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ABSTRACT

Active Stability Monitoring and Stability Control of DC Microgrids Using Incremental

Continuous Injection

by

Rohail Hassan, Doctor of Philosophy

Utah State University, 2021

Major Professor: Regan Zane, PhD
Department: Electrical and Computer Engineering

Existing dc microgrids such as those integrating renewable energy to the grid, and

emerging dc microgrids such as all-electric ships, more-electric aircraft, automobiles and

automobile charging stations all involve several kinds of power electronic converters con-

nected to a common dc bus. Stable operation of these interfacing converters for all operating

conditions has been a topic of renewed interest in the last couple of decades. Tradition-

ally, dc microgrids have been designed conservatively to be over-damped and able to handle

worst case conditions. However, increasing power capacity of emerging dc microgrids causes

this conservative design to become cost and size prohibitive, and overdamping causes the

system to become slow and unable to handle high bandwidth loads such as pulsed power

loads, radars etc. To reduce the dependency on passives and to increase system response

speed, active techniques have been proposed so that the system may be designed with

smaller filters and active damping has been used to assist in guaranteeing system stability.

Traditional design of dc microgrids uses impedance-based stability analysis method origi-

nally developed to analyze stability of cascaded converters and later extended to include

multiple interfaced converters. This proved to be useful in the design stages for systems

with duplicated sources/loads like in solar systems. However, the existing stability analysis
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methods are not applicable for online evaluation of stability and for active stabilization in a

dynamic system with reconfiguration and addition/removal of various kinds of sources and

loads.

This dissertation first re-visits impedance-based stability analysis and develops a gen-

eral stability criterion which is easily applicable to complex dc microgrids, and highly

suitable for online evaluation of stability. Next, an online stability monitoring system is

developed based on the new criterion which uses incremental continuous injection by an

existing converter interfacing energy storage in the system and continuously evaluates sys-

tem stability margin. Furthermore, this dissertation develops an active stability control

for dc microgrids which utilizes the evaluation of the continuous monitor and shapes the

dc bus interface impedance of the converter interfacing energy storage to maintain a pre-

scribed system stability margin. The theory and techniques developed in this dissertation

are demonstrated on a lab scale 2 kW dc microgrid.

(80 pages)
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PUBLIC ABSTRACT

Active Stability Monitoring and Stability Control of DC Microgrids Using Incremental

Continuous Injection

Rohail Hassan

Electrified transportation and integration of renewable energy in the electric power grid

requires the use of power electronic converters for integrating different forms of power; from

ac to dc, dc to ac, dc to dc, etc. Recent trend towards electrifying automobiles, aircraft

and ships, and increasing penetration of renewable energy has increased the required power

levels and number of the power electronics converters connected together in a dc microgrid

system. Stable operation of these interfacing converters for all operating conditions has

been a topic of renewed interest in the last couple of decades. Traditionally, dc microgrids

have been designed conservatively to handle the worst case conditions. However, increasing

power capacity of emerging dc microgrids causes this conservative design to become cost and

size prohibitive, and over-designing causes the system to become slow and unable to handle

fast loads such as pulsed power loads, radars etc. To reduce the dependency on passives

components and to increase system response speed, recent literature proposed techniques

using control so that the system may be designed with smaller filters and guaranteed with

system stability. Traditional design of dc microgrids extend the existing stability analysis

techniques originally developed to analyze stability of cascaded power converters. This

proved to be useful in the design stages for systems with duplicated power sources/loads

like in solar systems. However, the existing stability analysis methods are not applicable for

online evaluation of stability and for control-based stabilization in a dynamic system with

reconfiguration and addition/removal of various kinds of sources and loads.

This dissertation first develops a general stability criterion which is easily applicable to

complex dc microgrids, and highly suitable for online evaluation of stability. Next, an online
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stability monitoring system is developed based on the new criterion which uses incremental

continuous injection by an existing converter interfacing energy storage in the system and

continuously evaluates system stability margin. Furthermore, this dissertation develops an

active stability control for dc microgrids which utilizes the evaluation of the continuous

monitor and provides additional damping without adding any passive filters. The theory

and techniques developed in this dissertation are demonstrated on a lab scale 2 kW dc

microgrid.
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CHAPTER 1

INTRODUCTION

Over the past couple of decades, there has been a great push towards electrification of

transportation. The increased power level and interfacing of different kinds of power sources

and loads including energy storage integration have led to new challenges in terms of design

and stability analysis of such systems. Figure 1.1 shows how the future dc microgrid may be

configured. Examples of such systems are found in electric vehicles [1], electric aircraft [2]

and all-electric ships [3, 4].

There are two main causes of stability degradation within a dc microgrid, 1) the con-

stant power load effects that exhibit negative incremental impedance and provide constraints

on the design of the dc characteristics of the interfacing converters, and 2) interactions of

the feedback loop created by the input/output impedances of the interconnected converters

which dictate the system small-signal stability and provide constraints on the control and

Source

Plug-n-
play 

Loads

Energy 
Storage 

Converter

Source

Energy 
Storage 

ConverterFixed 
Loads

Plug-n-
play 

Loads

Fixed 
Loads

ContactorContactor

Dc Distribution

Fig. 1.1: Representative future dc microgrid system.
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Fig. 1.2: Cascade connection of a source and a constant power load; (a) diagram, and (b)
dc equivalent model.

design of passives components.

1.1 Negative Incremental Resistance of Constant Power Loads

Consider a simple case where a source, with a Thevenin equivalent voltage Vs and an

output resistance Rs, is connected to a constant power load (CPL), as shown in Fig. 1.2a.

The current of the CPL is given by

iL =
PL

vbus
, (1.1)
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𝑉𝑠

𝑉𝑏𝑢𝑠

𝐼𝐿

𝑣𝑏𝑢𝑠

𝑖𝐿

Increasing PL

Fig. 1.3: I-V characteristics of source and load with increasing load power.

where PL is the load power and vbus is the dc bus voltage. Differentiating (1.1), we can find

the load incremental resistance as

RL =
∂vbus
∂iL

= −v2bus
PL

. (1.2)

The resulting dc-equivalent circuit for the cascade connection is shown in Fig. 1.2b. The

I-V characteristics of the source and load in Fig. 1.2 are shown in Fig. 1.3, where the source

characteristics are shown by a thick green line and the load characteristics are shown by

the red curves.

From Fig. 1.3, it can be seen that, for any power level, the dc operating point is

given by the intersection of the source and load characteristics, (Vbus, IL). As the load

power increases, the load characteristics move upward and RL decreases in magnitude. The

dotted line in Fig. 1.3 shows the maximum power that has an intersection with source

characteristics. At this power the negative resistance magnitude is equal to the source

resistance. If the power increases further, there is no intersection and the dc bus voltage

collapses with load current increasing. This gives us the first condition of stability given by

||Rs|| < ||RL|| ∀ PL. (1.3)
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Fig. 1.4: Small-signal model of cascade connection with source and load impedances.

1.2 Impedance Interactions

The second cause of stability degradation in a dc microgrid is the interaction of the

interconnected converters and their controllers. This is analyzed by using the small-signal

models of the source and load, evaluated around an operating point. Among the several sta-

bility analysis methods proposed in the literature, impedance-based methods have become

popular. In impedance-based stability analysis, the source and the load are represented

by their Thevenin or Norton equivalent, with a complex impedance that is a function of

the Laplace variable ‘s’, as shown in Fig. 1.4. The source impedance, Zs, and the load

impedance, ZL, shown in Fig. 1.4, capture the dynamics of the source and load converters

respectively, including the behavior of the passive components and the closed loop control

algorithms. Furthermore, the dc values of these impedances correspond to the resistances

are shown in Fig. 1.2b, i.e.

Zs(0) = Rs, ZL(0) = RL. (1.4)

Extending the stability condition found for the dc case in (1.3) to each frequency component,

a simplistic but sufficient condition for stability is derived as

||Zs(s)|| < ||ZL(s)|| ∀ {s, PL}. (1.5)

The stability criterion shown in (1.5) was developed by R. D. Middlebrook, and is referred
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to as the Middlebrook Criterion [5]. The Middlebrook Criterion states that a cascade

connection of power electronics converters will be stable if, for all frequencies and power

levels, the magnitude of the source output impedance, Zs, is lower than the magnitude of

the load input impedance, ZL. While the Middlebrook Criterion leads to a stable system

with one source and one load, it leads to a highly conservative design with large filters and

slow controllers, which becomes prohibitive as the power level of the dc microgrid increases.

Furthermore, the Middlebrook Criterion cannot be easily extended to dc microgrid systems

with multiple sources, loads and bidirectional converters. The current literature proposes

several extensions of the Middlebrook’s impedance-based stability criterion, however, very

few are applicable to the dynamic and re-configurable dc microgrid such as that shown in

Fig. 1.1, and fewer still allow for low cost implementation.

1.3 Impedance Compensation for Stability

Recent research has focused on reducing the conservatism posed by the Middlebrook

Criterion. This has led to system designs that violate the Middlebrook Criterion but are

still stable according to more relaxed stability criteria. For systems that do not satisfy

the stability criteria due to changing system conditions or addition of new converters in

the system, impedance-based stabilization techniques have been proposed in literature. For

the one-source-one-load system shown in Fig. 1.4, if Zs and ZL do not satisfy the desired

stability criteria, a compensation impedance may be added in series as Zcs or in parallel

as Zcp, as shown in Fig. 1.5a. If it is desired to satisfy the Middlebrook Criterion, the

compensation impedance may be designed such that

||Zs,eff (s)|| < ||ZL(s)|| ∀ {s, PL}, (1.6)

where Zs,eff = Zcp//Zs if parallel compensation is used, or Zs,eff = Zcs + Zs if series

compensation is used. The effective small-signal model of the cascade connection is shown

in Fig. 1.5b.
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Fig. 1.5: Impedance-based compensation for stability; (a) series- and parallel-compensation,
and (b) effective small-signal model.
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The compensation impedance may be implemented using passive components compris-

ing resistors, capacitors and inductors, but it adds to the cost and volume of the system,

which is undesirable. An attractive alternative is active compensation in which the control

of a converter in the system is used to emulate the behavior of resistors, capacitors, and

inductors. This approach helps to reduce the system size and cost, but it requires online

monitoring of system stability. This is the approach that is taken in this work.

1.4 Contributions of this Thesis

Traditional dc microgrid system design methods lead to system overdesign including

oversizing of filters and slow controllers. Future dc microgrids require higher bandwidth

controllers to handle loads such as radars and pulsed power loads, and size and weight

constraints restrict the size of the filters that can be used. This poses a challenge in terms of

managing loads and maintaining stability. To avoid system overdesign, active stabilization

techniques have been developed which reduce dependence on passives and allow for higher

load bandwidths. Application of these techniques require online system identification for

which several methods have been developed. There are three main accomplishments in this

thesis:

1. Re-visited the impedance-based stability analysis of dc microgrids and developed a

method that can handle a dynamically re-configurable system such as that shown in

Fig. 1.1 and is well suited for online monitoring of system health in such systems,

2. Designed a method to measure system stability online and continuously as the system

operating point changes in order to provide a proactive approach for maintaining

system stability, and

3. Developed a control method to regulate system stability with a prescribed stability

margin by shaping the impedance of the dc bus using power converter interfacing

energy storage.
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The work done in this thesis to demonstrate these achievements has been published in

high quality conferences and journals. Each published paper reviews the literature, details

the design and implementation, and shows hardware results for one of the contributions

mentioned above. The published papers, which are attached thereafter, are introduced

below:

1. Nodal Impedance-Based Stability Analysis of Dc Nanogrids [6]: This paper proposes a

novel stability analysis method based on nodal analysis targeted for future dc nanogrid

systems. The proposed method does not require source and load identification or

grouping and hence can be applied easily in a dynamically changing system. Fur-

thermore, it is shown that the analysis using the proposed method can be performed

at the terminal of any converter in the dc nanogrid, making this an ideal candidate

for online stability analysis. The proposed method provides necessary and sufficient

conditions for stability, and leads to new solutions for active stabilization.

2. Continuous Stability Monitoring of DC Microgrids Using Controlled Injection [7]: This

paper presents a novel system stability monitor that can be added onto any existing

converter in the system as an auxiliary function and continuously monitors the stabil-

ity margin of the interconnected system. The stability margin evaluation is enabled

by Nodal Stability Analysis. The proposed continuous monitor injects a controlled

single-frequency perturbation using one of the converters already in the system, with

a small amplitude that does not affect the normal operation of the system. The pro-

posed method can be used in any interconnected system for proactive monitoring and

maintaining the system stability, and its continuous nature would enable development

of new techniques in adaptive stability enhancement of dc microgrids.

3. High Frequency Link Isolated Multi-Port Converter for Active Cell Balancing Ap-

plications [8]: This paper proposes an isolated multi-port converter based on high-

frequency ac link to combine the multiple modular cell-level active balancing convert-

ers into a single multi-port converter. The paper focuses on introducing this novel

converter topology which has applications where a battery energy storage is interfaced



9

with a dc microgrid system. The proposed topology can be utilized in achieving cell

level balancing as well as serve as a platform for implementing the stability monitoring

tasks for the dc microgrid system.

4. A Continuous Stability Margin Monitor for DC Microgrids (in submission): This

article extends the stability monitor presented in [7] by developing a rigorous small-

signal model and design guidelines for the stability monitor. The article proposes a

novel control strategy to improve the dynamics of the stability monitor controllers

and demonstrates the effectiveness of the designed monitor on a lab scale 2 kW dc

microgrid system.

5. Active Stability Control of DC Microgrids using Dynamic Virtual Immittance (in

submission): This paper presents an active stabilization method for dc microgrids

based on a dynamic virtual immittance (DVI), where immittance is used to combine

impedance and admittance. The proposed DVI may be emulated at the terminal of

one of the converters already in the dc microgrid, or emulated using an additional

converter with a fraction of the power rating, added to the system and interfacing

capacitive or battery energy storage. A feedback loop regulates the stability margin

of the dc microgrid system. The output of the stability regulator continuously adjusts

the parameters of the DVI to add just enough damping at the critical frequency as

required to maintain the reference stability margin, thereby optimizing the reactive

power required to support the system stability. In this paper, the stability margin

and critical frequency are continuously evaluated using a continuous stability mar-

gin monitor [7] that is implemented in the converter emulating the DVI. In general,

however, application of the DVI can use any system stability monitor that provides

information about the system stability and critical frequency. The stability regulator,

monitor, and DVI are implemented in a single CMOD A7 field-programmable gate

array (FPGA) [9] using fixed-point computations, along with the primary control

functions of the converter, demonstrating low computational cost. Its performance is

demonstrated on a lab scale 2 kW dc microgrid.
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Abstract— With the growing interest in electrification and 
interfacing of clean energy and energy storage, new challenges are 
emerging in stability analysis and control of such systems. Existing 
stability analysis methods work well for systems with pre-defined 
power flow and fixed architecture, and most lead to design criteria 
for source and load impedances. However, the methods presented 
in the literature are not suitable for analyzing dynamically 
changing systems, especially for online stability evaluation and 
monitoring. The nodal impedance-based stability analysis method 
presented in this paper extends the boundaries of the existing 
criteria and leads to a practical and effective solution for online 
stability evaluation and monitoring. Hardware results are 
provided to validate the proposed analysis method on a scaled-
down nanogrid system.  

Keywords—impedance, stability, dc nanogrid, microgrid, 
Nyquist 

I. INTRODUCTION 
Growing penetration of renewable energy and a growing 

interest in electrification of transportation has led to new 
challenges in terms of stability analysis and control of such 
systems. Future dc nanogrids are expected to involve 
dynamically changing systems with bi-directional converters 
incorporating energy storage, plug and play loads and system 
reconfiguration. Fig. 1 shows how the future dc nanogrid 
systems are expected to be configured. Examples of such 
systems are found in electric aircraft and electric ships [1-4]. The 
complexity of the emerging dc nanogrids has led to a renewed 
interest in stability analysis of such systems [5-8]. 

There are two main causes of stability degradation within a 
dc nanogrid, 1) interactions of the feedback loop created by the 
input/output impedances of the interconnected converters and 2) 
the constant power load effects that exhibit negative incremental 
impedance. These two causes can compromise the stability of 
both the converters and the complete interconnected nanogrid 
system. Several approaches have been proposed for modeling 
the dynamics of such systems, including eigenvalue based full 
system modeling [9], nonlinear modeling [10], and impedance-
based modeling techniques. Among these, impedance-based 
modeling techniques have been shown to facilitate design 

specifications for sources and loads [11-15]. The existing 
criteria are restrictive in that they require connected converters 
identifies as sources and loads, and require grouping of sources 
and loads in order to apply the criteria. This becomes 
increasingly difficult in systems with reconfigurations, 
bidirectional converters and power flow changes. Furthermore, 
the existing criteria are not easily to apply online in a 
dynamically changing system such as that in Fig. 1. 

This paper proposes a novel stability analysis method based 
on nodal analysis targeted for future dc nanogrid systems. The 
proposed method does not require source and load identification 
or grouping and hence can be applied easily in a dynamically 
changing system. Furthermore, it is shown that the analysis 
using the proposed method can be performed at the terminal of 
any converter in the dc nanogrid, making this an ideal candidate 
for online stability analysis. The proposed method provides 
necessary and sufficient conditions for stability, and leads to 
new solutions for active stabilization. 

The rest of the paper is organized as follows; Section II 
reviews impedance-based stability analysis methods to highlight 
the need for a new method, Section III presents the nodal 
impedance-based stability analysis method, Section IV presents 

This work was supported in part by the Raytheon Company through the 
Utah State University Power Electronics Lab (UPEL). 
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Fig. 1 Future dc nanogrid systems [20-27]. 



hardware test setup and results in order to validate the results 
and Section V concludes the paper by summarizing the findings 
and identifying the applications of the proposed method. 

II. IMPEDANCE-BASED STABILITY ANALYSIS 
Impedance-based stability analysis is done by representing 

sources and loads by their output impedances, as shown in 
Fig. 2. For a multi-source multi-load system, traditional methods 
typically group sources and loads into a single-source single-
load system using various methods [12-13, 16]. The analysis is 
then performed in an identical manner on the simpler system. 
For the voltage source system shown in Fig. 2, the dc bus voltage 
is found as 

  (1) 

where Vs and Zs represent the Thevenin equivalent voltage and 
output impedance of the source respectively, and ZL represents 
the input impedance of the load. The right-hand-side of (1) 
forms a closed loop system whose stability is determined by the 
following conditions. 

1) ZL must not have a right half plane (RHP) zero, and 

2) Minor loop gain Zs/ZL must satisfy the Nyquist criterion. 

If these conditions are satisfied, the system is guaranteed to 
be stable. If the source has a current source behavior, it is 
represented by its Norton equivalent, as shown in Fig. 2, and the 
load current is found as 

 , (2) 

where Is is the Norton equivalent current source and IL is the load 
input current. The conditions for stability are then derived as 
follows. 

1) Zs must not have a RHP zero, and 

2) Minor loop gain ZL/Zs must satisfy the Nyquist criterion. 

It is interesting to note that by using Thevenin equivalent or 
Norton equivalent circuit for the source, we get completely 
opposite conditions for stability. One would expect the 
conditions of stability to be the same as any Thevenin equivalent 
circuit can be mathematically represented as a Norton equivalent 
as well. It will be shown in Section III that the conditions leading 
from (1) and (2) are in fact a subset of the conditions required 
for stability and that both the minor loop gain and its inverse can 
equivalently represent the system. The conditions derived from 
(1) and (2) lead to simpler application of the Nyquist criterion 
than the general method proposed in this paper, and would still 
be preferred at system design-time. 

Using the impedance-based stability analysis, several design 
criteria have been proposed in the literature. Fig. 3 shows 
commonly used criteria, including the Middlebrook criterion 
[16], gain margin phase margin (GMPM) criterion [12], 
opposing argument criterion [13], the energy source analysis 
consortium (ESAC) criterion [17] and the passivity-based 
stability criterion [18]. In general, the system is guaranteed to be 
stable if the Nyquist plot of the impedance loop gain does not 

enter the forbidden region defined by each criterion, provided 
that the converters/loads are stable individually [11]. 

The existing stability analysis methods and criteria become 
increasingly hard to apply on emerging dc nanogrid systems 
such as that shown in Fig. 1. The bidirectional energy storage 
converters (ESCs) can be a source or a load depending on the 
operating point. Using the existing methods the ESC would need 
to be grouped differently based on the operating point, making 
the minor loop gain dependent on the operating point. 
Furthermore, evaluation of stability using the existing methods 
which require source/load grouping would have a different 
interface evaluated every time a converter (source or load) is 
added or removed from the system. The evaluation would 
require complete system information (for analytical methods) or 
changing the point of injection (for measurement based 
methods) in order to reduce the system to the simpler form of 
Fig. 2. The existing methods also do not lend themselves to 
online monitoring of stability and active stabilization in a 
dynamically changing system of Fig. 1. 

III. PROPOSED NODAL IMPEDANCE-BASED STABILITY 
ANALYSIS 

The impedance-based analysis approach presented in this 
paper is based on nodal impedance analysis. The most important 
aspect of the proposed method is that unlike the existing criteria 
that typically group sources and loads into separate subsystems, 
the proposed method does not require converters to be defined 
as sources or loads, hence becoming impervious to changes in 
power flow, addition/removal of converters from the system or 
system reconfigurations. By allowing the use of the generalized 

 
Fig. 3 Impedance-based stability criteria from literature. 
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Nyquist stability criterion, the proposed method provides 
necessary and sufficient conditions for stability. Furthermore, 
the proposed method performs the stability analysis at the 
terminal of one (any) of the converters connected at a system 
node, making this an ideal candidate for online implementation 
based on online measurement.  

A. Derivation of the Nodal Stability Criteria 
Consider a system with n converters (any of which could be 

sources or loads) connected to the dc bus of a nanogrid, as shown 
in Fig. 4. The sources and loads are represented by their 
Thevenin equivalent models. The small-signal current injected 
by i-th converter into the dc bus is given by 

  (3) 

where Vi and Zoi are the Thevenin equivalent voltage and output 
impedance of the converter as shown in Fig. 4, and all of the 
variables of (3) are functions of the Laplace variable ‘s’. Adding 
the currents from all converters and equating to zero, we get 

  (4) 

Each term of the summation on the left-hand side of (4) 
represents the current injected into an ideal dc bus by i-th 
converter. If the converters in Fig. 4 were represented by Norton 
equivalent rather than Thevenin equivalent, the Vi/Zoi terms in 
the summation would be replaced by the Norton current sources 
Ii, but the right-hand side of (4) will remain the same. Thus, there 
is no loss of generality by representing converters with their 
Thevenin equivalent. From (4), the small-signal voltage at the 
dc bus is found as 

  (5) 

where Vi are the ideal voltage sources or loads, and Zoi are the 
output impedances. For the general form shown in (5), the small-
signal stability of the dc bus voltage depends on two things: 

1) Individual sources and loads, Vi/Zoi (or Ii), are stable when 
connected to an ideal dc bus, i.e. Zoi does not have any 
right-half plane (RHP) zeros, and 

2) The bus impedance, which is a parallel combination of all 
of the converter impedances, looking into the node, is 
stable. 

Generally, each source and load in the system is designed to 
be stable individually, so the first condition is automatically 
satisfied. Hence, the dc bus voltage stability can be evaluated by 
the bus impedance at the node which represents the impedance 
interactions. This forms the nodal stability criteria which 
provides necessary and sufficient conditions for stability. 

B. Evaluation of Stability from Bus Impedance 
The overall bus impedance is comprised of n impedances 

which are connected in parallel. By partitioning the system in 
different ways, this parallel combination can be expanded in 

 ways. As illustrated in Fig. 5, one example of the 
expansion at the terminal of arbitrary converter 1 can be given 
as  

 , (6) 

where Zaway,1 = Zo2…//Zon, as shown in Fig. 5. In a similar 
way, the generalized form of the bus impedance seen from the 
terminal of i-th converter can be expressed as 

 , (7) 

where Zoi is the output impedance of converter i and Zaway,i is 
the rest of the bus impedance excluding Zoi. Conceptually, Zaway,i 
can be seen as the impedance of the system looking from the 
terminal of i-th converter. Equation (7) shows that the bus 
impedance forms a closed loop system whose minor loop gain, 
which is used to evaluate system stability, can be defined as 
either Zoi/Zaway,i or Zaway,i/Zoi. In the preceding derivation, none 
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of the converters connected to the dc bus were classified as 
sources or loads, which emphasizes that regardless of the power 
flow direction, the system stability can be evaluated by 
evaluating the minor loop gain formed by the expansion given 
in (7). 

Assuming that the first stability condition defined in the 
previous subsection is satisfied and all converters are stable 
individually, the overall system is stable if and only if the closed 
loop system formed by the bus impedance is stable. With the 
minor loop gain given in (7), the system is stable if the Nyquist 
plot of the ratio Zoi/Zaway,i or Zaway,i/Zoi satisfies the Nyquist 
stability criterion. It is important to note here that in a nanogrid 
system, Zaway,i consists of a complex combination of impedances 
which may include cable impedances, contact impedances, 
parameter variations and power flow variations. One or more of 
these may cause Zaway,i to have RHP zero, which in turn causes 
a RHP pole in the minor loop gain. Hence, to analyze the 
stability in such cases, use of the generalized Nyquist criterion 
is required [19]. By allowing this, necessary and sufficient 
conditions for stability are obtained in all cases since no 
assumptions are made about Zaway,i. 

IV. HARDWARE SETUP AND RESULTS 
A small system emulating essential parts of a dc nanogrid, 

including a source converter, a load converter and a bidirectional 
energy storage converter (ESC), has been built to validate the 
proposed stability analysis and evaluation approach, as shown 
in Fig. 6. In the system illustrated in Fig. 6, where all converters 
are synchronous buck converters, the source and load converters 
are rated for 100 W, the ESC is rated at 20 W, and the bus 
voltage is 5 V. The load converter has a 4.7 uH input filter to 
limit EMI injection into the bus. The source converter follows a 
droop characteristic to regulate the output voltage based on the 
load. The load converter regulates its output load voltage, hence 
appearing as a constant power load to the dc bus. The 
bidirectional converter regulates its output current to/from the 
dc bus based on a voltage droop. 

A. System Control and Impedance Modeling 
 The source converter and the ESC each have a fast current 

control loop regulating their output currents. Each of them have 
an outer loop regulating the output voltage with a voltage 
reference following the droop characteristics shown in Fig. 7. 
For the source converter, the PI controllers for the current and 
voltage loops were designed assuming a 100 W resistive load. 
For the ESC, the PI controllers were designed assuming the 
droop resistance of the source converter as the load. The load 
converter regulates its output voltage and feeds a 0.1 Ω resistive 
load, appears as a constant power load on the dc bus with the dc 
characteristics shown in Fig. 7. The detailed control diagram for 
the source converter, with its small-signal model, is shown in 
Fig. 8. The ESC has the same control structure as the source 
converter with the difference in the current reference range and 
hence has identical impedance model. The controller parameters 
for the three converters are presented in Table 1. 

Based on the small-signal model shown in Fig. 8, the output 
impedance of the source and ESC is derived as 

 , (8) 

where the variables in (8) are defined in Fig. 8. The impedance 
model for the ESC is identical to that of the source converter 
with the difference in the control parameters as listed in Table 1. 
For the load converter, the input impedance is derived in a 
similar manner as 

 , (9) 

where ZLin and Zcin are series and shunt branches of the LC input 
filter of the load converter, and Zconv is the input impedance of 
the load converter with output voltage control, given by 

 , (10) 
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Fig. 7 Dc characteristics of the source (Top left), ESC (Top right) and 
load converter (Bottom). 

 

 
 

Fig. 6 Hardware Setup; System diagram (Top), picture of actual 
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where the operating point is defined by the duty ratio, D, and the 
input current, Iin. The bode plots of the impedance models are 
shown in Fig. 9. For the load converter, the low frequency 
impedance changes with the operating point, and the case shown 
in Fig. 9 is at 45 W of power. 

B. Stability Analysis Case Studies 
In order to validate that the proposed method predicts 

accurate system stability, the test setup of Fig. 6 was operated 
under two scenarios; one in which the system is stable and 
another in which the system is unstable. It is shown that, in both 
scenarios, the proposed method predicts correct stability 
regardless of the system partitioning or power flow 
configurations. The system is started up by enabling the droop 
controls of ESC and source converters and zero load converter 
power. The load power is then ramped up to 40 W. At this point, 
the dc bus voltage is at 5 V and the ESC is drawing about 15 W 
of power from the dc bus. For the first scenario, the load power 
is stepped from 40 W to 45 W to capture the response of the 
system in the stable region. The response is shown in Fig. 10(a). 
It can be seen in Fig. 10(a) that the system remains stable after 
the step although with a small phase margin causing 
underdamped oscillations. For the second scenario, the load 
power is stepped from 45 W to 50 W to capture the response of 
the system in the unstable region. The response is shown in 
Fig. 10(b). As shown in Fig. 10(b) , the oscillation grow slowly 
after the step, indicating the system at the boundary of 
instability. The oscillations grow until the overvoltage 
protection in the source converter triggers a system shutdown.  

The behavior of the system is hereby analyzed using the 
proposed method. With the Zsource, ZLoad and ZESC as given by 
(8)-(10), the generalized Nyquist stability criterion is applied at 
the interface of each converter by combining the other two 
impedances in parallel. The Nyquist plots of the two scenarios 
are shown in Fig. 11. In each of the Nyquist plots shown in 
Fig. 11, the solid lines show the plots with 45 W load power 
while the dashed lines show the plots with 50 W load power. 
Fig. 11(a) and (d) show the Nyquist plots of the impedance ratio 
at the source converter terminal, i.e. Zsource/Zaway,source where 

TABLE I.  CONTROL PARAMETERS OF CONVERTERS IN TEST SETUP 

 Current control 
bandwidth (Hz) 

Voltage control 
bandwidth (Hz) 

Droop 
resistance 

Source 
converter 1000 500 0.0194 

Bidirection
al ESC 3000 100 0.0750 

Load 
converter N/A 150 N/A 

Vin

10 V

L
4.7 uH

Co
140 uF

Rd

0.13
Cd

164 uF

Load
0.235

Source

+
5 V
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io

vo

esrL

0.025

ZL 
= sL+esrL

ZC 
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Fig. 8 Detailed control diagram and small-signal model of the source 

converter. 

 
  (a) 

 
  (b) 

Fig. 10 The response of the system under (a) stable case (45 W) and (b) 
unstable case (50 W), showing Dc bus voltage (top), load converter 
input current (middle) and load resistor voltage (bottom). 

9 ms 

 

Fig. 9 Impedance models; Source converter (solid), bidirectional 
converter (dash) and load converter (dot-dash). 



Zaway,source is defined as the parallel combination of the other two 
impedances as shown on Fig. 11. It is evident that the plot with 
45 W load power does not encircle the critical point but is close 
to it, indicating a stable system but with low margin. The plot 
with 50 W load power crosses right though the critical point, 
indicating an unstable system. Furthermore, the period of 
oscillations of 9 ms shown in Fig. 10 agrees with the frequency 
where the Nyquist plot crosses the critical point (105 Hz in this 
case). The analysis at the terminal of the ESC is shown in 
Fig. 11(c) and (e). Similar to the source terminal, the Nyquist 
plot does not encircle the critical point with 45 W of load power 
but crosses through it with 50 W load power. 

The analysis at the load converter terminal is shown in 
Fig. 11(e)-(f). This is a case where the simplified Nyquist 
criterion of non-encirclement of critical point fails. However, 
looking closely at Fig. 11(c) and (f), we can see that for the 
45 W case, the Nyquist plot crosses the real axis twice beyond 
the critical point; once clockwise and once counter-clockwise. 
Applying the generalized Nyquist criterion [19], this results in 
zero net encirclements of the critical point and hence a stable 
system. For the 50 W case, the counter-clockwise crossing goes 
though the critical point, resulting in net clockwise encirclement 
of the critical point. This shows that, even at the load converter 
terminal, the minor loop gain given by ZLoad/Zaway,Load gives a 
correct prediction of stability or instability. 

It is important to note that all three interfaces predict the 
same frequency of unstable oscillations, i.e. 105 Hz, which 

emphasizes their equivalence in the stability prediction. The 
stability margin for the stable case, however, is different in each 
case, as evident from Fig. 11(d)-(f). This is because the phase 
margin of the impedance minor loop gain depends on the 
relative sizes of the converter impedance to the rest of the 
system. A larger phase margin indicates more damping available 
across the interface. A larger gain margin indicates more room 
for variation in the impedance magnitude of the ESC or the rest 
of the system. For the load converter, the stability margins can 
be evaluated based on the generalized Nyquist method [19]. 

V. CONCLUSIONS 
A novel method for analyzing stability of dc nanogrids was 

presented in this paper. It was shown through analysis and 
hardware results that stability of a dc nanogrid can be evaluated 
at the terminal of any of the parallel-connected converters, 
regardless of the power flow configurations. Furthermore, it was 
shown that the proposed method provides necessary and 
sufficient conditions for system stability. Nodal impedance-
based stability analysis can be used to a great advantage by 
selecting a source converter or an energy storage converter as 
the terminal of choice for analysis and using it to measure the 
combined impedance of the rest of the system. The measured 
impedance would account for parameter variations, capture the 
effects of cable impedances, contact impedances and adapt to 
the dynamically changing system. The measured impedance, 
Zaway, would then be used along with the output impedance of 
the measuring converter to perform the online stability analysis. 

 
     (a)     (b)             (c) 
 

 
     (d)     (e)              (f) 
 
Fig. 11 Nyquist plots of the minor loop gain at the interface of, (a) source converter, (b) ESC, (c) load converter, (d) source converter zoomed around (-1,0), 

(e) ESC zoomed and (f) load converter zoomed. 

 

 

 

 

 

 



A requirement for the converter performing the online 
impedance measurement of Zaway would be high control 
bandwidth, which can be a design consideration for an ESC. 

Another application of the proposed method would be to 
analyze if an existing system would remain stable after the 
addition of a new converter in the system. The impedance of the 
system looking into the dc bus where the new converter is to be 
inserted would be measured or evaluated. This would be used as 
Zaway in the denominator, while the output impedance of the new 
converter used in the numerator of the loop gain to be analyzed 
for stability. The proposed nodal impedance-based stability 
analysis method can be further utilized in providing active 
damping where needed. The analysis performed at the terminal 
of an ESC, for example, could be used to determine the stability 
margin which indicates the amount of damping in the system. 
The high-bandwidth controller of the ESC could then be used to 
provide active damping in the system by targeting the critical 
frequencies identified in the minor loop gain. The applications 
discussed here are all topics of ongoing research which are 
enabled by the proposed nodal impedance-based stability 
analysis. 
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Abstract—Emerging dc microgrids incorporating energy 
storage are presenting new challenges in system design and 
stability analysis. Several methods have been proposed in 
literature for online stability evaluation of such dc microgrids 
using impedance-based stability analysis. This paper presents a 
method for continuous monitoring of system stability that is not 
computationally intensive and can be added as a supplemental 
function to existing converters in the system so that no additional 
power hardware is required. The proposed method evaluates 
stability continuously and can be used as a proactive approach for 
monitoring and maintaining system stability. Hardware results 
are presented to validate the proposed continuous stability 
monitor, which shows its effectiveness in predicting the system 
stability margins.  

Keywords—impedance, stability, dc microgrids, monitoring 

I. INTRODUCTION 
Owing to the continued push towards electrified 

transportation and integration of renewables, the dc microgrids 
of the future are expected to be much more dynamic than they 
have been in the past. Future dc microgrids are expected to 
incorporate different kinds of sources such as renewable energy 
and fuel-based generators. They are expected to be re-
configurable, have bidirectional converters interfacing energy 
storage, and may have constant power, intermittent or plug and 
play loads. Examples of such systems can be found in all-electric 
aircraft, electric ships and dc fast charging stations [1-3] and are 
expected to be configured as shown in Fig. 1. Stable operation 
of these microgrids is challenged by the negative incremental 
resistance behavior of the constant power loads as well as 
interactions among the controllers of the interconnected 
converters [4-5]. 

Traditional methods of designing the system to handle all 
possible scenarios lead to an overdesigned system including 
oversized filters and slow controllers. To avoid system 
overdesign, active stabilizing techniques and adaptive tuning 
techniques have been proposed. In [6-8], the authors used online 
measurements of system health [6] or frequency response [7-8] 
to auto-tune the digital controllers of the converters to improve 
transient performance and stability. In [9], the authors proposed 
an active stabilizer to add virtual damping in the system based 
on a measured oscillation frequency at the onset of instability. 
Application of these auto-tuning and active damping techniques 
requires online measurement of system impedances or system 
health, for which several methods have been proposed. 

These methods typically use wide-band perturbation 
followed by a Fourier transform to measure impedances and 
derive the system stability or tuning parameters from them. In 
[10], the authors proposed using wideband perturbation to 
measure ac grid impedance for adaptive control. In [11], the 
authors used cross-correlation methods to find the input and 
output impedances of cascaded converters. Ref. [12] used an 
additional converter in a multi-source system to measure the 
source and load subsystem impedances and apply the Nyquist 
criterion to find the system stability. In [13], the authors 
proposed a medium voltage impedance measurement unit to 
measure the impedance of the source and load subsystem to 
evaluate stability in a multi-source multi-load system. A 
common drawback of the existing methods is that they are 
computationally intensive and, for microgrids with multiple 
sources and loads, require an additional converter to perform the 
analysis [12-13]. 

This paper presents a novel system stability monitor which 
can be added onto any existing converter in the system as an 
auxiliary function and that continuously monitors the stability 
margin of the interconnected system. The stability margin 
evaluation is enabled by Nodal Stability Analysis which has 
been recently proposed as a generalized impedance-based 
stability analysis method especially suited for dynamic dc 
microgrids with various interconnected sources, loads and 
bidirectional converters [14]. The monitor itself is derived from 
a continuous monitoring method developed to monitor the phase 
margin of a converter loop gain [15-16]. The proposed 
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Fig. 1. Representative future dc microgrid system [21-28]. 



continuous monitor injects a controlled single-frequency 
perturbation using one of the converters already in the system, 
with a small amplitude that does not affect the normal operation. 
The proposed method can be used in any interconnected system 
for proactively monitoring and maintaining the system stability, 
and its continuous nature would enable development of new 
techniques in adaptive stability enhancement of dc microgrids. 

The paper is organized as follows: Section II summarizes the 
nodal stability analysis method that enables the continuous 
monitor, Section III describes the continuous monitor and its 
various controllers, Section IV derives the small-signal model 
for the monitor and designs the controllers, Section V presents 
the experimental results to validate the proposed monitor and 
Section VI summarizes the findings. 

II. NODAL STABILITY ANALYSIS 
The proposed continuous system stability monitoring 

technique evaluates stability using measurements at the terminal 
of the converter that incorporates it. The approach relies on 
measurements directly available to the converter, namely the dc 
link voltage at its output and its own output current. This data 
provides information about the system impedance as seen from 
the output terminals of the monitoring converter. The proposed 
approach uses impedance-based stability analysis to evaluate the 
stability margin. However, the monitoring converter cannot 
divide the system into source and load subsystems as required 
by traditional impedance-based stability analysis methods 
[17-19]. This is because the impedance that the monitoring 
converter sees is the parallel combination of all sources, loads 
and bidirectional converters connected in the system and there 
is no way for it to distinguish sources from loads in the 
impedance measurement at its output terminals. Hence, 
traditional methods cannot be used with the proposed monitor. 
The Nodal Stability Analysis proposed in [14] and summarized 
here presents an impedance-based analysis method that does not 
require identification or grouping of sources and loads, making 
it the ideal candidate for such applications. 

Consider a dc microgrid comprising n converters connected 
to a common dc bus, as shown in Fig. 2, where all converters are 

represented by their Thevenin equivalent. The small-signal dc 
bus voltage is given by 

  (1) 

where 

 . (2)

All variables in (1) and (2) are functions of the Laplace 
variable s, Vi and Zoi are the Thevenin equivalent voltage and 
output impedance of the i-th converter, respectively, and Zbus is 
the overall bus impedance from the parallel combination of all 
the converter output impedances. Assuming the converters are 
individually stable when connected to an ideal dc bus, the 
system stability is given by the stability of Zbus [14]. 

The stability of the dc bus impedance Zbus is determined in 
[14] by expanding (2). One such expansion of Zbus is given by 

where Zaway,1 is the parallel combination of all converter 
impedances except Zo1. The expansion shown in (3) corresponds 
to partitioning the system at the terminal of the arbitrary 
converter 1, as shown in Fig. 2. Equation (3) shows Zbus 
expressed in the form of a closed loop system representing 
interactions of all the interconnected converters and with a 
minor loop gain represented by the ratio of the output impedance 
Zo1 and the impedance of the rest of the system, Zaway,1. From (3), 
the dc bus impedance is stable if the minor loop gain Zo1/Zaway,1 
satisfies the Nyquist stability criterion [14].  

It is shown through hardware results in [14] that the minor 
loop gain Zo/Zaway can be evaluated at the terminal of any 
converter in the system, and it is not necessary to group or 
identify source and load converters in Zaway to perform the 
analysis. This property is utilized in this paper to develop the 
continuous monitoring technique which evaluates the system 
stability by continuously measuring the crossover frequency and 
phase margin of the minor loop gain given by the ratio of Zo to 
Zaway. 

III. CONTINUOUS STABILITY MARGIN MONITOR 
From (3), the minor loop gain of the microgrid system is 

given by Zo/Zaway,. If both impedances are perturbed using the 
same current perturbation io, then the minor loop gain can be 
written as 

where vs is the response of Zo and vo is the response of Zaway, to 
io. Utilizing the freedom of system partitioning [14], any 
converter in the system can be assigned the monitoring task. The 
assigned converter would inject a current perturbation in the 
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Fig. 2. A generic dc microgrid showing an arbitrary system partitioning. 



system and directly measure vo (the response of Zaway) and io, as 
indicated in the overall schematic of the continuous monitor in 
Fig. 3. The measured io is then used with the analytical model of 
the converter output impedance to calculate vs. With vs and vo, 
the system stability margin can be determined since the 
frequency at which the amplitudes of vs and vo match is the 
minor loop gain crossover frequency, and the phase margin of 
the minor loop gain is the phase difference of vs and vo at that 
frequency [15]. 

A. Injection and Response Filtering 
 As shown in Fig. 3, a pulse generator outputs a square wave 

current reference iinj with frequency finj and amplitude ±A, which 
is added on top of the base current reference iref0 and fed into the 
converter output current controller. The overall current 
reference, iref, looks like that shown in Fig. 4. The resulting io 
and the response voltage vo are measured and fed into a band-
pass filter tuned at the injection frequency finj. The band-pass 
filter is made online tunable and is of the form 

 ,

where Q is the quality factor of the filter (usually set high), and 
finj is the same frequency at which iinj is generated. The dynamic 
parameter finj in (5) requires that the parameters of the band pass 
filter be evaluated continuously as finj changes, making it 
essential that the rate of change of finj be much smaller than the 
value of finj. The outputs of the band-pass filter, iof and vof, 
contain only the frequency component of io at finj and its response 

to Zaway respectively. Filtered current, iof is then fed into the 
analytical model of Zo to calculate vsf. A peak-detection 
algorithm is used to find the peak-to-peak amplitudes of vof and 
vsf at the injection frequency finj, given by vofp and vsfp. The error 
between vofp and vsfp is integrated to find the frequency where the 
error is zero, i.e. where vsfp = vofp. 

B. Injection Control and Phase Margin Evaluation 
 It is desirable to limit the amplitude of the voltage 

perturbation resulting from the injected current, and also to 
make sure that the response is detectable. To achieve that, the 
amplitude of voltage perturbation, vofp, is compared to a 
reference amplitude Aref and fed into a slow integrator which 
outputs the amplitude of the current injection A. From (4), the 
goal is to inject a perturbation at the impedance crossover 
frequency where vsfp = vofp. This allows us to define a feedback 
error 

which is integrated to output the injection frequency finj. The 
frequency integrator changes the injection frequency until it 
reaches the impedance crossover frequency. Correct operation 
of this integrator requires the correct sign of the error to be used 
as well as a good estimate for the integrator initial condition, 
which can be estimated from analytical models or a one-time 
measurement using a frequency sweep or other wide-band 
methods [10-13]. According to (4), as the error of (6) goes to 
zero, the injection frequency, finj, will converge to the crossover 
frequency of the minor loop gain (4), and given by 

where fc,sys is the minor loop gain crossover frequency. Also, 
when (6) goes to zero, the system phase margin, hereby called 
PMsys, is proportional to the phase difference between vof and vsf, 
and is given by 

 
Fig. 4. Waveform of the current reference with square-wave perturbation. 

 
Fig. 3. Schematic of continuous stability margin monitor . 



where Δtzc is the time difference between the zero crossings of 
vsf and vof. 

IV. ANALYSIS AND DESIGN OF THE CONTINUOUS MONITOR 
This section aims to discuss the modeling of the dynamics of 

the continuous monitor and the design of its two controllers, 
namely the finj integrator and amplitude integrator. The 
experimental setup from which the models are derived is 
discussed before the modeling of the monitor dynamics 
themselves. 

A. Hardware Test Setup 
To validate the proposed stability margin monitor, a test 

setup emulating essential parts of a dc microgrid, namely a 
source converter, a load converter and a bidirectional converter 
(emulating an energy storage interface) has been built as shown 
in Fig. 5. All converters in Fig. 5 are synchronous buck 
converters which are chosen for their well understood behavior 
and impedance models. The source converter and the load 
converter are each rated for 100 W and have the same control 
structure as in [14]. The source converter has an inner current 
control loop regulating its output current and an outer voltage 
controller with droop. The load converter regulates the voltage 
at its own output, thereby appearing as a constant power load to 
the dc bus. The impedance models of the source and the load 
converters are same as in [14]. 

The energy storage converter (ESC) is chosen as the 
continuous monitor of the system. Hence, its control structure is 
as shown in Fig. 3. The ESC regulates its output current with a 
constant reference while the injection is added on top of the 
constant current reference. The impedance model of the ESC, 
following similar derivation to [14], is given by 

where Vin is the input voltage of the ESC, Gci is the current 
controller, ZL is the impedance of the inductor of the 
synchronous buck including its ESR, and Zc is the impedance of 
the output shunt filter branch. To evaluate the system stability, 
the following minor loop gain is evaluated, 

where Zsc is the impedance of the source converter while Zload is 
the impedance of the load converter. The parallel combination 

of the source and load converter impedances is seen by the ESC. 
The controller bandwidths of the three converters are listed in 
Table 1 below. To help in validating the proposed monitor over 
a wide operation range, the parameters are intentionally chosen 
such that the system crossover frequency and phase margin 
changes significantly as the load converter increases its power. 

B. Modeling of the Continuous Monitor Dynamics 
Following an approach similar to [15], we can find the 

transfer function from finj to envelope error, i.e. 

where venv,err is given by (6). Similar to [15], the overall transfer 
function of (11) can be evaluated by evaluating the difference of 
two transfer functions 

and 

where vs,env represents the small-signal variations in vsfp and vo,env 
represents the small-signal variations in vofp. The overall transfer 
function is then found as 

TABLE I.  CONTROL PARAMETERS OF CONVERTERS IN TEST SETUP 

 Current control 
bandwidth (Hz) 

Voltage control 
bandwidth (Hz) 

Droop 
resistance 

Source 
converter 1000 500 0.0194 

Bidirection
al ESC 2000 N/A N/A 

Load 
converter N/A 160 N/A 

Source
Load

Vbus
5 V

Energy 
Storage

ZESC
Zaway,ESC

100 W

100 W

20 W

 
(a) 
 

 
(b) 

Fig. 5. Hardware Setup; (a) system diagram and, (b) picture of actual 
hardware. 



The derivation of the envelope dynamics follows [20], 
which treats the small-signal variations in frequency as 
frequency modulation of the square wave generation, filtered by 
the band pass filter of (5). Following [20], it can be shown that 
(12) and (13) can be evaluated as 

where A0, Al and Au are defined as 

For evaluating (12), Gplant (jωm) in (16) is given by 

where Gi,ESC (jωm) is the closed loop current transfer function of 
ESC. For evaluating (13), Gplant (jωm) in (16) is given by 

The dynamics of the perturbation amplitude control loop are also 
derived by following [20], which treats the small-signal 
variations in A as amplitude modulation. It can be shown that for 
the square wave perturbation of Fig. 3 the amplitude loop has 
the transfer function 

where 

and 

 For the hardware setup described in Section III.A, the 
frequency response of the finj loop and amplitude loop models 
were evaluated with an estimated system crossover frequency, 
fc,sys, of 168 Hz and a perturbation amplitude, A, of 63 mA. The 
responses are shown in Fig. 6. It is evident from Fig. 6 that the 
transfer functions exhibit low pass filter characteristics with a 
dominant pole pair which is highly damped. 

C. Design of the Monitor Controllers 
Unlike designing the controller for monitoring a converter 

loop gain [15], our goal is to design the controllers for 
monitoring the minor loop gain of a dynamic system that has 
multiple converters and whose impedance changes with 
operating point. We cannot, therefore, rely on complete models 
for our design as we are not assuming that Zaway is known. 
Hence, we would like to simplify the small-signal models 
developed above and derive a measurement-based strategy to 
design the monitor controllers. From above analysis, both the 
amplitude loop and the frequency loop exhibit low-pass filter 
characteristics and a dominant pole with a pole frequency of 

where ω0 is the resonant frequency of the band-pass filter, Q is 
the quality factor of the band-pass filter and ω1 is the pole 
frequency of the dominant pole pair. In the continuous monitor 
presented here, the band-pass filter resonant frequency is the 
same as the injection frequency such that ωinj = ω0, so the 
frequency of the dominant pole-pair for the continuous monitor 
becomes 

 
(a) 

 
(b) 

Fig. 6. Frequency response of the envelope models; (a) finj loop and, (b) 
amplitude loop. 



Equation (23) shows that the dominant pole frequency is 
linearly dependent on finj and that it reduces with increasing Q. 
While a high Q is desired to extract the single frequency 
component at finj, a very high Q cannot be used as it would place 
ω1 at a low frequency, reducing the achievable bandwidth for 
the monitor controllers. In this work, a Q of 5 was used. 
According to [20], the dc gain of the finj loop is proportional to 
the slope of Gplant in (16) and is given by 

where 

The dc gain of the finj loop can thus be estimated by 
measuring venv,err in (6) at two frequencies around an estimated 
fc,sys and finding the slope. Furthermore, the initial value of A, 
the amplitude of square perturbation, can be set as 

where Aref is the desired amplitude of voltage perturbation and 
||Zaway(jωc,sys)|| can be estimated from measurement. Similarly, 
the dc gain of the amplitude loop is given by [20] as 

where ||Gplant,vo(jωc,sys)|| can be estimated by measuring ||vo||/||iref|| 
at the estimated fc,sys. With these simplifications, and observing 
from Fig. 6 the dominant pole characteristics, the finj integrator 
can be designed as 

where fc,f is the desired crossover frequency of the finj loop and 
ki,finj is the integrator gain. Similarly, the amplitude controller 
can be designed as 

where fc,A is the desired crossover frequency of the amplitude 
loop and ki,A is the integrator gain. For both controllers, the 
crossover frequency is placed much lower than the pole 
frequency given by (23). Once these controllers are designed in 
continuous time, a suitable method can be used to convert it to 
discrete time before implementing in a microcontroller or 
FPGA. 

V. EXPERIMENTAL RESULTS 
The hardware tests presented in this section aim to establish 

the practicality and applicability of the proposed stability margin 
monitor in a wide variety of systems by initializing the 
continuous monitor using only online measurements and the 
simplified models presented in Section III. Furthermore, tests 
are performed to evaluate the performance of the continuous 
monitor with system operating points changing. This is done by 
varying the load converter power from 0 W to 30 W and 
monitoring the change in system minor loop gain crossover 
frequency and phase margin. 

A. Analysis of Test Cases 
As mentioned in Section IV, the current and voltage 

controllers of the converters in the test setup are designed such 
that the system crossover frequency, fc,sys, given by (7) and the 
system phase margin, PMsys, given by (8) changes significantly 
as the load power increases. To have a baseline for comparison, 
the analytical models of ZESC and Zaway,ESC are computed, where 
the impedance models of Zsc and ZLoad are given in [14]. The 
frequency response of ZESC and Zaway,ESC, and the Nyquist plot of 
the minor loop gain (4) are shown in Fig. 7. It is evident from 
the bode plots in Fig. 7(a) that, as the load converter increases 
its power it changes the impedance seen by the ESC, resulting 
in a change of fc,sys. Similarly, it can be seen from both the bode 
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Fig. 7. (a) Bode plot of ZESC and Zaway,ESC and, (b) Nyquist plots of 
system minor loop gain for load converter powers from 0 W to 30 W. 

 



and Nyquist plots in Fig. 7(b) that the phase margin PMsys 
reduces as the load power increases. 

B. Initialization of the Continuous Monitor 
A dc microgrid such as that shown in Fig. 1 is expected to be 

dynamic with sources and loads coming on and going off during 
normal operation of the system. This implies that, for the 
continuous monitor, Zaway cannot be known a priori. However, 
the operation and controller design of the stability margin 
monitor depend on Zaway. Hence a measurement-based 
initialization of the continuous monitor is proposed in this paper 
based on the model simplification presented in Section IV. 

To better explain the initialization steps, the experimental 
results of the continuous monitor initialization for the hardware 
setup of Fig. 5 is shown in Fig. 8 where, from the top, the first 
trace (cyan) shows the dc bus voltage, the second trace (pink) 
shows the current that the ESC draws from the bus, the third 
trace (green) shows the identified system crossover frequency 
fc,sys and the last trace (blue) shows the identified system phase 
margin PMsys. The initialization steps shown in Fig. 8 are as 
follows. 

1) Time t1: At time t1, the source converter starts up, ramps 
up the dc link voltage and starts regulating it in closed loop. 

2) Time t2: At time t2, the ESC starts up, enables closed loop 
regulation of the output current control and ramps up the current 
drawn from the dc link to 4 A. 

3) Time t3: At time t3, the continuous monitor enables the 
injection of square wave perturbation. The frequency of 
injection, finj, is set to be the initial estimate of fc,sys (180 Hz) 
which can be estimated from a one-time frequency sweep or a 
wide-band injection. The amplitude of perturbation is ramped 
up from zero to an initial value computed from (26). 

4) Time t4: At time t4, the dc gain of the amplitude loop is 
estimated from (27) by setting 

 

where A is the value of the initial amplitude of injection. Then 
the integrator gain for the perturbation amplitude controller is 
computed using (29) and the integrator is enabled. From t4 
onwards, the perturbation amplitude is regulated to be 150 mV 
which is 3% of the rated dc bus voltage of 5 V. 

5) Time t5: At time t5, the envelope error, venv,err, is recorded 
for an finj of 180 Hz and then finj is ramped up to 200 Hz. 

6) Time t6: At time t6, the envelope error, venv,err,  is recorded 
for finj of 200 Hz. This value and the value at t5 are used in (24) 
to compute the dc gain of the finj loop and then the finj integrator 
gain is computed using (28). Finally, the finj integrator and PMsys 
computation are enabled, after which, the ESC monitors fc,sys 
and PMsys continuously. 

C. Performance of the Continuous Monitor 
Once the continuous monitor has been initialized, the load 

converter power is ramped up to 30 W, at which point PMsys is 
low (~20o). Then, the load power is ramped down to 0 W at a 
rate of 5 W/s. The response of the system and the monitor 
outputs (fc,sys and PMsys) for this transient are shown in Fig. 9 
where, from the top, the first trace (cyan) shows the dc bus 
voltage, the second trace (pink) shows the load converter input 
current, the third trace (green) shows the identified system 
crossover frequency fc,sys and the last trace (blue) shows the 
identified system phase margin PMsys. 

From the vdc trace in Fig. 9, it is evident that the amplitude 
of perturbation is regulated before, during and after the load 
transient. As the load power reduced from 30 W to 0 W, the 
identified fc,sys changed from 124 Hz to 168 Hz and the identified 
PMsys changed from 18o to 37o. To compare the performance of 

 
Fig. 10. Comparison of the experimental performance of the continuous 

monitor with theoretical analysis results. 
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Fig. 8. Dc bus voltage (cyan), ESC current input from dc bus (pink), 

system crossover frequency (green) and system phase margin (blue) 
during initialization of the continuous monitor.  
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Fig. 9. Dc bus voltage (cyan), load converter input current (pink), system 

crossover frequency (green) and system phase margin (blue) during 
load transient.  



the monitor with the analytical models, the identified fc,sys and 
PMsys were recorded for load powers from 0 W to 30 W and 
plotted against theoretical values found using the Nyquist plots 
of Fig. 7(b). The comparison is shown in Fig. 10, where the left 
y-axis shows frequency in Hz and the right y-axis shows the 
phase margin in degrees. Fig. 10 shows that the continuous 
monitor was able to identify fc,sys and PMsys with reasonable 
accuracy. 

VI. CONCLUSIONS 
A novel method to monitor the system stability margin of a 

dc microgrid online in a continuous fashion has been proposed 
in this paper. The continuous monitoring technique can be 
embedded into any one of the converters already present in the 
system to evaluate the system stability margin without much 
additional computational cost. The proposed small-signal 
analysis of the continuous monitor and simplification method 
allow the online measurement-based design and tuning of the 
monitor controllers, with an estimated system crossover 
frequency to start. To validate the proposed analysis and design, 
hardware results are provided for the auto-initialization and 
operation of the proposed continuous monitor and compared 
with the theoretical prediction over a range of operating 
conditions. The continuous monitor proposed in this paper is 
applicable to other systems with multiple sources, loads and 
bidirectional converters connected. The monitored system 
crossover frequency and phase margin can be used in active 
stabilization, active damping and system central controller for 
system stabilization. 
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Abstract—This paper proposes an isolated multi-port converter
based on high-frequency AC link to combine the multiple
modular cell-level active balancing converters into a multi-port
converter. The topology uses integrated magnetics and just one
central secondary bridge, which reduces significantly the number
of switching devices and passive components required for the
implementation of the battery management system. Additional
advantages include use of the same ground reference for all
the cells, eliminating the need for isolated communications
between active balancing converters. Steady-state analysis for the
topology is given. A simple control scheme is proposed for the
differential currents required for active cell balancing. Closed-
loop simulation results are provided for a three-cell system that
validates the proposed control scheme for the topology. A 100 W
4-port prototype converter is developed and experimental results
are given to prove the feasibility of the proposed high-frequency
link coupled multi-port converter.

Index Terms—Active balancing, resonant converter, high-
frequency link, isolated DC/DC, high power density, integrated
magnetics

I. INTRODUCTION

Modular active balancing systems offer simplicity, high
efficiency, and faster balancing speeds by integrating cell
balancing and power processing functions onto a cell-level
dc/dc converter [1]–[5]. Unlike the simple passive balancing
system, the modular active balancing system requires a DC/DC
converter for each battery cell which results in a large number
of power converters and high component count for a large
battery pack. To reduce cost, various topologies and methods
specific to cell balancing applications have been proposed in
literature [6]–[10]. Three-port converters for cell-balancing are
reported in [6], [7] to reduce the cost by balancing two cells
per converter. Time-sharing of the balancing converter [9], or
some components of the converter [10], are reported in the
literature. This time-sharing method is cost-effective but does
not provide continuous cell balancing.

In many battery applications, a high-frequency (HF) trans-
former based isolated DC/DC converter is used to process
the power before connecting to the load. The HF transformer
serves the purpose of providing galvanic isolation [11], [12]
or voltage matching [13], [14]. Existing magnetically coupled
isolated topologies [15], [16] are usually limited to three ports,

extending these approaches to larger number of ports creates
control complexities and hardware challenges with transformer
fabrication. In [17], [18], a single multi-winding transformer
is used to magnetically couple multiple ports. This approach
would require long cables to connect all the cell ports to the
common magnetics when used for large battery packs.

In a battery pack, all the cells are similar with small
tolerance in (≈ 10%) in their parameters. The active balancing
converter needs to be designed to manage only a small (≈ 10%
of rated current) fraction of current mismatch between cells.
Taking advantage of this small current mismatch requirement,
an isolated multi-port topology is proposed that has multiple
symmetrical input ports and one common secondary winding
and secondary bridge that is shared among all the inputs.
The common secondary winding spans over all the cell ports
picking up power and acts as an AC busbar. This greatly
reduces the size and cost of the converter due to the reduced
component count. All the input ports are connected to a
common output through a high-frequency (HF) link. The
topology has no limitation on the number of ports it can
have. The number of ports might only be limited by the
computational and peripheral capabilities of the implemented
control platform.

This paper focuses on introducing and validating the topol-
ogy. Also, a closed-loop control scheme is proposed to si-
multaneously achieve output regulation and continuous cell
balancing. The proposed control scheme is simple and scalable
in order to handle active balancing for a large number of cells.

II. HIGH FREQUENCY LINK MULTIPORT CONVERTER

In battery management applications, different cell currents
are to be drawn to achieve active cell balancing. Based on
the mismatch in the cell capacity, the worse-case difference
required can be up to 10 % to 20 % of the average cell currents.
Identifying that the differential power is only a small fraction
of the total battery power a new topology is proposed. A multi-
port topology based on the series connection of high-frequency
(HF) link is shown in Fig. 1. This approach is particularly
beneficial for cell-balancing applications since multiple ports
are in physical close proximity allowing for the HF link
connection. And also, the particular way of connecting the
transformer creates a unique advantage that all the primary978-1-7281-1842-0/19/$31.00 ©2019 IEEE
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Fig. 1: Schematic of the proposed multiport converter shown with 3 cell ports

windings are decoupled. This allows the control to be relatively
simpler while having a large number of ports.

A. Topology description

Each port has a bridge that generates high-frequency quasi-
square voltage and each bridge has a transformer with sec-
ondary windings such that all the primary bridge voltages
effectively add up to drive the resonant tank. This can be
done by either having all the secondaries connected in series
or equivalently by having a magnetic structure that sums up
the magnetic field generated by each primary bridge. One such
way is to use a single secondary winding that goes through
all the magnetic cores. In the schematic shown in Fig.1, three
cell ports and one output port are shown. The HF link uses a
resonant LC tank as the energy transferring element. Other
isolated bi-directional topologies based on the convention
2-port topologies can be used as well. For example, the
non-resonant dual active bridge. Advantages of the proposed
topology and magnetics approach are 1) Reduced component
count: Since only one secondary bridge is used, the number
of bridges are reduced to m + 1. Here, m is the number
of primary ports. A traditional two-port converter per cell
would have 2m bridges. 2) Efficient Magnetics: Since all
these converters are physically close, the secondary winding
can be wound continuously through all the cores reducing
the winding length compared to using an individual DC-DC
converter per cell. The secondary winding doubles as a busbar
connecting all the input ports power to the central output port.
3) Elimination of contact resistance: Output termination
requirement and contact resistance for each individual DC/DC
output are eliminated. If a single DC/DC converter were to be
used per cell then each of those outputs needs to be connected
to the common bus bar and each secondary winding of the
transformer would have termination losses at the secondary
bridges. But here, the secondary-side of the transformer acts

(a) Top cross-section view (b) Front cross-section view

Fig. 2: Transformers realization with commercial planar E core structures

as the bus bar collecting the current. Hence, serves the dual
purpose of isolation and bus. 4) Common ground reference:
All the cells can be referred to the same ground potential,
eliminating the need for isolation for communications and
control signals between different modules.

B. High Frequency Magnetics

There are many ways to realize the isolated high-frequency
link. Individual transformers can be built, each with it’s own
primary and secondary, or all the primaries can have one
common secondary winding as shown in Fig. 2. If individual
secondaries are used, then they have to be connected in series.
Since the cells in a battery are usually packed together is
close physical proximity, it is beneficial to have a common
secondary winding that is wound through all the transformer
cores. This will avoid the need to make connections between
adjacent terminals. The effective mean length per turn of the
secondary winding using this approach will be lower if the
distance between adjacent cores is kept lower than the width
of the cores. Hence, this leads to lower resistance than the
cumulative individual transformers winding resistance.

C. Sinusoidal Analysis

The operation of the proposed high-frequency (HF) link
based series resonant topology is explained in this section.
Analysis is first given for the 3-input port topology shown in
Fig. 1 and then is extended for a more generalized m-port
topology.
Vg1, Vg2, Vg3 are the dc-link voltages at the primary bridges,

and Vout is the dc-link voltage at the output bridge. The
primary bridges and secondary bridge generate quasi-square
wave voltages vp1, vp2, vp3, vs respectively. The definitions
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Fig. 3: Phase-shift and duty-cycle definitions for bridge voltages

for phase-shift (φk) and duty cycle (αk) of these voltages are
given in Fig. 3. The equivalent circuit based on fundamental
approximation is shown in Fig. 4a. The fundamental phasor
diagram of this equivalent circuit is given in Fig. 4b. The
transformer secondaries are connected such that the sum of the
instantaneous voltages drive the resonant tank. The equivalent
circuit and phasor diagram also clearly conveys this idea.
For the analysis, only the fundamental component of the
bridge voltages are used. This simplifies the analysis and gives
reasonable accuracy. The secondary bridge voltage is used as
reference for the phasor analysis. For the following analysis,
the turns ratio is assumed to be unity so as to simplify the
equations. I is the amplitude and θk is the angle of tank current
is from kth bridge voltage. The fundamental phasor voltages
in polar and rectangular co-ordinates are given as

�vp1 =
4

π
Vg1 sin(

α1

2
)∠φ1

=
4

π
Vg1 sin(

α1

2
)(cos(φ1) + j sin(φ1)),

�vp2 =
4

π
Vg2 sin(

α2

2
)∠φ2

=
4

π
Vg2 sin(

α2

2
)(cos(φ2) + j sin(φ2)),

�vp3 =
4

π
Vg3 sin(

α3

2
)∠φ3

=
4

π
Vg3 sin(

α3

2
)(cos(φ3) + j sin(φ3)),

�vs =
4

π
Vout sin(

αs

2
)∠0

=
4

π
Vout sin(

αs

2
).

(1)

Effective primary voltage,

�vp = �vp1 + �vp2 + �vp3. (2)

Effective tank current,

�is =
�vp − �vs
jXs

, (3)

where, Xs = ωsL − 1
ωsC

is the impedance of the resonant
tank. Port powers P1, P2, P3, Pout and port average currents
〈ig1〉, 〈ig2〉,〈ig2〉, 〈iout〉 are given by

P1 =
8Vg1 sin(

α1

2 )

π2Xs
[Vout sin

αs

2
sinφ1

+ Vg2 sin
α2

2
sin(φ2 − φ1) + Vg3 sin

α3

2
sin(φ3 − φ1)],
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2 )

π2Xs
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2
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The analyses can be extended to m input ports. �vp,k is the
phasor for the fundamental component of the primary bridge-
′k′. The secondary bridge voltage �vs is used as reference for
the phasor analysis. The duty cycle αk and phase shift φk of
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(a) (b)

Fig. 4: (a) Equivalent circuit based on fundamental approximation, and (b) Fundamental phasor diagram of the proposed multi-port converter

Fig. 5: Simulation waveforms for 3-cell converter for an operating point
Vg1 = Vg1 = Vg1 = 4 V, Vout = 11V (α1 = 0.83π, α2 = 0.67π,
α3 = αs = π, and φedge = 0.12π). It is clear from waveforms that
〈ig3〉= 9.12 A > 〈ig1〉= 8.15 A> 〈ig2〉= 6.31 A for α3 > α1 > α2.

these voltages with respect to secondary are used as control
variables. The primary bridge voltage phasors are given as

�vp,k = Vp,k(cosφk + jsinφk), (6)

where, Vp,k = 4
π sin(

αk

2 ), is the amplitude of the fundamental
phasor of kth bridge voltage.

Effective primary voltage is �vp =
∑m

k=1 �vp,k, where, m is
the total number of input ports.

Input average current for kth port, output power and output
bus current for unity turns ratio are given by

Ig,k =
1

2Xs
[Vssinφk+Vp1sin(φ1−φk)+Vp2sin(φ2−φk)

+ ...+ Vgmsin(φm − φk)],

Pout =
Vout

2Xs
[Vp1sinφ1 + Vp2sinφ2 + ...+ Vpmsinφm],

Iout =
1

2Xs
[Vp1sinφ1 + Vp2sinφ2 + ...+ Vpmsinφm].

(7)

III. CONTROL APPROACH AND SIMULATION RESULTS

Bridge-k has two control parameters duty cycle αk and
phase-shift φk. The power delivered to the secondary depends
on the values of duty cycle and phase-shift of all the bridges.
This is clearly seen in the steady-state equations (7). The
topology offers many degrees of control freedom. In the
proposed control scheme, the duty cycle (αs) of the secondary
bridge is always kept at π and is not used as a control
parameter. All the primary bridge voltages are active transition
aligned. A new control variable φedge, defined as the angle
between the rising edge of the primary voltages and rising edge
of secondary voltage, is used as control variable to regulate
the output. The duty cycles (α1, α2, .. αm) are used achieve
cell balancing task.

Figure 5 provides insight and intuition for the control
approach taken to introduce a difference in the input port
currents. Each primary bridge voltage has a different duty
cycle but all the bridge voltages’ rising edge are aligned.
By aligning the switching of the lagging legs, devices in
all the primary bridges can zero voltage swtiched (ZVS).
From the port current waveforms ig1, ig2, ig3, it can be
seen that the average port current will be relatively low for
the bridge with lower duty cycle. Hence, by controlling the
relative duty cycles, the relative loading between the cells
can be regulated. For the operating condition α3 > α1 > α2

given in Fig. 5 the average currents will also be in the order
〈ig3〉 > 〈ig1〉 > 〈ig2〉. This monotonic relation between duty
cycle to the relative current sharing allows design of closed
loop control using simple linear controls.
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The block diagram of the control scheme for 3-cell system
is given in Fig. 6. To implement the relative sharing, a weight
is given to each port current. The port that must have the
highest input current sharing is used as the base (ibase) for
determining the weights based on the relative sharing required.
The base port and weights (wref

k ) for each port current are
commanded by the battery management algorithm. These
values are dynamically changed over time by the BMS to
acheive the balancing task. The primary base port with the
highest current is weighted as ‘1’ and its primary voltage will
have a full duty of π. And all the other port references are
weighted relative to this highest port and will have weights
less than or equal to ‘1’. For example, if cell-3 must have the
highest current, 〈ig3〉 is used as the base and α3 is set as π.

TABLE I: TABSRC prototype parameters

Parameter Description

Rated Power 100 W

Nominal Input 4 V at each of the three input port

Nominal Output 12 V

Switching Frequency 278 kHz

Resonant tank L =1.17 μH (includes transformer leakages),

C =400 nF

Switching Devices BSC016N06NS, 60 V, 1.6mΩ

Transformer 1:1 turns ratio

Core: ELT25 planar, PC95 material

Winding: 0.2 mm thick copper foil

Tank Inductor 1 μH

Core: ELT25 planar, PC95 material

Winding: 0.2 mm thick copper foil

Tank Capacitor 100 nF, 50 V, ceramic capacitor. 4 in parallel,

The simulations for a three-cell system with parameters
listed in Table I were performed in PLECS software. The
bandwidth of the output loop is designed to be approximately
1 kHz and the cell balancing loops to be 100 Hz. The
simulation results of the closed-loop control implementation
are given in Fig. 7. The output current is regulated to 8 A
during the entire simulation. Till 2.5 ms, all the port cur-
rents are maintained equal by setting the reference weights
wref

1 = wref
2 = 1 and from 2.5 ms the ig1 is commanded to

be regulated to 80% of ig3 and ig2 90% of ig3. To achieve
this, at t = 2.5 ms, the reference weights wref

1 and wref
2 are

step changed from 1 to 0.8 and 0.9 respectively. Here, ig3 is
regulated to have the highest current sharing. Hence, α3 stays
at π while the other two duty cycles (α1,α2) reduce to create
the difference in currents. The simulation results validate the
control approach proposed to regulate output and perform cell
balancing, simultaneously.

IV. HARDWARE PROTOTYPE

A 100 W prototype (see Fig. 8) is designed to operate with
three cells. The component parameters are given in Table I. All
the three primary H-bridges are symmetrical and each primary

Fig. 6: Control scheme block diagram of a three cell system with cell-3
required to have the highest current and hence port-3 input current (〈ig3〉) is
used as the base to calculate the weights w1 and w2 in the feedback loops.

Fig. 7: Closed-loop simulation waveforms for irefout= 8 A and step change in
wref

1 , wref
2 from 1 to 0.8 and 1 to 0.9 respectively at t=2.5 ms.
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Fig. 8: Four-port prototype with parameters of Table I built for evaluation of
the topology.

Fig. 9: Effective primary voltage measured on open-circuited secondary
winding with the proposed HF link. The rising edge of the voltages are
aligned.

board has a transformer. The series resonant capacitance
(400 nF) and inductance (1 μH) are on the secondary bridge.

Figure 8 shows the prototype highlighting the common
secondary winding. Magnetic coupling as shown in Fig. 2
forms the HF link between the primaries and the secondary
winding with unity turns ratio. Figure 9 shows the open circuit
secondary winding voltage. For this result, the secondary
winding is not soldered on to secondary bridge. The measured
secondary voltage is equivalent to resultant primary voltage
since the turns ratio is 1:1. The input voltage across each
primary bridge was 4 V, resulting in a peak primary voltage
of 12 V. The secondary winding voltage appears as a staircase
because the bridges are operated at different duty cycles with
their rising edges aligned.

The open loop test results are given in Fig. 10 to Fig. 13
For the results in Fig. 10 and Fig. 11, all the primary duty
cycles are kept equal to π , and the φedge = 0.12π. From the
waveforms, it can seen that all there primary input average
currents are equal. The output power is 71 W. In Fig. 12 and
Fig. 13, results with different duty cycles for each primary are
given. The operating condition is similar to the simulation
result given in Fig. 5, that is, α1 = 0.83π, α2 = 0.67π,
α3 = αs = π, and φedge = 0.12π. As expected the input
currents are different and have magnitudes close to simulation.
This validates the approach of using duty cycle to introduce
difference in cell currents.

Fig. 10: High-frequency link waveforms for operating point Vg1 = Vg1 =
Vg1 = 4 V , Vout = 11 V (α1= α2 = α3= αs = π, and φedge = 0.12π).
Ch1: Secondary winding current (is), Ch-2: Secondary bridge voltage (vs),
Ch-3: Primary bridge-1 voltage (vp1), Ch-4: Primary bridge-2 voltage (vp2).

Fig. 11: Input and output DC port currents operating point Vg1 = Vg2 =
Vg3 = 4 V , Vout = 11 V (α1= α2 = α3= αs = π, and φedge = 0.12π).
Ch1: Port-1 current (〈ig1〉), Ch-2: Port-2 current (〈ig2〉), Ch-3: Port-3
current (〈ig3〉), Ch-4: Output port current (〈iout〉).

Fig. 12: High-frequency link waveforms for operating point Vg1 = Vg1 =
Vg1 = 4 V, Vout = 11V (α1 = 0.83π, α2 = 0.67π, α3 = αs = π,
and φedge = 0.12π). Ch1: Secondary winding current (is), Ch-2: Secondary
bridge voltage (vs), Ch-3: Primary bridge-1 voltage (vp1), Ch-4: Primary
bridge-2 voltage (vp2).

Fig. 13: Input and output DC port currents for operating point Vg1 = Vg1 =
Vg1 = 4 V, Vout = 11V (α1 = 0.83π, α2 = 0.67π, α3 = αs = π, and
φedge = 0.12π).Ch1: Port-1 current (〈ig1〉), Ch-2: Port-2 current (〈ig2〉),
Ch-3: Port-3 current (〈ig3〉), Ch-4: Output port current (〈iout〉).
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V. CONCLUSION

A new isolated multi-port topology to implement the active
cell balancing with reduced cost is proposed. The proposed
high-frequency link based multi-port topology eliminates the
need for isolated communication, reduces component count
and system cost. Steady-state analysis, simulation results, and
hardware results are presented to show the efficacy of the
proposed converter. A closed-loop control scheme is proposed
that regulates the output and also performs cell balancing. The
control scheme proposed for this topology is simple and can be
extended to a large number of cells. A 100 W, 4-port prototype
is developed and hardware results are presented for validation.
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A Continuous Stability Margin Monitor for DC Microgrid
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Abstract—Emerging dc microgrids incorporating renewable
energy and energy storage are presenting new challenges in
system design and stability analysis. Several methods have been
proposed in literature for online stability evaluation of such dc
microgrids using impedance-based analysis. This paper presents a
new method for continuous online monitoring of system stability
that uses a small, single-frequency perturbation in the system
to measure the system impedance minor loop gain cross-over
frequency and phase margin. The method can be added as a
supplemental function to existing converters in the system so
that no additional power hardware is required. The proposed
method evaluates stability continuously and can be used as
a proactive approach for monitoring and maintaining system
stability. System modeling and design of the monitor loop gains
is presented. Hardware results are presented to validate the
proposed continuous stability monitor, which shows its effective-
ness in predicting the system stability margins under varying
conditions.

Index Terms—impedance, stability, dc microgrids, monitoring

I. INTRODUCTION

OWING to the continued push towards electrified trans-
portation and integration of renewables, the dc micro-

grids of the future are expected to be much more dynamic than
they have been in the past. Future dc microgrids are expected
to incorporate different kinds of sources such as renewable
energy, energy storage, and fuel-based generators. They are
expected to be re-configurable, have bidirectional converters
interfacing energy storage, and may have constant power,
intermittent or plug and play loads. Examples of such systems
can be found in all-electric aircraft, electric ships and dc fast
charging stations [1]–[3] and are expected to be configured
as shown in Fig. 1. Stable operation of these microgrids is
challenged by the negative incremental resistance behavior of
the constant power loads as well as interactions among the
controllers of the interconnected converters [4], [5].

Traditional methods of worst case design over all possible
scenarios tends to lead to overdesigned systems, including
oversized filters and slow controllers [6]. To avoid system
overdesign, active stabilizing techniques and adaptive tun-
ing techniques have been proposed. In [7]–[9], the authors
used online measurements of system health [7] or frequency
response [8], [9] to auto-tune the digital controllers of the
converters and improve transient performance and stability.
In [10], the authors propose an active stabilizer to add vir-
tual damping in the system based on a measured oscillation
frequency at the onset of instability. Application of these

This work was supported in part by the Raytheon Company through the
Utah State University Power Electronics Lab.

auto-tuning and active damping techniques requires online
measurement of system impedances or system health, for
which several methods have been proposed.

These methods typically use wideband perturbation
followed by a Fourier transform to measure impedances and
derive the system stability or tuning parameters from them.
In [11], the authors proposed using wideband perturbation
to measure ac grid impedance for adaptive control. In [12],
the authors used cross-correlation methods to find the input
and output impedances of cascaded converters. [13] used
an additional converter in a multi-source system to measure
the source and load subsystem impedances and applied the
Nyquist criterion to find the system stability. In [14], the au-
thors proposed a medium voltage impedance measurement unit
to measure the impedance of the source and load subsystem
to evaluate stability in a multi-source multi-load system. A
common drawback of the existing methods is that they are
computationally intensive and, for microgrids with multiple
sources and loads, require an additional converter to perform
the analysis [13], [14].

This paper presents a novel system stability monitor that
can be added to most existing converters in a system as an
auxiliary function and that continuously monitors the stability
margin of the interconnected system. The stability margin
evaluation is enabled by Nodal Stability Analysis, which has
been recently proposed as a generalized impedance-based
stability analysis method especially suited for dynamic dc
microgrids with various interconnected sources, loads and

Source

Plug-n-
play 

Loads

Energy 
Storage 

Converter

Source

Energy 
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Fig. 1. Representative future dc microgrid system [15]–[22].
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Fig. 2. A generic dc microgrid showing an arbitrary partitioning of the system
and defining the relevant impedances for the nodal stability analysis.

bidirectional converters [23]. The monitor itself is derived
from a continuous monitoring method developed previously to
monitor the phase margin of the loop gain internal to a power
converter [24], [25]. The proposed continuous monitor injects
a controlled single-frequency perturbation using one of the
converters already in the system, with a small amplitude that
does not affect the normal operation. The proposed method
can be used in any interconnected system for proactively
monitoring and maintaining the system stability, and, unlike
existing monitoring methods, the continuous nature of the
proposed method would enable development of new tech-
niques in adaptive stability enhancement of dc microgrids.

The paper is organized as follows: Section II summarizes
the nodal stability analysis method that enables the continuous
monitor, Section III describes the continuous monitor and its
various controllers, Section IV derives the small-signal model
for the monitor and designs the controllers, Section V presents
the experimental results to validate the proposed monitor and
Section VI summarizes the findings.

II. NODAL STABILITY ANALYSIS

The proposed continuous system stability monitoring tech-
nique evaluates stability using measurements at the terminals
of the converter that incorporates it. The approach relies on
measurements directly available to the converter, namely the
dc link voltage at its terminals and the current injected by
the converter into the dc bus. This data provides information
about the system impedance as seen from the terminals of
the monitoring converter. The impedance that the monitoring
converter sees is the parallel combination of all sources, loads
and bidirectional converters connected to the system, and
there is no way for it to distinguish sources from loads in
the impedance measurement at its terminals. As a result, the
traditional impedance-based stability analysis methods [26]–
[28] that divide the system into source and load subsystems
cannot be used with the proposed monitor. The Nodal Stability
Analysis proposed by the authors in [23], which is summarized
here, presents an impedance-based analysis method that does
not require identification or grouping of sources and loads,
making it the ideal candidate for such applications.

In this paper, all impedances beginning with ’Z’, admit-
tances beginning with ’Y ’, compensators beginning with ’G’
and small-signal forms (e.g. x̂) of signals (e.g. x in this

case) are functions of the Laplace variable ‘s’. Consider a
dc microgrid comprising n converters connected to a common
dc bus, where all converters are represented by their Thevenin
equivalent, as shown in Fig. 2. The small-signal dc bus voltage
is given by

v̂bus =

( n∑

i=1

v̂i
Zoi

)
Zbus, (1)

where
Zbus = (Zo1//Zo2//...//Zon). (2)

In (1) and (2), v̂i and Zoi are the Thevenin equivalent voltage
and output impedance of the i-th converter, respectively, and
Zbus is the overall impedance that appears to the dc bus from
the parallel combination of the impedances Zoi. Assuming the
converters are individually stable when connected to an ideal
dc bus, which is typically true, the system stability is given
by the stability of Zbus [23].

The stability of the dc bus impedance Zbus is determined in
[23] by expanding (2). One such expansion of Zbus is given
by

Zbus =
Zo1Zaway,1
Zo1 + Zaway,1

=
Zo1

1 + Zo1

Zaway,1

=
Zaway,1

1 +
Zaway,1

Zo1

, (3)

where Zaway,1 is the parallel combination of all converter
impedances except Zo1. The expansion shown in (3) cor-
responds to partitioning the system at the terminals of the
monitoring converter, referred to as converter 1 in Fig. 2. Zbus
is expressed in the form of a closed loop system representing
interactions of all interconnected converters with a minor loop
gain represented by the ratio of the monitor output impedance
Zo1 and the impedance of the rest of the system, Zaway,1.
Here, monitor output impedance refers to the impedance of the
monitoring converter as seen from the dc bus. From (3), the
dc bus impedance is stable if the impedance minor loop gain
(IMLG), Zoi/Zaway,i, satisfies the Nyquist stability criterion
[23]. It is shown through hardware results in [23] that the
IMLG can be evaluated at the dc bus terminals of any converter
in the system, and it is not necessary to group or identify
source and load converters in Zaway to perform the analysis.
This property is utilized in this paper to develop the continuous
monitoring technique, which evaluates the system stability by
continuously measuring the crossover frequency and phase
margin of the IMLG.

III. CONTINUOUS STABILITY MARGIN MONITOR

From (3), it can be noted that if both impedances are
perturbed using the same current perturbation îo, then the
IMLG can be written as

IMLG =
Zo

Zaway
=
v̂sîo

v̂oîo
=
v̂s
v̂o
, (4)

where v̂s is the response of Zo to îo, and v̂o is the response
of Zaway to îo, respectively. Utilizing the freedom of system
partitioning [23], any converter in a local region of a dc
microgrid can be assigned the monitoring task. Larger systems
may require one converter to be assigned in each local region.
The assigned converter(s) then inject a current perturbation to
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the system and directly measure vo (the response of Zaway)
and io, as indicated in the overall schematic of the continuous
monitor in Fig. 3.

The measured io is used with the analytical model of the
converter output impedance to calculate vs. With vs and vo, the
system stability margin can be determined since the frequency
at which the amplitudes of vs and vo are equal is the minor
loop gain crossover frequency, and the phase margin of the
minor loop gain is given by how far the phase difference of
vs and vo is from 180° at that frequency [24]. The process is
described further in the following subsections.

A. Injection Response and Filtering
As shown in Fig. 3, a sine-wave generator outputs a single

frequency perturbation with frequency finj and amplitude A,
which is added on top of the base current reference iref0 and
fed into the converter current regulator, which may regulate
the output or input current of the converter power stage. The
injected current io and the response voltage vo are measured
and fed into a band-pass filter tuned at the injection frequency
finj . The band-pass filter coefficients are computed online and
the filter expression is given by

Gbp(s) =

(
2πfinj

Q

)
s

s2 +
2πfinj

Q s+ (2πfinj)2
, (5)

where Q is the quality factor of the filter (usually set high),
and finj is the same frequency at which iinj is generated. The
dynamic parameter finj in (5) requires that the parameters
of the band-pass filter be evaluated continuously as finj
changes, making it essential that the rate-of-change of finj
be much smaller than the value of finj . The response filter
is further augmented with a quadrature generator with the
transfer function

Gq(s) =
(2πfinj − s)
(2πfinj + s)

. (6)

The band-pass filter output is fed into the quadrature gener-
ator, which outputs a 90° phase-shifted signal with the same
frequency and amplitude as the band-pass filter output. Hence,
the response filters output four signals where

v̂od = Gbpv̂o, v̂oq = Gq v̂od,

îod = Gbpîo, îoq = Gq îod.
(7)

The filtered currents, iod and ioq are fed into the analytical
model of Zo to calculate vsd and vsq . These are then fed into
the envelope tracking and phase detection algorithm, which
outputs the phase margin and amplitudes of vo and vs at the
frequency finj .

B. Envelope Tracking
The envelope tracking algorithm tracks the cycle-by-cycle

maximum and minimum of the inputs, denoted by vomax,
vomin, vsmax and vsmin in Fig. 4. The amplitudes and zero
offsets are then computed as

vop =
vomax − vomin

2
, vomid =

vomax + vomin
2

,

vsp =
vsmax − vsmin

2
, vsmid =

vsmax + vsmin
2

.
(8)

The phase difference φ between vo and vs is computed by de-
tecting the mid-point crossings with their respective dc offsets
vomid and vsmid. By using the filtered and quadrature signals,
and utilizing all mid-point crossings, peaks and troughs, the
amplitudes and phase of vo and vs are updated four times
in every period. This gives us a sampling rate of amplitudes
and phase of four times the injection frequency finj , which
reduces the control delay when the regulators for frequency
finj and amplitude A of the injection iinj are enabled.

C. Injection Amplitude and Frequency Regulation
When a continuous perturbation is injected in a dc micro-

grid, it is desirable to minimize the amplitude of the perturba-
tion so that the perturbation does not violate the voltage ripple
constraint nor affect the normal operation of the system. At the
same time, the perturbation and its response must be detectable
for the monitor operation. The Amplitude Controller block
shown in Fig. 3 controls the perturbation amplitude by using
the amplitude feedback vo of the bus voltage, and adjusts the
amplitude A of the injection current iinj based on a reference
Vpref . Vpref is chosen to be a small percentage of the rated bus
voltage to ensure that the perturbation amplitude is acceptable.

The Injection Frequency Controller block in Fig. 3 uses vop
and vsp as the feedback signals, and adjusts the frequency
of injection finj until the IMLG in (4) approaches one, i.e.
vop = vsp. The system IMLG crossover frequency fc,sys is
then given by

fc,sys = finj
∣∣
(vop=vsp)

. (9)

Furthermore, when (9) is satisfied, the phase margin of the
system IMLG, hereby denoted as PMsys, is given by

PMsys = 180− φ
∣∣
(finj=fc,sys)

, (10)

where φ is the phase difference between vo and vs, as shown
in Fig. 4.

IV. DESIGN OF THE STABILITY MARGIN MONITOR

Design of the injection amplitude and frequency controllers
require knowledge of the dynamics of vo and vs to small-signal
perturbations in A and finj . The modeling of the dynamics
of such a system has been done in [24]. This paper re-visits
the derivation of the continuous monitor loop dynamics with
the goal of improving the regulator behavior. Small-signal
modeling is presented, followed by analysis of variations in
the dc gains. Then, a new control strategy based on the use
of logarithms is proposed and analyzed.

A. Modeling of the Stability Monitor Loops
Consider the injection frequency regulator shown in Fig. 3.

At an operating point where finj = fs0, this would result in
a steady-state injection current is0 given by

is0(t) = Acos(φ0(t)) = Acos(ws0t), (11)

where ws0 = 2πfs0, and A is the fixed amplitude of pertur-
bation. Adding a small sinusoidal perturbation with a given
frequency wm into the frequency fs0, we get

fs(t) = fs0 + εcos(wmt), and
ws(t) = 2πfs(t) = ws0 + ∆wcos(wmt),

(12)
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where ∆w = 2πε and ε << wm. The resulting phase φ(t) of
is(t) is given by

φ(t) =

∫
ws(t)dt = ws0t+

∆w

wm
sin(wmt). (13)

Substituting (13) in (11), we get

is(t) = Acos(ws0t+ βsin(wmt)), (14)

where β = ∆w/wm << 1. Equation (14) can be expanded
using Euler’s identity and the Jacobi-Anger expansion [29].
Considering the zero-th and first order terms of the Jacobi-
Anger expansion and ignoring the diminishing higher order
terms, we get

is(t) = Acos(ws0t) +
Aβ

2
cos((wm + ws0)t)

− Aβ

2
cos((ws0 − wm)t).

(15)

vomax

vomid

vomin

vsmax

vsmid

vsmin

𝜙 𝜙 𝜙𝜙

vod voq

vsd vsq

Fig. 4. Depiction of the envelope tracking algorithm.

The resulting form of is(t) in (15) from the addition
of small-signal perturbation in frequency is a well known
response of frequency modulation, which results in sidebands
±wm centered around the steady-state operating-point fre-
quency ws0. This perturbed injection is(t) of (15) is then
injected into the system through the current controller of
the converter that implements it, as shown in Fig. 3. The
remaining system in Fig. 3 from iinj to vo responds linearly
to the three frequency components of (15), allowing us to use
superposition to find the response of vo to the perturbed is,
which results in [30]

vo(t) = ||H||cos(ws0t+ ∠H), where

H = H0 +Hue
jwmt +Hle

−jwmt,

H0 = AGvo(jws0),

Hu =
Aβ

2
Gvo

(
j(ws0 + wm)

)
,

Hl = −Aβ
2
Gvo

(
j(ws0 − wm)

)
.

(16)

In (16), Gvo(jw) is the small-signal model of the plant from
iref to vo given by

Gvo(jw) =
v̂o(jw)

îref (jw)
=

îo(jw)

îref (jw)
Zaway(jw). (17)

Linearizing the amplitude ||H|| of vo from (16), we get

vop(t) = ||H|| u ||H0||

+
||H∗0Hu +H0H

∗
l ||

||H0||
cos(wmt+ ∠(H∗0Hu +H0H

∗
l )).

(18)
The first term in (18) is the response of the steady-state input
is0(t) from (11). The second term in (18) is the response of
the perturbation in the injection frequency. Since the amplitude
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of perturbation was ∆w, the envelope transfer function from
finj to vo is found as [30]

Gvopf (jw) =
H∗0Hu +H0H

∗
l

||H0||
, where

H0 = AGvo(jws0),

Hu =
A

2w
Gvo(j(ws0 + w),

Hl = − A

2w
Gvo(j(ws0 − w).

(19)

A similar derivation for the envelope transfer function from A
to vo leads to [30]

GvopA(jw) =
H∗0Hu +H0H

∗
l

||H0||
, where

H0 = AGvo(jws0),

Hu =
1

2
Gvo(j(ws0 + w),

Hl =
1

2
Gvo(j(ws0 − w).

(20)

The transfer functions in (19) and (20) are the frequency
responses of vop to small-signal perturbations in finj and A
respectively. The transfer functions from finj and A to vsp are
similarly derived as Gvspf (jw) and GvspA(jw) respectively,
with the plant transfer function given

Gvs(jw) =
vs(jw)

iref (jw)
=

io(jw)

iref (jw)
Zo(jw). (21)

Using the derivations presented here, the overall open-loop
transfer functions from control to error can be computed for
the continuous monitor amplitude and frequency loops.

B. Analysis of Monitor Control Loops
Let the amplitude and frequency controllers in the con-

tinuous monitor shown in Fig. 3 be Gca(jw) and Gcf (jw)
respectively, such that

ûA = Gcav̂err,A, and
ûf = Gcf v̂err,f ,

(22)

where verr,A, uA, verr,f , uf are the input and output of the
amplitude and frequency controller respectively. The control
strategy used in [31] for deriving the small-signal model
implies that

uA = A, verr,A = Vpref − vop,
uf = f, verr,f = vsp − vop.

(23)

Following the derivation in Section IV-A, the open-loop trans-
fer functions from uA to −verr,A and from uf to −verr,f are
found as

Gverr,A(jw) = Gvopf (jw), and
Gverr,f (jw) = Gvopf (jw)−Gvspf (jw).

(24)

In [31], it was shown that the dc gain of the open-loop transfer
functions of (24) are given by

Gverr,A(0) = ||Gvo(jws0)||, and

Gverr,f (0) = A

(
∂||Gvo(jw)||

∂w
− ∂||Gvs(jw)||

∂w

)∣∣∣∣∣
w=ws0

,

(25)

where Gvo(jw) and Gvs(jw) are given in (17) and (21)
respectively.

Assuming that the current control bandwidth of the con-
verter chosen as the continuous monitor is higher than the
injection frequency, (17) and (21) can be approximated as

Gvo(jw) u KZaway(jw),

Gvs(jw) u KZo(jw),
(26)

where K is the conversion ratio from io to the current con-
trolled by the converter, and K = 1 if the converter explicitly
controls the output current. Equations (25) and (26) show that
the dc gain for the amplitude loop is directly proportional to
the magnitude of the impedance Zaway . For the impedances
Zo and Zaway to have a magnitude crossover in the frequency
spectrum, one of them would have to behave inductive and
the other capacitive. Using this fact, it can be shown that the
dc gains approximately follow the relationships given by

Gverr,A(0) ∝
{
ws0 if Zo is inductive,
1
ws0

if Zo is capacitive,
(27)

and
Gverr,f (0) ∝ A 1

w2
s0

. (28)

Equations (27) and (28) show that the dc gains of the con-
tinuous monitor loops change a lot with changes in operating
injection amplitude and frequency. This can lead to unstable
Gca and Gcf if they are optimized for one operating point, or
they can be too slow if designed for the worst case operating
point. It is desirable to linearize the feedback loop in a way
that reduces loop gain variation with respect to the operating
point. In this work, feedback linearization is achieved by using
logarithms.

C. Feedback Linearization Using Logarithms

The linear control strategy of (23) can be depicted in block
diagram as shown in Fig. 5(a). This control strategy leads
to variations in the loop gain given by (27) and (28). To
reduce the variations in the loop gain, a new control strategy
is proposed, where

uA = log(A), verr,A = log
( vop
Vpref

)
,

uf = log(f), verr,f = log
(vop
vsp

)
.

(29)

The block diagram of the proposed control strategy is shown
in Fig. 5(b). Both control strategies shown in Fig. 5 achieve the
same objective, i.e. bring f to the system crossover frequency
of (9) where vop = vsp, and bring the perturbation amplitude
in the dc bus voltage vo to Vpref . The benefits of the proposed
control strategy is evaluated next.

Consider a derivation similar to the one used in Sec-
tion IV-A. Adding a small sinusoidal perturbation with a given
frequency wm in the output of Gcf , we get

uf (t) = log(fs0) + εcos(wmt), which gives

fs(t) = fs0 × eεcos(wmt), and

ws(t) = ws0 × eεcos(wmt).

(30)
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logarithmic.

Asserting that ε << 1, ws(t) can be expanded as

ws(t) = ws0 + ws0∆wcos(wmt), (31)

where ∆w = ε. The phase φ(t) is found as

φ(t) =

∫
ws(t)dt = ws0t+

ws0∆w

wm
sin(wmt), (32)

which results in the injection current is(t) given by

is(t) = Acos(ws0t+ βsin(wmt)), (33)

where β = ws0∆w/wm << 1. Notice that (33) is the same as
(14) with the only difference being the scaling factor β. The
rest of the derivation follows similar to Section IV-A, resulting
in vop given by

vop(t) u
AGvo (jws0) + ||Gvopf (jwm)||cos(wmt+ ∠Gvopf (jwm)).

(34)

Similarly, vsp can be found as

vsp(t) u
AGvs (jws0) + ||Gvspf (jwm)||cos(wmt+ ∠Gvspf (jwm)).

(35)

From (29), verr,f is computed by taking logarithm of the ratio
of vop and vsp, which gives

verr,f (t) =

log
(
A||Gvs (jws0)|| + ||Gvspf (jwm)||cos(wmt+ ∠Gvspf (jwm))

A||Gvo (jws0)|| + ||Gvopf (jwm)||cos(wmt+ ∠Gvopf (jwm))

)
.

(36)
Using the small-signal approximations

||Gvspf (jwm)|| << A||Gvs(jws0)||, and
||Gvopf (jwm)|| << A||Gvo(jws0)||, (37)

Equation (36) can be expanded to find the overall open-loop
transfer function for Gverr,f , resulting in

Gverr,f (jw) = Gvopf (jw)−Gvspf (jw), (38)

where
Gvopf (jw) =

H∗0Hu +H0H
∗
l

||H0||2
,

H0 = Gvo(jws0),

Hu =
ws0
2w

Gvo(j(ws0 + w),

Hl = −ws0
2w

Gvo(j(ws0 − w),

(39)

and
Gvsp,f (jw) =

H∗0Hu +H0H
∗
l

||H0||2
,

H0 = Gvs(jws0),

Hu =
ws0
2w

Gvs(j(ws0 + w),

Hl = −ws0
2w

Gvs(j(ws0 − w),

(40)

Using a similar derivation for the amplitude loop, GverrA is
found as

Gverr,A(jw) =
H∗0Hu +H0H

∗
l

||H0||2
, where

H0 = Gvo(jws0),

Hu =
1

2
Gvo(j(ws0 + w),

Hl =
1

2
Gvo(j(ws0 − w).

(41)

It can be shown that the dc gains of Gverr,f and GverrA are

Gverr,f (0) =

( ∂||Gvo (jw)||
||Gvo (jw)||
∂w/w

−
∂||Gvs (jw)||
||Gvs (jw)||
∂w/w

)∣∣∣∣∣
w=ws0

, and

Gverr,A(0) = 1.
(42)

Equation (42) shows that using logarithms as presented in (29),
the amplitude loop transfer function has a fixed dc gain of one,
making its controller completely independent of the operating
point. The expression for Gverr,f (0) in (42) can be interpreted
as being the percent change in impedance magnitude resulting
from a percent change in frequency. For highly inductive or
capacitive impedances, Gverr,f (0) becomes a constant. For
other cases, Gverr,f (0) is a function of impedances, but the
variation is less than (28). Furthermore, unlike (25), Gverr,f (0)
in (42) is independent of variations in A.

In order to evaluate the models developed in this section, the
next section presents a hardware setup, and uses small-signal
models to show the design of the continuous monitor regula-
tors. Furthermore, analytical models and measurements of the
converter output impedances are used to predict the system
stability, and then compared with the output of the continuous
monitor to show its effectiveness in tracking stability of the
dc microgrid as the system operating point varies.

V. EXPERIMENTAL RESULTS

This section presents a hardware setup designed for the
purpose of evaluating the performance of the continuous
monitor. A representative dc microgrid is formed with multiple
converters that provide interfaces to the dc bus, including a
voltage source converter (VSC), power load (Load) and energy
storage converter (ESC). The continuous monitor function is
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Fig. 6. Overall test setup for evaluating the continuous monitor: (a) block
diagram and (b) experimental setup.

added to the ESC. Well known converter topologies are used
with known small-signal models, and direct measurements
are used to account for deviations from analytical models.
The stability of the dc microgrid test setup is evaluated and
compared using three approaches: analytical models, direct
measurements and the proposed continuous monitor. Evalua-
tions are performed over a range of load power to demonstrate
the effectiveness of the monitor in determining the system
crossover frequency and stability margin.

A. Hardware Test Setup

The overall block diagram for the hardware test setup is
shown in Fig. 6a. All three of the converters are built using
the TI GaN devices with integrated gate drivers [32] and
controlled using the CMOD A7 FPGAs [33]. All converters
are rated for 400 V on the dc bus and 2 kW power. Fig. 6b
shows a picture of the actual hardware setup. The converter
topologies, passive components and control parameters are
summarized in Table I.

The source converter shown in Fig. 6 is a two-level three-
phase voltage source converter (VSC). Its controller board
senses the three line currents, line-to-neutral voltages, the dc
output current and the dc link voltage. A control architecture
similar to [34] is employed, where a dq-domain current con-

TABLE I
PARAMETERS OF THE CONVERTERS IN THE HARDWARE TEST SETUP.

VSC Load ESC

Topology 2-level 3-phase Buck Buck/Boost

I/O Voltage 208 VLL/400 V 400 V/340 V 400 V/200 V

Prated 2 kW 2 kW 2 kW

Switching Freq. 100 kHz 100 kW 100 kW

Main Inductor 630 µH 215 µH 300 µH

I/O filter (L, C,
Rd, Cd)

N/A, 2.5 µF,
6 Ω, 3.3 µF

300 µH, 3.5 µF,
8 Ω, 6.6 µF

300 µH, 3.5 µF,
8 Ω, 6.6 µF

Gci Bandwidth 150 Hz 10 kHz 10 kHz

Gcv Bandwidth 30 Hz 1 kHz 10 Hz

troller regulates the line currents and an outer loop regulates
the dc bus voltage. On the dc bus, a capacitive output filter is
employed along with an RC-branch similar to [23], to damp
the resonance between the phase reactors and the dc output
capacitor. With the control architecture described here, the
analytical model for the source converter output impedance
looking into the dc terminals, Zsource, is derived as

Zsource =
Zdc

1 + ZdcYs
, (43)

where Zdc is the impedance of the dc output filter including
the dc bus capacitor and the RC-branch, and Ys is given by
[34]

Ys =
3

2V 2
dc

{ (V1 + sLI1)[V1 + V 2
dcGciGcv]

sL+ VdcGci
− V1I1

}
, (44)

where Gci is the current compensator, Gcv is the voltage
compensator, and the remaining parameters are adopted from
[34]. The impedance model of (43) and (44) is derived based
on the assumption that the 3-phase 208 VLL power source is
an ideal voltage source, thereby ignoring the dynamics of the
phase-locked loop and the 3-phase power source [34].

The load converter is a traditional synchronous buck con-
verter with an LC-filter at the input and an LC-filter at
the output, both augmented with an RC-branch to damp the
resonances of the LC filters. The load converter has a fast
inner control loop regulating the buck-inductor current, and
an output loop regulating the load resistor voltage. The input
impedance, ZLoad, of the buck converter, with its control loops
and filters, is given by

ZLoad = ZLin +
ZconvZCin
Zconv + ZCin

, (45)

where ZLin is the impedance of the input inductor, ZCin is
the impedance of the input capacitor in parallel with the RC-
branch, and Zconv is given by

Zconv =
ZL + ZRCload +GciGcvVdcZRCload +GciVdc

D[D −GciGcvILZRCload −GciIL]
, (46)

where ZL is the impedance of the buck-inductor, ZRCload is
the impedance of the load resistance in parallel with output
capacitor and RC-branch, Gci is the current compensator, Gcv
is the voltage compensator, Vdc is the dc bus voltage and IL
is the current of the load resistor.
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Fig. 8. Variation in Gverr,A(jw) w.r.t changing load power; (a) with
difference feedback, and (b) with logarithm feedback.

The Energy-Storage Converter (ESC) has the same
topology, control architecture, and filters, as the load converter.
Instead of a resistive load, the ESC has a bulk capacitance of
0.4 mF serving as the energy storage element. The current
control bandwidth of the ESC is kept high (10 kHz) while
the voltage control bandwidth kept very low (10 Hz), so that
the ESC appears as a capacitive constant-current load on the
dc bus. The analytical impedance model of the ESC, ZESC
is exactly the same as that of the load converter, with only
the bulk capacitor replacing the load resistor. The frequency
responses of Zsource, ZLoad and ZESC with the load converter
operating at 1900 W are presented in Fig. 7 based on the
analytical models. It can be seen in Fig. 7 that the source
impedance has a peak around 1.3 kHz resulting from a low
control bandwidth. In this work, the source VSC control
bandwidth has been kept low by design to emulate the source
behavior in typical dc microgrids, where MW scale power
sources use devices that switch up to a few kHz, limiting the

achievable control bandwidth. Furthermore, Fig. 7 shows that
the load converter impedance behaves as a negative resistance,
as indicated by its constant magnitude and −180° phase at low
frequencies.

The impedance models presented here are used to design
the controllers of the continuous monitor, and a comparison is
made between the loop gains resulting from the two control
strategies shown in Fig. 5. For the control strategy of Fig. 5a,
equation (24) is evaluated where Zo = ZESC and Zaway is
the parallel combination of Zsource and ZLoad. For the control
strategy of Fig. 5b, equations (38) and (41) are evaluated.
These transfer functions are evaluated as the load power varies
from 100 W to 1.9 kW. The results for the amplitude control
loop, Gverr,A(jw) are shown in Fig. 8. Fig. 8a shows that
the variation in the amplitude loop due to operating point
variation is about 6 dB for the difference control of Fig. 5a,
while the variation is zero for the control using logarithms. The
other loop gain variations are summarized in Table II. Table II
shows that the variations in the amplitude and frequency loop
dc gains are reduced significantly by using logarithms. Using
these models, Gcf is designed with a bandwidth of 4 Hz and
Gca is designed with a bandwidth of 1 Hz.

B. Continuous Monitor Performance

The performance of the continuous monitor is evaluated
by using the hardware setup shown in Fig. 6. At startup,
the dc bus voltage is ramped up to 400 V with the VSC
operating in closed loop. The ESC is then enabled and the
voltage of the energy storage capacitor ramped up to 200 V.
Next, the continuous injection and the continuous monitor
controllers are enabled with the designed parameters. The
FPGA controller of the ESC sends its continuous monitor
outputs, fc,sys and PMsys to the PC at 4 Hz rate using UART
communication. The data is logged along with the timestamp
for alignment with the data from other converters.

With the continuous monitor running, the load converter is
enabled and the load power is ramped up slowly from 0 W
to 1900 W and then back down to 0 W. The load converter
sends its power reference to the PC for logging at 4 Hz
rate with the timestamp using UART communication. Once
the test is complete, the data from load converter and the
ESC are aligned using the timestamp, and the variation of
fc,sys and PMsys w.r.t the load power is shown in Fig. 9. To
validate the output of the continuous monitor, two methods
are used: analytical model prediction and direct impedance
measurement using psuedo-random binary sequence (PRBS)

TABLE II
VARIATIONS IN CONTROL LOOP DC GAINS.

Change in Operating
Point (0.1 kW - 1.9 kW)

Change in Perturbation
Amplitude (1 V - 3 V)

Gverr,A(0) Gverr,f (0) Gverr,A(0) Gverr,f (0)

Difference
control 6 dB 5 dB 0 dB 9.5 dB

Logarithm
control 0 dB 3 dB 0 dB 0 dB
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Fig. 9. Continuous monitor performance w.r.t changing load power; (a)
identified system crossover frequency, and (b) identified system phase margin.

injection [11]. For analytical model prediction, the impedance
models presented in section V-A are evaluated at load power
levels from 200 W to 1800 W, and the resulting Zo and
Zaway are plot together to find the crossover frequency and
phase margin. For direct measurement, a 12-bit PRBS signal
of length 4095 is injected at 25 kHz rate into the current
reference of the ESC at nine operating points with load power
ranging from 200 W to 1800 W. The current injected into the
dc bus (i.e. the current driven into the parallel combination
of Zsource and ZLoad) is recorded along with the dc bus
voltage. Fast Fourier Transform (FFT) is performed on the
injected current and response voltage to find the frequency
spectra. Then the ratio of the voltage spectrum to the current
spectrum is computed to calculate the frequency spectrum of
the combined impedance Zaway. This measured impedance is
used along with the analytical model of ZESC to determine
the PRBS-based stability results shown in Fig. 9.

C. Evaluation of Continuous Monitor Results

Fig. 9a shows that fc,sys reduces from around 615 Hz to
540 Hz as the load power changes from 0 W to 1900 W.
Similarly, Fig. 9b shows that PMsys changes from 80° to 31°.
This trend in fc,sys and PMsys is expected as the negative
incremental resistance behavior of the load converter becomes
more dominant at higher power levels. The continuous monitor
output matches well with the PRBS-based direct measurement;
however, although the trends align with the analytical models,
neither the continuous monitor output nor direct measurement
result matches the analytical prediction. To understand this,
the analytical model and direct measurements of Zaway are
shown in Fig. 10 along with the analytical model of ZESC at
load power of 400 W.
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In Fig. 10, the analytical model response of Zaway is
shown with a solid red curve, while measured Zaway is shown
with blue cross, and the analytical model response of ZESC
is shown with black dotted lines. Fig. 10 reveals that the
magnitude response of the measured Zaway is shifted slightly
to the left at lower frequencies and the phase is also lower
compared to the analytical model. This is expected since the
analytical model assumes that the 208 VLL three-phase source
shown in Fig. 3 is a zero impedance voltage source, whereas
the actual hardware of Fig. 6 uses a lab-scale power supply
which has finite non-zero output impedance. This source
output impedance affects Zaway at lower frequencies within
the control bandwidths of the power source but not at higher
frequencies where the impedance is dominated by the passive
components of the converters. Furthermore, the analytical
model does not account for losses in the converters, which
add damping and lower the phase of the impedance response.
The analytical model also assumes the passive components to
be linear over the frequency range, which is never the case
with real components. For instance, the phase inductors for
the VSC in Fig. 6b are built using single strand AWG-16
laminated wire which resulted in 90 mΩ resistance at 60 Hz
but the ac resistance increases rapidly with frequency, giving
an Rac of 16 Ω at 1 kHz. Thus, while it is easy to accurately
model small systems (less than 100 W) with highly controlled
passive components, it is nearly impossible to capture the
dynamics of a medium to large scale power system using
just analytical models. In such cases, the proposed continuous
monitor provides a significantly more accurate measure of
impedance and stability in the presence of uncertainties and a
wide range of operating conditions.

VI. CONCLUSION

This paper presents a method for monitoring the stability of
a dc microgrid, including the stability margin and the critical
frequency. The proposed monitor injects a small perturbation
into the system for monitoring stability, which does not affect
normal operation of the system. This paper also presents
detailed modeling of the continuous monitor dynamics, and
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compares two control strategies for the design of the monitor.
One control strategy uses difference feedback with linear
output, resulting in low complexity and fewer resources to
implement; however, its controller may suffer from variation
of the operating points. It should be considered at design time
whether the controller will be able to handle those variations.
An alternative control strategy using logarithm feedback and
logarithm output is also presented in this paper. It is shown
that using logarithms result in controllers that do not suffer
from operating point variations. The use of logarithms and
exponential functions, however, come with higher resource
usage.

The analytical development presented in this paper serves
as a tool for the designer to pick a control strategy based
on a compromise between implementation cost and design
requirement. The proposed continuous monitor is implemented
on to the energy-storage interfacing converter in a 2 kW lab
scale dc microgrid. Its performance is evaluated by comparing
the results to analytical model predictions and direct mea-
surements. It is highlighted that, while analytical models are
useful for designing the monitor, it cannot be relied upon for
accurately capturing the damping of a real system and pre-
dicting stability as direct measurement can. The results show
that the proposed monitor tracks stability in good agreement
with direct measurement. The proposed method can be added
to any existing converter in the dc microgrid as an auxiliary
function. If there is no access to the control of the converters
already in the system, another converter may be added with
a fraction of the power rating and with capacitive energy
storage to perform the monitoring task. In contrast to existing
wideband identification methods, the proposed method outputs
the stability measurement as a continuous signal, which opens
up new possibilities of utilizing this for improving the stability
of the dc migrogrid being monitored.

REFERENCES

[1] A. Riccobono, M. Cupelli, A. Monti, E. Santi, T. Roinila, H. Abdollahi,
S. Arrua, and R. A. Dougal, “Stability of shipboard dc power distribu-
tion: Online impedance-based systems methods,” IEEE Electrific. Mag.,
vol. 5, no. 3, pp. 55–67, Sep. 2017.

[2] P. Pan, H. Hu, X. Yang, F. Blaabjerg, X. Wang, and Z. He, “Impedance
measurement of traction network and electric train for stability analysis
in high-speed railways,” IEEE Trans. Power Electron., vol. 33, no. 12,
pp. 10 086–10 100, Dec. 2018.

[3] A. L. Julian and R. M. Cuzner, “Design, modelling and stability analysis
of an integrated shipboard dc power system,” in 2009 IEEE Electric Ship
Technologies Symposium, Apr. 2009, pp. 428–432.

[4] J. G. Ciezki and R. W. Ashton, “Selection and stability issues associated
with a navy shipboard dc zonal electric distribution system,” IEEE Trans.
Power Del., vol. 15, no. 2, pp. 665–669, Apr. 2000.

[5] Z. Huang, S. Wong, and C. K. Tse, “Revisiting stability criteria for dc
power distribution systems based on power balance,” CPSS Transactions
on Power Electronics and Applications, vol. 2, no. 1, pp. 76–85, 2017.

[6] A. Barkley and E. Santi, “Online monitoring of network impedances
using digital network analyzer techniques,” in 2009 Twenty-Fourth
Annual IEEE Applied Power Electronics Conference and Exposition,
Feb. 2009, pp. 440–446.

[7] J. Morroni, L. Corradini, R. Zane, and D. Maksimovic, “Adaptive
tuning of switched-mode power supplies operating in discontinuous and
continuous conduction modes,” IEEE Trans. Power Electron., vol. 24,
no. 11, pp. 2603–2611, Nov. 2009.

[8] A. Barkley, R. Dougal, and E. Santi, “Adaptive control of power con-
verters using digital network analyzer techniques,” in 2011 Twenty-Sixth
Annual IEEE Applied Power Electronics Conference and Exposition
(APEC), Mar. 2011, pp. 1824–1832.

[9] D. Martin and E. Santi, “Autotuning of digital deadbeat current con-
trollers for grid-tie inverters using wide bandwidth impedance identifi-
cation,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 441–451, Jan. 2014.

[10] Z. Qu, S. Ebrahimi, N. Amiri, J. Jatskevich, and A. Pizniur, “Adaptive
control method for stabilizing dc distribution systems with constant-
power loads based on tunable active damping,” in 2018 IEEE 19th
Workshop on Control and Modeling for Power Electronics (COMPEL),
Jun. 2018, pp. 1–6.

[11] T. Roinila, M. Vilkko, and J. Sun, “Broadband methods for online grid
impedance measurement,” in 2013 IEEE Energy Conversion Congress
and Exposition, Sep. 2013, pp. 3003–3010.

[12] J. Liu, X. Feng, F. C. Lee, and D. Borojevich, “Stability margin mon-
itoring for dc distributed power systems via perturbation approaches,”
IEEE Trans. Power Electron., vol. 18, no. 6, pp. 1254–1261, Nov. 2003.

[13] J. Siegers, E. Santi, and A. Barkley, “Wide bandwidth system identifica-
tion of mvdc distribution system by applying perturbations to an existing
converter,” in 2013 IEEE Electric Ship Technologies Symposium (ESTS),
Apr. 2013, pp. 434–441.
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Abstract—Continued trend towards electrified transportation
and integration of renewable energy presents new challenges in
ensuring system stability. For systems where overdesign to meet
stability requirements is not feasible, several methods have been
proposed in literature for improving the system stability using
control. This paper presents a method for actively controlling
the stability of a dc microgrid by emulating a dynamic virtual
immittance at the terminal of a converter interfacing energy
storage. The proposed method utilizes outputs from a stability
monitor in a feedback loop and actively regulates the system
stability margin to a desired reference. Hardware tests performed
on a lab scale 2 kW dc microgrid are used to validate the
performance of the stability controller. It is shown that, with
the proposed method, the system provides better damping to
disturbances and proactively avoids becoming unstable.

Index Terms—impedance, stability, dc microgrid, monitoring,
virtual immittance

I. INTRODUCTION

AS the trend towards electrified transportation and inte-
gration of renewables into the electric grid continues,

it is becoming more challenging to ensure system stability.
Future dc microgrids are expected to incorporate different
kinds of sources such as renewable energy and fuel-based
generators. They are expected to be re-configurable, have
bidirectional converters interfacing energy storage, and may
have constant power, intermittent or plug and play loads.
Furthermore, the future dc microgrids are expected to be
higher power, and be scalable. Examples of such systems
can be found in all-electric or more-electric aircraft, electric
ships and dc fast charging stations [1]–[3]. Fig. 1 depicts a
generic dc microgrid with sources, loads and bidirectional
converters. Stability of such dc microgrids is deteriorated by
the negative incremental resistance behavior of the constant
power loads as well as interactions among the controllers
of the interconnected converters as well as their filters [4],
[5]. Traditional methods of ensuring stability through passive
component design leads to oversized filter design and slow
controllers [6]. Recent interest has been to investigate active
methods for enhancing and ensuring stability of dc microgrids.

Active stabilization techniques can be classified as
converter-level and system-level stabilization techniques.
Converter-level stabilization targets stabilization of a converter
control loop based on online measurement of loop gains [7]–
[10], impedances [11] or detection of instability [12]. In [7],
[8], the authors use single frequency continuous injection

This work was supported in part by the Raytheon Company through the
Utah State University Power Electronics Lab.

to identify the crossover frequency and phase margin of
a converter control loop, and then tune an adaptive filter
continuously based on a desired phase margin. Authors in
[9], [10] use wideband perturbation and identification methods
to perform online identification of the converter loop gain
frequency response, and then use it to re-tune the controller
parameters for the desired stabilty margins. In [11], the authors
use wideband perturbation to measure frequency response of
nonlinear passive components in the power stage (e.g. iron-
core inductor) and then re-tune the control parameters for
optimal performance. Authors in [12] detect the oscillation
frequency at the onset of instability and then re-program
the compensator parameters to stabilize it. Converter-level
stabilization techniques ensure the stability of a converter;
however, when a converter is connected in a dc microgrid,
stability of its local control loop does not guarantee stability
of the interconnected system [13].

At the system-level, there has been a lot of recent develop-
ment in active stabilization of dc microgrids. In [14], [15], the
authors use passivity-based stability analysis and design feed-
forward control to add damping into the dc bus impedance.
Authors in [16], [17] measure the frequency and amplitude of
oscillation at the onset of instability. Using that information,
[16] tunes a virtual impedance emulated on the bus by an
external current source and [17] adds phase around the critical
frequency without changing the impedance magnitude. In [18],
[19], the authors use the full system analytical model to design
virtual impedance and use feedforward terms to emulate it.
Most of the existing stabilization methods require apriori
knowledge of the entire system [15], [18], [19]. The methods
based on detection of instability [16], [17] can only be used as
emergency measures, as normal operation of a dc microgrid
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Fig. 1. A dc microgrid incorporating sources, loads, bidirectional energy
storage and virtual impedance.
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demands a certain stability margin. The measurement-based
method in [14] overcomes the aforementioned challenges;
however, it requires extensive computations for tuning or re-
tuning of the feed-forward term.

This paper presents an active stabilization method for dc
microgrids based on a dynamic virtual immittance (DVI),
where immittance is used to combine impedance and admit-
tance. The proposed DVI may be emulated at the terminal
of one of the converters already in the dc microgrid, or
emulated using an additional converter with a fraction of the
power rating, added to the system and interfacing capacitive
or battery energy storage. A feedback loop regulates the
stability margin of the dc microgrid system in a similar
manner as [7] does for a converter loop gain. The output of
the stability regulator continuously adjusts parameters of the
DVI to add just enough damping at the critical frequency as
required to maintain the reference margin, thereby optimizing
the reactive power required to support the system stability.
In this paper, the stability margin and critical frequency are
continuously evaluated using a continuous stability margin
monitor [20], also implemented in the converter emulating
the DVI. In general, however, application of the DVI can
use any system stability monitor that provides information
about the system stability and the critical frequency. The
stability regulator, monitor and DVI are implemented in a
single CMOD A7 field-programmable gate array (FPGA) [21]
using fixed-point computations, along with the primary control
functions of the converter, demonstrating low computational
cost. Its performance is demonstrated on a lab scale 2 kW dc
microgrid.

Throughout the paper, terms starting with ‘Z’, ‘Y ’ and
‘G’ denote impedances, admittances and compensators re-
spectively, and all are functions of the Laplace variable ‘s’.
The paper is organized as follows: Section II describes the
stabilization method and the DVI, Section III describes the
design of the stability regulator and the monitor used in
this paper, Section IV presents the hardware setup used for
evaluating the stability regulator and the experimental results,
and Section V summarizes the findings.

II. STABILITY ENHANCEMENT USING DYNAMIC VIRTUAL
IMPEDANCE

The term dynamic virtual immittance (DVI) is used in
this paper to distinguish it from traditional implementation
of virtual impedance, as the coefficients of the DVI are
continuously changing based on measurements at the terminal
of the converter implementing it. Generally, virtual impedance
may be implemented at the terminal of a converter as a series
impedance, Zvs, or parallel admittance Yvp, as shown in Fig. 1.
The bi-directional energy storage converter in Fig. 1 is chosen
as the converter to implement the stability monitoring and
regulation. A continuous stability margin monitor similar to
[20] is used to determine the stability of the interconnected
system. The monitor in [20] relies on Nodal Stability Analysis
[13] to determine the system stability, which is summarized
here.

A. Nodal Stability Analysis

The Nodal Stability Analysis [13] was proposed to over-
come the requirement of grouping of sources and loads in
impedance-based stability analysis methods [22]–[24]. For a
dc microgrid such as that shown in Fig. 1, Nodal Stability
Criterion states that the dc microgrid is stable if

• Individual converters are stable when connected to an
ideal dc bus, and

• The dc bus impedance, Zbus, is stable.
Here, Zbus is the parallel combination of all of the converter
output impedances. In [13], the authors have shown that the
stability of Zbus can be determined by partitioning the parallel
combination at the terminal of one of the parallel-connected
converter. For the partitioning shown in Fig. 1, this results in

Zbus =
ZoZaway

Zo + Zaway,
=

Zo

1 + Zo

Zaway

=
Zaway

1 +
Zaway

Zo

, (1)

where Zaway is the parallel combination of all converter
impedances except Zo. Equation (1) shows Zbus expressed
in the form of a closed loop system representing interactions
of all the interconnected converters and with a minor loop
gain given by the ratio of the output impedance Zo and the
impedance of the rest of the system, Zaway. The closed loop
system of (1) can equivalently be written as

Zbus =
Zo1

1 +
Yaway

Yo

=
Zaway

1 + Yo

Yaway

, (2)

where Yaway = 1/Zaway is the total admittance of the
converters except Yo, which is the admittance of the energy
storage converter. From (1) and (2), the impedance minor loop
gain of the microgrid system is given by

IMLG =
Zo

Zaway
=
Yaway

Yo
. (3)

The stability regulator developed in this paper measures the
crossover frequency, fc,sys, and phase margin, PMsys of the
IMLG and then regulates the phase margin at the desired
reference by adding a DVI at the terminal of the chosen
converter.

B. Dynamic Virtual Immittance

A virtual impedance at the terminal of a converter may be
implemented by measuring the terminal output current io and
adding a term vvi in the voltage control loop, or by measuring
vo and adding a term ivi in the current control loop, where
vvi and ivi are given by

vvi = Zvsio, and
ivi = Yvpvo,

(4)

where Zvs and Yvp are shown in Fig. 1. The effect of these
on the overall output impedance Zo or admittance Yo is given
by

Zo = Zvs + ZESC , and
Yo = Yvp + YESC ,

(5)

where ZESC and YESC are impedance or admittance of the
energy storage converter without the virtual impedance. The
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Fig. 2. Possible realizations of virtual impedance and admittance.

virtual impedance, Zvs, or admittance, Yvp may be realized
using zero-th order, first order or second order filters as shown
in Fig. 2. In Fig. 2, rv is a virtual resistance, gv = 1/rv is
a virtual conductance, Lv is a virtual inductance and Cv is
a virtual capacitance. Zero-th order virtual impedance leads
to voltage or current droop characteristics, which affects dc-
operating point as well as high frequency dynamics that can
affect controller behavior. First order virtual impedance leads
to droop with low-pass characteristics typical of practical pas-
sive damping implementations, which affects high frequency
dynamics but does not affect dc operation. Second order virtual
impedance leads to frequency-selective damping, which adds
damping around target frequencies but neither affects dc-
operation nor high frequency dynamics. This work uses second
order virtual impedance as it achieves the objective with least
impact on the system operation. Using parameters from Fig. 2
for Zvs, we get

Zvs =
sw0r/Q

s2 + sw0/Q+ w2
0

, (6)

where r is the resistance, w2
0 = 1/LC and Q = r/w0L.

Similarly, for Yvp, we get

Yvp =
sw0g/Q

s2 + sw0/Q+ w2
0

, (7)

where g is the conductance, w2
0 = 1/LC and Q = g/w0C.

Notice the similarity in the transfer functions (6) and (7). Com-
bining (6) and (7) into a common representation, henceforth
referred to as DVI, we get

Gv =
sw0dv/Q

s2 + sw0/Q+ w2
0

, (8)

where Gv corresponds to (6) or (7) depending on whether the
input of Gv is io or vo and the output vvi or ivi respectively.
Equation (8) is a typical representation of a band-pass filter
where w0 is the center frequency, Q is the quality factor that
has inverse relationship with the width of the band-pass region
and dv is the magnitude of Gv at w0.

The DVI in (8) is parametric with three parameters that
shape it. Fig. 3 shows the effect of parameter variation on the
DVI, where the blue solid curve shows the baseline case with
w0 = 2π(100), Q = 0.25 and dv = 1. The pink dash-dot
curve in Fig. 3 shows the effect of changing Q to 1, while
the red dashed curve shows the effect of changing d to 10 and
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Fig. 3. Parameter variation in the realization of the DVI.

black solid curve shows the effect of changing w0 to 2π(1000).
It is evident that all three parameters affect different aspects
of the DVI exclusively, i.e. Q changes the width of the band-
pass region, w0 shifts the DVI horizontally while dv shifts
the DVI vertically. Therefore, a controller may change one of
the parameters in a feedback loop without affecting the other
aspects, which may be changed by other control loops.

The DVI may be implemented into a micro-controller or
an FPGA by discretizing it using the Tustin approximation
[25]. For a generic input x and output y, this results in the
difference equation given by

y[k] =Kout

{
8y[k − 1]− 4y[k − 2] +K0y[k − 2]

+K0dv
(
x[k]− x[k − 2]

)

−K1

(
2y[k − 1] + y[k − 2]

)}
,

(9)

where K0, K1 and Kout are given by

K0 =
2ω0Ts
Q

,

K1 = (ω0Ts)
2, and

Kout =
1

4 +K0 +K1
.

(10)

In (9) and (10), Q is the quality factor from (8), Ts is the
sampling period of the converter implementing the DVI, dv is
the output of the stability regulator and ω0 = 2πfc,sys where
fc,sys is the output of the stability monitor corresponding to
the IMLG crossover frequency. The coefficients K0, K1 and
Kout are computed based on the input fc,sys, then used along
with dv to calculate the final coefficients at each time-step.
These coefficients are then used to compute the k-th output of
the DVI.

III. ACTIVE STABILITY CONTROL

This section describes the application of DVI in a dc
microgrid as a closed loop system that actively regulates the
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system stability margin.

A. Stability Regulation

In this work, admittance-based IMLG, Yaway/Yo, is used
and the DVI is implemented as shown in Fig. 4. The objective
of the stability controller in Fig. 4 is to change dv such that
the modified IMLG given by

IMLG =
Yaway

Yo
=

Yaway

YESC +Gv
(11)

has a phase margin at the crossover frequency, fc,sys, that is
equal to the desired phase margin, PMref . This is analogous
to adding a series RLC branch, such as that shown in Fig. 2,
tuned to provide a certain resistive loading at the resonant
frequency, except that the resonant frequency and resistance is
changing to track the reference margin as the system operating
point changes.

While it is beneficial to use a stability monitor that outputs
the system IMLG crossover frequency and phase margin
continuously [20], it is not a necessity and does not limit the
use of the stability regulator and DVI with other monitoring
methods. For instance, wide-band perturbations [14], [26] can
be used to periodically measure fc,sys and PMsys. The only
consideration would be the slow response time of the stability
regulator with periodic wide-band measurement. In this work,
the continuous stability margin monitor proposed in [20] is
adapted to measure the admittance-based IMLG, and account
for DVI in the impedance model of the converter performing
regulation.

B. Continuous Stability Margin Monitor

The authors in [20] showed that the IMLG of (3) can be
measured by using the ratio of voltages when both Zo and
Zaway are perturbed by the same current io. It can be seen
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Fig. 5. Diagram of the stability margin monitor used in this work.

from (3) that if, instead of using current perturbation, the
admittances Yo and Yaway are perturbed by the same voltage
perturbation, vo, we get

IMLG =
Yaway v̂o
Yov̂o

=
îo

îs
, (12)

where io is the response of Yaway to vo, and is is the response
of Yo to vo. Applying the same voltage perturbation in the
presence of DVI, we get

IMLG =
Yaway v̂o
Yov̂o

=
Yaway v̂o

YESC v̂o +Gv v̂o
=
îo

îs
, (13)

where YESC is the analytical model of the monitor converter
admittance seen from the dc bus, and Gv is the DVI given by
(8). Implementation of this strategy is shown in Fig. 5. The
continuous monitor in Fig. 5 outputs a single frequency sine-
wave perturbation iinj , with amplitude A and frequency finj ,
that is added on top of the base current reference, iref0, as
shown in Fig. 4. The perturbation travels through the converter
and results in same-frequency perturbation in vo and io, which
are sensed at the terminal of the converter. As shown in Fig. 5,
a bandpass filter, continuouysly tuned at finj , with a gain
of 1 and quality-factor of 16, filters vo and io and extracts
their single-frequency components at finj , denoted by vof
and iof respectively. Using superposition principle, the single-
frequency component vof is fed into the analytical models of
YESC and Gv , and their outputs are added to determine the
total response, isf , as shown in Fig. 5.

The envelope tracking and phase detection block in Fig. 5
tracks the amplitudes of iof , isf and vof , denoted by iop, isp
and vop respectively. The frequency controller uses iop and isp
as feedback signals and uses a compensator to change finj
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until iop = isp [20]. This ensures that, in steady state, the
injection frequency converges to the system IMLG crossover
frequency given by

fc,sys = finj

∣∣∣
iop=isp

. (14)

The phase margin of the IMLG, PMsys is computed by
measuring the phase difference of iof and isf by using their
zero crossings [20]. The phase margin is then given by

PMsys = 180
(
1− 2∆tzcfinj

)∣∣∣
finj=fc,sys

, (15)

where ∆tzc is the time difference between zero crossings of
iof and isf . Additionally, the amplitude controller in Fig. 5
uses vop as the feedback signal and changes the amplitude A of
perturbation iinj in order to regulate the amplitude of voltage
perturbation to a reference, Vpref . Design and details of these
controllers is discussed in [20]. The control bandwidths of the
monitor controllers are designed to be much higher than that of
the stability regulator, such that the stability regulator always
sees PMsys and fc,sys at its input.

C. Stability Controller Design

In order to design the stability controller of Fig. 4, it is im-
portant to understand the plant, which is the transfer function
from dv to PMsys. For the IMLG to have a crossover, one of
the admittances from Yo and Yaway must behave capacitive,
while the other inductive, around the crossover frequency
[20]. Taking a cross-section of the frequency response at the
crossover frequency, it can be shown that the interconnection
of Yo and Yaway has a dominant second order behavior with
certain damping characteristics. For instance, if YESC behaves
capacitive, the equivalent circuit including DVI is shown in
Fig. 6a, where Yaway = 1/sL, YESC = sC and Gv = g.
The effect of DVI is to increase the conductance value at this
frequency, adding more damping in the process. For this cross
section, the IMLG is found as

IMLG =
Yaway

Yo
=

1

s2LC + sLg
. (16)

The crossover frequency of IMLG in (16) can be found by
equating the absolute magnitude to 1, which results in

fc,sys =
1

2π

√
−Lg2 + C

√
4 + L2C2

2LC2
. (17)
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Fig. 6. Behavior of IMLG at the crossover frequency; (a) equivalent circuit,
and (b) phase margin characteristics with respect to conductance.

Similarly, phase margin of the IMLG in (16) can be found as

PMsys = arctan
( g

2πfc,sysC

)
. (18)

For some arbitrary values L = 2.5 mH and C = 35 µF,
Fig. 6b shows the behavior of phase margin, PMsys, with
respect to conductance g. It is evident from Fig. 6b that the
relationship is linear except close to 90°. This is expected in
the assumed system of Fig. 6a since the system tends towards
a first order system as conductance increases and the phase
margin can never exceed 90°. In an actual system, though,
Yaway and YESC will have resistive components, and it is
possible to achieve a phase margin of over 90°. To design the
controller gains, the cross section parameters may be estimated
from continuous monitor measurements, the dc gain may be
measured directly using the continuous monitor, or wide-band
perturbation may be used to explicitly measure the system
admittances and the parameters estimated from there. In this
work, the dc gain was estimated from the analytical models
of converter admittances, presented in the next section. The
plant dynamics from the current reference to the phase margin
evaluation output are dominated by the high-Q band-pass filter.
In [20], the authors showed that the plant transfer function
shows dominant pole behavior with a pole frequency, ω1, given
by

ω1 =
√

2winj

√
1−

√
1− 1

4Q2
, (19)

where winj is the injection frequency as well as the resonance
frequency of the band-pass filter. For Q >> 1, this expression
can be approximated by

ω1 u
winj

2Q

∣∣∣
Q>>1

. (20)

The bandwidth of the stability controller can be designed to
be much less than the pole frequency given by (20).

IV. EXPERIMENTAL RESULTS

The stability regulator developed in this paper is evaluated
on a lab scale 2 kW dc microgrid. A representative dc
microgrid is formed, including converters interfacing power
source (VSC), power load (Load) and energy storage (ESC).
Well known converter topologies are used with known small-
signal models, and direct measurements are used to account for
deviations from analytical models. The stability enhancement
from the use of DVI is evaluated through models and direct
measurements. Phase margin regulation is recorded as the
constant power load increases, demonstrating the effectiveness
of the stability regulator in enhancing the system stability
using the DVI.

A. Hardware Test Setup

The overall block diagram for the hardware test setup is
shown in Fig. 7a. All three of the converters are built using
the TI GaN devices with integrated gate drivers [27] and
controlled using the CMOD A7 FPGAs [21]. All converters
are rated for 400 V on the dc bus and 2 kW power. Fig. 7b
shows a picture of the actual hardware setup. The converter
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Fig. 7. Overall test setup for evaluating the stability regulator; (a) Block
diagram, and (b) experimental setup.

TABLE I
PARAMETERS OF THE CONVERTERS IN THE HARDWARE TEST SETUP.

VSC Load ESC

Topology 2-level 3-phase Buck Buck/Boost

I/O Voltage 208 VLL/400 V 400 V/340 V 400 V/200 V

Prated 2 kW 2 kW 2 kW

Switching Freq. 100 kHz 100 kW 100 kW

Main Inductor 630 µH 215 µH 300 µH

I/O filter (L, C,
Rd, Cd)

N/A, 2.5 µF,
6 Ω, 3.3 µF

300 µH, 3.5 µF,
8 Ω, 6.6 µF

300 µH, 3.5 µF,
8 Ω, 6.6 µF

Gci Bandwidth 150 Hz 10 kHz 10 kHz

Gcv Bandwidth 30 Hz 1 kHz 10 Hz

Gv Bandwidth N/A N/A 1 Hz

topologies, passive components and control parameters are
summarized in Table I.

The source converter shown in Fig. 7 is a two-level three-
phase voltage source converter (VSC). Its controller board
senses the three line currents, line-to-neutral voltages, the dc
output current and the dc link voltage. A control architecture
similar to [28] is employed, where a dq-domain current con-
troller regulates the line currents and an outer loop regulates
the dc bus voltage. On the dc bus, a capacitive output filter is
employed along with an RC-branch similar to [13], to damp

the resonance between the phase reactors and the dc output
capacitor. With the control architecture described here, the
analytical model for the source converter output admittance
looking into the dc terminal, Ysource, is derived as

Ysource = Ydc + Ys, (21)

where Ydc is the admittance of the dc output filter including
the dc bus capacitor and the RC-branch, and Ys is given by
[28]

Ys =
3

2V 2
dc

{ (V1 + sLI1)[V1 + V 2
dcGciGcv]

sL+ VdcGci
− V1I1

}
, (22)

where Gci is the current compensator, Gcv is the voltage
compensator, and the remaining parameters are adopted from
[28]. The admittance model of (21) and (22) is derived based
on the assumption that the 3-phase 208 VLL power source is
an ideal voltage source, thereby ignoring the dynamics of the
phase-locked loop and the 3-phase power source [28].

The load converter is a traditional synchronous buck con-
verter with an LC-filter at the input and an LC-filter at
the output, both augmented with an RC-branch to damp the
resonances of the LC filters. The load converter has a fast
inner control loop regulating the buck-inductor current, and
an output loop regulating the load resistor voltage. The input
admittance, YLoad, of the buck converter, with its control loops
and filters, is given by

YLoad =
(Yconv + YCin)

1 + ZLin(Yconv + YCin)
, (23)

where ZLin is the impedance of the input inductor, YCin is
the admittance of the input capacitor in parallel with the RC-
branch, and Yconv is given by

Yconv =
D[D −GciGcvILZRCload −GciIL]

ZL + ZRCload +GciGcvVdcZRCload +GciVdc
, (24)

where ZL is the impedance of the buck-inductor, ZRCload is
the impedance of the load resistance in parallel with output
capacitor and RC-branch, Gci is the current compensator, Gcv

is the voltage compensator, Vdc is the dc bus voltage and IL
is the current of the load resistor.

The Energy-Storage Converter (ESC) has the same
topology, control architecture, and filters, as the load converter.
Instead of a resistive load, the ESC has a bulk capacitance of
0.4 mF serving as the energy storage element. The current
control bandwidth of the ESC is kept high while the voltage
control bandwidth kept very low (10 Hz), so that the ESC
appears as a capacitive constant-current load on the dc bus.
The analytical admittance model of the ESC, YESC is exactly
the same as that of the load converter, with only the bulk
capacitor replacing the load resistor.

In this work, the source VSC control bandwidth has been
kept low by design to emulate the source behavior in typical dc
microgrids, where MW scale power sources use devices that
switch only up to a few kHz, limiting the achievable control
bandwidth. The control bandwidth of Gv was chosen to be
1 Hz based on the estimated crossover from models of around
400 to 600 Hz and a Q of 16, giving an estimated w1 between
12.5 to 18.75 Hz according to (20).
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B. Stability Regulator Performance

The performance of the stability regulator is evaluated by
using the hardware setup shown in Fig. 7 and the continuous
monitor shown in Fig. 5. At startup, the dc bus voltage is
ramped up to 400 V with the VSC operating in closed loop.
The ESC is then enabled and the voltage of the energy storage
capacitor ramped up to 200 V. Next, the continuous injection
and the continuous monitor controllers are enabled with the
designed parameters. The FPGA controller of the ESC sends
its continuous monitor outputs, fc,sys and PMsys to the PC
at 4 Hz rate using UART communication. The data is logged
along with the timestamp for alignment with the data from
other converters.

With the continuous monitor running, the load converter
is enabled and load power ramped up slowly from 0 W to
1900 W and then back down to 0 W. The load converter sends
its power reference to the PC for logging at 4 Hz rate with
the timestamp using UART communication. Two test runs are
performed. In the first run, the stability regulator is not enabled
and the stability parameters, PMsys and fc,sys are recorded
as the load power ramps up to 1900 W and back down to
0 W. In the second test, the stability regulator is enabled with
DVI and a reference of 100°, and then the same load profile
is run. For the second test, the output of stability regulator,
dv , is also recorded. Once the test is complete, the data from
load converter and the ESC are aligned using the timestamp,
and the variation of dv , fc,sys and PMsys with respect to the
load power is shown in Fig. 8.

Fig. 8a shows that without the DVI enabled, as the load
power goes from 0 W to 1.9 kW, fc,sys goes from 615 Hz
to 540 Hz, while PMsys goes from 80° to 33°. When the
DVI and stability regulation is enabled, Fig. 8b shows that
PMsys jumps from 80° to 100° and is regulated there, while
fc,sys goes to 575 Hz and dv goes to 0.022 S. Once the system
phase margin is regulated, as the load power increases, PMsys

stays regulated at 100°, while dv increases to compensate for
additional damping requirement. As dv increases to 0.073 S
and re-shapes the ESC admittance, Yo, fc,sys also shifts further
down to 415 Hz. To see the effect of DVI on load transients,
a load power step response from 1.4 kW to 1.8 kW is shown
in Fig. 9 with, and without, the DVI tuned at dv = 0.073 S
at 415 Hz.

To validate the performance of the stability regulator,
two methods are used: analytical model prediction and di-
rect impedance measurement using psuedo-random binary se-
quence (PRBS) injection [29]. For analytical model prediction,
the admittance models presented in section IV-A are evaluated
at load power levels from 200 W to 1800 W along with the
DVI evaluated with the test output values. The resulting Yo
and Yaway are plot together to find the crossover frequency
and phase margin. For direct measurement, a 12-bit PRBS
signal of length 4095 is injected at 25 kHz rate into the current
reference of the ESC at nine operating points with load power
ranging from 200 W to 1800 W. The current injected into
the dc bus (i.e. the current driven into the sum of Yaway and
YLoad) is recorded along with the dc bus voltage. Fast Fourier
Transform (FFT) is performed on the injected current and
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Fig. 8. Performance of the stability regulator over the load profile; (a) without
DVI, and (b) with DVI and stability regulator.

vo

io,V SC

(a)

vo

io,V SC

(b)

Fig. 9. Load transient from 1.4 kW to 1.8 kW; (a) without DVI, and (b) with
DVI.
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Fig. 10. Performance of the stability regulator over the load range; (a) dv , (b) fc,sys, and (c) PMsys.

response voltage to find the frequency spectra. Then the ratio
of the current spectrum to the voltage spectrum is computed to
calculate the frequency spectrum of the combined admittance
Yaway . This measured admittance is used along with the
analytical model of Yo = YESC +Gv to determine the PRBS-
based stability results. The results from analytical models,
PRBS measurement and continuous monitor and regulator are
shown in Fig. 10.

C. Evaluation of Continuous Monitor Results

The trends shown in Fig. 10 for dv , fc,sys and PMsys are
expected. At higher power, the negative incremental resistance
behavior of the load converter becomes more dominant and
requires more involvement from the DVI to achieve the desired
damping. The monitor outputs, PMsys and fc,sys match well
with the PRBS-based direct measurement; however, neither
the monitor output nor direct measurement result matches
well with the analytical prediction. To understand this, the
analytical model and direct measurements of Yaway at load
power of 400 W are shown in Fig. 11 along with the analytical
model of Yo (with DVI) and YESC (without DVI).

In Fig. 11, the analytical model response of Yaway is shown
with a solid red curve, while measured Yaway is shown with
blue cross, and the analytical model responses of Yo and YESC

are shown with black dashed lines and magenta dash-dot lines
respectively. Fig. 11 reveals that the magnitude response of
the measured Yaway is shifted slightly to the left at lower
frequencies and the phase is also closer to zero compared
to the analytical model. This is expected since the analytical
model assumes that the 208 VLL three-phase source shown
in Fig. 7a is a zero impedance voltage source, whereas the
actual hardware of Fig. 7b uses a lab-scale power supply
which has finite non-zero output impedance. This source
output impedance affects Yaway at lower frequencies within
the control bandwidths of the power source but not at higher
frequencies where the admittance is dominated by the passive
components of the converters. Furthermore, the analytical
model does not account for losses in the converters, which add
damping and lower the phase of the impedance response. The
analytical model also assumes the passive components to be
linear over the frequency range, which is rarely true for real
components. For instance, the phase inductors for the VSC
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in Fig. 7b are built using single strand AWG-16 laminated
wire which resulted in 90 mΩ resistance at 60 Hz but the
ac resistance increases rapidly with frequency, giving an ac
resistance of 16 Ω at 1 kHz. Thus, while it is easy to accurately
model small systems (less than 100 W) with highly controlled
passive components, it is nearly impossible to capture the
dynamics of a medium to large scale power system using just
analytical models. In such cases, direct measurement is used
as an alternative method to find the impedance or admittance
response that accounts for modeling uncertainties and avoids
any simplifying assumptions.

V. CONCLUSION

This paper proposes a novel method for explicitly regulating
the stability of a dc microgrid by using a small reactive power
to add just enough damping at target frequencies as needed
to maintain desired system stability margin. The stability
regulation uses a dynamic virtual immittance concept whereby
the admittance or impedance of the regulating converter is
augmented by a second order virtual filter that is continuously
tuned at the system impedance minor-loop-gain crossover
frequency. The proposed stability regulator may be used with
any system stability monitor designed to provide measurement
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of system IMLG crossover frequency and phase margin, be it
continuous as used in this work, or periodic such as wide-
band measurement. The stability regulator and DVI can be
implemented onto any converter in the system with a high
control bandwidth and ability to inject perturbation in the
dc microgrid, or a dedicated converter may be added into
the dc microgrid with capacitive or battery energy storage
and a fraction of the system power rating. The proposed
stability regulator is implemented onto an FPGA along with
the continuous monitor functions and complete functionality of
the energy storage converter including UART communication,
protection, ADCs, PWM and current and voltage controllers,
demonstrating low cost of implementation. Guidelines are
provided for designing the gains and bandwidth of the stability
regulator. Hardware results on a lab scale 2 kW dc microgrid
system, which are validated through analytical models and
direct measurements, demonstrate the effectiveness of the
proposed stability regulator.
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CHAPTER 7

Conclusion

Stability of dc microgrid systems such as those found in electric ships, more-electric

aircraft and dc fast charging stations has been a topic of renewed interest. Designing such

systems require deep understanding of dynamic behavior of dc microgrids with various types

of sources and loads interfacing together. As the size and power level of these systems in-

crease, it becomes nearly impossible to capture all non-linearities and parasitic elements in

the system modeling. To account for modeling uncertainties, and for systems where prior

knowledge of components is not available, online measurement of system dynamics has been

shown to be effective. However, methods proposed in literature that can identify system

stability online, and provide stability enhancement through control, have a high implemen-

tation cost and in most cases require additional hardware. To overcome these challenges,

and to provide additional stability support for a dc microgrid, this thesis proposes a new

stability analysis method, a novel online stability monitoring method, and a novel explicit

stability controller for a dc microgrid system.

The novel method for analyzing stability of dc microgrid, proposed in this thesis, is

based on nodal analysis. It was shown through analysis and hardware results that stability of

a dc microgrid can be evaluated at the terminal of any of the parallel-connected converters,

regardless of the power flow configurations. Furthermore, it was shown that the proposed

method provides necessary and sufficient conditions for system stability. The proposed

nodal impedance-based stability analysis can be used to a great advantage by selecting a

source converter or an energy storage converter as the terminal of choice for analysis and

using it to measure the combined impedance of the rest of the system. The measured

impedance would account for parameter variations, capture the effects of cable impedances

and contact impedances, and adapt to the dynamically changing system. The measured

impedance would then be used along with the dc bus interfacing impedance of the measuring



65

converter to perform the online stability analysis. If the converter performing the online

impedance measurement is intended to be used to enhance stability, it would require a

high control bandwidth, which can be a design consideration for the converter performing

stability analysis. Another application of the proposed method would be to analyze if an

existing system would remain stable after the addition of a new converter in the system. The

impedance of the system looking into the dc bus where the new converter is to be inserted

would be measured or evaluated. This would be used along with the dc bus interfacing

impedance of the new converter to analyze the stability. The proposed nodal impedance-

based stability analysis method can be further utilized in providing active damping where

needed. The analysis performed at the terminal of a converter, for example, could be used to

determine the stability margin which indicates the amount of damping in the system. The

high-bandwidth controller of the converter could then be used to provide active damping

in the system by targeting the critical frequencies identified in the minor loop gain.

The Nodal Stability Analysis proposed in this work applies to a node in the dc micro-

grid, with multiple parallel-connected sources, loads and energy storage. As the size of the

dc microgrid increases, cable impedance becomes significant, in which case the definition

of a ‘node’ in the dc microgrid needs to be broadened. For a large-scale dc microgrid, a

node would be defined as the collection of all the loads and sources in the proximity of the

converter interface chosen for stability analysis. A converter is considered to be in proximity

if the combination of the converter input impedance and the impedance of the cable con-

necting the converter to the interface for stability analysis, is dominated by the converter

impedance in the frequency range of interest (typically 10’s of Hz to a few kHz). A long dc

cable with significant impedance would then divide the dc microgrid into two nodes, one on

either end of the cable. In this case, stability analysis would need to be performed at both

ends of the long cable, where the total impedance of the sources, loads and cable impedance

at one end of the cable are lumped into the cable impedance as seen from the other end of

the cable. This scaling of the analysis for larger dc microgrids also applies directly to the

other two contributions of the thesis.
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This thesis utilizes the proposed nodal stability analysis to develop a novel method for

monitoring the stability of a dc microgrid, including the stability margin and the critical fre-

quency. The proposed monitor injects a small perturbation into the system for monitoring

stability, which does not affect normal operation of the system. Detailed modeling of the

continuous monitor dynamics are presented, and a comparison of two control strategies is

carried out for the design of the monitor. One control strategy using the difference feedback

and linear output has low complexity and requires fewer resources to implement; however,

its controller may suffer from variation of the operating points. It should be considered

at design time whether the controller will be able to handle those variations. An alter-

native control strategy using logarithm feedback and logarithm output is also presented

in this paper. It is shown that using logarithms results in controllers that do not suffer

from operating point variations. The use of logarithms and exponential functions, however,

comes with higher resource usage for implementation, and may require complex iterative

algorithms for implementation in a fixed-point processor such as an FPGA. The analyti-

cal development presented in this thesis serves as a tool for the designer to pick a control

strategy based on a compromise between implementation cost and design requirement. The

proposed continuous monitor is implemented on the energy storage interfacing converter in

a 2 kW lab scale dc microgrid. Its performance is evaluated by comparing the results to

analytical model predictions and direct measurements. It is highlighted that, while ana-

lytical models are useful for designing the monitor, it cannot be relied upon for accurately

capturing the damping of a real system and predicting stability as direct measurement can.

The results show that the proposed monitor tracks stability in good agreement with direct

measurement. The proposed method can be added onto any existing converter in the dc

microgrid as an auxiliary function. If there is no access to the control of the converters al-

ready in the system, another converter may be added with a fraction of the power rating and

with capacitive energy storage to perform the monitoring task. In contrast to the existing

wide-band identification methods, the proposed method outputs the stability measurement

as a continuous signal, which opens up new possibilities of utilizing this for improving the
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stability of the dc migrogrid being monitored.

Utilizing the continuous nature of the stability monitor proposed in this thesis, a novel

method is developed for explicitly regulating the stability of a dc microgrid by emulating a

dynamic virtual immittance at the terminal of the converter performing the stability mon-

itoring function. The proposed method uses a small reactive power of the converter to add

just enough damping at target frequencies as needed to maintain desired system stability

margin. The stability regulation uses a dynamic virtual immittance concept whereby the

admittance or impedance of the regulating converter is augmented by a second order vir-

tual filter that is continuously tuned at the system impedance minor-loop-gain crossover

frequency. The proposed stability regulator may be used with any system stability monitor

designed to provide measurement of system IMLG crossover frequency and phase margin,

either continuous as used in this work or periodic such as wide-band measurement. The

stability regulator and DVI can be implemented onto any converter in the system with a

high control bandwidth and ability to inject perturbation in the dc microgrid, or a dedicated

converter may be added into the dc microgrid with capacitive or battery energy storage and

a small fraction of the system power rating. The proposed stability regulator is implemented

in an FPGA along with the continuous monitor functions and complete functionalities of

the energy storage converter including UART communication, protection, ADCs, PWM,

and current and voltage controllers, demonstrating low cost of implementation. Guidelines

are provided for designing the gains and bandwidth of the stability regulator. Hardware

results on a lab scale 2 kW dc microgrid system, which are validated through analytical

models and direct measurements, demonstrate the effectiveness of the proposed stability

regulator.

The work presented in this thesis opens up a lot of opportunities for future research

in the stability monitoring and enhancement of dc and ac microgrids. The Nodal Stability

Analysis has the potential to be applied to ac microgrids as well as dc microgrids. A

future researcher could investigate its applicability and challenges in extending this to ac

microgrids. The continuous stability monitoring was implemented for dc microgrids by
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perturbing the dc current and measuring the response voltage. It could be investigated for

ac microgrids by perturbing the positive and negative sequence networks with orthogonal

single frequency perturbations, and measuring the response voltages, thereby measuring

both positive and negative sequence IMLG of the ac microgrid. We have shown continuous

monitor application in an energy storage interfacing converter; however, the continuous

monitor can be implemented in any of the converters in the system. A future researcher

could explore continuous monitoring implemented at the source and load converter and

investigate the pros and cons of implementing the monitor at these converter interfaces.

For larger dc microgrids in which cable impedance creates an impedance network instead of

a common dc bus, a future researcher could investigate the feasibility of having a continuous

monitor at each node in the dc microgrid, where a node is defined based on the proximity

of the converters.

A lot of the efforts towards continuous monitoring research could be extended to include

stability regulation. For instance, the DVI may be implemented at the source or the load

converter within their control bandwidths. A future researcher could explore implementing

the stability regulator at a high bandwidth load converter interface and adding damping

right at the constant power load. Another extension could investigate multiple stabilizers

in the dc microgrid system in case the dc microgrid is large enough to have significant cable

impedances. Furthermore, the stability regulation and DVI concept could be extended to

the ac microgrid, in a similar manner to the continuous monitor.



69

CURRICULUM VITAE

Rohail Hassan

Published Journal Articles

• R. Hassan, H. Wang and R. Zane,“A Continuous Stability Margin Monitor for DC

Microgrids,” in submission.

• R. Hassan, H. Wang and R. Zane,“Active Stability Control of DC Microgrids using

Dynamic Virtual Immittance,” in submission.

Published Conference Papers

• R. Hassan, H. Wang, M. M. Ur Rehman, B. Riar and R. Zane, “Nodal Impedance-

Based Stability Analysis of Dc Nanogrids” 2018 IEEE 19th Workshop on Control and

Modeling for Power Electronics (COMPEL), Padua, Italy, 2018, pp. 1-7.

• R. Hassan, H. Wang and R. Zane, “Continuous Stability Monitoring of DC Microgrids

Using Controlled Injection,” 2019 IEEE Applied Power Electronics Conference and

Exposition (APEC), Anaheim, CA, USA, 2019, pp. 1357-1364.

• D. B. Yelaverthi, M. Kamel, R. Hassan and R. Zane, “High Frequency Link Isolated

Multi-Port Converter for Active Cell Balancing Applications,” 2019 20th Workshop

on Control and Modeling for Power Electronics (COMPEL), Toronto, ON, Canada,

2019, pp. 1-7.


	Active Stability Monitoring and Stability Control of DC Microgrids Using Incremental Continuous Injection
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACRONYMS
	INTRODUCTION
	Negative Incremental Resistance of Constant Power Loads
	Impedance Interactions
	Impedance Compensation for Stability
	Contributions of this Thesis

	Nodal Impedance-Based Stability Analysis of Dc Nanogrids
	Continuous Stability Monitoring of DC Microgrids Using Controlled Injection
	High Frequency Link Isolated Multi-Port Converter for Active Cell Balancing Applications
	A Continuous Stability Margin Monitor for DC Microgrid
	Active Stability Control of DC Microgrids using Dynamic Virtual Immittance
	Conclusion
	CURRICULUM VITAE

