Flight Qualification of a Water Electrolysis Propulsion System Presented by: Dr. Allison Porter Additional Authors: Freedman, M., Grist, R. Wesson, C., Hanson, M. SmallSat 2021

Tethers Unlimited, Inc. 11711 N. Creek Pkwy S., Suite D113 Bothell, WA 98011

www.tethers.com

Outline

HYDROS[®] is a *water* propulsion system that uses *electrolysis* to self-generate hydrogen and oxygen for use in its *bipropellant thruster*.

This presentation includes:

- Overview of HYDROS-C design
- Ground testing of the protoflight unit
 - Characterized performance over range of operational points
- On-orbit mission demonstration
 - Performance correlates with ground data

HYDROS on PTD-1 is the first ever on-orbit operation of a water electrolysis thruster

PTD-1 with HYDROS-C being loaded into the CubeSat deployer during launch integration

Image Credit: Lisa Middlebrook, Spaceflight

HYDROS[®] Architecture

MicroSat: HYDROS-M

HYDROS = Water tank(s)

- + Electrolyzer Core - H2 and O2 gas plenums Thruster nozzle
 - Avionics controller

CubeSat: HYDROS-C

Size	Overall	Water Capacity	
HYDROS-M	Ø15" (38 cm)	6 kg	
HYDROS-C	2U x 1U x 1U	500 g	

Conops Overview

Launch condition:

- Water stored as a liquid
 - Not considered to be a pressure vessel
 - Non-toxic so safe for ground handling
- Until on-orbit commissioning
 - Freeze tolerant
 - Unpowered

On-orbit operation:

- Electrolyzer generates gas proportional to current draw
- Fill plenums to chosen target pressure
- Thrust event releases stored gases that are combusted and expelled out the nozzle
 - Blowdown from plenum charge pressure to the pressure baseline
 - Combustion produces higher thrust with higher Isp than unburned water vapor

Ground Testing

Environmental Testing

Heritage: HYDROS-M

- Shock
- TVAC
- EMI/EMC

Unit: HYDROS-C only

- Vibration
- Ambient thermal

Spacecraft: PTD-1 & HYDROS-C

- Vibration
- TVAC

Thruster performance dependent on plenum pressure as a tunable operational parameter

Performance Testing

Trial	Avg P _i (psi)	Avg ∆P (psi)	l (Ns)	lsp (s)	
1	198	111	1.96	309	
2	113	63	0.99	269	$\frac{\text{Flight Data:}}{P_{1} \approx 95 \text{ psi}}$
3	51	27	0.15	91	lsp ≈ 230 s

PTD-1 Mission Demonstration

TETHERS UNLIMITED

Launched via rideshare in January 2021 on SpaceX Transporter-1

HYDROS-C flight unit prior to integration

On-orbit Electrolysis Performance

- Rate calculated from rise in plenum pressure from floor to target during each electrolysis cycle
- On-orbit data matches well with expected gas generation based on electrochemical reaction

PTD-1 Mission Demonstration

Region A: Propagate NORAD TLE back to compare against GPS during 'no-thrust' time

TETHERS

Region B: Propagate NORAD TLE forward as 'no-thrust' predict

Region C: Propagate NORAD TLE forward as new 'postthrust' orbit

Orbit change due to thruster performance

- No on-board sensors to measure acceleration from thrust events
- Rely on orbit changes to back out thruster performance

Comparison of Flight vs Ground

Flight Operation Differences Compared to Ground Testing

- Lower target plenum charging pressure
- Longer thrust duration

Preliminary Performance Based on Orbit Change

TETHERS INLIMITED

Description	NORAD TLE	GPS
Pre-maneuver perigee (m)	533318	
Pre-maneuver apogee (m)	541670	
Post-maneuver perigee (m)	533314	533339
Post-maneuver apogee (m)	542640	542721
Total maneuver impulse (N-s)	3.12	3.38
Specific impulse, lsp (s)	223	241

Refinement of orbit determination is still on-going

On-orbit performance validates the ground testing correlation between plenum charge pressure and specific impulse

Forward Work & Closing Remarks

TRL 8

Summary of On-orbit Performance

- Electrolyzer design validated
- Thruster performance matches ground testing trend data

FETHERS

Image Credit: SwRI

What's next for HYDROS?

- PTD-1 mission data processing
- More commercial flights coming up
- Maturing advanced mission concepts such as on-orbit refueling and applications beyond Earth orbit

This work was funded under NASA contract NNA16BD36C with support from NASA Glenn and NASA Ames