planet.

SkySat Block 3 Launch Campaign

Monte Fitz Roy, Patagonia – March 19, 2018

Lisa McGill SkySat Mission Ops Addison Faler Guidance, Navigation and Control

© Planet Labs Inc. 2021 - Proprietary and Confidential

PLANET'S MISSION

To image the whole world every day, making change **visible**, accessible, and actionable.

D

+ Ground Station Network

- Awarua, New Zealand
- Goonhilly, United Kingdom
- Maddock, North Dakota, USA
- Punta Arenas, Chile
- Jeju Island, South Korea

- 10 minutes to space
- 12 minutes to launch vehicle separation
- 18 minutes to first ground station contact

Falcon 9 (Cape Canaveral, FL) Launch: 6/13/2020

Falcon 9 (Cape Canaveral, FL) Launch: 8/18/2020

+ Low Drag

- Pitch 90 degrees to expose its smallest cross-section to be parallel to velocity direction
- Payload door remained closed
- Reduce atmospheric drag
- Updates to ops scripts to support telemetry and commanding

+ Attitude Management

What is a beta angle?

• A measurement that describes the angle between a satellite's orbital plane and a vector from the center of the Earth pointing toward the sun

Develop a new attitude management scheduling system!

Beta Angle Magnitude	Classification	Issues
$0 \le \beta \le 15 \deg$	Low Beta	Poor star tracker performance
15 < β < 45 deg	Mid Beta	No issues
45 ≤ β < 68 deg	High Beta	High temps; thermal buildup
β ≥ 68+ deg	Extreme Beta	No eclipses; severe thermal buildup

On-Orbit Operations

Singapore Strait, Singapore – July 29, 2016

D

Unexpected GPS Loss:

- During commissioning (in low-drag) experienced higher occurrence of GPS lock/solution dropouts
- Sustained dropouts can cause ACS faults, due to degradation in position knowledge
- Compared performance to high drag SkySats

 it was confirmed this was product of GPS
 antenna orientation whilst in low-drag,
 towards horizon (ram/anti-ram) vs anti-nadir
- Mitigation: When needed, used GPS override mode (uses onboard propagator and TLE to approximate position temporarily)

Non-Operational Thruster:

- Sensor anomaly monitoring thruster on SkySat-20
- Out of precaution deemed thruster non-operational
- Shifted to "reduced thruster operations" i.e 3-thruster Ops
- Following slides detail...

p

Nominal vs 3-Thruster

	Nominal	3-Thruster
Thruster Control	Closed-Loop PID	Open-Loop Fixed DC
Attitude Control	Optimization ²	Nominal 16 Hz PD
Actuators	4x Thrusters	4x Reaction Wheels
Sensors ¹	Gyros	Gyros
Duration	~300-360sec	70-100sec

4x Thrusters

¹Star Trackers occluded by Plume ²Convex Optimization -- to max DC and satisfy nullspace (Thrust won't impart torque on vehicle) PID: Proportional–Integral–Derivative

How to calculate open loop DC's ?

Reduced Thruster Maneuvers Selecting Duty Cycles

Objective: Maximize Impulse Imp = F_{th} * t_{dur} = Thrust * duration [N-s]

Variables:

Duty cycles of 3-functioning thrusters¹

Where:

 F_{th} ,Thrust = f(DC)T_{dist},Disturbance Torque = f(DC)

 t_{dur} ,Burn Duration = $h_{rw,max}^{\prime}/T_{dist}$

h_{rw,max,} Total Available RW Momentum

Example of Thruster duty cycle optimization: Holding one thruster fixed (B) and solving for Thruster C & D duty cycles

Nominal 3-thruster Maneuver RW Momenta

No-RW Prebias Burn Time: 70 seconds Total Activity Time: 1hr 20 min

Pros:

Activity/planning complexity is comparable to nominal 4-thruster maneuver

Cons:

Duration is minimal

Nominal Pre-bias Maneuver RW Momenta

RW Prebias Burn Time: 100 seconds Total Activity Time: 2hr 20 min

Pros:

Duration improved vs non-prebiased ~50% improvement in impulse

Cons:

Longer activity +1hr Much more complex, planning and execution

Orbits Strategy

Singapore Strait, Singapore – July 29, 2016

p

+ Constellation Goals

- 50 cm Resolution
- 6+ year lifetime
- phased to provide repeat-revisit
- **Repeat-Revisit:** multiple revisits over any single area are possible, with up to 12 times per day, and at a global average of 7 times per day

Initial orbit: 375 x 208 km ellipse Target orbit: 400 km circular Goal: raise perigee immediately, then phase appropriately

Impacts of 3-thruster Ops:

- Shorter maneuvers: 70-100 secs
 - vs 360 sec nominally (3.6-5x reduction)
- More maneuvers (3x days vs 1 per 2 days)
- Less ΔV , longer time to raise

Skysat-20 3-thruster operations delayed raising campaign for Skysat 19,20,21

p

Thank you!

Connect with us on LinkedIn

Addison Faler