
SSC21-S1-21

The Gestalt: A Secure, High Performance, Low Cost Satellite Ground Station
Architecture and its Implementation

Jason Lowdermilk, Simha Sethumadhavan

Chipscan, Inc. New York, NY
{jlowder, simha}@chipscan.us

ABSTRACT
In this paper we present The Gestalt, a novel security methodology developed with support from the Office of Naval
Research for satellite ground stations systems. While security is often a stated priority for these systems, often it is
traded off for better performance, lower cost and reduced design complexity.

We identified two main classes of security vulnerabilities that can be exploited by attackers in small-sat systems: 1)
intentionally introduced supply chain vulnerabilities in both software and hardware, and 2) inadvertent coding and
logic vulnerabilities in code.

Our engineering methodology reduces the risk of attacks through four methods:

1. Debloating: Ground stations are complex and involve the integration of many hardware and software
systems. This complexity makes them vulnerable to a range of software, and hardware based attacks. Our
method of implementing what was previously software functionality in hardware through system
debloating achieves this attack surface reduction.

2. Hardware synthesis from Specifications: The use of legacy-free high-level synthesis (HLS) for the
specification of processing functions reduces implementation errors, increases productivity, and permits
hardware validation using commercial software fuzz testing techniques.

3. Use of hardware scanning techniques: We use a novel method for performing security scans of hardware
blocks generated by High-level Synthesis. This step reduces the risk of backdoors inserted by specification
developers, attackers modifying the code without knowledge of developers or high-level synthesis tools
going undetected.

4. Static memory allocation: A majority of software attacks today are due to memory safety problems in
software: Microsoft revealed that 70% of the exploited software vulnerabilities are related to the absence of
memory safety.1 When we use software in The Gestalt, we take a radical approach to solving the pervasive
memory safety problem by completely eliminating the use of dynamic memory. Instead, data processing
takes place in hardware using static memory allocation.

The result of these approaches is the Exos FEP, a tightly-integrated ground station system that operates in a bit-serial
manner. Compared to conventional designs, the Exos FEP achieves high performance by implementing all data
processing functions in hardware. Our solution is able to achieve data rates up to 125 Mbps per FPGA in a
commodity, commercially cloud-based environment. Perhaps, the most important benefit is a 1000-fold reduction in
lines of code compared to state-of-the-art FEP implementations, and achieves Zero Trust supply chain guarantees.

With the increased adoption of smallsats, the security problems normally only associated with large military control
centers are now spreading to smaller organizations which may not have the necessary security infrastructure to fully
understand or cope with the threats. The possibility of using a security-forward approach such as The Gestalt
methodology and the resulting ground system architecture and implementation are a promising approach for
protecting the smallsat ecosystem.

1 [35th] Annual
Small Satellite Conference



INTRODUCTION
Satellite ground stations generally consist of a network
of remote antennas and modems, connected to one or
more Satellite Operation Centers (SOCs). Each SOC
includes two main components: a Front-End Processor
(FEP), and a Command and Control (C2) system. The
FEP is responsible for signal processing and
encryption/decryption, and the C2 system provides the
user interface for operators to interact with the
spacecraft. In this paper, we describe our FEP
implementation, named Exos (short for ExoSkeleton),
which is an instantiation of The Gestalt principles for
design of secure systems. These principles bear
similarities to the principles developed in academia
known as the Hardware-Up method for secure system
design.

FEP Security
Military SOCs are physically secure: they are actively
guarded, all computer systems are security hardened
and air-gapped, and the crews are cleared and trained
for cyber operations. For this reason, security is seldom
a top concern for FEP developers. In particular, security
precautions considered necessary for other types of
public-facing industries such as web development are
often not followed by FEP developers since they are
considered unnecessary, with resources better spent in
other areas such as improved performance or reduced
cost. While it is true that these systems are largely
immune from attacks originating from the internet,
other types of threats are still possible. This is
particularly true for SOCs since they are considered
rich targets by nation-state attackers with ample
resources available for carrying out cyber attacks.

Supply-Chain Attacks
Despite their physical security, SOCs can be vulnerable
to both software and hardware supply-chain attacks. In
this type of attack, malicious intrusions are first
introduced into the commercial hardware and software
components that make up the systems which are
ultimately brought into the SOC. A typical commodity
server used in a SOC may contain thousands of
electronic components from a supply chain that spans
multiple continents, as well as millions of lines of
software making up the operating system, libraries, and
application software. Software is known to contain
exploitable vulnerabilities that scale with the number of
lines of code2, so any large software system can be
viewed as having a proportionally large number of
yet-undiscovered (zero-day) vulnerabilities.

Software Supply-Chain Attacks
In a software supply-chain attack, the vulnerability lies
dormant during normal operations and therefore
escapes detection during test. But once placed into
operation within the secured facility, the vulnerability
can be activated, and exploited through a variety of
means. Once activated, the intrusion is able to infect
any vulnerable systems within range. In this case, FEPs
are particularly vulnerable since security precautions
were likely not followed during their development and
therefore may contain inadvertent coding and logic
vulnerabilities.

Hardware Supply-Chain Attacks
A hardware supply-chain attack consists of a hardware
component (typically developed in Verilog or VHDL)
that has been compromised through the insertion of a
stealthy backdoor. Similar to a software supply-chain
attack, the backdoor lies dormant through normal usage
and remains inactivated until placed into operation. The
backdoor is activated by some means such as the arrival
of a specific data pattern, which results in the hardware
performing unintended functionality. This may include
exfiltration of sensitive data, incorrect functionality
resulting in the crippling of a defense or weapon
system, or the activation of other malicious intrusions
within the secure environment.

These types of attacks may take careful planning and
execution over months or years to carry out, or contrary
to popular belief, can be orchestrated quickly via
software attacks on systems that are used to
manufacture or hold hardware. Generally speaking,
there is less awareness of these types of attacks because
very few have been publicly announced.

Nevertheless, the risk posed by supply chain attacks is
substantial, so much so that assurance and trust of
hardware components used in National Security
Systems is a codified requirement by the United States
Government [Dod 5200.44]. More recently, the NSA
and DISA have issued a reference architecture for
implementing Zero Trust that explicitly calls out for
hardware and software supply chain assurance.

THE GESTALT ARCHITECTURE AND THE
EXOS FEP IMPLEMENTATION
Exos is a secure cloud-based hardware FEP. It is
deployed on an Amazon EC2 F1 instance within AWS
GovCloud. The FPGA device used is a Xilinx Virtex
Ultrascale+ 9. This is in contrast to a typical FEP used
in SOCs today entirely run on a commodity processor
and complicated software stacks. Further, custom

2 [35th] Annual
Small Satellite Conference



“hardware” of yesteryears, FPGAs available in the
cloud are commodity devices and easy to procure. As
SOCs move towards “cloud-native” operations, our
cloud-based architecture offers a significant advantage
in terms of benefiting from replenishments and
upgrades while retaining the benefits of current cloud
native FEPs, and substantially boosting their speed and
security.

Debloating
One of our main considerations in the development of a
secure FEP is to debloat the system as much as
possible. Debloating is a common approach used to
protect from supply-chain attacks since the number of
vulnerabilities in a system scales with the number of
lines of code; the total number of lines of code in a
system represents the overall attack surface.

We observed that a primary reason for bloat in current
systems is to achieve run-time flexibility, for example
the ability to dynamically reconfigure features or
dynamically change the routing of data paths during
satellite contact operations. These are the types of
features that FEP developers incorporate into their
products in order to differentiate themselves from their
competitors, however, these features are not generally
required for satellite operations. All configuration for
typical satellite operations can be carried out during
prepass, and remain static during the satellite pass.

In order to maximize debloating, our architecture
replaces many features commonly performed today in
software with hardware equivalents which are deployed
on an FPGA. This includes frame synchronization and
channel coding, derandomization, forward-error
correction, checksum validation, encryption/decryption,
and packet demultiplexing. These functions are
performed entirely using hardware primitives, without
the use of a general purpose processor. No features are
run-time configurable. Instead, all configuration
decisions are made ahead of time, resulting in
potentially many different FPGA bitstreams which are
selected and loaded during prepass operations
according to the requirements of each satellite pass.

A notable benefit of using the FPGA instead of a
general purpose processor is that vulnerabilities
introduced due to speculative execution in modern
processors (such as Spectre, Meltdown), and for which
there are no known satisfactory solutions, are
completely avoided. Thus we do not even have to trust
the CPU during run time taking us closer to Zero Trust!

High-Level Synthesis
One reason that FEPs are often developed in software
today is that software development is generally

considered to have a lower barrier to entry than
hardware development. In particular, software
developers are generally more available in the
workforce than hardware developers.

Our approach in The Gestalt Architecture is to develop
hardware components using HIgh-level Synthesis
(HLS) as a design abstraction rather than
Register-Transfer Level (RTL). High-level Synthesis
allows hardware component specifications to be
developed more like software, using methods that may
already be familiar to software engineers. We
developed most hardware components for the FEP in
the Clash language3, which is a Haskell-like language
for hardware development. In other cases, we converted
existing open-source C software into Verilog using Vitis
HLS.4 By utilizing HLS in this manner, we significantly
improved developer productivity and reduced
development time as compared to developing directly
in RTL. Typically, the development of new FEPs takes
two or more person years while our fully-featured FEP
was developed in about 18 person months.

Another benefit of the HLS method is the ability to
create software models of each hardware component.
These models may be used to simplify the validation of
dataflow functionality outside of the hardware
environment. And, since these models are software,
they may be used in combination with advanced
commercial software tools such as code coverage and
fuzz testing frameworks. In effect, HLS makes it
possible to include these types of tools for hardware
development flows, which is not generally possible
with low-level hardware development used in FEPs.

Hardware Scanning
The development process used in The Gestalt requires
the high-level HLS specifications to be compiled into
low-level RTL (Verilog), which is then synthesized into
logic gates which ultimately become programmed into
the FPGA. From a security perspective, this implies a
degree of trust in the tools being used for this
conversion. Specifically, it would be possible for
language converters and synthesizers to become
compromised through software attacks on development
systems, and insert backdoors without the developer’s
knowledge.

In order to mitigate against this type of attack, we
utilize ESPY, a commercially available scanning tool.5
This tool is able to detect backdoors and other stealthy
intrusions in RTL or netlists. ESPY has been used to
scan every component included in The Gestalt in order
to ensure that no backdoors have been inserted by the
synthesis tools or HLS compilers.

3 [35th] Annual
Small Satellite Conference



It is a common practice in hardware development to
include 3rd-party Intellectual Property (IP) components
in the design. These are often provided for free as part
of the synthesis tool framework. In many cases, these
are provided as encrypted netlists, and are therefore not
possible to scan for security. We avoided the use of any
3rd-party IP during the development of The Gestalt for
this reason. For any situation where a 3rd-party solution
was needed, we utilized open-source software instead
and converted to RTL using HLS, and then performed a
security scan on the resulting RTL.

Static Memory Allocation
Memory safety is a long-recognized issue related to
software security. Dynamic memory allocation is
responsible for many unintentional security
vulnerabilities resulting from access errors. This relates
to buffer overflows, use-after-free errors, type
confusion errors, and many others. This has led to the
recent popularity of memory-safe languages such as
Rust and Go.6 However, in our implementation, all
memory is statically allocated as it is easy to estimate
the total amount of memory necessary for the operation
of the system.

In our Exos FEP implementation data buffering is
limited to the network interface. Specifically, data
arrives from the modem in UDP datagrams which are a
fixed length dictated by the Maximum Transmission
Unit (MTU) size. The contents of each datagram is
stored in a static memory buffer as it is written to the
FPGA through a FIFO. After being processed by the
FPGA, the resulting CCSDS Space Packet data is
returned to the software layer and is again stored in a
static memory buffer before being written to the
network. CCSDS Space Packets have a maximum size
of 64 kilobytes per virtual channel, over a maximum of
64 channels.7 This represents a total of 4 megabytes of
static memory in a worst-case scenario to store the
maximum amount of data from every virtual channel.

In terms of hardware design, the HLS and synthesis
tools allow different types of memory to be used.
Options include DDR4 memory through a memory
controller, on-chip high-speed memory or block RAM,
and flip-flop memory. For The Gestalt, we chose
flip-flop memory in every case in order to avoid the use
of memory controllers, as they represent a 3rd-party IP
that we are unable to security scan.

Conclusions
In this paper we presented the Gestalt principles for
achieving Zero-Trust in large scale systems. The key to
achieving zero trust is to think of the large system as a
whole, instead of seeing them as composed of small
individual parts that can be hardened. The problem with
the piecewise hardening approach is that it becomes a
combinatorial problem because of how the individual
parts may interact with each other and the environment
which cannot be predicted. In our approach, by
judiciously implementing some parts in hardware we
show how the total number of parts can be reduced thus
making the problem much more tractable. Using the
example of a hardware FEP we showed, contrary to
expectations that providing Zero Trust, may be onerous
and negatively impact system performance, we show
that not only is the security improved, but also the
performance and maintainability of the system
improves substantially. As such this paper offers an
engineering existence proof that systems can be secured
in productive and practical manner even against the
most advanced, and most insidious threats, and even for
legacy systems.

References

1.Miller, Matt. (2019, February 14). BlueHat IL
2019 [Video file]. YouTube.
https://youtu.be/PjbGojjnBZQ

2.Jones, Jeffrey. (2007). Estimating Software
Vulnerabilities. Security & Privacy, IEEE. 5. 28 -
32. 10.1109/MSP.2007.81.

3.Clash Language. 2021. Clash:Home.
https://clash-lang.org/ (2021).

4.Vitis HLS. 2021. Vitis High-Level Synthesis.
https://www.xilinx.com/HLS (2021).

5.ESPY Prequal Appliance. 2021. Chipscan
Products. https://chipscan.us/products (2021).

6.Pinho, Andre & Couto, Luis & Oliveira, Jose.
(2019). Towards Rust for Critical Systems.
19-24. 10.1109/ISSREW.2019.00036.

7.Space Packet Protocol. 2020. CCSDS Blue
Books: Recommended Standards.
https://public.ccsds.org/Pubs/133x0b2e1.pdf
(2020).

4 [35th] Annual
Small Satellite Conference

https://youtu.be/PjbGojjnBZQ
https://clash-lang.org/
https://www.xilinx.com/HLS
https://chipscan.us/products
https://public.ccsds.org/Pubs/133x0b2e1.pdf

