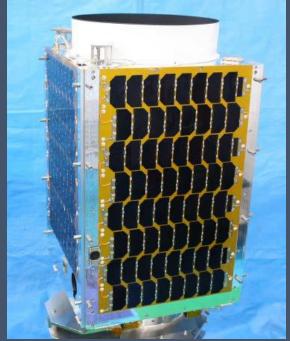
SSC21-III-08


Night-Time Color Imaging with High Resolution from a 35 kg Microsatellite

10th August 2021 Canon Electronics Inc. Shinji Matsuzawa, Takuma Shibata, Tomoya Inakawa, Yoshito Niwa, Nobutada Sako

Background

• Canon Electronics Inc. (CEI) launched its first satellite in 2017.

- CE-SAT-I, a 65 kg microsatellite with 40 cm Cassegrain telescope, has been taking high resolution pictures for four years.
- CEI has been developing new products based on its key technique to expand space business.
 - Precision machining
 - Image process
 - Mass production
- CE-SAT-IIB was launched in October 2020 by Rocket Labs Electron.

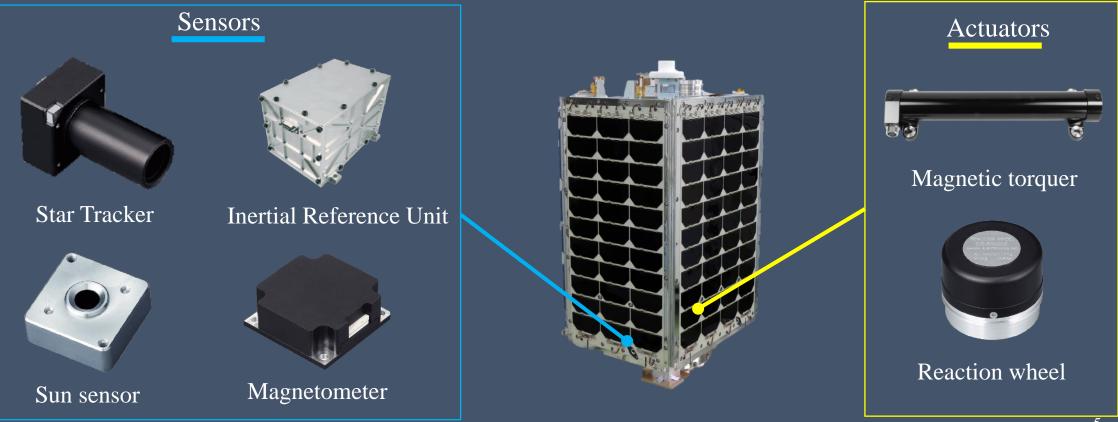
CE-SAT-I FM

CE-SAT-IIB Missions

• Demonstration of three types of optical systems

- Two sizes of Cassegrain telescopes
- COTS compact digital camera
- Validation of in-house developed components
 - GAS, SAS, STT, IRU, MTQ, and RW

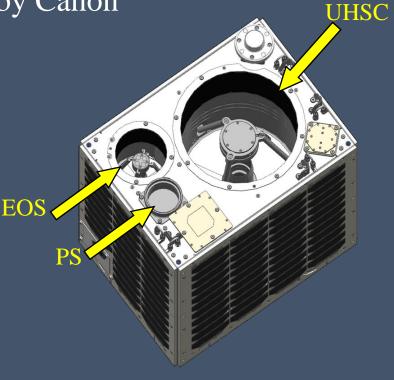
General Specifications



Dimension	$292 \times 392 \times 673$ [mm]
Mass	35.5 [kg]
Power	Average generation: 40 [W]
Communication	Up : 32 [kbps] in S band Down : 0.5/8.7 [Mbps] in X band
Attitude Control	Pointing : 0.19 [deg] Stability : 2.8×10^{-5} [deg]/0.01 [sec]
Orbit	Sun synchronous orbit Height: 525 [km] LTDN 9:30

CE-SAT-IIB FM

Components


We are developing sensors and actuators for small satellites. Some of the sensors and actuators are used for ADCS of CE-SAT-IIB.

Optical Systems

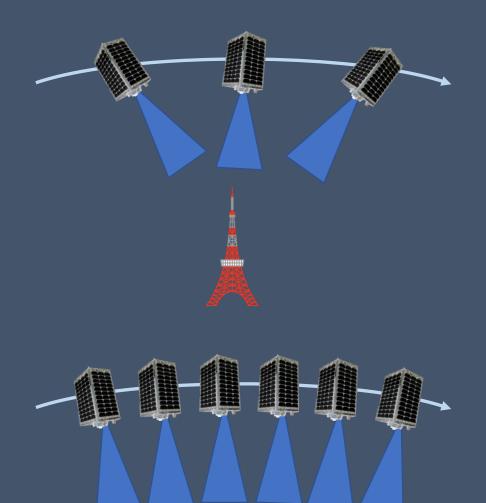
• First camera is a newly-designed ultra-high sensitivity camera (UHSC).

- 20 cm Cassegrain telescope
- Ultra-high sensitivity image sensor developed by Canon
- Second camera is an 8.7 cm Cassegrain telescope with EOS M100 as a detector.
- Third camera is PowerShot G9X Mark II.

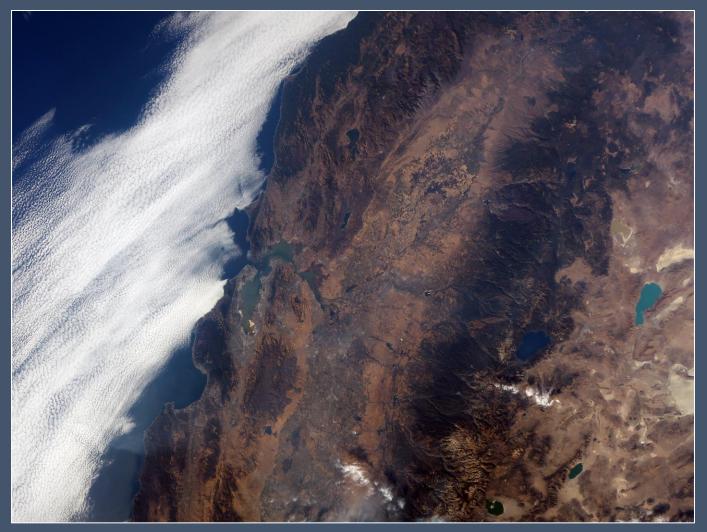
UHSC Specifications

Main mirror diameter	200 [mm]
Focal length	1,860 [mm]
Telescope type	Cassegrain + correction lens
Detector + Image processor	Ultra-high sensitivity image sensor developed by Canon Detachable ND filters
Resolution	5.1 [mGSD]
Foot print	3.5 x 2.3 [km]

EOS Specifications

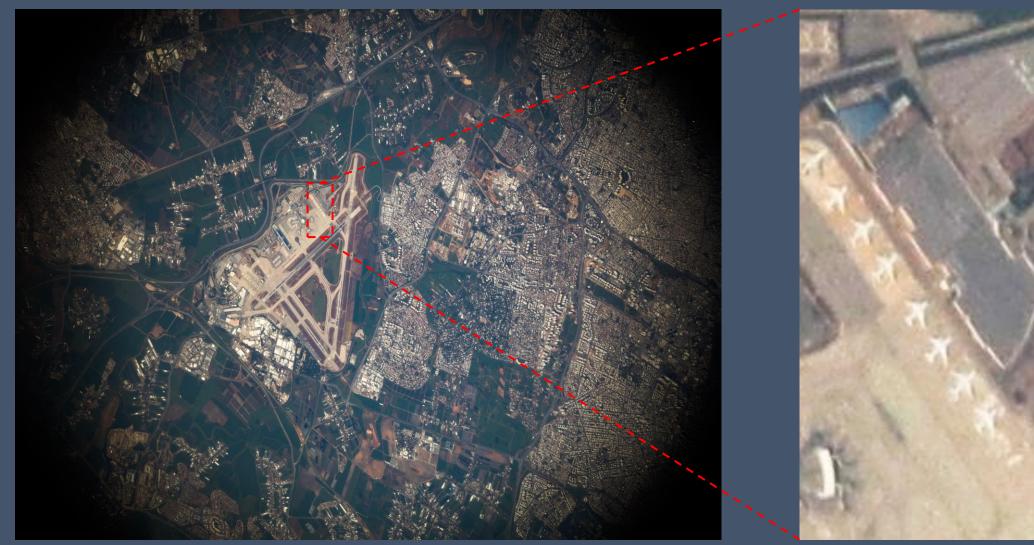

Main mirror diameter	87 [mm]
Focal length	809 [mm]
Telescope type	Cassegrain + correction lens
Detector + Image processor	EOS M100 base
Resolution	2.3 [mGSD]
Foot print	5.6 x 3.7 [km]

PS Specifications


Fnumber	2-11
Focal length	84-28 [mm] (35mm equivalent)
Telescope type	Refracting telescope
Detector + Image processor	PowerShot G9X Mark II base
Resolution	40-120 [mGSD]
Foot print	215 x 145 – 645 x 435 [km]

Imaging Modes

- Tracking
 - Day and Night-time imaging
 - Longer exposure time for night-time imaging without artificial light
 - Images for super-resolution process can be acquired
- Pseudo push broom
 - Day-time imaging
 - Proper exposure images can be acquired in short exposure time with high sensitivity
 - Shooting time is almost same in an image as opposed to push broom using line-scan camera
 - up to 1,700 km length (along-track)



PS Image (First Light)

Nov. 3rd, 2020, California (pseudo push broom)

EOS Image

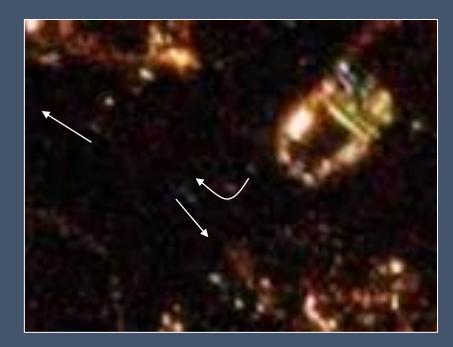
Feb. 22nd, 2021, Ben Gurion Airport (tracking)

UHSC Image [1]

Dec. 30th, 2020, North Pole, Alaska (tracking)

UHSC Image [2]

UHSC Image [3]



Apr. 2nd, 2021, Paris (tracking)

Apr. 22nd, 2021, Paris (pseudo push broom)

UHSC Image [4]

- UHSC can take images up to 18 fps.
- We can find moving car lights from continuous images.

Super-resolution

- Up-sampling and demosaicing with multiple frames
 - Higher resolution (x 2)
 - Noise reduction
 - Suppression of false color and zippering artifacts (around edge region)

Original Image

Current and Future Tasks

- Image analysis
 - Basic investigation about night-time imaging and analysis by using UHSC
- HDR imaging
 - Taking moonlit ground and city lights simultaneously
- Further precise and agile attitude control

Future Plans

• Project

- More higher resolution with higher sensitivity
- Other spectrum observation

• Business Domain

- Whole satellite, satellite components, ground segment
 - We demonstrated two sizes of bus systems, three sizes of Cassegrain telescopes, and many ADCS components
- Professional service from design to operation
- Image and analysis data using own satellite constellation platform
- Every options are examined now
- Collaboration is welcome

Thank you