
McComas 1 [35th] Annual

 Small Satellite Conference

SSC21-WKI-06

OpenSatKit – A Flight Software Educational Platform

David McComas

Open STEMware Foundation

15634 Thistle Downs Court Woodbine, MD 21797

443-547-0201

dmccomas63@gmail.com

ABSTRACT

OpenSatKit (OSK) provides a free educational resource originally created for spacecraft flight software (FSW)

developers to adopt and use NASA’s open-source core Flight System (cFS) that has expanded to include

applications for space systems curriculum, STEM educators and hobbyist. In 2015 the NASA Goddard Space Flight

Center (GSFC) open sourced the cFS and a spacecraft dynamic simulator called 42. In the same year Ball

Aerospace open sourced their COSMOS user interface for command and control of embedded systems. OSK

combines these three systems into a ground-flight-simulator software system.

The cFS is an open architecture allowing users to port the core Flight Executive (cFE) to a platform

(processor/operating system) of their choice, select/configure cFS community apps and develop custom platform

software/apps to complete their system. The cFS has a long successful flight heritage ranging from CubeSats to

large NASA GSFC observatories and a bright future that includes NASA’s Commercial Lunar Payload Systems

program and the international lunar Gateway program. The cFS’ open architecture and collection of open-source

community apps is part of what makes it so valuable, but they can complicate system integration increasing the

learning and adoption curve.

For the past few years, OSK’s features, and functionality have expanded to include a cFS-based reference mission

called SimSat that includes over 20 apps and a YouTube channel with more than 15 training videos. These

resources capture institutional knowledge and lesson learned from years of FSW experience. While these advances

have helped many organizations learn and adopt the cFS, it has created some complexity challenges of its own.

To address these challenges OSK is being reorganized to present material based on user tasks and goals. If a user

wants to use the cFS for their CubeSat then the top-level tasks include acquiring/implementing a CFS platform port,

identifying/integrating existing cFS apps for some of their mission’s functionality and developing new platform and

app-level software for the remaining functionality. OSK provides task-based activity diagrams with examples,

instructional videos, demo scripts, and exercises for each activity.

OSK has expanded beyond its initial primary cFS-based FSW use case and can be applied to STEM education in

general. The cFS has been ported to the low-cost Raspberry Pi processor and connected to OSK’s COSMOS

instantiation. A series of code-as-you-go (CAYG) exercises and videos are in production that teach users how to

port the cFS to the Pi and add software for managing sensors and actuators.

This paper describes the new OSK organization and features that provide free FSW educational resources. OSK

allows students to develop skills and apply them to meet their educational needs that will transfer into marketable

skills as they enter the technical workplace.

INTRODUCTION

OpenSatKit1 (OSK) was originally developed to

provide a complete desktop solution for learning about

and developing applications for NASA's open-source

flight software (FSW) platform called the core Flight

System (cFS). The cFS is a reusable FSW architecture

(Figure 1) that provides a portable and extendable

platform with a product line deployment model2. NASA

manages the Platform and Service Layers collectively

referred to as the cFS Framework as an open-source

project on github3. To use the cFS for a project or

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/478906364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

McComas 2 [35th] Annual

 Small Satellite Conference

mission, a user must locate, learn, and configure

existing cFS community apps as well as write and

integrate their own mission-specific apps. These can be

daunting tasks especially for new users.

Figure 1: cFS Architecture

The cFS Framework provides many benefits including

significant flight heritage, high reliability, a complete

set of command and data handling functions required

by most spacecraft, and an active community that

maintains a suite of apps many with flight heritage and

high reliability. OSK was originally developed to help

users realize these benefits for their own projects.

OSK combines three powerful open-source platforms

(Figure 2): Ball Aerospace Corporation's

COSMOS command and control platform for

embedded systems4, NASA's cFS5, and Eric

Stoneking's 42 Simulator6 that can be run on an Ubuntu

Linux platform. The initial concept was to provide an

operational system that users could work with to learn

about the cFS, existing apps, and develop their own

apps.

Figure 2: OSK Components

OSK uses customized COSMOS screens and scripts to

provide a framework to assist users with workflows and

to operate their integrated system. OSK’s main screen

is shown in Figure 3. Screens are used to launch context

sensitive documentation, demos, tutorials, and training

videos from OSK’s YouTube channel7.

Figure 3: OSK Main Screen

After a couple of years of experiencing how OSK was

being used for different purposes in varying

environments, it became apparent that the original OSK

concept was too vague and created new complexity

challenges on top of the cFS. It also became apparent

that OSK could play a role in STEM education in

general as both a tool for demonstrations and for hands-

on learning. In version 3.0 OSK was refactored to align

with the following four use cases:

1. Support cFS-based mission FSW development.

2. cFS FSW Education.

3. Remotely control a cFS system on a Raspberry Pi.

4. Use OSK for research and development.

The next four sections describe how OSK addresses

these use cases which is followed by a section on

STEM educational ideas that go beyond the immediate

STEM applicability of each use case.

CFS-BASED MISSION FSW

Figure 4 shows the general flow for a spacecraft FSW

development effort. OSK is designed to directly support

integrating and testing cFS community apps, OSK apps,

and user mission-specific apps into a functional FSW

system that runs within OSK’s software-in-the-loop

(SIL) environment. Nothing precludes OSK from being

used in later mission lifecycle phases, however,

creating the hardware in-the-loop (HIL) interfaces,

developing simulators, and migrating ground system

artifacts (if COSMOS is not used) are not covered by

OSK. These efforts are represented by the gray arrows.

The green arrow pointing to the processor card is not

within the OSK boundaries because porting the cFE to

a hardware platform is not directly covered by OSK,

however, a cFS community platform list8 is maintained

McComas 3 [35th] Annual

 Small Satellite Conference

by the OSK project and provides links to cFS porting

resources.

Figure 4: Mission FSW Lifecycle

To understand how OSK can help with mission FSW

design the end goal needs to be defined so a design and

implementation strategy can be created to take a user

from OSK’s starting point to their mission’s needs.

Since spacecraft often have a unique design creating a

“one size fits all” approach is not feasible. OSK helps

users create their unique mission design by defining a

superset of app groups that cover most permutations of

spacecraft FSW needs. Figure 5 shows OSK’s generic

spacecraft app model that a user can tailor to their

specific mission where each circle represents an app.

Note that cFS community apps shown in blue supply a

large percentage of a mission’s functionality.

Figure 5: OSK Generic Mission App Model

Mission variability and specialization typically occurs

with device interfaces, closed-loop control

requirements, and mission concepts of operations. The

first FSW mission design step is to create an initial app

model from OSK’s generic spacecraft model using

mission concepts of operations, mission requirements,

and the spacecraft hardware architecture often

represented in the form of a block diagram. The initial

goal is to create a “good enough” app model based on

the maturity of the information at hand. Designing FSW

is a very iterative process with top-down and bottom-up

technical and non-technical forces at work. Trades are

often made throughout the requirements analysis and

spacecraft design phases that impact FSW.

With an initial goal in mind OSK’s preconfigured

reference mission called SimSat shown in Figure 6 can

be analyzed. The SimSat app model contains app

groups like the generic spacecraft model. These groups

help break down a complex FSW system into

manageable pieces. In addition, cFS apps often

collaborate to provide end-user functionality, unlike

smartphone apps that usually operate independently.

OSK contains demos and tutorials that address app

groups to help users understand how cFS community

apps combined with their mission-specific apps can be

configured and integrated to create a complete

functional system. The OSK documentation helps

guide users through the FSW systems engineering

process. Note that the analysis process is not always

subdivided into categories that directly correlate to the

app groups. For example, fault detection isolation and

recovery (FDIR) involve both the Health & Safety and

Autonomy app groups.

Figure 6: SimSat Reference Mission

The OSK apps shown in green in Figure 6 are not flight

qualified. If a mission needs similar functionality, they

can start with an OSK app and test it, or they could

write their own app from scratch. The OSK apps use a

common OSK a framework library that differs from the

conventional cFS app design. The main difference is

McComas 4 [35th] Annual

 Small Satellite Conference

that OSK apps use JSON files for parameter files and

cFS apps use binary files that are managed by a cFE

table service. The OSK apps with ‘sim’ in their name

are not intended for flight. These apps provide

simulated data on the software bus to support testing

apps that rely on data from an external data source such

as a payload. A mission will need to tailor these apps

for their own simulation needs. This strategy allows

ground test and operational scripts to be developed on

OSK’s SIL platform prior to when external hardware

and/or simulators become available.

CFS FSW EDUCATION

The cFS educational material is focused on teaching the

core Flight Executive (cFE) services and on developing

apps. The platform APIs, Operating System

Abstraction Layer (OSAL) and Platform Support

Package (PSP) are used, but implementation details

behind the APIs are not covered. Platform

implementation details can be found at OSK’s cFS

community platform list8 that contains links to platform

resources maintained by community members.

Figure 7 shows the apps included in the cFS

educational target. The number of apps is intentionally

low to minimize complexity so the user can focus on

the material being taught. The OSK apps and the cFS

File Manager (FM) app are needed to provide a

complete runtime and file management environment.

Memory Manager and Memory Dwell are used in some

demos. A user will create prototype apps as they work

through exercises.

Figure 7: cFS Education Configuration

There are two types of educational resources: cFE

services and application development. The cFE services

learning resources are accessed via one screen per

service as shown in Figure 8’s Executive Service

screen.

Figure 8: Example cFS Service Screen

The application development resources are more

sophisticated. They begin with using a tool to create a

“Hello World” app that includes both the FSW source

code and COSMOS command and telemetry

definitions. Figure 9 shows the screen that steps the

user through the workflow for creating a “Hello World”

app. The figure on the left side identifies where files are

located and whether they are automatically generated or

manually edited by the user. When a user completes the

six steps, they will be able to send commands to the

new app and display the app’s telemetry using the

COSMOS Command Sender and Telemetry Viewer

tools, respectively.

Figure 9: Create App Workflow Screen

The app creation task can be followed by hands-on

exercises where the student progressively augments the

Hello World app with more features. This workflow

uses a combination of COSMOS screens and PDF files

to guide the user through the exercises as they manually

make code changes using the editor of their choice.

PI-SAT

A separate Pi-Sat Distribution9 is maintained that can

be installed on multiple versions of the Raspberry Pi.

The distribution contains instructions for how to

configure the Raspbian operating system so the Pi can

be controlled by OSK’s COSMOS ground system over

WiFi. Figure 10 shows OSK’s main Pi-Sat screen, a

custom Pi-Sat sensor data screen, and two example Pi-

Sat configurations. The top configuration is a low-cost

CanaKit10 that uses a Raspberry Pi 3B and the lower

configuration with the Pi-Sat display is a custom

McComas 5 [35th] Annual

 Small Satellite Conference

configuration developed by Alan Cudmore at the

NASA GSFC that uses a Pi Zero.

Figure 10: OSK Pi-Sat Configuration

The Pi-Sat cFS app suite shown in Figure 11 contains a

minimal set of OSK apps that provide a cFS app

runtime environment and file management/transfer

services. cFS apps are intentionally not used to avoid

the use of binary tables. All OSK apps use JSON

tables. This distribution includes a Pi I/O library written

in C so users can write new cFS apps in C or C++.

Figure 11: Pi-Sat cFS App Suite

RESEARH & DEVELOPMENT

OSK’s build system creates a target named “sandbox”

that contains a minimal set of OSK apps that provide a

cFS app runtime environment and file

management/transfer services. These apps and all

OSK/cFS libraries are loaded during startup. The R&D

apps are not loaded during startup.

Figure 11: R&D cFS App Suite

The OSK screens shown in Figures 12 and 13 provide

interfaces for adding and removing R&D apps during

runtime, respectively. OSK takes advantage of the cFS

ability to add and remove apps during runtime which is

an unusual feature for FSW systems.

Figure 12: R&D Add App

Figure 13: R&D Remove App

McComas 6 [35th] Annual

 Small Satellite Conference

STEM EDUCATION

This section highlights the STEM education aspects of

OSK’s four use cases and identifies additional STEM

education opportunities for educators.

The cFS-based Mission FSW resources can be used by

educational institutions developing CubeSat missions.

OSK provides documentation, training videos, and

FSW examples that cover FSW system engineering

topics that are not well documented in the aerospace

industry. In fact, many CubeSat mission development

efforts run into difficulty because FSW was not treated

with the same engineering rigor as other subsystems.

Some FSW system engineering topics include:

• Creating a synchronous system that be verified

with repeatable tests.

• Analyzing and implementing a realtime/stored

telemetry management strategy.

• Creating highly parameterized applications

with ground support tools that simplify FSW

tuning during spacecraft I&T and operations.

• Creating a robust and sustainable FSW system

that includes FDIR and in-orbit updates.

OSK and the cFS provide hands-on opportunity for

students to learn about specifying and developing

requirements-based testing. OSK does not currently

include this curriculum, but the pieces are in place to

allow an educator to create their own curriculum.

NASA GSFC’s cFS applications contain functional

requirements, test scenarios, and the test scripts that are

used to verify an app and trace to the functional

requirements. These test scripts are written for the

Advanced Spacecraft Integration and System Test

(ASIST) ground system11 that is not freely available to

students. Students could be assigned the tasks of

learning a NASA cFS app’s requirements, test

scenarios, and test scripts, e.g., File Manager12. Then

they would use OSK to develop new functional tests

that cover the requirements and execute them within

OSK’s SimSat functional test suite.

OSK’s Pi-Sat code repo and integration with COSMOS

instructions is specifically designed for STEM

education. Students learn how to build and run the cFS

on a Raspberry Pi and about remote operations by

interfacing to the cFS via the COSMOS ground system.

The Raspberry Pi has many hardware peripheral

options and OSK’s instructions describe how to

augment the default cFS and COSMOS configurations

to include new student cFS applications that interface to

a hardware component. Educators can also create their

own Pi-Sat configurations like the ones shown in Figure

10 that can be used for demonstrations. The Pi-Sat unit

in Figure 10 with the display has been used in

classroom demonstrations ranging from grade school

through college.

OSK’s cFS FSW Education and R&D targets are

designed to teach cFS FSW engineering concepts,

software engineering concepts in general, and provide a

platform for exploratory prototyping. For example, the

R&D app suite includes a protype Message Queuing

Telemetry Transport (MQTT) app that can be used with

an MQTT broker such as HiveMQ13 to demonstrate

publishing messages from an MQTT broker onto the

cFS software bus using the MQTT app. MQTT is a

message protocol that is suitable for restricted networks

with low bandwidth and high latency and is a popular

choice for Internet of Thing (IoT) devices.

A final STEM consideration is a curriculum for porting

the cFS. As previously stated OSK does not directly

support this activity and a git repo with porting

resources is maintained by the OSK project8. The

recommendation is for educators interested in teaching

embedded software systems to develop educational

material for porting the cFS to an embedded processor

using a realtime operating system. Once the cFS is

ported, a workflow like OSK’s Pi-Sat workflow could

be used that allows students to interface to the

embedded system using COSMOS and OSK’s

command and telemetry apps. Students could then add

customized interfaces and apps to learn what goes into

creating a fully functional embedded system that is

remotely controlled.

FUTURE WORK

OSK continually evolves based on user needs.

Completing the app group and individual app demos

and training videos is an ongoing effort. In addition,

the “code-as-you-go” hands on exercises will be

expanded to cover both the cFS style and OSK style

apps and include more complex app features. If there’s

demand for some of the OSK apps to be fully verified

for use in flight, then unit and functional tests will be

developed. A future STEM educational consideration

related to OSK enhancements is the possibility of

collaborating with educators to create curriculums that

would include student assignments that produce OSK

contributions. This would provide the students with

opportunities to experience working on a collaborative

open-source project.

At the time of this writing, unit tests in general have not

been addressed by OSK. Users can build and run the

NASA cFS app unit tests at the command line, but an

integrated unit test framework has not been configured.

McComas 7 [35th] Annual

 Small Satellite Conference

After NASA officially releases the cFS Bundle release

named Caelum (aka 7.0) and the NASA GSFC apps are

upgraded to run with the Caelum API changes, OSK

will be updated with Caelum, with the updated apps,

and unit testing will be added as part of OSK’s SimSat

verification.

After the Caelum release another potential evolutionary

step would be the maturation and integration of

technologies that would facilitate the packaging,

distribution, and integration of cFS community apps.

The international Consultative Committee for Space

Data Systems (CCSDS) organization maintains a

standard called Electronic Data Sheets (EDS)14 which

are a formal specification of a device, system, or

software interface in a machine-readable format. The

current cFE release contains EDS specifications for the

cFE apps and Joe Hickey maintains a cFS distribution

with an EDS toolchain that generates FSW artifacts

from EDS specifications15. These artifacts include FSW

header files and libraries that can be used to provide

symbolic command and telemetry bindings for scripting

languages such as Python and Lua. OSK could play a

role in standardizing how cFS uses EDS by providing a

platform for prototyping and demonstrating EDS-based

FSW development and test workflows to the cFS

community.

A longer-term potential OSK architectural design

change would include containerized components that

can be cloud-based. COSMOS 5.0, in Beta release is

making a significant architectural departure from 4.x

which is used by OSK. COSMOS 5 is “s highly

scalable, cloud native, command and control software

system … [that] runs across a set of containers

managed by Docker.”4. If OSK defines the flight-

ground and flight-simulator interfaces, then in theory

solutions other than COSMOS and 42 could be

provided so OSK itself would become a framework that

could have multiple instantiations.

SUMMARY

The cFS is a mature and reliable open source FSW

platform maintained by NASA. The cFS has been used

on several NASA Class B missions and has recently

gained traction within the CubeSat community. OSK is

an open-source resource that evolved from a platform

for learning about and developing applications for the

cFS to a multi-faceted platform that supports

developing cFS-based mission FSW, learning the cFS,

remotely controlling a cFS system on a Raspberry Pi,

and developing prototype R&D apps. This evolution

makes OSK a resource for both the aerospace

community and STEM educators.

Acknowledgments

The author would like to acknowledge and thank the

COSMOS, cFS, and 42 Simulator teams for their

dedication to the maintenance of and continual

enhancements to their respective open-source projects.

References

1. OpenSatKit project,

https://github.com/OpenSatKit/OpenSatKit/wiki

2. NASA Goddard Space Flight Center, Flight

Software Systems Branch, core Flight System

Overview,

https://cfs.gsfc.nasa.gov/Introduction.html.

3. NASA core Flight Executive open-source

repository, https://github.com/nasa/cFE.

4. Ball Aerospace COSMOS project,

http://cosmosrb.com/

5. NASA core Flight System open-source

repository, https://github.com/nasa/cFS.

6. Eric Stoneking, 42 Simulator,

https://github.com/ericstoneking/42

7. OpenSatKit YouTube Training Video Channel,

https://www.youtube.com/channel/UC2wfvAIkrr

gyC4ITwL3zokg

8. OpenSatKit cFS Community Platform List,

https://github.com/OpenSatKit/cfs-platform-list

9. OpenSatKit Raspberry Pi cFS Distribution Repo,

https://github.com/OpenSatKit/pi-sat

10. CanaKit Electronic Kits, Module & Parts,

https://www.canakit.com/

11. NASA Goddard Space Flight Center, Ground

Software Systems Branch, Advanced Spacecraft

Integration and System Test Overview,

https://nasa-asist.gsfc.nasa.gov/index.html.

12. NASA GSFC File Manager Test Artifacts,

https://github.com/nasa/FM/tree/master/test_and_

ground

13. HiveMQ Enterprise MQTT Broker,

http://www.hivemq.com/demos/websocket-

client/

14. CCSDS XML Specifications for Electronic Data

Sheets for Onboard Devices and Software

Components, 2015,

http://cwe.ccsds.org/fm/Lists/Projects/DispForm.

aspx?ID=269

15. Joe Hickey cFS Distribution with EDS.

https://github.com/jphickey/cfe-eds-framework.

https://github.com/OpenSatKit/OpenSatKit/wiki
https://cfs.gsfc.nasa.gov/Introduction.html
https://github.com/nasa/cFE
http://cosmosrb.com/
https://github.com/nasa/cFS
https://github.com/ericstoneking/42
https://github.com/OpenSatKit/OpenSatKit/wiki
https://github.com/OpenSatKit/OpenSatKit/wiki
https://github.com/OpenSatKit/OpenSatKit/wiki
https://github.com/OpenSatKit/cfs-platform-list
https://github.com/OpenSatKit/pi-sat
https://www.canakit.com/
https://nasa-asist.gsfc.nasa.gov/index.html
https://github.com/nasa/FM/tree/master/test_and_ground
https://github.com/nasa/FM/tree/master/test_and_ground
http://www.hivemq.com/demos/websocket-client/
http://www.hivemq.com/demos/websocket-client/
http://cwe.ccsds.org/fm/Lists/Projects/DispForm.aspx?ID=269
http://cwe.ccsds.org/fm/Lists/Projects/DispForm.aspx?ID=269
https://github.com/jphickey/cfe-eds-framework

