Naval Information Warfare Center PACIFIC

Non Data-Aided Carrier Tracking Techniques for Continuous-Phase Frequency-Shift Keyed Signals

35th Annual Small Satellite Conference Brendan Hill Nazia Mozaffar Salwan Damman

- Scenario: 500-mile altitude satellite in circular orbit flying overhead Logan, UT at t=0 heading west, 2.45 GHz carrier frequency
- Desire maximum data transfer during limited overflight time
 - 14.5 minute overflight out of 1 hour 40 minute orbit time
 - Satellite isn't visible over same location for multiple orbits
- Doppler Changes with Time
 - Satellite's velocity 7.45 km / s to stay in circular orbit
 - Doppler observed is proportional to component of velocity vector in direction between satellite and ground terminal
 - Peak Doppler Magnitude of 57 kHz
 - Peak rate change of -550 Hz/s
- Terrestrial radios may not have been designed to handle large Doppler frequency offsets
- Desire techniques for detecting and tracking time-varying Doppler without demodulating the signal

Doppler vs. Time During Satellite Overflight

Time (s)

Band Edge Filters Review

- Optimum band edge filters have frequency response that is the frequency derivative of the matched filter frequency response
- Easy to implement for PSK signals
 - Single matched filter in receiver, symbols are chosen based on measured amplitude or phase
 - Single prototype band edge filter frequency translated to band edges to make upper and lower band edge filters
- More complicated for CPFSK signals
 - In general, separate matched filter for each possible symbol
 - Symbols are tones
- Approach: Separately add all possible positive symbols (tones) and all possible negative symbols (tones), multiply each by –j*t to take derivative in with respect to frequency
 - Complexity of CPFSK signal affects band edge filter design

- Maximize energy of received signal with respect to frequency offset
 - Achieved by making frequency response equal to derivative of matched filter frequency response
- Positive band edge filter is -j*t*g_{pos}(t), where g_{pos}(t) is matched filter for positive frequency symbol(s)
- Negative band edge is -j*t*g_{neg}(t), where g_{neg}(t) is matched filter for negative frequency symbol(s)
- For CPFSK signals: Bandwidth of band edge filters determined by filter duration
- Example: 50 kHz binary CPFSK, h=1/2
 - Tones at -12.5 kHz, +12.5 kHz

- Maximize energy of received signal with respect to frequency offset
 - Achieved by making frequency response equal to derivative of matched filter frequency response
- Positive band edge filter is -j*t*g_{pos}(t), where g_{pos}(t) is matched filter for positive frequency symbol(s)
- Negative band edge is -j*t*g_{neg}(t), where g_{neg}(t) is matched filter for negative frequency symbol(s)
- For CPFSK signals: Bandwidth of band edge filters determined by filter duration
- Example: 50 kHz binary CPFSK, h=1/2
 - Tones at -12.5 kHz, +12.5 kHz

- Maximize energy of received signal with respect to frequency offset
 - Achieved by making frequency response equal to derivative of matched filter frequency response
- Positive band edge filter is -j*t*g_{pos}(t), where g_{pos}(t) is matched filter for positive frequency symbol(s)
- Negative band edge is -j*t*g_{neg}(t), where g_{neg}(t) is matched filter for negative frequency symbol(s)
- For CPFSK signals: Bandwidth of band edge filters determined by filter duration
- Example: 50 kHz binary CPFSK, h=1/2
 - Tones at -12.5 kHz, +12.5 kHz

- Maximize energy of received signal with respect to frequency offset
 - Achieved by making frequency response equal to derivative of matched filter frequency response
- Positive band edge filter is -j*t*g_{pos}(t), where g_{pos}(t) is matched filter for positive frequency symbol(s)
- Negative band edge is -j*t*g_{neg}(t), where g_{neg}(t) is matched filter for negative frequency symbol(s)
- For CPFSK signals: Bandwidth of band edge filters determined by filter duration
- Example: 50 kHz binary CPFSK, h=1/2
 - Tones at -12.5 kHz, +12.5 kHz

- Maximize energy of received signal with respect to frequency offset
 - Achieved by making frequency response equal to derivative of matched filter frequency response
- Positive band edge filter is -j*t*g_{pos}(t), where g_{pos}(t) is matched filter for positive frequency symbol(s)
- Negative band edge is -j*t*g_{neg}(t), where g_{neg}(t) is matched filter for negative frequency symbol(s)
- For CPFSK signals: Bandwidth of band edge filters determined by filter duration
- Example: 50 kHz binary CPFSK, h=1/2
 - Tones at -12.5 kHz, +12.5 kHz

- Maximize energy of received signal with respect to frequency offset
 - Achieved by making frequency response equal to derivative of matched filter frequency response
- Positive band edge filter is -j*t*g_{pos}(t), where g_{pos}(t) is matched filter for positive frequency symbol(s)
- Negative band edge is -j*t*g_{neg}(t), where g_{neg}(t) is matched filter for negative frequency symbol(s)
- For CPFSK signals: Bandwidth of band edge filters determined by filter duration
- Example: 50 kHz binary CPFSK, h=1/2
 - Tones at -12.5 kHz, +12.5 kHz

- Maximize energy of received signal with respect to frequency offset
 - Achieved by making frequency response equal to derivative of matched filter frequency response
- Positive band edge filter is -j*t*g_{pos}(t), where g_{pos}(t) is matched filter for positive frequency symbol(s)
- Negative band edge is -j*t*g_{neg}(t), where g_{neg}(t) is matched filter for negative frequency symbol(s)
- For CPFSK signals: Bandwidth of band edge filters determined by filter duration
- Example: 50 kHz binary CPFSK, h=1/2
 - Tones at -12.5 kHz, +12.5 kHz

- Maximize energy of received signal with respect to frequency offset
 - Achieved by making frequency response equal to derivative of matched filter frequency response
- Positive band edge filter is -j*t*g_{pos}(t), where g_{pos}(t) is matched filter for positive frequency symbol(s)
- Negative band edge is -j*t*g_{neg}(t), where g_{neg}(t) is matched filter for negative frequency symbol(s)
- For CPFSK signals: Bandwidth of band edge filters determined by filter duration
- Example: 50 kHz binary CPFSK, h=1/2
 - Tones at -12.5 kHz, +12.5 kHz

- Maximize energy of received signal with respect to frequency offset
 - Achieved by making frequency response equal to derivative of matched filter frequency response
- Positive band edge filter is -j*t*g_{pos}(t), where g_{pos}(t) is matched filter for positive frequency symbol(s)
- Negative band edge is -j*t*g_{neg}(t), where g_{neg}(t) is matched filter for negative frequency symbol(s)
- For CPFSK signals: Bandwidth of band edge filters determined by filter duration
- Example: 50 kHz binary CPFSK, h=1/2
 - Tones at -12.5 kHz, +12.5 kHz

- Maximize energy of received signal with respect to frequency offset
 - Achieved by making frequency response equal to derivative of matched filter frequency response
- Positive band edge filter is -j*t*g_{pos}(t), where g_{pos}(t) is matched filter for positive frequency symbol(s)
- Negative band edge is -j*t*g_{neg}(t), where g_{neg}(t) is matched filter for negative frequency symbol(s)
- For CPFSK signals: Bandwidth of band edge filters determined by filter duration
- Example: 50 kHz binary CPFSK, h=1/2
 - Tones at -12.5 kHz, +12.5 kHz

- Maximize energy of received signal with respect to frequency offset
 - Achieved by making frequency response equal to derivative of matched filter frequency response
- Positive band edge filter is -j*t*g_{pos}(t), where g_{pos}(t) is matched filter for positive frequency symbol(s)
- Negative band edge is -j*t*g_{neg}(t), where g_{neg}(t) is matched filter for negative frequency symbol(s)
- For CPFSK signals: Bandwidth of band edge filters determined by filter duration
- Example: 50 kHz binary CPFSK, h=1/2
 - Tones at -12.5 kHz, +12.5 kHz

- Maximize energy of received signal with respect to frequency offset
 - Achieved by making frequency response equal to derivative of matched filter frequency response
- Positive band edge filter is -j*t*g_{pos}(t), where g_{pos}(t) is matched filter for positive frequency symbol(s)
- Negative band edge is -j*t*g_{neg}(t), where g_{neg}(t) is matched filter for negative frequency symbol(s)
- For CPFSK signals: Bandwidth of band edge filters determined by filter duration
- Example: 50 kHz binary CPFSK, h=1/2
 - Tones at -12.5 kHz, +12.5 kHz

- Maximize energy of received signal with respect to frequency offset
 - Achieved by making frequency response equal to derivative of matched filter frequency response
- Positive band edge filter is -j*t*g_{pos}(t), where g_{pos}(t) is matched filter for positive frequency symbol(s)
- Negative band edge is -j*t*g_{neg}(t), where g_{neg}(t) is matched filter for negative frequency symbol(s)
- For CPFSK signals: Bandwidth of band edge filters determined by filter duration
- Example: 50 kHz binary CPFSK, h=1/2
 - Tones at -12.5 kHz, +12.5 kHz

- Maximize energy of received signal with respect to frequency offset
 - Achieved by making frequency response equal to derivative of matched filter frequency response
- Positive band edge filter is -j*t*g_{pos}(t), where g_{pos}(t) is matched filter for positive frequency symbol(s)
- Negative band edge is -j*t*g_{neg}(t), where g_{neg}(t) is matched filter for negative frequency symbol(s)
- For CPFSK signals: Bandwidth of band edge filters determined by filter duration
- Example: 50 kHz binary CPFSK, h=1/2
 - Tones at -12.5 kHz, +12.5 kHz

Band Edge Filters for Binary CPFSK

- Maximize energy of received signal with respect to frequency offset
 - Achieved by making frequency response equal to derivative of matched filter frequency response
- Positive band edge filter is -j*t*g_{pos}(t), where g_{pos}(t) is matched filter for positive frequency symbol(s)
- Negative band edge is -j*t*g_{neg}(t), where g_{neg}(t) is matched filter for negative frequency symbol(s)
- For CPFSK signals: Bandwidth of band edge filters determined by filter duration
- Example: 50 kHz binary CPFSK, h=1/2
 - Tones at -12.5 kHz, +12.5 kHz

Spectra (Binary CPFSK, h=1/2), 60 sym lengths

- Maximize energy of received signal with respect to frequency offset
 - Achieved by making frequency response equal to derivative of matched filter frequency response
- Positive band edge filter is -j*t*g_{pos}(t), where g_{pos}(t) is matched filter for positive frequency symbol(s)
- Negative band edge is -j*t*g_{neg}(t), where g_{neg}(t) is matched filter for negative frequency symbol(s)
- For CPFSK signals: Bandwidth of band edge filters determined by filter duration
- Example: 50 kHz binary CPFSK, h=1/2
 - Tones at -12.5 kHz, +12.5 kHz

- Maximize energy of received signal with respect to frequency offset
 - Achieved by making frequency response equal to derivative of matched filter frequency response
- Positive band edge filter is -j*t*g_{pos}(t), where g_{pos}(t) is matched filter for positive frequency symbol(s)
- Negative band edge is -j*t*g_{neg}(t), where g_{neg}(t) is matched filter for negative frequency symbol(s)
- For CPFSK signals: Bandwidth of band edge filters determined by filter duration
- Example: 50 kHz binary CPFSK, h=1/2
 - Tones at -12.5 kHz, +12.5 kHz

- Maximize energy of received signal with respect to frequency offset
 - Achieved by making frequency response equal to derivative of matched filter frequency response
- Positive band edge filter is -j*t*g_{pos}(t), where g_{pos}(t) is matched filter for positive frequency symbol(s)
- Negative band edge is -j*t*g_{neg}(t), where g_{neg}(t) is matched filter for negative frequency symbol(s)
- For CPFSK signals: Bandwidth of band edge filters determined by filter duration
- Example: 50 kHz binary CPFSK, h=1/2
 - Tones at -12.5 kHz, +12.5 kHz

- Maximize energy of received signal with respect to frequency offset
 - Achieved by making frequency response equal to derivative of matched filter frequency response
- Positive band edge filter is -j*t*g_{pos}(t), where g_{pos}(t) is matched filter for positive frequency symbol(s)
- Negative band edge is -j*t*g_{neg}(t), where g_{neg}(t) is matched filter for negative frequency symbol(s)
- For CPFSK signals: Bandwidth of band edge filters determined by filter duration
- Example: 50 kHz binary CPFSK, h=1/2
 - Tones at -12.5 kHz, +12.5 kHz

Band Edge Filters for Binary CPFSK

- Maximize energy of received signal with respect to frequency offset
 - Achieved by making frequency response equal to derivative of matched filter frequency response
- Positive band edge filter is -j*t*g_{pos}(t), where g_{pos}(t) is matched filter for positive frequency symbol(s)
- Negative band edge is -j*t*g_{neg}(t), where g_{neg}(t) is matched filter for negative frequency symbol(s)
- For CPFSK signals: Bandwidth of band edge filters determined by filter duration
- Example: 50 kHz binary CPFSK, h=1/2
 - Tones at -12.5 kHz, +12.5 kHz

Spectra (Binary CPFSK, h=1/2), 1000 sym lengths

150

100

150

PACIFIC

Band Edge Filter FLL Structure

Performance of Band Edge FLL

Why does the error magnitude after lock "improve" for lower SNR?

- The signal of interest has frequency changes as part of its design.
- If a long run of the same symbol occurs, the signal of interest will appear to be a tone (if the modulation index is constant). However, the FLL will try to "correct" this tone all the way to zero Hz.
- In a Phase Shift Keyed signal, a long sequence of constant symbols looks like a constant voltage. FLL "corrects" this all the way to zero as it should.
- The CPFSK FLL depends on fact that different symbols are equally likely to occur, so the "average" measured frequency offset should be correct.

Problem with Band Edge FLL when Doppler Exceeds Modulation Bandwidth

- 4-ary CPFSK (h₁=2/8, h₂=3/8) 10 kHz modulation rate
- 200 kS/s sample rate (20 samples/sym)
- Initial Doppler = 30 kHz
- Doppler change = -550 Hz/s
- SNR = 20 dB (top)
 - = 5 dB (bottom)
- Band edge filters receive very little energy, preventing FLL from functioning properly
- This time, the lower SNR curve has a higher error magnitude even though it is smoother.

Fixing Problem with Ramp Half Band Filters

- Calculate a time series equal to the inverse Fourier Transform of abs(f/f_s), where f_s is the sample rate, f extends from -f_s/2 to +f_s/2
- Truncate it to 50 coefficients
- Create a half-band filter with 101 coefficients
- Frequency translate to ±f_s/4 to make upper and lower half band filters
- Convolve time series of half band filters with time series of ramp
 - Convolution in time domain = multiplication in frequency domain
 - Ramped half band filters have 150 coefficients

Ramp Half Band Filter FLL Performance when Doppler Exceeds Modulation Bandwidth

- 4-ary CPFSK (h₁=2/8, h₂=3/8) 10 kHz modulation rate
- 200 kS/s sample rate (20 samples/sym)
- Initial Doppler = 30 kHz
- Doppler change = -550 Hz/s
- SNR = 20 dB (top)
 - = 5 dB (bottom)
- Ramped Half band filters receive more energy when Doppler is larger
- Lock time significantly improves
- Lower SNR curve has more frequency error and longer lock time

Ramp Half Band Filter FLL Performance when Doppler is Within Modulation Bandwidth

- Used same loop parameters to test timevarying Doppler with initial value within the modulation bandwidth
- 4-ary CPFSK (h₁=2/8, h₂=3/8) 10 kHz modulation rate
- 200 kS/s sample rate (20 samples/sym)
- Initial Doppler = 2.5 kHz
- Doppler change = -550 Hz/s
- SNR = 20 dB (top)
 - = 5 dB (bottom)
- Similar performance obtained for Doppler inside modulation bandwidth and outside modulation bandwidth

- Create upper band edge filter out of positive frequency symbols, lower band edge filter out of negative frequency symbols
- Duration of matched filters affects bandwidth of band edge filters
- Trade-off between reaction time and frequency error after lock
 - For PSK signals, lower SNR -> slower reaction time, higher error after lock
 - For CPFSK signals, lower SNR -> slower reaction time, lower error after lock
- If maximum Doppler magnitude exceeds modulation bandwidth, use ramped band edge filters
- If CPFSK signal has preamble which can be used for initial estimate of Doppler, estimate should be fed to FLL in order to shorten lock time
 - Lower the loop bandwidth to get smoother error curve

- Harris, F., "Band Edge Filters: Characteristics and Performance in Carrier and Symbol Synchronization," Proceedings of the 13th International Symposium on Wireless Personal Multimedia Communications, Recife, Brazil, October 11-14, 2010.
- Mazur, Brian A. and Desmond P. Taylor, "Demodulation and Carrier Synchronization of Multi-h Phase Codes," IEEE Transactions on Communications, vol. COM-29, No. 3, March 1981.
- Premji, Al-Nasir and Desmond P. Taylor, "A Practical Receiver Structure for Multi-h CPM Signals," IEEE Transactions on Communications, vol. COM-35, No. 9, September 1987.
- Forney, G. David, "The Viterbi Algorithm," Proceedings of the IEEE, vol. 61, No. 3, March 1973.
- Hill, Brendan and Nazia Mozaffar and Salwan Damman, "A Comparison of Techniques for Non Data-Aided Carrier Tracking of Phase-Modulated Signals", Small Satellite Conference, Logan UT, August 2020.
- Hosseini, Ehsan and Erik Perrins, "Timing, Carrier, and Frame Synchronization of Burst-Mode CPM," IEEE Transactions on Communications, vol. 61, No. 12, December 2013.