

IN-FLIGHT RECONFIGURATION WITH SYSTEM-ON-MODULE BASED ARCHITECTURES FOR SCIENCE INSTRUMENTS ON NANOSATELLITES

SSC21-VIII-08 I T. NEUBERT ET AL., ZEA-2, FORSCHUNGSZENTRUM JÜLICH GMBH, GERMANY

video

Member of the Helmholtz Association

FORSCHUNGSZENTRUM JÜLICH

Heritage in remote sensing instrumention at airborne, balloon and satellites

MINIATURIZED CLIMATE RESEARCH INSTRUMENTS

Objectives and Challenges

- standardized sublevel components available (power, communication, altitude control, deorbiting,...)
- customize science payload electronics needed

SHI spectrometer for atmospheric temperature measurements

flexibility, (re)programmability, modularity, reusability

SPIE-JARS 05/2019

video

- novel science "standardized" payload electronics based on our "system on module" approach with heritage from precursor instruments (AtmoHIT & AtmoSHINE) on sounding rocket and in space
- long-term measurements with custom mitigation techniques using COTS components
- focus is on imaging sensors in combination with integrated System-on-Chip (SoC) solutions

SYSTEM-ON-MODULE APPROACH

Features

- Pin compatible modules with processing units, memory and power conversion
- Several processing capabilities (CPLD, FPGAs, μC, SoC, MPSoC)
- Short development time, 'low' design expertise needed (universities)

Challenge

- Radiation environment, system reliability
- Size, power consumption, limited data bandwidth and costs

Solution approach

- SRAM-based XILINX System-on-Chip (SoC) architectures contains processing units (PS) and reconfigurable logic (PL)
- Mitigation techniques, protection circuits and **reconfiguration** for long-term measurements

A RECONFIGURABLE SCIENCE ELECTRONICS

Blockdiagram

Firmware storage devices

- QSPI nominal (primary) boot device
 - SD-Card redundant (secondary) boot device
- eMMC Transfer memory and 'Golden image'

Reconfiguration strategy

Built-In-Self-Test (BIST): Detection and monitoring of failure

- Diagnostics for all vital functions
- Classification in

٠

- Minor \rightarrow Warning
- Major errors \rightarrow Reconfiguration
- Critical situations → Shutdown

ConfMems eMMC: OK eMMC: FW OK eMMC: new FW eMMC: new OK SD0: OK SD0: FW OK SDO: EQUAL **OSPIOK** OSPE FW OK **QSPI: EQUAL** LastBoot QSP REBOOT Startup OK NeedUpdate CRITICAL EMERGENCY Conf. Mem Test

Save reconfiguration

- on Software crash
- compensate for SEU and SEFI induced errors
- safe shutdown at SEL events

3

Highly secured boot process

- Redundant boot devices
 - Automatic switch between
 Nominal/Redundant
- 'Golden Image' in third device
- BIST and automatic correction of
- invalid FW image

Mitglied der Helmholtz-Gemeinschaft

5

SUPERVISOR CIRCUIT

Simple watchdog IC with two functional blocks

- Triggering the Reconfiguration
 - 'alive' signal is a combined signal by software task at PS and logic block inside PL
 - when PS or PL stops working (crash), WDT resets the system
 - at major risks 'alive' trigger signal will suppressed by BIST
 - SEU events occur inside TMR (PL)
 - Cyclic memory pattern checks fails (PS)
 - TM/TC and HK packages inconsistent
 - Error at peripheral interfaces (I²C, SPI, DMA)
 - Discrepancies in configuration memories

2 Dual Boot Functionality

- using time delay at PFI input during power up to start from nominal boot device
- corrupted configuration will force a reset 1 due to missing 'alive' signal and PFI output (BootSelect) has inverted after this time

- ISL706ARH (5962R1121304VXC)
- QML qualified per MIL-PRF-38535
- High dose rate 100krad(Si)
 - SEL LETTH 86MeV•cm2/mg

video

FIRMWARE CHECK AND ,SELF-REPAIR'

TMR like behavior of the three configuration memories

videc

Each configuration memory holds the binary boot image and the correct MD5 hash tag in a separate file.

1) BIST

- At power-up time 'System-checker' process
- Firmware and stored MD5# are checked
 → FW OK marker for each device
- MD5# tags are compared to each other's
 → Discrepancy of memory content
- 2) Self-Repair, in case of a discrepancy
 - consistent memory is copied to the faulty one

IN-FLIGHT RECONFIGURATION

Communication Concept

- OBC handles all ground communication via radio (S-, X- Band)
- Ground testing via direct network link
- Multiple physical interfaces

CubeSat Space Packet Protocol*(CSPP)

• CSPP supports multiple interfaces (physical layer)

JÜLICH

Forschungszentrum

video

• 16 Byte Header,

8

- Protocol and Routing information
- Parameter and Data block, CRC secured

IN-FLIGHT FIRMWARE UPLOAD

Firmware

→ BOOT.BIN

BOOT.bin

fsbl

Firmware consists of **three** parts:

- First-Stage-Bootloader (fsbl)
- PL configuration bit stream (.bit)
- PS application code (.elf).

~ 100 KB

1.8 ... 4 MB

~ 1 MB (FreeRTOS)

or as single files

BOOT.bin

- fsbl PL .bit PS .elf
- Files can be compressed in Xilinx Vivado toolchain, to reduce uplink capacity

FIRST IMPLEMENTATION RESULTS

				ZYNQ - 7000			ULTRASCALE +		
				TE720-ECC (S/N: 609088)			TE820 (S/N: 527320)		
reconfiguration		dose rate							
cycle	meas_time	in krad/h	TID / kRad	QSPI	SD_Card	EMMC	QSPI	SD_Card	EMMC
1	18:44:00	1	0.00	pass	pass	pass	pass	pass	pass
2	19:40:00	1	0.93	pass	pass	pass	pass	pass	pass
3	22:05:00	1	3.35	pass	pass	pass	pass	pass	pass
4	23:50:00	1	5.10	pass	pass	pass	pass	pass	pass
5	05:30:00	1	10.76	pass	pass	pass	pass	pass	pass
6	08:30:00	1	13.76	pass	pass	pass			
7	09:15:00	1	14.51	fail	pass	pass			
8	10:50:00	0	14.51	fail	pass	pass			
9	12:14:00	3	18.71	fail	pass	pass			
10	12:29:00	3	19.40	fail	pass	pass			

Thermal Cycling Tests

temperature cycling test 60 120 100 40 temperature / °C 20 Time (sec) 60 0 40 -20 -40 20 -60 0 09:00:00 10:12:00 11:24:00 12:36:00 13:48:00 15:00:00 16:12:00 time / hh:mm Ambient Temperature QSPI Erase cycles

video

SUMMARY

- Reconfiguration strategy using BIST classify hazards into different risk levels leads to interact on demand
- With additional memory devices available at SoM a highly secured boot process are demonstrated
- Dual boot functionality with a simple supervisor chip increases reliability
- Implementation of on-board firmware self check and repair is secured based on MD5 checksum
- In-flight reconfiguration using packet based protocol (CSP) is independent from physical layer interfaces (CAN, I²C, UART, LAN,...)
- Firmware can be partly uploaded and compressed to safe uplink time

THANK YOU FOR YOUR ATTENTION

Please join the Q&A WEBINAR (Aug. 11th). Further information in conference proceeding paper (SSC21-VIII-08).

videc

Mitglied der Helmholtz-Gemeinschaft