

Interplanetary Rideshare Cost/Benefit Analysis: A Mars Mission Approach

Jordi Puig-Suari, Ph.D. Andrés E. Villa, M.A.E.

Small Satellites Beyond Earth

- Interplanetary Small Satellites interest is growing
- Driven by the Scientific Community / Governments
- Motivated by experiences in Low Earth Orbit
 - Cost, Speed, Constellations, etc.
- Small numbers right now, but growing
- Launch is a big challenge
 - Similar to what happened in LEO
- Is it possible to use LEO experience to help?

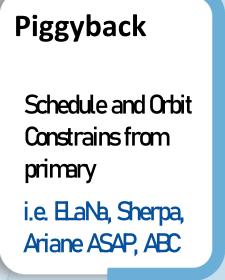
Low Earth Orbit Experience

Spacecraft/Mission development phases:

- AMSAT
- Universities
- CubeSats

CAL POLY

- SSTL
- NASA Exobiology
- SkyBox
- Planet
- Spire



- NASA
- ESA
- JAXA
- Startups
- DoD
- [...]
- Global

Low Earth Orbit Experience

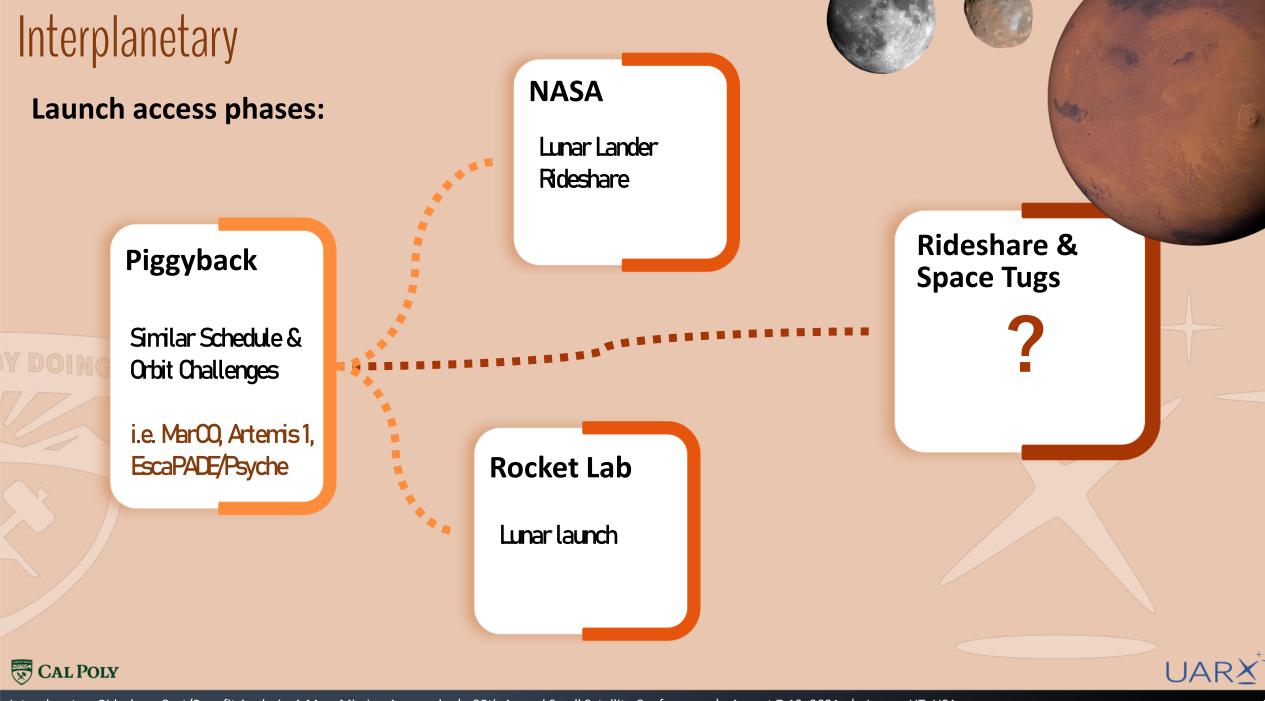
Launch access phases:

CAL POLY

Small Launch Vehicles

Schedule and Orbit Rexibility

i.e. Rocket Lab, Virgin Galactic


Dedicated Rideshare

✓ Lower Cost✓ No primary

i.e. PSLV, SpaceX, Vega

UARX

Interplanetary Missions Favor Tugs

- Orbits Constrain Schedule
 - Encourages Rideshare
- Long and Complex Cruise Phases
 - Requires Critical Non-Mission Knowhow and Infrastructure
- Large Propulsion Requirements
 - Complex / Costly Spacecraft

Tugs can reduce Spacecraft and Mission Complexity

Sample Mars Mission to compare Tug and Individual Travel

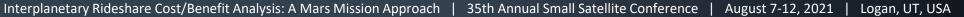
Mission Scenario

Parameter	Value	
Initial Orbit	Mars Transfer Orbit	
Destination Orbit	500km Low Mars Orbit	
Propulsion Type	Chemical propulsion (Isp = 250s)	
Payload Mass	10 x 100kg small satellites	
Required Delta-V	2.1 km/s	
Propellant-Mass Fraction	58%	

Sample Mars Mission to compare Tug and Individual Travel (cont.)

Mass Comparison

Component	Space Tug	Individual
Space tug (dry)	445 kg	-
Payloads mass	10 x 100 kg	10 x 100 kg
Extra Prop. system	-	10 x 32 kg
Fuel mass (Isp=250s)	1995 kg	1820 kg
Total launch mass	3440 kg	3140 kg
Propellant-Mass Fraction	58%	58%



Sample Mars Mission to compare Tug and Individual Travel (cont.)

Operational Cost Comparison

Concept	Space Tug	Individual
Planning	\$180,000	\$81,000
Execution	\$50,000	\$30,000
DSN Fees	\$2,500,000	\$2,500,000
Total operational cost	\$2,730,000	\$2,611,000
x10 spacecraft	_	\$26,110,000
Space Tug savings	\$23,380,000	-

Conclusions

- Interplanetary Small Satellites market tracking events in LEO
- Need to prepare for wide adoption phase
- Tugs are a key enabling technology
- Initial mission opportunity is critical to activate system
- Must define accommodations on Tug (standardization?)
- Need international effort
 - Lower numbers
 - Interplanetary missions driven by Governments

