Cal Poly CubeSat Kit – A Technical Introduction to Mk I

35th Annual Small Satellite Conference Coordinating Successful Educational Programs Pauline Faure – August 10, 2021

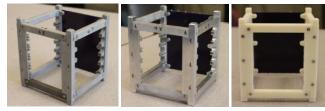
Email: pfaure@calpoly.edu

CHALLENGES OF UNIVERSITY-BASED CUBESAT PROGRAMS

Challenges*	Ideal Countermeasures	Practical Situation
Knowledge transfer	 Tie CubeSat development to senior projects, master, or PhD theses Have permanent professionals to support CubeSat programs 	 Not all required developmental aspects of a CubeSat is worth a senior, master, or PhD thesis Most programs cannot sustain permanent professionals
Variety of duties	 Link curricula to CubeSat development Support students and professionals involved in CubeSat development 	 CubeSats are multidisciplinary and students are at different stages of their education when they join Particular to non-PhD granting universities, most time is dedicated to teaching, not research
Feeling of ownership	 Define launch date and other milestones throughout CubeSat Project Avoid having too many functionalities on one printed circuit board 	 Launch is unknown, milestones are delayed, CubeSat project lengthens Volume is constrained, functionalities are integrated on the least number of printed circuit boards as possible
Documentation	 Record, maintain, store, and centralize documentation related to a CubeSat project 	 Documentation and its handling is an after thought

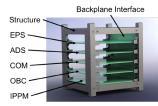
CubeSat programs are not only about educating on technologies, but also educating about good space engineering practices, while balancing a wide array of duties for students and staff

*Challenges extracted from: E. Honoré-Livermore, *CubeSats in University: Using Systems Engineering Tools to Improve Reviews and Knowledge Management*, Procedia Computer Science 153 (2019), pp.63-70

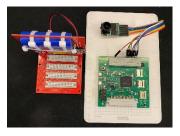

CREATING OPPORTUNITIES FROM CHALLENGES

- Main mission of a university is to educate and train tomorrow's workforce
- CubeSats are multidisciplinary in nature and hands-on based curricula can be created for various engineering, and non-engineering, disciplines

		Engineering Majors				
		EE	CPE	AERO	ME	MATE
CubeSat Flight Segment		 Solar energy conversion Circuitry for power generation, storage, distribution, and regulation 	-	 Power budget Design drivers for power generation, storage, distribution, and regulation 	- Spacecraft configuration	 Coatings Polymers and ceramics
	STRU	Spacecraft configurationLaunch environment	-	 Spacecraft configuration Structural analysis 	 Structural analysis Vibration environment Statics and dynamics 	 Material selection Material characterization Structural analysis
	THER	- Analog circuit	-	Space environmentHeat transferOrbits	 Heat transfer Thermal analysis, testing, and management 	 Thermodynamics Coatings Polymers and ceramics
	OBC	 Microprocessor/ Microcontroller- based system design Digital design 	 Operating system, flight software, and programming Digital design Embedded system design 	Mission planningMission architecture	-	-
		RF circuitryRF verification methods	 Data structure Communication standard Programming 	 Link budget Mission planning Orbits 	- Spacecraft configuration	-
	ADCS	- Electromagnetism	- Programming	 Pointing budget Control law Orbits 	 Torques and mechanical disturbances 	-
CubeSat Flig Segment Inte		 Ground segment: definition; mission of Launch vehicle: integration; launch er Regulations: RF licensing; Earth remo 	vironment; range safety ote sensing licensing; orbital debris			
Others		 Project management: schedule; budget; multidisciplinary team management; Teamwork Systems engineering: requirements; work breakdown structure; assembly, integration, and test; risks analysis 				


CAL POLY CUBESAT KIT PROJECT OVERVIEW

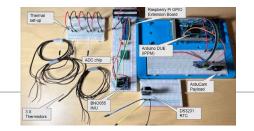
- Summer 2019 Mk I De
 - Project Start
- Mk I Development • Structure
- Structure
- Backplane
 - Integrated Payload Processing Module (IPPM)
- Electrical Power Subsystem (EPS)
- Payloads (fish-eye lens camera, thermal sensors, inertial measurement unit, etc.)


End June 2021 Mk I Planned Completion

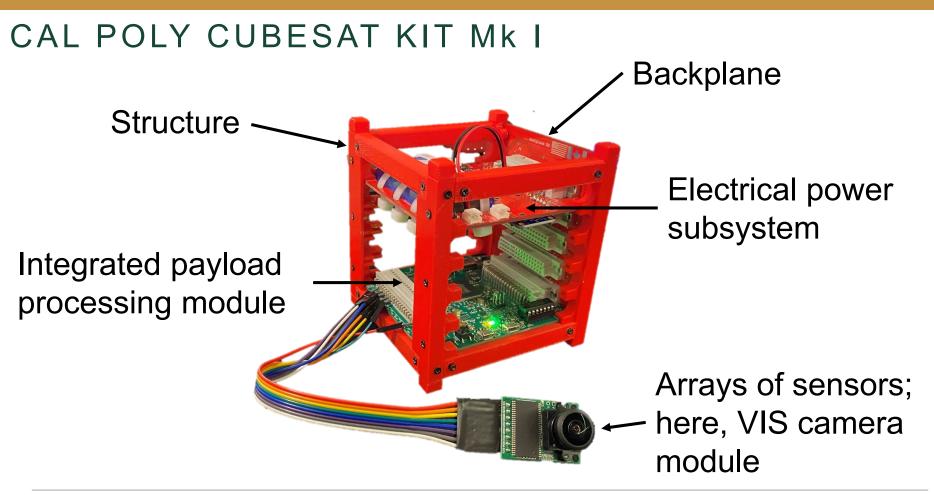
Summer/Fall 2022 Mk III Development Start

Mk III and Beyond Development

- 3U kit
- New payloads considerations
- Mk II lessons learned implementation


Fall 2020 Mk II Development Start

Mk II Development


- Structure
- Backplane
- IPPM
- EPS
- Attitude Determination Subsystem (ADS)
- On Board Computer (OBC)
- Communication subsystem (Comm)
- Payloads (fish-eye lens camera,
- spectroscopy sensor, luminosity sensor, etc.)

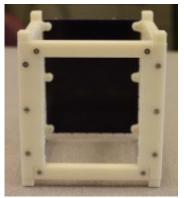
Summer/Fall 2022

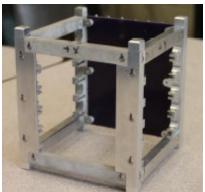
Mk II Planned Completion


STRUCTURE

Design drivers considerations:

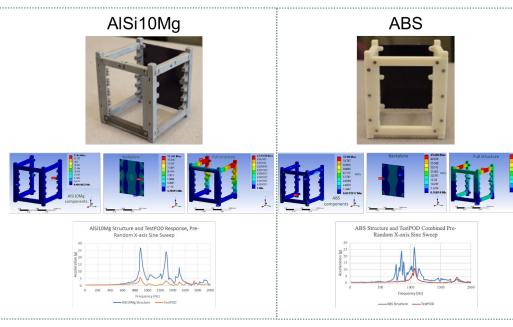
- Additive and subtractive manufacturing possible
- Ease of structural elements assembly/disassembly
- Capability to sustain launch environment

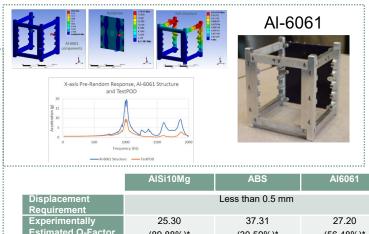

Modular Chassis	Backplane/Card-slot Internal Configuration
 Without side panels, open faces enable to reach out to some components Number of fasteners to remove to disassemble a board is reduced Chassis elements can be replaced independently of one another 	 Only board of interest has be disassembled when needed Number of fasteners to secure a board to chassis is reduced


AlSi10Mg Additively manufactured

ABS Additively manufactured

Al6061 Subtractively manufactured




"<u>Design, Validation, and Verification of the Cal Poly Educational CubeSat Kit Structure</u>", Nicholas Snyder, Masters Thesis, Cal Poly San Luis Obispo, 2020.

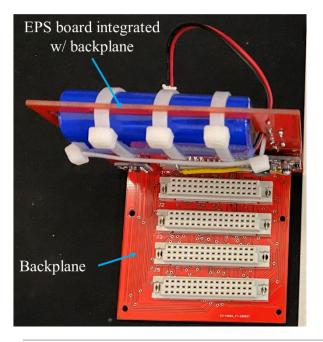
STRUCTURE

Analysis and vibration test outcomes:

- Stress built up at discontinuities, such as holes and sharp edges
- Fundamental frequency and Q-factor determination •
- Workmanship verification

Displacement		Less than 0.5 mm	
Requirement Experimentally Estimated Q-Factor [-]	25.30 (89.88%)*	37.31 (30.59%)*	27.20 (56.48%)*
Max. Analytical Displacement [mm]	0.01 (75.00%)*	0.20 (11.11%)*	0.01 (50.00%)*
Average Yield Strength [MPa]	270.00	33.00	276.00
Max. Analytical Stress [MPa]	23.91 (31.68%)*	12.09 (13.41%)*	24.66 (34.24%)*
Margin of Safety [-]	`10.29´ (298.84%)*	1.73 (17.62%)*	`10.19´ (63.78%)*
*Difference between an	alvtical values obtaine	ed pre- and post-rand	lom vibration test

Dillerence belween analylical values oblained bre- and bost-random vibralion



"Design, Validation, and Verification of the Cal Poly Educational CubeSat Kit Structure", Nicholas

Snyder, Masters Thesis, Cal Poly San Luis Obispo, 2020.

BACKPLANE and ELECTRICAL POWER SUBSYSTEM

- Direct energy transfer from solar panels to batteries
- Solar panels, 2W
- Li-ion batteries, 0S3P

Backplane	EPS
 5*48-pin DIN41612 connectors Configurable pins 	 Voltage and current measurement, INA219 5V0 and 3V3 rails 18650 Li-ion batteries, 3.7V, 4,400mAh

EPS verification outcomes:

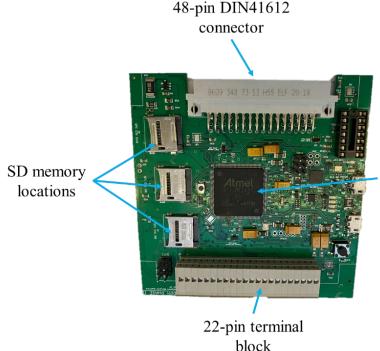
- INA219 sensor verified
- 5V0 and 3V3 rails sound
- DET circuitry, incl. battery pack, verification inconclusive

Mark Wu, "CubeSat Kit EPS/Backplane Research Summary", Cal Poly CubeSat Laboratory, Internal only, Summer 2020.

INTEGRATED PAYLOAD PROCESSING MODULE

Five payloads available:

- IMU, Adafruit BNO055
- Luminosity sensor, Adafruit TSL2591
- IR camera, Sparkfun FLIR radiometric Lepton Dev Kit 2
- Spectroscopy sensor, Sparkfun AS7265x
- VIS camera, OmniVision OV5642 with fish eye lens

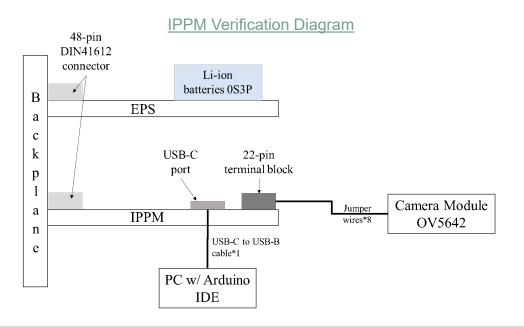

"Design and Development of an Integrated Payload Processing Module for Cal Poly CubeSat Kit", Giovanni Guerrero, Masters Thesis, Cal Poly San Luis Obispo, in work (set to defend in June 2021).

INTEGRATED PAYLOAD PROCESSING MODULE

Main functions:

- Manage payload operations
- Manage data acquired by the payloads

IPPM Characteristics
ATSAM3X8E microcontroller
 54 digital input/output pins
 12 analog pins
 512kB flash memory
ARM processor
 SPI, I2C, UART, and CAN capable
• 48-pin DIN41612 connector to interface with backplane
22-pin terminal block to interface with payloads
• 3*SD memory

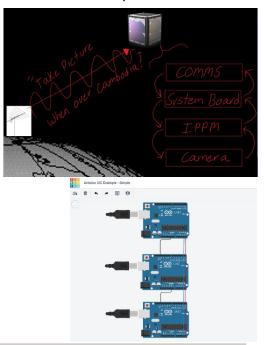

Terminal Cal Poly

"Design and Development of an Integrated Payload Processing Module for Cal Poly CubeSat Kit", Giovanni Guerrero, Masters Thesis, Cal Poly San Luis Obispo, in work (set to defend in June 2021).

INTEGRATED PAYLOAD PROCESSING MODULE

Verification w/ EPS and Backplane outcomes:

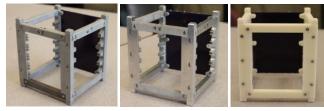
- IPPM capable of receiving command from Arduino IDE
- IPPM capable of storing images acquired through OV5642



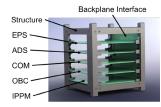
"Design and Development of an Integrated Payload Processing Module for Cal Poly CubeSat Kit", Giovanni Guerrero, Masters Thesis, Cal Poly San Luis Obispo, in work (set to defend in June 2021).

CAL POLY CUBESAT KIT MK I IMPACT

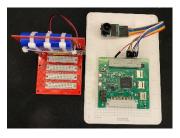
- As of August 2021, engaged:
 - 3 Cal Poly graduate students (AERO)
 - 15 Cal Poly undergraduate students (AERO, ME, EE, CPE, SE, CSC, MSCI)
 - 1 international high school, Cambodia
- Lectures with Cambodia's Liger Leadership Academy high school



LigerSat website Cal Poly news article


FUTURE OF CAL POLY CUBESAT KIT PROJECT

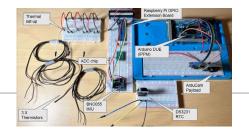
- Summer 2019 Mk I D
 - Project Start
- Mk I Development
- Structure
- Backplane
- Integrated Payload Processing Module (IPPM)
- Electrical Power Subsystem (EPS)
- Payloads (fish-eye lens camera, thermal sensors, inertial measurement unit, etc.)



End June 2021 Mk I Planned Completion

Summer/Fall 2022 Mk III Development Start Mk III and Beyond Development

- 3U kit
- New payloads considerations
- Mk II lessons learned implementation

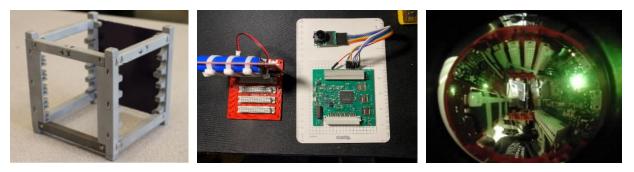

Fall 2020 Mk II Development Start

Mk II Development

- Structure
- Backplane
- IPPM
- EPS
- Attitude Determination Subsystem (ADS)
- On Board Computer (OBC)
- Communication subsystem (Comm)
- Payloads (fish-eye lens camera,
- spectroscopy sensor, luminosity sensor, etc.)

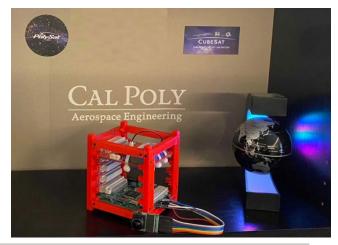
Summer/Fall 2022

Mk II Planned Completion



SUMMARY

Cal Poly CubeSat Kit as a practical platform to educate on engineering and non-engineering principles inside and outside a classroom


- Support curricula and professional training development
- Facilitate access to space for new comers
- Foster good practices for space engineering
- Provide hands-on space engineering platform

ACKNOWLEDGEMENTS

- Nick Snyder, AERO Master student, Structure designer
- Giovanni Guerrero, AERO Master student, CubeSat Kit lead and IPPM, OBC, and ADS developer
- Stavros Diamantopoulos, AERO Master student, Flight software developer
- Dev Masrani, CSC Bachelor student, Flight software developer
- Gagan Thapar and Jason Beals, AERO Bachelor students, Systems engineering
- Helen Zhang and Lorenzo Pedroza, EE/CPE Bachelor students, Communications subsystem
- Rose McCarver and Sophia Tiu, ME Bachelor students, Structure
- Mitashi Parikh, SE Bachelor students, Augmented reality developer
- Mark Wu, Patrick Jackson, Eric Qian, Braydon Burkhard, Lucas Lucia, Mike Kabot and Christopher Tinker, EE/CPE/MSCI Bachelor students, EPS and Backplane
- This work was supported through Cal Poly Office of Research and Development's Research, Scholarly, and Creative Activities Grant 2019, Strategic Research Initiative Grant 2020, and Cal Poly's Aerospace Engineering Department

Contact Information

Pauline Faure

- California Polytechnic State University Aerospace Engineering Department
- & 805-756-6043
- ☑ pfaure@calpoly.edu
- \circledast aero.calpoly.edu

