The DiskSat: A Two-Dimensional Containerized Satellite

Richard Welle Catherine Venturini David Hinkley Joseph Gangestad

12 August 2021

© 2021 The Aerospace Corporation

CubeSats and the Small-Satellite Revolution

The power of "containerization"

- CubeSats revolutionized the small satellite industry through containerization, just as containerization revolutionized terrestrial shipping
 - Containerization simplifies the interface and protects the host, enabling inexpensive rideshare
 - In 20 years, over 1100 CubeSats have been launched worldwide
 - CubeSats have flown on at least 20 different launch vehicle types
- CubeSats are rigidly constrained by the volume of the container
 - Limits on power and aperture, even with complex deployables

Containerization of terrestrial shipping

How to get the benefits of containerization without the limitations of CubeSats?

Need to Think Beyond Scaling Satellite Size to Realize Future Space Enterprise

Tech Features for Future Space	Traditional HVA	Micro-/Nano- satellites	?
Lots of aperture	Large apertures → high gain → high throughput	Small size limits aperture, deployable apertures have limited history of success	We need an architecture that has large aperture and high power but that can be mass manufactured at low cost and packaged for mass deployment
Frequency agility	Multiple frequencies, phenomenologies possible on large platform	Power-limited, cannot easily carry articulating apertures (e.g., optical comm nodes)	
Orbital versatility	Bus designed to operate in one orbital environment	Bus designed to operate in one orbital environment	
Maneuverability	Higher thrust being introduced	Few COTS options, low ΔV	
Mass production	Bespoke manufacture	Mass manufacture demonstrated by industry	
Efficient LV packing	High mass, volume → ~1 per launch	Can deploy tens at a time from one launch vehicle	
Low cost per unit	O(\$1B) per unit	O(\$1M) per unit	

By just scaling traditional bus (rectangular prism), aperture goes as r^2 and mass (cost!) goes as r^3 New paradigm: think two-dimensional \rightarrow aperture goes as r^2 and mass (cost) goes as r^2

Out-of-the-(CubeSat)-Box

DiskSat – Containerization in an Alternate Form

- Efficient shape: thin disk 1 meter diameter, 2.5 cm thick
 - Large surface area for power and aperture <u>without deployables</u>
 - Volume equal to ~20U CubeSat
- Stackable for containerization
 - Sized to stack in 1-m-class payload fairing
- Simple construction
 - Structure based on composite sandwich
 - Satellite components distributed throughout internal volume, or in a central avionics bay

DiskSat Mass Budget

Aluminum honeycomb core

Foam core

- Disk structure honeycomb-core graphite-epoxy sandwich
 - Choose thickness per mission need
 - Structural mass of 1-m-diameter DiskSat: 2.2 kg for 2.5 cm thickness, 3.2 kg for 5 cm thickness
 - Increasing diameter increases mass in proportion to area
 - Foam core may provide lower mass, but may lead to high thermal gradients across thickness
- Satellite bus
 - Avionics mass ~1 kg (based on AeroCube)
 - Solar cell and battery mass depends on power requirements; ~2-3 kg
 - Optional deployable panel (for extra power) adds ~2 kg

DiskSat without

DiskSat Power Budget

- DiskSat achieves high power-to-mass ratio without complex deployable solar panels
 - 1 m diameter has surface area of 0.79 m² and can hold 200 W of solar cells
 - 1.2 m diameter increases surface area and peak input power to 290 W
- Optional deployed panel
 - A simple rigid solar panel deployed on a single-hinge doubles surface area for little mass penalty
 - At ~30 degrees, the deployed panel ensures steady orbit average power independent of solar beta angle
 - A 1.2 m DiskSat with a single deployable panel can produce over 160 W orbit average power with a bus mass ~10 kg
- Traditional satellite buses below 50 kg cannot produce 150 W orbit average without complex multi-fold deployables and mass at least 20 kg

Typical orbit-average power available from various satellite bus designs assuming comparable LEO orbits

Orbit Raising, Orbit Maintenance, Maneuverability

DiskSat has unparalleled "orbit agility" when coupled with electric propulsion

- Commercially-available flight-proven EP systems can provide as much as 5000 m/s delta-v for a 10-kg DiskSat
- DiskSat has a uniquely advantageous power/mass ratio without the complexity of deployables
- Applications
 - Orbit raising
 - Initial deployment at lower altitude increases launch payload mass
 - Orbit maintenance
 - Less than 10 m/s/year delta-v at 600 km orbit altitude
 - 800 m/s/year delta-v enables sustained flight at 200 km orbit altitude
 - Rapid rephasing of constellations
 - De-orbit at end of life
 - Cis-Lunar space
 - <4000 m/s delta-v required for transfer from GEO to lunar orbit
 - Other orbits in cis-Lunar space reachable with comparable delta-v

Deorbit with propulsion or enhanced drag

Volume Budget and Manufacturability

DiskSat Compared to a CubeSat

- DiskSats are mass limited, but have large volumes
 - a 5 cm thick x 1-m diameter DiskSat has a volume 13x that of 3U CubeSat
- Extended layout and increased volume lower unit cost compared to a CubeSat
 - Simplifies mechanical structures
 - Eliminates complex harness routing

Interior layout of ISARA 3U CubeSat (2017)

- Simplifies post-assembly functional testing and component R&R
- Increased surface area simplifies thermal management

ISARA avionics notionally reconfigured into a DiskSat "chassis box"

The ISARA 3U CubeSat (with deployed antenna) next to a notional 3U-equivalent DiskSat

The DiskSat is an efficient approach to building and deploying constellations of very small satellites

Stackability

- Stacking satellite-to-satellite is an efficient use of launch volume
- Non-circular and non-flat shapes can also be stacked
- Components thicker than the nominal DiskSat thickness can protrude
- Corresponding cutouts in adjacent DiskSats accommodate any protrusions
- Disk thickness not strictly limited

Non-circular shapes (ESPA port envelope)

Non-flat stackable shapes can be accommodated

DiskSat Dispenser

Launch loads and satellite ejector

- Requirements
 - Support satellites against launch loads
 - Containment to protect primary
 - Eject satellites one at a time after launch
 - Simultaneous release as used in CubeSats could be problematic with large stacks of disks
- Approach
 - Separate launch loads from the ejection process
 - Transfer launch loads through disk stack directly to cannister
 - Dispenser mechanism is loosely coupled to disks during launch and does not carry launch loads
 - Single mechanism to lift stack and deploy top disk one at a time

Launch container (cutaway)

Secondary load pins in deployable panels

Mission Applications

- Constellations
 - Ideally suited to populating well-structured constellations of large-aperture, low-mass satellites
 - Efficient small-launch-vehicle packing
 - One orbital plane per launch
 - Or two or three planes per launch with low-altitude dispensing and differential precession
- Missions requiring large apertures
 - Communications, radar, etc.
- Missions requiring high power
 - Radar, high-power EP, etc.
- Missions requiring large delta-v or continuous thrusting
 - Low-altitude thermosphere ("Ignorosphere") characterization (160-300 km)
 - Low-altitude (high-resolution) imaging
 - Orbit raising and orbital agility
 - Cis-lunar space self-propelled from GEO to lunar orbit
- Low-budget missions with components too large for a CubeSat
 - In rideshare, a 1-m-class DiskSat should have launch costs comparable to a 3U CubeSat

Earth-escape trajectories

Well-structured constellations

Communications relays

Summary

- Key enablers for future space enterprise have been identified: just going smaller (micro/nano-satellites) doesn't get you there
 - Need to think outside of the (CubeSat) box
- Aerospace is developing a new paradigm for satellite form factor: DiskSat
 - "Two-dimensional" bus architecture is low SWaP and has large aperture (no deployables!)
- Form factor offers unique capabilities in a 10–20 kg package:
 - Large surface area for high power and RF apertures
 - Large ΔV via electric propulsion for maneuvering, altitude changes, or even cis-lunar missions
 - Large total volume for accommodating payloads
 - Very-low-altitude operations (<250 km) via low-drag edge-on flight
- Diverse mission applications:
 - Large constellations
 - RF receivers and transmitters
 - Radar
 - High power

Smarks Perelegencer & cuperitans

Aerospace is developing a DiskSat risk-reduction and proof-of-concept demonstration mission