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As earth observation 

satellites, Diwata 

microsatellites need 

to have a high 

degree of target 

pointing accuracy



Current methods for attitude 

control have proven to be 

effective in stable environments. 

However, they are prone to 

changes in control and mass 

parameters.

Current Status of 

Attitude Controllers

[1] Wang Y., Ma Z., Yang Y., Wang Z., and Tang L. A new spacecraft attitude stabilization mechanism using deep reinforcement learning method. In 8TH

European Conference for Aeronautics and Space Sciences (EUCASS), 2019.

[2] Su R., Wu F., and Zhao J. Deep reinforcement learning method based on ddpg with simulated annealing for satellite attitude control system. In 2019 

Chinese Automation Congress (CAC), pages 390-395, 2019.



MATA-RL: Continuous Reaction Wheel Attitude Control using the 

MATA Simulation Software and Reinforcement Learning

State: Current Error Quaternion and Rotation Rates

Reward: Target Error Angle and Rotation Rate

Action Space: Reaction Wheel Speed

Satellite Agent Dynamics/Kinematics 

from MATA Simulator



Main Contributions

Two deep reinforcement 
learning algorithms for 

continuous attitude control 
using the reaction wheel 
speed as action space

Development and utilization 
of MATA simulator for 
reinforcement learning 

environment

A comparison and analysis of 
attitude control performance 
between the RL algorithms 
and Diwata's PID control in 

different scenarios



Spacecraft Kinematics and 
Dynamics

Reinforcement Learning 
Algorithms

Results and Case Studies

Conclusion and Future Work

Outline



● The dynamics equation for the satellite determines the angular acceleration 

from internal (control) and external torques (disturbance)

● The kinematics equation for the satellite attitude uses quaternion expressions

Satellite Kinematics and Dynamics



● The speed and mechanical 

alignment of each reaction wheel 

can be translated to the 

spacecraft’s control torque

Satellite Control



● PID control depends on the difference between the target and current 

attitude in addition to the satellite’s rotation rate

● Gain values need to be “tuned” for best results

Satellite Control



Reinforcement Learning

• Agent – learner and decision maker

• Environment – where agent learns and 

decides what actions to perform

• Action – set of actions which agent 

can perform

• State – state of agent in the 

environment

• Reward – for each action selected by 

agent the environment provides a 

reward (usually a scalar value)

Source: https://images.app.goo.gl/Kj44uvBzWzMw1QzE9

https://www.freecodecamp.org/news/a-brief-introduction-to-reinforcement-learning-7799af5840db/


MATA-RL: Continuous Reaction Wheel Attitude Control using the 

MATA Simulation Software and Reinforcement Learning

State: Current Error Quaternion and Rotation Rates

Reward: Target Error Angle and Rotation Rate

Action Space: Reaction Wheel Speed

Satellite Agent Dynamics/Kinematics 

from MATA Simulator



Reward Function

Note: Additional +10 if



Reinforcement Learning Algorithms



Reinforcement Learning Algorithms

● On-Policy

● Great performance for UAV 

attitude control

● Computational simplicity

● Off-Policy

● Sample Efficient

● Can maximize the entropy of 

the policy

Proximal Policy Optimization 

(PPO)

Soft Actor Critic 

(SAC)



Training Results

• SAC achieved a higher 

cumulative reward (~450) 

than the PPO (~410)

• SAC reached convergence 

around 15M steps while the 

PPO needed 30M steps to 

achieve convergence



Proximal Policy Optimization 

(PPO)

Soft Actor Critic 

(SAC)

Training Results



Case 

Studies



Scenario 1: Diwata 2

Diwata 2 Stowed Configuration (Baseline) 
[1] PHL-Microsat. Diwata-2. https://phl-microsat.upd.edu.ph/diwata2.
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Scenario 2: Diwata 2 Deployed Configuration 

Diwata 2 with Deployed Solar Panels and Antenna (t = 300 s)
[1] PHL-Microsat. Diwata-2. https://phl-microsat.upd.edu.ph/diwata2.
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Scenario 3: LM 50

LM 50 (Different Flight Heritage and Mass with Diwata 2)
[1] Elkins J., Sood R., and Rumpf C. Autonomous spacecraft attitude control using deep reinforcement learning. In 

71st International Astronautical Congress, October 2020.

[2] Elkins J., Sood R., and Rumpf C. Adaptive continuous control of spacecraft attitude using deep reinforcement 

learning. In 2020 AAS/AIAA Astrodynamics Specialist Conference, August 2020.
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Case 

Studies

Summary

• SAC is the fastest attitude controller when 

no sudden disturbances occur

• SAC is also comparable with the PID 

controller in terms of the stability and 

overshoot metrics

• PPO has the worst performing metrics, 

however, it is the most resilient to sudden 

disturbances



Overall 

Evaluation • For the overall evaluation, the Diwata 2 

stowed configuration was utilized

• The initial state and target parameters were 

randomized for each episode

• Evaluation for 5000 episodes



Overall Results



Overall Results



Conclusion

• If the priority of the satellite is to be 

robust in sudden disturbances, PPO 

is the best algorithm

• For fast attitude target, the best RL 

algorithm is the SAC. It is also the 

most comparable algorithm with the 

PID controller in terms of stability

• No need to re-tune RL algorithms to 

get a good response



Future Work

• RL algorithms with the combined 

features of PPO and SAC can be 

explored for future work

• Exploration of RL algorithms 

without reward engineering

• Investigate how to implement and 

test RL algorithms in an 

engineering model



Thank You!

vanessa.tan@eee.upd.edu.ph


