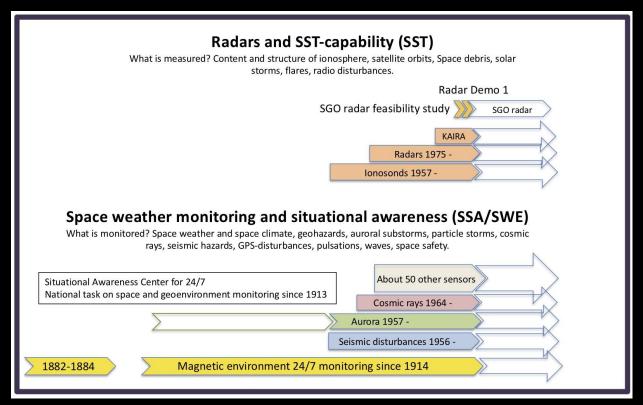


The LappiSat Space Program – Expanding Observatory Quality Geophysical Measurements to Orbits

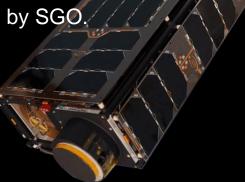

J. Envall, A. Binios, E. Tanskanen, J. Biström, S. Miettinen

Sodankylä Geophysical Observatory (SGO)

- SGO *** 24
- The Sodankylä Geophysical Observatory has pioneered in the research of aurora borealis and the related fluctuations in the near-Earth magnetic environment for over a 100 years.
- Main research areas include magnetic disturbances, geomagnetic activity, ionospheric composition and disturbances, radio science, seismic activity, and cosmic rays.
- First sets of variometer measurements from 1880's.
- Continuous measurements since Jan 1, 1914.
- 27 locations, spanning from Svalbard (78°N) to Antarctica.

It has been a time-honored tradition at SGO to design, develop and construct the observatory's most critical measurement instruments in-house.

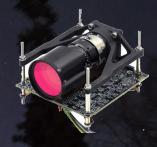
Monitoring Near Earth Environment

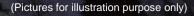


LappiSat Program

- SGO *** Z
- The first Finnish satellites were launched in 2010's. As a byproduct the new wave of space engineers emerged.
- In 2020 SGO decided to bring some of that know-how to Lapland (Lappi).
- LappiSat program will
 - 1. Establish a Space Technology Center in SGO's Tähtelä campus in Sodankylä.
 - 2. Build and operate satellites with scientific payloads.
 - 3. Provide education in the field of space technology and instrument building.
 - 4. LappiSat-1 will take the first step in expanding SGO's measurement network to space.

SGO *****


- 6U CubeSat.
- Polar LEO, altitudes 500 750 km in consideration.
- The scientific payload of the satellite will consist of instruments observing the aurorae and the related magnetic disturbances of the near-Earth space environment.
- The instruments will be designed and built mainly at SGO.
- The development of the satellite will be led and coordinated by SGO
- Scientific instruments
 - Auroral imagers.
 - Auroral photometer.
 - CubeMAG™.
- On-board demonstrations
 - 6 DOF Propulsion (attitude control and de-orbiting).
 - Radiation tolerant systems.



Auroral Imagers

- Science Camera
 - Optimized for scientific observations of the auroral oval.
 - Final specifications TBD.
 - E.g. spectrally filtered images, or integration over the entire spectrum (B/W).
 - I will leave it to the science team!
- Outreach Camera
 - Optimized for ordinary orbital photography.
 - Aesthetically pleasing color images of aurorae.
 - Used for public outreach, education etc.

Auroral Photometer

- SGO *****
- Auroral photometer: device taking measurements of the intensity of auroae at several narrow wavelength bands, centered at e.g. 427.8, 557.7, and 630.0 nanometers.
- Observing the different emission bands simultaneously gives scientifically valuable information of the aurorae.
- Examples:
 - \rightarrow 427.8 nm \rightarrow electron flux.
 - 427.8 nm & 630 nm → characteristic energy of precipitating electrons.
 - Time lag between 427.8 nm and 557.7 nm → change of molecular oxygen.
- Photometer:
 - Each channel contains a detector (e.g. avalanche photodiode) with control electronics, a spectral filter, and suitable input optics.
 - For each measurements channel, an auxiliary channel is needed to measure the dark signal.
 - o In addition: central microcontroller unit, memory, and data interface.

CubeMAG™

- A miniaturized magnetometer for small satellites.
- Fully in-house designed and built.
- Compact design allows a variety of applications.
- Single PCB solution optionally with external sensors, e.g. mounted on a boom outside of the satellite body.
- Target resolution of the instrument is 1 nT.

Future Missions

- Upcoming small satellite launch opportunities to the Moon.
- Solar and magnetic measurements in the Lagrangian points.
 - CubeSat variant of the STEREO-mission, e.g. monitor both sides of the Sun simultaneously.
- A fleet of satellites performing measurements from LEO to GEO and beyond.
 - o Cost.
 - Multiple spacecraft opportunities.
 - Redundancy on observations.
 - Wide-scale usage possibilities.

Thank You

