

Time Domain Astronomy

◆ Traditional Astronomy is driven by Telescopes

Ф30m

DIAMETER was EVERYTHING!!

◆ New discovery space opened up by IoT technologies

Earlier observations are important

Robotic Telescopes

Internet

Computer Science

Super Computers

And we need Agile and autonomous Astronomical satellites.

Consideration of Financial Plan

I need more than \$3M for my own astronomical satellite, **BUT**

- ◆ JAXA is NOT interested in smallsats for Science.
- ◆ Smallsats are still expensive for a poor astronomer(me).

And I found that

- ◆ UV sky in day-side is too noisy for astronomy.
- ◆ Day-side should be used more effectively.

SATELLITE SHARING Concept

I concieved a beautiful concept

"SATELLITE SHARING" with industrial guys

Night: Astronomy

Day: Remote Sensing

And we got:

- > Space Telescopes from *Genesia Corp*.
- > System design support from *inet Corp*.
- > Epsilon rocket from **JAXA.**
- > Antennas from *inet Corp.* and *Goonhilly.*
- > Support in data analysis from the other collaborators.

What do we observe in Day time???

◆ **DLAS/RAPIS-I** demonstrated in-orbit realtime Image recognition using color information(2019)

◆ Then we are interested in multi-spectral camera

Key device: Liquid Crystal Tunable Filters (LCTFs)

We can choose any 512 colors from 400~1800nm

Tunable multi-spectral Camera

See Terashima&Wako+18 and references therein.

LCTF spectroscopic imager

Record a [2D] monochromatic image (Acquire spectrum information by switching wavelength on filter)

Targets: Blue Carbon

◆ Blue Carbon: Biological carbon captured by coastal-marine organisms through photosynthetic process of...

From Prof. Nadaoka's slide

55 □ of total organic carbon stock on the globe is owned by marine organisms! (Pendlenton et al. 2012)

Specifications of mission instruments

CAMERAS PARAMETERS	LCTF-HR	LCTF-VIS	HYPER
PAYLOAD	3 U / 4.5kg	3 U / 2.0kg	1 U / 1.7kg
POWER CONS.	3 W@max	3 W@max	3 W @max
GSDS	10 m	30 m	30 m
Swath	15 km	100 km	60 km
Wave band (λ)		400-800 nm	
Spectral res. (Δλ)	15 nm	15 nm	10 nm
Channel	512	512	40
DATA RATE	750 MByte / day	750 MByte / day	750 MByte / day
OBS DURATION	< 3 m in/orbit	< 3 m in/orbit	< 3 m in/orbit

Specifications of Satellite system

Parameters	Va lu e s	
Mission	□ Spectral Imaging of Land & Sea □ UV Astronomy	
Geometry	470×1300×480 □ Paddle Deployed	
Mass	□ 65 K g	
Power	□ Power Generation □ 150.7 W □ Battery Capacitance □ 9600 mAh	
Attitude	STT based zero-momentum 3-axis	
Comm	□ S-band up □ 1 Kbps □ S-band down □ 10 K□ 100 Kbps □ X-band down □ 40 Mbps □ Globalstar TX for Alert message	
Data Strage	□ Mission Telemetry □ 32 GBytex2 □ HK data □ 2 GByte	
Mission Life	□ years □ TBD)	

Operation Modes

(1) Standby Mode Sun-oriented (Charging)

(2) Push Bloom Mode LVLH for earth observations

(3) Target pointing Mode For High-SN observations and TLM downlink

(4) Astro Mode Inertia pointing for astronomy

Coverage of PETREL a day

Summary

- ◆ PETREL: a multi-purpose satellite developed by an academic-industrial alliance
 - Night-time mission: UV Astronomy
 - > Day-time mission: **Spectral imaging with LCTF tunable multi-spec Cams**
- ◆ Satellite bus System
 - > 60 kg micro-satellite based on Tokyo Tech's Hibari satellite.
 - > 3 attitude modes are supported with zero-momentum 3-axis att control
- ◆ Schedule
 - ➤ June-2021: Preliminary Design Review
 - ➤ Dec-2021: Critical Design Review
 - > Feb-2022: Final Integration/Environmental Tests
 - ➤ May-2022: Shipping to JAXA
 - ➤ July-2022: Launch!?

Project Members

Space

2

earth

the

From

Academic organization Service area **Company** FUKUI SCHOOL OF SCIENCE THE UNIVERSITY OF TOKYO **Satellite Component** National Institute of Technology Sendai College **Satellite Bus** I-NET Corp. **Ground Stations,** *"*ש GOONHILLY **Operations** Tokyo Tech TOHOKU **Drone & Airplane** NFORMATION TECHNOLOGY CENTER THE UNIVERSITY OF TOKYO **Data Center & Software** HOKKAIDO YNU Happiness Grows from Trees NAGOYA UNIVERSITY **Applications** SUMITOMO FORESTRY -Oceanology тоноки ☆ Tokyo Tech -Argonomy -Environmentrogy Caltech -Astrophysics -Space Science **Spacesystems** SCHOOL OF SCIENCE THE UNIVERSITY OF TOKYO

Annual average of CO₂ concentration in atmosphere at Mauna Loa, Hawaii from 1958. (Cited from "The State of Hawaii Data Book 2001)")

Multiple Environmental stresses

Annually its 0.5-3 \(\text{has been lost due to degradation of coastal environment} \) (Pendleton et al. 2012).

Negative chain reaction

We'd like to eliminate the negative chain utilizing our technology

2021 Small Satellite Conference

Man can't live on bread

Matthew 4-4

Agriculture

Aquaculture

Climate issue

Almost the same with 1% of annual Carbon emission from Japan

2021 Small Satellite Conference