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ABSTRACT 

Modern satellite complexity is increasing, thus requiring bespoke and expensive on-board solutions to provide a 

Failure Detection, Isolation and Recovery (FDIR) function. Although FDIR is vital in ensuring the safety, 

autonomy, and availability of satellite systems in flight, there is a clear need in the space industry for a more 

adaptable, scalable, and cost-effective solution. This paper explores the current state of the art for Machine Learning 

error detection and prognostic algorithms utilized by both the space sector and the commercial sector. Although 

work has previously been done in the commercial sector on error detection and prognostics, most commercial 

applications are not nearly as limited by the power, mass, and radiation tolerance constraints as for operation in a 

space environment. Therefore, this paper also discusses several Commercial Off-The-Shelf (COTS) multi-core 

micro-processors, small-footprint boards that will be explored as possible testbeds for future integration into a 

satellite in-orbit demonstrator. 

INTRODUCTION  

While traditional Failure Detection, Isolation and 

Recovery (FDIR) techniques are generally good at 

detecting single failures, they are limited in isolation 

capabilities, and struggle when multiple faults combine 

in unforeseen behaviors. Additionally, these systems 

offer limited capabilities for prognosis of future issues, 

reducing the opportunities to catch and correct 

potentially catastrophic problems. Most FDIR functions 

introduce automatic actions that are customized, 

bespoke, and complex. However, with the advance of 

space-based low-power, high-performance computing 

systems, more advanced FDIR functionality can be 

developed and deployed to greatly enhance the 

autonomous reaction of the spacecraft to immediate and 

foreseen failure modes. Specifically, the use of on-

board Machine Learning algorithms that actively learn 

from in-flight data to diagnose and react rapidly to 

these current and future failures will minimize 

performance loss and thus provide an invaluable ability 

for the optimal performance of space-based assets. 

 

One of the growing research topics in all major space 

agencies is the application of Machine Learning in both 

downstream (e.g., data analytics of Earth Observation 

data) and upstream (e.g., applying Machine Learning 

techniques in spacecraft on-board systems). There are 

new developments in many branches of space 

engineering including the emergence of expert systems. 

Due to the specific requirements for space hardware, 

the footprint of electronic devices carried must be as 

small as possible to reduce mass and volume for 

storage. Furthermore, due to the restricted power 

budgets of space missions, devices must also be low 

powered. This also aids the thermal properties of the 

spacecraft. The vacuum in space also presents a 

difficult problem to overcome as it raises thermal issues 

on circuit boards. Finally, radiation damages with 

electronic circuits and memory.  

Detecting faults on circuit boards is difficult. Usually, 

the current and voltages are monitored using non-

invasive (electromagnetic methods) and less accurate 

methods, or invasive (multimeter techniques) and more 

accurate methods. Additional boards could also be 
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added to detect the system voltages and currents. These 

methods are normally considered the standard for FDIR 

and Prognostic error detection.  

This paper reviews the state of the art in applying 

machine learning methods in space applications and 

describes and compares the leading currently available 

COTS boards for space-based machine learning. 

STATE OF THE ART 

The interest in these technologies is supported by many 

open-source tools which allow for rapid development of 

concepts. In addition, many low-cost cloud-based 

services supported by powerful computing hardware 

such as Google Colab1 makes such services easily 

accessible. In the space domain, the use of these 

techniques is already being explored for Earth 

observation applications [5], sensor fusion for 

navigation [6] and satellite operations [3]. It is believed 

that these techniques also can benefit future space 

transportation systems, in applications such as avionics 

and system health monitoring [2]. This can also lead to 

the development of inexpensive electronic systems for 

space-based operations [2]. 

Current FDIR space systems are considered crude but 

effective. Prognosis is currently non-existent in space 

systems. However, commercial companies such as 

Deutsche Bahn for rail and Boeing for aircraft [11] are 

currently researching prognostics for future 

applications. Most FDIR systems have physical circuit 

monitors such as latch-up protection or voltage/current 

monitoring systems. These add heavy and expensive 

components to a board to give the ability to recover. 

The requirement not to fail in general is also on the 

individual components as current FDIR systems cannot 

account for component level failures, increasing the 

cost of the boards by factors of hundreds or even 

thousands. Adding a system that can compensate for 

unexpected inputs may reduce potential fail points, 

thereby reducing overall costs. 

Research into anomaly detection has also been 

conducted around time-series data with regards to live 

data streaming. The scenario in space is even more 

challenging than in terrestrial applications due to the 

extremely harsh environment. The requirement on 

boards to survive the massive vibrations of a rocket 

launch to the extreme radiation and thermal 

environment of space, requires hardware to be robust 

and tested to survive in these environments. This is one 

 

1 https://colab.research.google.com 

of the largest factors contributing to the cost of these 

products. Creating a system that reduces the need for 

these intensive tests is the next step of space-rated 

computer systems. That is where an opportunity exists 

to utilize ML techniques to reduce the reliance on 

testing. 

The options for a small footprint board are currently 

limited for terrestrial applications due to the required 

processing power to perform machine learning 

algorithms. The number of options for radiation-

hardened, space grade boards are currently even lower 

as most space quality hardware are several years behind 

the terrestrial market. Though, these electronics and 

boards are currently under development by large 

international companies such as Texas Instruments, 

Irish branches of international companies such as the 

Movidus group at Intel and Xilinx Dublin and start-up 

companies such as Ubotica, also located in Dublin. 

Phi-Sat-1 is the European Space Agency's (ESA) first 

attempt at putting an Edge AI board in space. It 

successfully launched on 3rd of September 2020 on 

board a European Vega rocket [1]. This is the first in-

orbit demonstration of an Edge AI board. Phi-Sat-1 is a 

cube sat focused on Earth observation and on-board 

image analysis. Its primary payload was a hyperspectral 

imager and the Machine Learning board. It is operated 

by ESA's Phi Lab which focuses on machine learning 

applications in space. The revolutionary idea of Phi-

Sat-1 was that if an Edge AI board could be put on-

board a satellite and an image analysis algorithm 

deployed on it, the link budget could be reduced, saving 

precious bandwidth for the mission. To accomplish this, 

ESA chose the Intel Movidius Myriad 2 chip as their 

hardware accelerator due to the low mass and power 

requirements. Ubotica was contracted to develop the 

algorithm and to qualify the chipset for space-based 

operations. This led to an intensive qualification 

campaign as the Myriad 2 would be the first Machine 

Learning board qualified for in-orbit operations. At the 

time of writing this paper, initial results from the Phi-

Sat-1 mission are promising. Conducting the image 

analysis on board has saved up to 90% of the bandwidth 

for a similar outcome when compared to a ground-

based analysis [1]. 

Machine Learning applications for space can be broken 

down into two categories, Space Based and Ground 

Based. These have vastly different requirements when it 

comes to Size Weight and Power (SWaP) constraints. 

For example, a board in Space must deal with harsh 

environments with regards to temperature and radiation. 

This puts limitations on the board, which in turn, limits 

the capabilities of any deployed algorithm. A ground-

based system may not be as useful as an in-orbit system 
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due to the substantially smaller amount of data the 

system will receive due to mission link budgets. This 

section explores two examples of each system. 

There are a multitude of techniques utilized in Machine 

Learning. These include both Supervised and 

Unsupervised approaches. The methods used by each of 

the examples in this section are also explored. 

Space Based Applications 

Image Analysis - Earth Observation: Phi-Sat-1 is a 

CubeSat designed by ESA's Phi Lab for use on in-orbit 

Earth observation research. Phi-Sat-1's primary mission 

is to determine whether an in-orbit solution to image 

analysis could be deployed. To accomplish this, a 

powerful, but low powered board was required. It was 

also required to be qualified for long term space 

operations, meaning, survive the thermal environment 

in space i.e., large gradients, vacuum, the vibrations 

encountered during launch, and the radiation 

environment of low-Earth orbit. Phi-Sat-1 was designed 

to analyze the images taken by its hyperspectral imager 

and analyze cloud coverage, only transmitting the 

processed and cloudless images to ground, saving on 

downlink budget. Phi-Sat-1 was launched on August 

17th, 2020, and its initial results have been promising. 

The processed images have cut down on downlink 

budgets as expected and the system thus far has 

survived the space environment [1]. 

 

Figure 1: Convolutional Neural Network 

The method used by Phi-Sat-1 to detect clouds was a 

convolutional neural network (CNN) [1]. A CNN is an 

artificial neural network designed to recognize patterns 

efficiently and accurately within structured arrays of 

data such as images and have become the standard 

approach for computer vision problems. This makes it 

ideal for use in Earth observation scenarios such as the 

one used by Phi-Sat-1. These models tend to be quite 

large due to the size of the images being analyzed, 

especially in Earth observation where there are TB of 

raw image data per orbit. The success of this method in 

Phi-Sat-1 has proven the usability of powerful Machine 

Learning Edge boards in an in-orbit environment. 

Anomaly Detection - ESA's Future Launcher 

Preparatory Program FLPP: ESA's FLPP program is 

currently investigating Commercial Off the Shelf 

(COTS) avionics solutions for launchers employing 

Machine Learning techniques. The primary idea of this 

is to detect anomalies during flight and potentially 

rectify the issue. The study was to identify the most 

promising boards and algorithms to time-series datasets 

for a launcher environment. This also imposes certain 

limitations on a potential system due to the harsh 

environment of a launcher. Benefits vs risks were also 

explored in the study based on different Machine 

Learning method and board combinations. The goal 

was to develop a generalized building block to protect 

avionics from the environment experienced by a 

launcher. This resulted in the development & in the 

development and prototyping of several proofs of 

concepts [2]. The most promising result from this paper 

was found to be a Long Short-Term Memory (LSTM) 

based Autoencoder. 

 

Figure 2: Conceptual example of an autoencoder 

An autoencoder [12] is a type of artificial neural 

network used to learn efficient data encodings for 

unsupervised data. The aim of an autoencoder is to 

learn a representation (encoding) for a set of data, 

typically dimensionality reduction, by training the 

network to learn signal noise. The key to autoencoders 

is not only that there is a reduction, but also a 

reconstructing side, where the autoencoder tries to re-

generate the data from the reduced encoding as close as 

possible to its original input. Autoencoders are often 

trained with only a single layer encoder and a single 

layer decoder but using many or deep encoders and 

decoders offers many advantages. It is possible to build 

autoencoder based on feedforward neural networks. 

However, to consider the temporal data, the 

autoencoder can be based on long short-term memory 

(LSTM) layers. Unlike feedforward neural network, we 

put information into the LSTM sequentially, one 

number at a time. These are explained in more detail 

below. 

Ground Based Applications 

Anomaly Detection - Downstream Anomaly Detection: 

Hundman et. al. [3] researches the possibility of 

replacing the satellite operator with a Machine Learning 

replacement.  However, the ability to reduce the 

workload on satellite operators is nevertheless sought 
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after. This work defined an important and growing 

challenge within the satellite telemetry sector. 

Spacecraft operations stand to benefit greatly from 

Machine Learning anomaly detection approaches. 

LSTMs were found to be the most applicable method 

for predicting spacecraft telemetry anomalies while 

addressing key challenges around interpretability and 

complexity. This work has been deployed on the SMAP 

satellite ground segment where over 700 channels are 

monitored in real-time. There have been several 

correctly identified anomalies thus far. However, there 

have also been multiple false positives, showing the 

need for further refinements in the model [3]. 

 

Figure 3: Neural network architecture based on 

LSTM layer 

A Long Short-Term Memory (LSTM) network is a type 

of recurrent neural network (RNN). LSTMs have 

feedback connections unlike regular RNNs and 

preserves errors that can be backpropagated. This 

allows LSTMs to continue to learn for many steps. 

They can process single points and sequences of data, 

composed of a cell, an input, an output and a forget 

gate. LSTMs contain information outside the normal 

operations of a recurrent neural network in a gated cell. 

This allows cells to be treated like computer memory 

through reading, writing and storage. This makes 

LSTMs suited for working with time series data. 

EDGE AI HARDWARE 

This section reviews the Edge AI boards most 

applicable to space-based systems. The power draw is 

considered the most important factor due to limitations 

of power generation capabilities on board satellite 

subsystems. The boards investigated in this paper have 

a broad selection of power draws and Trillions of 

Operations Per Second (TOPS) rates allowing a wide 

range of potential results when used with deployed 

Machine Learning algorithms. 

 

 

The list of boards investigated here are: 

• Nvidia Jetson Xavier NX 

• Huawei Atlas 200 

• Google Coral 

• Intel Movidius Myriad 2 

Nvidia Jetson Xavier NX 

The Nvidia Jetson Xavier NX is a high-power small 

footprint edge AI board using Nvidia 12nm 

architecture. It is capable of up to 32 TOPS of 

computing power and drawing a minimum of 10W of 

power. The Jetson Xavier also uses Nvidia's software 

development suite JetPack2 allowing cross 

compatibility between the entire Jetson family of 

boards [7]. The Xavier NX model is used for more 

intensive operations than intended in this paper. 

However, this gives a good baseline for more powerful 

boards. 

 

Figure 4: Nvidia Jetson Xavier NX 

Huawei Atlas 200 

The Huawei Atlas 200 is one of the closest competitors 

to the Nvidia Jetson Xavier in terms of Edge AI 

computing. The Ascend 310 chip is designed for image 

processing and other Machine Learning applications. 

This gives the Atlas 200 up to 22 TOPS of Machine 

Learning power at a maximum of 20W [8]. The Atlas is 

comparatively expensive and low powered, but it is 

nevertheless a good comparison to the Jetson Xavier. 

 

2 https://developer.nvidia.com/embedded/jetpack 
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Figure 5: Huawei Atlas 200 

Google Coral 

The Google Coral is powered by a quad Cortex-A53 

and uses a Google Edge TPU as a coprocessor to 

provide 4 TOPS at only 2W. The Google Coral is tied 

as the most efficient board in this paper at 2 TOPS/Watt 

[9]. The Intel Myriad X also supplies this efficiency. 

The Google Coral also has a larger development board 

model and small USB style accelerator. The large 

development board assists software development and 

debugging before being deployed on the accelerator 

unit. 

 

Figure 6: Google Coral 

Intel Movidius Myriad 2 

The Intel Neural Compute Stick is powered by an Intel 

Movidius Myriad 2 chipset. The Myriad 2 supplies the 

board with 1 TOPS at 1W [10]. Intel has already 

released the Myriad X powered Neural Compute Stick 

2 which gives 2 TOPS at 1W, making it a much more 

powerful board [4]. However, the Myriad 2 chip is the 

only chip in this paper which also has space heritage 

and has been qualified for the space environment. The 

Myriad 2 VPU was integrated into the Phi-Sat-1 

mission [1] as its primary inference device for image 

analysis. The Myriad 2 was also the first Edge AI board 

to fly on a space mission. For this reason, it is used in 

this paper. 

 

Figure 7: Intel Movidius Neural Compute Stick 

Board Comparison 

This section compares the specifications of each board. 

The most important aspects of a board in this paper are 

Power and TOPS as space-based applications have a 

hard limit on power inputs. However, price in USD is 

also used in this analysis. Table 1 lists the specifications 

of all boards used in this paper. 

Table 1: Board Comparison Table 

Board Power (W) TOPS Price 

USD 

Space 

Heritage 

Xavier 15 35 400 No 

Atlas 20 22 950 No 

Coral 2 4 100 No 

Myriad X 2 4 80 No 

Myriad 2 2 2 60 Yes 

Figure 5 is a plot of TOPS/Watt and USD/TOPS. This 

gives an overview of the wide array of options available 

in the commercial market and to try and find which 

board offers the best value per Watt and USD. In terms 

of TOPS/Watt and USD/TOPS, the boards are quite 

similar. This means that the potential applications of the 

board will be the determining factor of which board 

could be used. 

 

Figure 8: Board Comparison Plot 
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CONCLUSION 

There are many opportunities for the space sector to 

take COTS modules from the commercial sector for use 

in space flight. Work has already been done on several 

systems to qualify them for either aeronautical or space 

environments. The variance in the computing 

performance and the power consumption between these 

boards also allows for a wide range of applications. 

Low power consumption boards are generally suited for 

missions with low power budgets, but still have enough 

computing performance to deploy most Machine 

Learning methods. Higher powered boards are less 

suited for small missions such as CubeSats due to their 

large power consumption. They are also more 

susceptible to radiation due to their generally higher 

density of components, which reduces their 

applicability to deep space missions. However, ground 

segment development is ideal for these boards as 

shown. Due to the multitude of applications of Machine 

Learning in the space sector, there are also many 

different Machine Learning methods that may be used. 

In summary, there are a wide range of platforms 

available to the space sector that can be either used 

directly or modified for use in-orbit or for ground 

segment missions. However, the mission requirements 

will decide which board and which Machine Learning 

method should be used. 
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