

Optical Time-Transfer for Bistatic SAR Small Spacecraft

Danielle E. Coogan, John W. Conklin University of Florida dcoogan@ufl.edu

Nicholas Belsten, Kerri Cahoy Massachusetts Institute of Technology nbelsten@mit.edu

Adam Zufall, Anh Nguyen, Shadi Oveisgharan, Batuhan Osmanoglu National Aeronautics and Space Administration

- Mission Concept
- Noise Sources and Clock Models
- Timing and Ranging Simulation
- Radar Simulation
- Summary and Conclusion

Mission Concept

PSSL

- CubeSat bistatic SAR in LEO
- Laser time-transfer clock synchronization
- Laser Time-Transfer Missions:T2-L2 (2008), CHOMPTT (2018), CLICK (exp. 2021)
- SAR Missions: TanDEM-X (2010), LuTan-1 (2020)

Parameter	Value
Orbit Altitude	500 km
Orbit Eccentricity	0
Spacecraft Line-of-Sight Distance	250 km
GPS Measurement Frequency	0.0083 Hz
Laser Pulse Transmission Rate	5 Hz

- 1. T2-L2: Exertier, P., et al. "Status of the T2L2/Jason2 Experiment", Advances in Space Research, Volume 46, Issue 12. 2010.
- 2. CHOMPTT: Conklin, J., et al., "Preliminary Results from the CHOMPTT Laser Time-Transfer Mission", Small Satellite Conference. Logan, UT. 2019.
- 3. CLICK: Serra, P., et al. "Optical Communications Crosslink Payload Prototype Development for the Cubesat Laser Infrared CrosslinK (CLICK) Mission", Small Satellite Conference. Logan, UT. 2019.
- 4. TanDEM-X: G. Krieger et al., "TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry," in *IEEE Transactions on Geoscience and Remote Sensing*, vol. 45, no. 11, pp. 3317-3341, Nov. 2007.
- 5. LuTan-1: Jiao, Y., Liang, D., Liu, K., Chen, Y., Wang, H. and Wang, R., 2020. The Synchronization Transceiver Design and Experimental Verification for the LuTan-1 SAR Satellite. *Sensors*, 20(5), p.1463.

Noise Sources

- Clocks: Non-Gaussian
 - GPS Timing Measurement
 - CSAC (Chip-Scale Atomic Clock)
 - MAC (Miniature Atomic Clock)
- Pulse detection noise: Gaussian
 σ = 100 ps
- GPS position error: $\sigma = 7 \text{ m}$

6. MAC and CSAC manufactured by Microsemi Corporation.

7. Pulse detection noise: Anderson, J., et al., "Sub-nanosecond ground-to-space clock synchronization for nanosatellites using pulsed optical links", *Advances in Space Research*, Volume 62, Issue 12. 2018.

8. GPS position error: Montenbruck, O., and Gill, E., *Satellite Orbits: Models, Methods and Applications*, Springer Berlin/Heidelberg. 2011.

Danielle Coogan, SmallSat Conference 2021

GPS Clock Noise

- Modeled from GPS receiver Allan deviation in Lombardi, et al. 2001
- Timing performance:
 - < I ns at I s avg. time
 - < 43 ns at ~12 hrs (43,200 s)

On-Board Clock Models

- On-board spacecraft clock options:
 - CSAC (cesium-based)
 - < 0.5 ns at I s avg. time
 - MAC (rubidium-based)
 - < 50 ps at I s avg. time
- Offset between independent spacecraft clocks is of interest

Timing Simulation: Overview

Timing Simulation: Estimation

Timing Simulation: Results

Clock error RMS: 3.7 ns

Clock Coefficient	Value (ns)
a2	-46 ± 1.0
<i>a</i> 1	56 ± 1.1
<i>a</i> 0	-12 ± 0.24

$$\chi(t) = a2 * \Delta t^2 + a1 * \Delta t + a0$$

Radar Simulation: Overview

Radar Simulation: Propagation

06/24/2021

Summary and Conclusion

- Tool for evaluation: timing error effects on orbital bistatic SAR systems
- Case analyzed:
 - 2 s/c in LEO, GPS position and timing measurements
 - Optical time-transfer, on-board CSACs

Tool use:

- Mission development
- Detailed performance estimation
- Determination of timing performance goals

Thank you!

Special thanks to the NASA Surface Deformation and Change architecture team for their support and funding (NASA grant 80NSSC19M0224).

