMsgData[7];

// }

// }

// else if(canmsg_string.rxMsgData[0]==2) //if the identifier is 2, the data is

from module 2

// {

// if(canmsg_string.rxMsgData[7]==1) //if identifier in 8th spot is 1, it is

from cell 1

// {

// module2Cell1[0] = canmsg_string.rxMsgData[0];

// module2Cell1[1] = canmsg_string.rxMsgData[1];

// module2Cell1[2] = canmsg_string.rxMsgData[2];

// module2Cell1[3] = canmsg_string.rxMsgData[3];

// module2Cell1[4] = canmsg_string.rxMsgData[4];
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// module2Cell1[5] = canmsg_string.rxMsgData[5];

// module2Cell1[6] = canmsg_string.rxMsgData[6];

// module2Cell1[7] = canmsg_string.rxMsgData[7];

// }

// if(canmsg_string.rxMsgData[7]==2) //if identifier in 8th spot is 1, it is

from cell 2

// {

// module2Cell2[0] = canmsg_string.rxMsgData[0];

// module2Cell2[1] = canmsg_string.rxMsgData[1];

// module2Cell2[2] = canmsg_string.rxMsgData[2];

// module2Cell2[3] = canmsg_string.rxMsgData[3];

// module2Cell2[4] = canmsg_string.rxMsgData[4];

// module2Cell2[5] = canmsg_string.rxMsgData[5];

// module2Cell2[6] = canmsg_string.rxMsgData[6];

// module2Cell2[7] = canmsg_string.rxMsgData[7];

// }

// if(canmsg_string.rxMsgData[7]==3) //if identifier in 8th spot is 1, it is

from cell 3

// {

// module2Cell3[0] = canmsg_string.rxMsgData[0];

// module2Cell3[1] = canmsg_string.rxMsgData[1];

// module2Cell3[2] = canmsg_string.rxMsgData[2];

// module2Cell3[3] = canmsg_string.rxMsgData[3];

// module2Cell3[4] = canmsg_string.rxMsgData[4];

// module2Cell3[5] = canmsg_string.rxMsgData[5];

// module2Cell3[6] = canmsg_string.rxMsgData[6];

// module2Cell3[7] = canmsg_string.rxMsgData[7];

// }

// if(canmsg_string.rxMsgData[7]==4) //if identifier in 8th spot is 1, it is

from cell 4

// {

// module2Cell4[0] = canmsg_string.rxMsgData[0];
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// module2Cell4[1] = canmsg_string.rxMsgData[1];

// module2Cell4[2] = canmsg_string.rxMsgData[2];

// module2Cell4[3] = canmsg_string.rxMsgData[3];

// module2Cell4[4] = canmsg_string.rxMsgData[4];

// module2Cell4[5] = canmsg_string.rxMsgData[5];

// module2Cell4[6] = canmsg_string.rxMsgData[6];

// module2Cell4[7] = canmsg_string.rxMsgData[7];

// }

// }

//

//

// // Atrexmsg.status = CAN_getInterruptCause(CANA_BASE); // Read the CAN-A

interrupt status to find the cause of the interrupt

// //

// // CAN_clearInterruptStatus(CANA_BASE, Atrexmsg.status);

// //

// // CAN_clearGlobalInterruptStatus(CANA_BASE, CAN_GLOBAL_INT_CANINT0); //

Clear the global interrupt flag for the CAN interrupt line

// //

// // Interrupt_clearACKGroup(INTERRUPT_ACK_GROUP9); // Acknowledge this

interrupt located in group 9

//

// //BMSMEM_handle u = &mem;

// canmsg_string.status = CAN_getInterruptCause(CANB_BASE); // Read the CAN

-B interrupt status to find the cause of the interrupt

// if(canmsg_string.status >= Module_Mailbox_1 && canmsg_string.status <=

Module_Mailbox_10) // This is a message from the module we are looking for

// {

// CAN_readMessage(CANB_BASE, canmsg_string.status, canmsg_string.

rxMsgData);

// switch(canmsg_string.rxMsgData[0])
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// {

// case CAN_Vcell: // Store Vcell into corresponding Module //

IF USING THIS CODE, MUST CHECK if canmsg or canmsg_string

// // xCell[canmsg.status*3-3].fCellVoltage = ADC_K_Vi*(((

canmsg.rxMsgData[2] <<8) + canmsg.rxMsgData[3])*1.0f);

// // xCell[canmsg.status*3-2].fCellVoltage = ADC_K_Vi*(((

canmsg.rxMsgData[4] <<8) + canmsg.rxMsgData[5])*1.0f);

// // xCell[canmsg.status*3-1].fCellVoltage = ADC_K_Vi*(((

canmsg.rxMsgData[6] <<8) + canmsg.rxMsgData[7])*1.0f);

// xCell[0].fCellVoltage = ADC_K_Vi*(((canmsg.rxMsgData[2]

<<8) + canmsg.rxMsgData[3])*2.0f);

// canmsg.Icell[0] = (((canmsg.rxMsgData[4] <<8) + canmsg.

rxMsgData[5]));

// CurrentInputInFloat = ADC_K_Ix*canmsg.Icell[0] ;

// xCell[0].fCellCurrent = (-ADC_K_Ix*(canmsg.Icell[0]) +

canmsg.FloatOffset);

// break;

// }

// // Now let’s make sure we estimate the SOC

// if (SOC_Estimate == 0)

// {

// vBmsEstInit( xCell, 0 );

// SOC_Estimate++;

// // Pack_IQ.CellSOC_CAN[0] = _IQ15(xCell[ 0 ].fCellSoc);

// // Pack_IQ.CellSOC_CAN_V2[0] = _IQ14(xCell[ 0 ].fCellSoc);

// // SOCMessages.txMsgData[0] = 1; // This is SOC information

// // SOCMessages.txMsgData[1] = 0;// This is the module average

// // SOCMessages.txMsgData[2] = (uint16_t)Pack_IQ.CellSOC_CAN

[0]>>8; // This is the first cell in this Module

// // SOCMessages.txMsgData[3] = (uint16_t)Pack_IQ.CellSOC_CAN

[0];// This is the first cell in this Module
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// // SOCMessages.txMsgData[4] = 0; // This is the second cell in

this Module

// // SOCMessages.txMsgData[5] = 0; // This is the second cell in

this Module

// // SOCMessages.txMsgData[6] = 0; // This is the third cell in

this Module

// // SOCMessages.txMsgData[7] = 0; // This is the third cell in

this Module

// // CAN_sendMessage(CANA_BASE, 14, MSG_DATA_LENGTH, SOCMessages.

txMsgData); // We are sending from mailbox #14

// }

// else

// {

// // Step in time

// vBmsEstStep( xCell, 0);

// // Transmit the estimated SOC

// }

// }

// // else if(canmsg.status == ComputerDebug_Mailbox_13) // Computer Debug

// // {

// // CAN_readMessage(CANA_BASE, ComputerDebug_Mailbox_13, canmsg.

rxMsgData);

// // }

// else // Unexpected message received

// {

// }

// Pack_IQ.CellSOC_CAN[0] = _IQ15(xCell[ 0 ].fCellSoc);

// Pack_IQ.CellSOC_CAN_V2[0] = _IQ14(xCell[ 0 ].fCellSoc);

// SOCMessages.txMsgData[0] = 1; // This is SOC information

// SOCMessages.txMsgData[1] = 0;// This is the module average

// SOCMessages.txMsgData[2] = (uint16_t)Pack_IQ.CellSOC_CAN[0]>>8; // This

is the first cell in this Module
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// SOCMessages.txMsgData[3] = (uint16_t)Pack_IQ.CellSOC_CAN[0];// This is

the first cell in this Module

// SOCMessages.txMsgData[4] = 0; // This is the second cell in this Module

// SOCMessages.txMsgData[5] = 0; // This is the second cell in this Module

// SOCMessages.txMsgData[6] = 0; // This is the third cell in this Module

// SOCMessages.txMsgData[7] = 0; // This is the third cell in this Module

// CAN_sendMessage(CANB_BASE, 14, MSG_DATA_LENGTH, SOCMessages.txMsgData);

// We are sending from mailbox #14

DebugCount++;

CAN_clearInterruptStatus(CANB_BASE, canbmsg.status); // Clear the

interrupt from message object

CAN_clearGlobalInterruptStatus(CANB_BASE, CAN_GLOBAL_INT_CANINT0); //

Clear the global interrupt flag for the CAN interrupt line

Interrupt_clearACKGroup(INTERRUPT_ACK_GROUP9); // Acknowledge this

interrupt located in group 9

}

/******************************************************************************

* FUNCTION : __interrupt void canbISR(void)

* return : void

* arg : void

* Created by : Mohamed Kamel

* Date created : 05/28/2018

* Description : This ISR is intended for responding to ATREX, it currently

only sends an arbitrary response for testing purposes

* :

* :

* Notes :

******************************************************************************/

interrupt void canaISR(void)
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{

// c++;

// Atrexmsg.status = CAN_getInterruptCause(CANA_BASE); // Read the CAN-A

interrupt status to find the cause of the interrupt

//

// CAN_clearInterruptStatus(CANA_BASE, Atrexmsg.status);

//

// CAN_clearGlobalInterruptStatus(CANA_BASE, CAN_GLOBAL_INT_CANINT0); // Clear

the global interrupt flag for the CAN interrupt line

//

// Interrupt_clearACKGroup(INTERRUPT_ACK_GROUP9); // Acknowledge this interrupt

located in group 9

//

// //BMSMEM_handle u = &mem;

// canmsg.status = CAN_getInterruptCause(CANA_BASE); // Read the CAN-A

interrupt status to find the cause of the interrupt

// if(canmsg.status >= Module_Mailbox_1 && canmsg.status <= Module_Mailbox_10)

// This is a message from the module we are looking for

// {

// CAN_readMessage(CANA_BASE, canmsg.status, canmsg.rxMsgData);

// switch(canmsg.rxMsgData[0])

// {

// case CAN_Vcell: // Store Vcell into corresponding Module

//// xCell[canmsg.status*3-3].fCellVoltage = ADC_K_Vi*(((canmsg

.rxMsgData[2] <<8) + canmsg.rxMsgData[3])*1.0f);

//// xCell[canmsg.status*3-2].fCellVoltage = ADC_K_Vi*(((canmsg

.rxMsgData[4] <<8) + canmsg.rxMsgData[5])*1.0f);

//// xCell[canmsg.status*3-1].fCellVoltage = ADC_K_Vi*(((canmsg

.rxMsgData[6] <<8) + canmsg.rxMsgData[7])*1.0f);

// xCell[0].fCellVoltage = ADC_K_Vi*(((canmsg.rxMsgData[2] <<8)

+ canmsg.rxMsgData[3])*2.0f);



69

// canmsg.Icell[0] = (((canmsg.rxMsgData[4] <<8) + canmsg.

rxMsgData[5]));

// CurrentInputInFloat = ADC_K_Ix*canmsg.Icell[0] ;

// xCell[0].fCellCurrent = (-ADC_K_Ix*(canmsg.Icell[0]) +

canmsg.FloatOffset);

// break;

// }

// // Now let’s make sure we estimate the SOC

// if (SOC_Estimate == 0)

// {

// vBmsEstInit( xCell, 0 );

// SOC_Estimate++;

//// Pack_IQ.CellSOC_CAN[0] = _IQ15(xCell[ 0 ].fCellSoc);

//// Pack_IQ.CellSOC_CAN_V2[0] = _IQ14(xCell[ 0 ].fCellSoc);

//// SOCMessages.txMsgData[0] = 1; // This is SOC information

//// SOCMessages.txMsgData[1] = 0;// This is the module average

//// SOCMessages.txMsgData[2] = (uint16_t)Pack_IQ.CellSOC_CAN[0]>>8;

// This is the first cell in this Module

//// SOCMessages.txMsgData[3] = (uint16_t)Pack_IQ.CellSOC_CAN[0];//

This is the first cell in this Module

//// SOCMessages.txMsgData[4] = 0; // This is the second cell in

this Module

//// SOCMessages.txMsgData[5] = 0; // This is the second cell in

this Module

//// SOCMessages.txMsgData[6] = 0; // This is the third cell in this

Module

//// SOCMessages.txMsgData[7] = 0; // This is the third cell in this

Module

//// CAN_sendMessage(CANA_BASE, 14, MSG_DATA_LENGTH, SOCMessages.

txMsgData); // We are sending from mailbox #14

// }

// else
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// {

// // Step in time

// vBmsEstStep( xCell, 0);

// // Transmit the estimated SOC

// }

// }

//// else if(canmsg.status == ComputerDebug_Mailbox_13) // Computer Debug

//// {

//// CAN_readMessage(CANA_BASE, ComputerDebug_Mailbox_13, canmsg.rxMsgData)

;

//// }

// else // Unexpected message received

// {

// }

// Pack_IQ.CellSOC_CAN[0] = _IQ15(xCell[ 0 ].fCellSoc);

// Pack_IQ.CellSOC_CAN_V2[0] = _IQ14(xCell[ 0 ].fCellSoc);

// SOCMessages.txMsgData[0] = 1; // This is SOC information

// SOCMessages.txMsgData[1] = 0;// This is the module average

// SOCMessages.txMsgData[2] = (uint16_t)Pack_IQ.CellSOC_CAN[0]>>8; // This is

the first cell in this Module

// SOCMessages.txMsgData[3] = (uint16_t)Pack_IQ.CellSOC_CAN[0];// This is the

first cell in this Module

// SOCMessages.txMsgData[4] = 0; // This is the second cell in this Module

// SOCMessages.txMsgData[5] = 0; // This is the second cell in this Module

// SOCMessages.txMsgData[6] = 0; // This is the third cell in this Module

// SOCMessages.txMsgData[7] = 0; // This is the third cell in this Module

// CAN_sendMessage(CANA_BASE, 14, MSG_DATA_LENGTH, SOCMessages.txMsgData); //

We are sending from mailbox #14

// DebugCount++;

// CAN_clearInterruptStatus(CANA_BASE, canmsg.status); // Clear the

interrupt from message object

//
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// CAN_clearGlobalInterruptStatus(CANA_BASE, CAN_GLOBAL_INT_CANINT0); //

Clear the global interrupt flag for the CAN interrupt line

//

// Interrupt_clearACKGroup(INTERRUPT_ACK_GROUP9); // Acknowledge this

interrupt located in group 9

canmsg.status = CAN_getInterruptCause(CANA_BASE); // Read the CAN-A interrupt

status to find the cause of the interrupt

if(canmsg.status >= Module_Mailbox_1 && canmsg.status <= Module_Mailbox_10) //

This is a message from the module we are looking for

{

CAN_readMessage(CANA_BASE, canmsg.status, canmsg.rxMsgData);

MATLABmsg[0] = canmsg.rxMsgData[0];

MATLABmsg[1] = canmsg.rxMsgData[1];

MATLABmsg[2] = canmsg.rxMsgData[2];

MATLABmsg[3] = canmsg.rxMsgData[3];

MATLABmsg[4] = canmsg.rxMsgData[4];

MATLABmsg[5] = canmsg.rxMsgData[5];

MATLABmsg[6] = canmsg.rxMsgData[6];

MATLABmsg[7] = canmsg.rxMsgData[7];

IALL = _IQ8toF(_IQ8((MATLABmsg[1]<<8)>>8) + (_IQ8(MATLABmsg[2])>>8));

Vdcref = _IQ8toF(_IQ8((MATLABmsg[3]<<8)>>8) + (_IQ8(MATLABmsg[4])>>8));

startupbits = MATLABmsg[7];

SOC_Estimate = (startupbits>>5) & 0x0001;

DroopEn = (startupbits>>6) & 0x0001;

}

// Transmit values to MATLAB over CAN
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uint16_t ModuleIndex;

for( ModuleIndex=0; ModuleIndex<4; ModuleIndex++)

{

Pack_IQ.CellSOC_CAN[ModuleIndex] = _IQ15(xCell[ ModuleIndex ].fCellSoc);

SOCMessages.txMsgData[2*ModuleIndex] = (uint16_t)Pack_IQ.CellSOC_CAN[

ModuleIndex]>>8; // This is the ModuleIndex cell in this Module

SOCMessages.txMsgData[2*ModuleIndex+1] = (uint16_t)Pack_IQ.CellSOC_CAN[

ModuleIndex];// This is the ModuleIndex cell in this Module

}

CAN_sendMessage(CANA_BASE, CAN_Mailbox_SOC, MSG_DATA_LENGTH, SOCMessages.

txMsgData); // We are sending from mailbox #14

for( ModuleIndex=0; ModuleIndex<4; ModuleIndex++)

{

Pack_IQ.CellVoltage_CAN[ModuleIndex] = _IQ12(xCell[ ModuleIndex ].

fCellVoltage);

VoltageMessages.txMsgData[2*ModuleIndex] = (uint16_t)Pack_IQ.

CellVoltage_CAN[ModuleIndex]>>8; // This is the ModuleIndex cell in

this Module

VoltageMessages.txMsgData[2*ModuleIndex+1] = (uint16_t)Pack_IQ.

CellVoltage_CAN[ModuleIndex];// This is the ModuleIndex cell in this

Module

}

CAN_sendMessage(CANA_BASE, CAN_Mailbox_Voltage, MSG_DATA_LENGTH,

VoltageMessages.txMsgData); // We are sending from mailbox #15

for( ModuleIndex=0; ModuleIndex<4; ModuleIndex++)

{

Pack_IQ.CellCurrent_CAN[ModuleIndex] = _IQ8(xCell[ ModuleIndex ].

fCellCurrent);
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CurrentMessages.txMsgData[2*ModuleIndex] = (uint16_t)Pack_IQ.

CellCurrent_CAN[ModuleIndex]>>8; // This is the ModuleIndex cell in

this Module

CurrentMessages.txMsgData[2*ModuleIndex+1] = (uint16_t)Pack_IQ.

CellCurrent_CAN[ModuleIndex];// This is the ModuleIndex cell in this

Module

}

CAN_sendMessage(CANA_BASE, CAN_Mailbox_Current, MSG_DATA_LENGTH,

CurrentMessages.txMsgData); // We are sending from mailbox #16

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//Data from module 2

for( ModuleIndex=4; ModuleIndex<8; ModuleIndex++)

{

Pack_IQ.CellSOC_CAN[ModuleIndex] = _IQ15(xCell[ ModuleIndex ].fCellSoc);

SOCMessages2.txMsgData[2*(ModuleIndex-4)] = (uint16_t)Pack_IQ.CellSOC_CAN[

ModuleIndex]>>8; // This is the ModuleIndex cell in this Module

SOCMessages2.txMsgData[2*(ModuleIndex-4)+1] = (uint16_t)Pack_IQ.

CellSOC_CAN[ModuleIndex];// This is the ModuleIndex cell in this

Module

}

CAN_sendMessage(CANA_BASE, CAN_Mailbox_SOC2, MSG_DATA_LENGTH, SOCMessages2.

txMsgData); // We are sending from mailbox #17

for( ModuleIndex=4; ModuleIndex<8; ModuleIndex++)

{

Pack_IQ.CellVoltage_CAN[ModuleIndex] = _IQ12(xCell[ ModuleIndex ].

fCellVoltage);

VoltageMessages2.txMsgData[2*(ModuleIndex-4)] = (uint16_t)Pack_IQ.

CellVoltage_CAN[ModuleIndex]>>8; // This is the ModuleIndex cell in

this Module
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VoltageMessages2.txMsgData[2*(ModuleIndex-4)+1] = (uint16_t)Pack_IQ.

CellVoltage_CAN[ModuleIndex];// This is the ModuleIndex cell in this

Module

}

CAN_sendMessage(CANA_BASE, CAN_Mailbox_Voltage2, MSG_DATA_LENGTH,

VoltageMessages2.txMsgData); // We are sending from mailbox #18

for( ModuleIndex=4; ModuleIndex<8; ModuleIndex++)

{

Pack_IQ.CellCurrent_CAN[ModuleIndex] = _IQ8(xCell[ ModuleIndex ].

fCellCurrent);

CurrentMessages2.txMsgData[2*(ModuleIndex-4)] = (uint16_t)Pack_IQ.

CellCurrent_CAN[ModuleIndex]>>8; // This is the ModuleIndex cell in

this Module

CurrentMessages2.txMsgData[2*(ModuleIndex-4)+1] = (uint16_t)Pack_IQ.

CellCurrent_CAN[ModuleIndex];// This is the ModuleIndex cell in this

Module

}

CAN_sendMessage(CANA_BASE, CAN_Mailbox_Current2, MSG_DATA_LENGTH,

CurrentMessages2.txMsgData); // We are sending from mailbox #19

DebugCount++;

CAN_clearInterruptStatus(CANA_BASE, canmsg.status); // Clear the interrupt

from message object

CAN_clearGlobalInterruptStatus(CANA_BASE, CAN_GLOBAL_INT_CANINT0); // Clear

the global interrupt flag for the CAN interrupt line

Interrupt_clearACKGroup(INTERRUPT_ACK_GROUP9); // Acknowledge this

interrupt located in group 9
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}

/******************************************************************************

* FUNCTION : void initADCSOC()

* return : void

* arg : void

* Created by : Josh Wooten

* Date created : 02/22/2021

* Description : Initialize the ADC start-of-conversion

* Notes :

******************************************************************************/

void initADCSOC()

{

// Initialize for c adc

// Select the channels to convert and the end of conversion flag

//

EALLOW;

AdccRegs.ADCSOC0CTL.bit.CHSEL = 1; // SOC0 will convert pin C1

// 0:C0 1:C1 2:C2 3:C3

// 4:C4 5:C5 6:C6 7:C7

// 8:C8 9:C9 A:C10 B:C11

// C:C12 D:C13 E:C14 F:C15

AdccRegs.ADCSOC0CTL.bit.ACQPS = 9; // Sample window is 10 SYSCLK cycles.

Number plus 1

AdccRegs.ADCSOC0CTL.bit.TRIGSEL = 5; // Trigger on ePWM1 SOCA

AdccRegs.ADCINTSEL1N2.bit.INT1SEL = 0; // End of SOC0 will set INT1 flag

AdccRegs.ADCINTSEL1N2.bit.INT1E = 1; // Enable INT1 flag

AdccRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; // Make sure INT1 flag is cleared
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EDIS;

}

/******************************************************************************

* FUNCTION : void initADC()

* return : void

* arg : void

* Created by : Josh Wooten

* Date created : 02/22/2021

* Description : Initialize the ADC

* Notes :

******************************************************************************/

void initADC(void) //Not used

{

//

// Setup VREF as internal

//

// SetVREF(ADC_ADCC, ADC_INTERNAL, ADC_VREF3P3);

ADC_setVREF(ADC_ADCC, ADC_INTERNAL, ADC_VREF2P5);

EALLOW;

//

// Set ADCCLK divider to /4

//

AdccRegs.ADCCTL2.bit.PRESCALE = 6;

//

// Set pulse positions to late

//

AdccRegs.ADCCTL1.bit.INTPULSEPOS = 1;
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//

// Power up the ADC and then delay for 1 ms

//

AdccRegs.ADCCTL1.bit.ADCPWDNZ = 1;

EDIS;

DELAY_US(1000);

}

/******************************************************************************

* FUNCTION : void initEPWM()

* return : void

* arg : void

* Created by : Josh Wooten

* Date created : 02/22/2021

* Description : Initialize the Pulse width modules

* Notes :

******************************************************************************/

void initEPWM(void)

{

EALLOW;

EPwm1Regs.ETSEL.bit.SOCAEN = 0; // Disable SOC on A group

EPwm1Regs.ETSEL.bit.SOCASEL = 4; // Select SOC on up-count

EPwm1Regs.ETPS.bit.SOCAPRD = 1; // Generate pulse on 1st event

EPwm1Regs.CMPA.bit.CMPA = 0x0800; // Set compare A value to 2048 counts

EPwm1Regs.TBPRD = 0xC000; // Set period to 4096*12 counts

EPwm1Regs.TBCTL.bit.CTRMODE = 3; // Freeze counter

EDIS;
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}

/******************************************************************************

* FUNCTION : void ChangeDroopValuesOverCAN(void)

* return : void

* arg : void

* Created by : Mohamed Ahmed

* Date created : 07/14/2018

* Description : Detect Series or parallel connection

* Notes :

******************************************************************************/

//void ChangeDroopValuesOverCAN(uint16_t DroopValue)

//{

// if (ChangeDroopOnce)

// {

//

// TransmitToModules[0] = 3;

// TransmitToModules[1] = DroopValue;

// TransmitToModules[2] = 1; // Set to 0 to ignore the calibrated offset!

// TransmitToModules[3] = 0;

// TransmitToModules[4] = 0;

// TransmitToModules[5] = 0;

// TransmitToModules[6] = 0;

// TransmitToModules[7] = 0;

//

// CAN_sendMessage(CANB_BASE, 15, MSG_DATA_LENGTH, TransmitToModules); //

Send Delta Vref and Irefs to the appropriate Module

// CAN_sendMessage(CANB_BASE, 16, MSG_DATA_LENGTH, TransmitToModules); //

Send Delta Vref and Irefs to the appropriate Module

// CAN_sendMessage(CANB_BASE, 17, MSG_DATA_LENGTH, TransmitToModules); //

Send Delta Vref and Irefs to the appropriate Module

// CAN_sendMessage(CANB_BASE, 18, MSG_DATA_LENGTH, TransmitToModules); //

Send Delta Vref and Irefs to the appropriate Module
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// CAN_sendMessage(CANB_BASE, 19, MSG_DATA_LENGTH, TransmitToModules); //

Send Delta Vref and Irefs to the appropriate Module

// CAN_sendMessage(CANB_BASE, 20, MSG_DATA_LENGTH, TransmitToModules); //

Send Delta Vref and Irefs to the appropriate Module

// CAN_sendMessage(CANB_BASE, 21, MSG_DATA_LENGTH, TransmitToModules); //

Send Delta Vref and Irefs to the appropriate Module

// CAN_sendMessage(CANB_BASE, 22, MSG_DATA_LENGTH, TransmitToModules); //

Send Delta Vref and Irefs to the appropriate Module

// CAN_sendMessage(CANB_BASE, 23, MSG_DATA_LENGTH, TransmitToModules); //

Send Delta Vref and Irefs to the appropriate Module

// CAN_sendMessage(CANB_BASE, 24, MSG_DATA_LENGTH, TransmitToModules); //

Send Delta Vref and Irefs to the appropriate Module

// ChangeDroopOnce = 0;

// }

//

//}

/******************************************************************************

* FUNCTION : ONeSecondSOCEstimator(void)

* return : void

* arg : void

* Created by : MOhamed

* Date created : 10/23/2018

* Description : SOC Estimation every one second

* Notes :

******************************************************************************/

void ONeSecondSOCEstimator(void)

{

// uint16_t CellIndex = 0;

// uint16_t ModuleIndex = 0;

//
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// for(ModuleIndex = 0; ModuleIndex< 10; ModuleIndex++)

// {

// for(CellIndex = 3*ModuleIndex; CellIndex< (3*ModuleIndex + 3); CellIndex

++)

// {

// vBmsEstStep( xCell, CellIndex);

// }

// }

// vBmsEstStep( xCell, CellIndex);

}

/******************************************************************************

* FUNCTION : SOCInitialization(void)

* return : void

* arg : void

* Created by : MOhamed

* Date created : 10/23/2018

* Description : SOC Initialization Function

* Notes :

******************************************************************************/

void SOCInitialization(void)

{

// Get initial SOC’s

// uint16_t i = 0;

// uint16_t j = 0;

// for(j = 0; j< 10; j++) // Make sure that modules have sent data to ensure

that useful data is put into initial SOC estimation

// {

// for(i = 3*j; i< (3*j+3); i++)

// {

// vBmsEstInit( xCell, i ); // Initial Calculation of SOC for each cell i

// }
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// }

// vBmsEstInit( xCell, i );

}

/******************************************************************************

* FUNCTION : OneSecondTemperatureCalculator(void)

* return : void

* arg : void

* Created by : MOhamed

* Date created : 10/23/2018

* Description : Temperature Interpolation every one second

* Notes :

******************************************************************************/

void OneSecondTemperatureCalculator(void)

{

// uint16_t CellIndex = 0;

// uint16_t ModuleIndex = 0;

//

// for(ModuleIndex = 0; ModuleIndex< 10; ModuleIndex++)

// {

// PowerBoardThermistor(&boardTemp, ModuleIndex);

// // Update the temperature value for each cell in the Handle

// for(CellIndex = 3*ModuleIndex; CellIndex< (3*ModuleIndex+3); CellIndex++)

// {

// xCell[CellIndex].fCellTemperature = boardTemp.Result[ModuleIndex];;

// Initial Calculation of SOC for each cell i

// }

// }

}
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/******************************************************************************

* FUNCTION : OneSecondHandle(void)

* return : void

* arg : void

* Created by : MOhamed

* Date created : 10/23/2018

* Description : One Second Function Call

* Notes :

******************************************************************************/

void OneSecondHandle(void)

{

if (SOC_Estimate == 0)

{

// SOCInitialization();

//AllowRetrieve = 1;

//CanQ0.InitializeI2CData = 2; // Here, retrieve all the data from I2C

EEPROM

}

else

{

//if (AllowRetrieve == 2)

//{

// Estimate SOC

// ONeSecondSOCEstimator();

//}

}

// Calculate Deltas and SOCs and then transmit them over CAN

//BMSAveraging();
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// uint16_t MOduleIndex = 0;

// for(MOduleIndex=0; MOduleIndex<10; MOduleIndex++)

// {

// SOCMessages.txMsgData[0] = 1; // This is SOC information

// SOCMessages.txMsgData[1] = 0;// This is the module average

// SOCMessages.txMsgData[2] = (uint16_t)Pack_IQ.CellSOC_CAN[3*MOduleIndex

]>>8; // This is the first cell in this Module

// SOCMessages.txMsgData[3] = (uint16_t)Pack_IQ.CellSOC_CAN[3*MOduleIndex

];// This is the first cell in this Module

// SOCMessages.txMsgData[4] = (uint16_t)Pack_IQ.CellSOC_CAN[3*MOduleIndex +

1]>>8; // This is the second cell in this Module

// SOCMessages.txMsgData[5] = (uint16_t)Pack_IQ.CellSOC_CAN[3*MOduleIndex +

1]; // This is the second cell in this Module

// SOCMessages.txMsgData[6] = (uint16_t)Pack_IQ.CellSOC_CAN[3*MOduleIndex +

2]>>8; // This is the third cell in this Module

// SOCMessages.txMsgData[7] = (uint16_t)Pack_IQ.CellSOC_CAN[3*MOduleIndex +

2]; // This is the third cell in this Module

// CAN_sendMessage(CANA_BASE, MOduleIndex+14, MSG_DATA_LENGTH, SOCMessages.

txMsgData);

// }

// Modified by Josh

//

//

//

// SOCMessages.txMsgData[0] = a; // This is a test varriable

// SOCMessages.txMsgData[1] = 0;

// SOCMessages.txMsgData[2] = 0;

// SOCMessages.txMsgData[3] = 0;

// SOCMessages.txMsgData[4] = 0;
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// SOCMessages.txMsgData[5] = 0;

// SOCMessages.txMsgData[6] = 0;

// SOCMessages.txMsgData[7] = 0;

// CAN_sendMessage(CANB_BASE, 13, MSG_DATA_LENGTH, SOCMessages.txMsgData);

}
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