
Avramova 1 [35th] Annual
 Small Satellite Conference

SCC21-S1-07

Innovations in the field of on-board scheduling technologies

Temenuzhka Avramova, Alessandro Benetton, Christian Cardenio, Riccardo Maderna
AIKO s.r.l.: Autonomous Space Missions

Corso Castelfidardo 30/A, 10129, Torino, Italy
papers@aikospace.com

ABSTRACT
Space missions are characterized by long distances, difficult or unavailable communication and high operating costs.
Moreover, complexity has been constantly increasing in recent years. For this reason, improving the autonomy of
space operators is an attractive goal to increase the mission reward with lower costs. This paper proposes an onboard
scheduler, that integrates inside an onboard software framework for mission autonomy. Given a set of activities, it is
responsible for determining the starting time of each activity according to their priority, order constraints, and
resource consumption. The presented scheduler is based on linear integer programming and relies on the use of a
branch-and-cut solver. The technology has been tested on an Earth Observation scenario, comparing its performance
against the state-of-the-art scheduling technology.

INTRODUCTION

The panorama of space missions has been evolving
rapidly in recent years, with increasingly more complex
space segment architectures and operations concepts1.
In parallel, it has been demonstrated that adopting
autonomy functionalities on-board leads to a long-term
reduction in the costs related to the management of
operations, and to additional capabilities being enabled
for the space segment. In the frame of advanced
automation, several functionalities are essential onboard
to enable E4 autonomy level, i.e., “the execution of
goal-oriented mission operations on-board” as
described by the current standards2. Among these,
recent innovations from academia and the industry have
explored the use of Machine Learning, advanced
planning and scheduling, and AI-based failure
monitoring on-board.

This paper presents an online, onboard scheduler
technology that is fitted to solve the most common
problems that are found when managing a space
mission, in scenarios such as multi-payload
management, resources management, and maneuver
planning. The problem approached was characterized
by a set of different operational activities that must be
scheduled according to several onboard limited
resources of different types. Therefore, our objective
was to develop a scheduler that arranges these tasks
along a timeline in an optimal way according to the
constraints imposed by tasks' mutual temporal relations,
causal relations, and, obviously, according to the
aforementioned set of available resources.

In a simple scenario, the activities to be scheduled can
be provided by a ground control center3, 4. However, the

best performance is obtained when the scheduler is
integrated into an environment that enables fully
autonomous operations for space missions. In that case,
future goals and the associated set of activities are
determined by an onboard reasoning module of the
satellite. Specifically, the proposed algorithm is
constructed to integrate with the MiRAGE library,
developed by AIKO5, which is a software library that
employs state of the art technologies in Deep Learning
and Intelligent Agents to process spacecraft data
(telemetry, payload) and take decisions autonomously
during the mission. Differently from other autonomy
frameworks6, it does not rely on extensive ground
planning but aims to bring the entire decision process
onboard. In this regard, we implemented an onboard
scheduler with real-time execution, able to react to
changes in the scenario due to events detected in orbit
and to generate a new timeline for the mission. The
development of such an onboard real-time scheduler
represents a fundamental step towards fully automated
space missions.

In the remainder of the paper, we first define the
onboard scheduler, highlighting the broad modelling
capabilities, which cover a wide variety of mission
scenarios, task constraints and resources. Then, we
present an example of application in the context of an
Earth Observation mission. Finally, we compare the
performance of the proposed algorithm to those
obtained by state-of-the-art scheduling technology,
represented by the job scheduler that relies on the CP-
SAT solver of Google OR-Tools7.

Avramova 2 [35th] Annual
 Small Satellite Conference

ONBOARD SCHEDULER
The scheduler proposed in this paper takes as input a set
T of activities (also called tasks) and is in charge of
evaluating, for each task, whether it is possible to
schedule the activity and which is its starting time
considering priorities, relative order, and consumption
of resources. In doing so, the scheduler optimizes the
starting time of each task and tries to schedule the
greatest number of tasks. The scheduler works with
discrete time intervals over a finite horizon H, so that
each starting time is an integer value in the interval [0,
H]. Therefore, the optimization is expressed as an
integer linear programming problem that can be
efficiently solved with a branch-and-cut solver, such as
the CBC solver8 used in our implementation.

Scheduling problem definition

Each task Ti ∈ T to be scheduled is defined as a tuple Ti
= (si, li, schedule_costi, delay_costi), where si ∈ [0, H] is
the starting time of the task Ti and constitutes a decision
variable for the scheduler; li > 0 is the length (or
duration) of the task, so that the task finishes at the time
instant si + li. The parameters schedule_cost and
delay_cost are associated with two different aspects of
the concept of priority among activities. Specifically,
schedule_cost is an integer value that goes from 0 to 5,
where 0 is a special value that indicates a mandatory
task, while the other values define the cost paid in case
the task is not inserted in the schedule. If a mandatory
activity cannot be inserted in the plan, the scheduler
outputs a failure. Instead, delay_cost ∈ [1, 5] is directly
proportional to the importance to start the task as soon
as possible. The sum of all costs associated with the
tasks in T defines the cost function of the optimization
problem.

The scheduling problem considers several types of
constraints. First, the execution of each task might be
bounded inside a specific time interval [ai, bi], named
feasible_interval, which enforces the constraint si ∈ [ai,
bi - li] on the starting time. This constraint models
activities such as downlink operations of a satellite that
could be scheduled only during the visibility window
with the ground station.

Furthermore, each task can occupy or consume some
resources. Three categories of resources are considered
to cover most of the cases that are found in practice:

• binary resources;
• multiple resources;
• consumable resources.

Binary resources cannot be used by more than one task
at the same time and lead to non-overlapping

constraints among activities. More formally, if bi(t)
indicates the number of tasks that uses the i-th binary
resource at the unit time t, then it must hold that:

bi(t) ≤ 1, ∀t ∈ [0, H] (1)

An example of a binary resource is the usage of science
equipment, such as the camera of a satellite: if two
tasks require access to the camera, they cannot be
scheduled to run in parallel.

The multiple resources category contains resources that
are not consumed but have a maximum capacity that
limits simultaneous use. For example, it is possible to
have an upper limit of the power consumption per unit
of time. In this case, all tasks will be scheduled
according to their consumption of power and groups of
tasks that overcome the threshold of simultaneous
consumption, will not be overlapped. More formally, if
mi(t) indicates the total usage of the i-th multiple
resource at the unit time t, that is the sum of the
amounts consumed by each task executing at time t, and
Mi indicates the total availability of that resource per
unit time, then it must hold that:

mi(t) ≤ Mi, ∀t ∈ [0, H] (2)

The resources in the last category, called consumable
resources, are the one that can be consumed and/or
generated in time. An immediate example is the
consumption of propellant or battery storage. Also in
this case, each task is associated with the amount of
resource it consumes (or generates). For example, a task
that acquires pictures of the Earth consumes electricity,
while a maintenance task like battery charging,
produces it. Giving the sequence of tasks, the scheduler
takes into account that at any time the availability of all
consumable resources must be non-negative. More
formally, if ci(t) indicates the cumulative consumption
of the i-th consumable resource at the unit time t, that
means the sum of all the consumption (or generation) of
that resource over the time interval [0, t], and if Ci is its
initial availability, then it must hold that:

ci(t) ≤ Ci, ∀t ∈ [0, H] (3)

The final set of constraints is constituted by precedence
constraints. In situations where more tasks are needed
to achieve a goal, the execution of some activities must
likely respect a default order. For instance, the goal of
image acquisition could be composed of the following
tasks: “point camera”, “prepare camera”, “acquire
images” and “save images”. In this case, it is apparent
that the ordering among the tasks is essential. The
developed scheduler considers two types of precedence
constraints:

Avramova 3 [35th] Annual
 Small Satellite Conference

• tight precedence, that is the second task Tj
must start exactly after the preceding one Ti
plus an offset dt:
si + li = sj – dt

• lax precedence, that is the second task Tj can
start at any moment after the end of the
preceding one Ti plus an offset dt:
si + li ≤ sj – dt

The offset value can be either positive or negative, so
that it is possible to model both the case when the
second task must start after the first one has finished
and the one when the second task starts while the first is
still executing. Tight constraints are used to describe
precondition relations among tasks, i.e., cases when the
preceding task is a precondition for the execution of the
following task that cannot be executed otherwise (e.g.,
pointing the camera toward the target before
acquisition). Instead, lax constraints express logic
precedence resulting from goal-related reasoning that
impose the desired ordering among specific tasks.
Nevertheless, the execution of each task is independent.
For instance, one may want to perform a downlink
operation only after an acquisition operation, since
otherwise there would be no data to downlink.

At this point, an observation must be done that stems
from the introduction of precedence constraints. Some
tasks might not be scheduled because of incompatibility
in the constraints or insufficient availability of
resources (the parameter schedule_cost is the one that
penalizes the missed schedule of a task). If this happens
to a task that participates in a precedence constraint,
two cases can occur that are supported by the scheduler.
First, if the first task in the constraint is not useful on its
own but only as a precondition for the execution of the
next one, then the entire sequence loses its meaning.
Therefore, either both or none of the tasks must be
inserted into the schedule. Conversely, the second
scenario is when it is also meaningful to schedule only
the preceding task in the constraint, while the following
can be excluded from the schedule if needed.

Online rescheduling
Once that the scheduler solves the optimization
problem and finds a suitable schedule for the input set
of activities and constraints, the plan is dispatched to a
lower-level execution layer of the spacecraft. However,
the occurrence of unexpected events during operation,
such as faults or unforeseen environment conditions, or
the release of a new goal can invalidate the current
schedule and call for a rescheduling procedure9. In this

case, a new set of activities is provided as input that
must be co-scheduled together with those already
present in the schedule and not already executed.

However, particular care must be placed on the
rescheduling of the tasks that are running when
rescheduling is triggered. Indeed, each task has
additional information on whether it allows or forbids
preemption. Specifically, we identify four behaviors for
running tasks:

• No preemption: the task cannot be interrupted
and will be concluded in the new schedule;

• From start: the task can be interrupted and
must be completely rescheduled in another
time of the horizon;

• From interrupt: the task can be interrupted and
only the remaining part must be rescheduled in
another time of the horizon;

• Delete: the task cannot be rescheduled and is
deleted from the schedule.

When an activity that belongs to a precedence sequence
is preempted and rescheduled, then also all the other
tasks in the chain, that is all the tasks involved in tight
precedence constraints with the interrupted task, have to
be rescheduled, even those that have already been
executed. This is clearer if we refer to the example of
image acquisition: suppose that the “acquire images”
task is rescheduled after other activities, then the
spacecraft must execute again the “point camera” and
“prepare camera” activities to perform the target task
correctly.

A final case to be considered is when the arrival of a
new goal (and associated activities) makes some of the
tasks that were already in the schedule obsolete. For
example, if the satellite is acquiring images with a high-
frequency camera and some clouds are detected, then a
new goal can be set to acquire images with the low-
frequency camera to not waste energy and memory
space. In this case, it is apparent that rescheduling both
the tasks related to high-frequency and low-frequency
acquisition is useless. This situation is handled by
associate additional information to incoming tasks
about which other tasks, possibly present among the
pending ones, must be discarded. When a task is
removed from the scheduling problem, all other tasks
that follow the deleted task inside a tight constraint are
also removed from the pending activities. Instead, tasks
that follow a lax constraint are maintained, but the
constraint is removed.

Avramova 4 [35th] Annual
 Small Satellite Conference

Table 1: Tasks to schedule with parameters and indication of resource consumption/generation

Task l delay
_cost

schedule
cost Preemption feasible

interval
Resources (units per time)

Binary Multiple Consumable

AcquisitionHF 20 4 3 Interrupt [] Camera
Position Power (40) Battery (3)

BatteryCharge 10 3 3 No [0,15] Position Battery (-10)

DownlinkSat2Ground 10 2 3 No [5,45] Antenna
Position Power (40) Battery (3)

DownlinkSat2Sat 5 5 3 No [0,10] Antenna
Position Power (40) Battery (3)

SetHFOption 1 3 3 Interrupt [] Camera Power (20) Battery (1)

SetPositionK 1 3 3 No [] Reaction Wheel
Position Power (20) Battery (1)

Propellant (2)

SetPositionX 1 3 3 No [] Reaction Wheel
Position Power (20) Battery (1)

Propellant (2)

SetPositionY 1 3 3 No [] Reaction Wheel
Position Power (20) Battery (1)

Propellant (2)

SetPositionZ 1 3 3 No [] Reaction Wheel
Position Power (20) Battery (1)

Propellant (2)

EXAMPLE SCENARIO
This section illustrates a realistic scenario that covers
some of the cases presented in the previous section as
an example. We consider an Earth Observation
application where a Low Earth Orbit satellite aims to
acquire high-quality images of the Earth’s surface. To
do so, it can perform two different types of image
acquisition activities, one that acquires images at high
frequency (higher memory and energy consumption,
but better-quality target observation) and another one
that acquires images at low frequency (useful to
monitor the target while it is not ready to be observed,
for example because covered by clouds). In addition,
the satellite can downlink data to ground stations, but
also spread messages to other satellites (e.g., for
coordination purposes in constellations). The resources
that are managed by the scheduler are:

• Binary resources: Reaction wheel, Position;
• Multiple resources: Power, with a maximum

capacity of 60W per unit of time;
• Consumable resources: Battery, with initial

availability of 20 units, and Propellant, with
initial availability of 100 units.

Where the binary resource on the satellite position is
introduced to avoid overlapping tasks that need a
specific attitude configuration.

Suppose that at a given time the current goals of the
satellites are: 1) Acquire images of the Earth’s surface,

2) Downlink observation data to a ground station, 3)
Send data to another satellite, 4) Recharge batteries (by
pointing solar panels toward the sun). Table 1 lists the
tasks that must be scheduled to reach all goals together
with their associated parameters and information related
to the usage of resources for each task. Furthermore, the
tasks have the following precedence constraints, where
x ≺ y stands for “task x precedes task y”:

tight-both: SetPositionX ≺ DownlinkSat2Sat
SetPositionZ ≺ AcquisitionHF
SetPositionK ≺ BatteryCharge
SetPositionY ≺DownlinkSat2Ground

lax-both: SetHFOption ≺ AcquisitionHF

lax-at-least-the-first:
AcquisitionHF ≺ DownlinkSat2Ground

Running the scheduler with the horizon set to H = 50
units of time, the result obtained is the one shown in
Figure 1. By analysing the schedule, all precedence and
resource constraints are met. Moreover, one can notice
that the scheduler tries to plan tasks in parallel when
possible, such as with SetHFOption and SetPOsitionX
at the beginning. In this case, the two activities do not
require common equipment and consume a total of
40W of Power, which is below the maximum usage
threshold. Instead, all the other tasks in the example
require maintaining a specific satellite configuration
during execution, which is modelled as a binary
resource and prevents the overlap of the activities.

Avramova 5 [35th] Annual
 Small Satellite Conference

Table 2: Additional tasks for rescheduling together with parameters, indication of resource
consumption/generation, and of the previous tasks made obsolete by the new one

Task l delay
_cost

schedule
_cost

Preemp
tion

feasible_
interval

Resources (units per time)
Obsolete tasks

Binary Multiple Consumable

AcquisitionLF 15 5 3 Interrupt [] Position
Camera

Power (20) Battery (1) AcquisitionHF

SetLFOption 1 3 3 Interrupt [] Camera Power (20) Battery (1) SetHFOption

SetPositionZ 1 3 3 No [] Reaction Wheel
Position

Power (20) Battery (1)
Propellant (2)

Figure 1: Schedule obtained with the activities in

Tables 1 as input

Going deeper in the analysis, we can see that the task
BatteryCharge is scheduled before AcquisitionHF
although the latter has a higher delay_cost. Moreover,
no precedence constraints require a particular ordering
between the two. The reason why the execution of
BatteryCharge is anticipated even if it leads to a higher
cost schedule is that the scheduling of tasks
DownlinkSat2Sat and DowlinkSat2Ground one after
the other, without a recharging task in between, would
run out the battery storage. Instead, the scheduler can
correctly take into account the consumption of
consumable resources and plan the proactive behaviour
of the satellite.

To test the online rescheduling capabilities, we suppose
the arrival of a new goal at time 15. Specifically, we
simulate the fact that, thanks to a cloud detection
module, such as the one included in the MiRAGE
library, the satellite realizes that the observation target
is covered and that there is no need to acquire images
anymore. Therefore, the onboard reasoning module
sends a new goal of monitoring the target via low-
frequency imaging. The new input tasks to the
scheduling problem and their constraints are detailed in
Table 2. In particular, since we are dealing with a
rescheduling stage, the table also reports the indication

of which tasks from Table 1 are made obsolete by each
of the new tasks. Obsolete activities are removed from
the pending list and are not included in subsequent
schedules. Moreover, the tasks have the following
precedence constraints:

tight-both: SetPositionZ ≺ AcquisitionLF

lax-both: SetLFOption ≺ AcquisitionLF

Therefore, a new schedule is generated for the time
interval of [15, 65], which is reported in Figure 2.
When rescheduling takes place, the task BatteryCharge
is running. Since the ongoing task does not allow
preemption, it is correctly allocated to continue its
execution in the new schedule. Moreover, the new task
SetLFOption is planned to run in parallel with
BatteryCharge. In fact, the scheduler considers the
whole horizon to be available for scheduling any of the
pending tasks even when time slots are already
populated by activities inherited by the previous
iteration.

Figure 2: Schedule obtained after rescheduling with
the activities in Table 2 as input

An important thing to notice is that obsolete tasks
related to high-frequency image acquisition

Avramova 6 [35th] Annual
 Small Satellite Conference

(SetHFOption and AcquisitionHF) are substituted by
those related to low-frequency acquisition
(SetLFOption and AcquisitionLF). Instead,
DownlinkSat2Ground is kept from the previous
schedule, as it was not indicated as a task to be deleted
by any of the new tasks. This is done regardless of the
presence in the first scheduling problem of a lax
precedence constraint between AcquisitionHF and
DownnlinkSat2Ground. As already mentioned, lax
constraints that contain removed tasks are deleted from
the scheduling problem, whereas the surviving task can
still be scheduled unless explicitly removed from the
pending list. This allows the reasoning module of the
autonomy software to profit from the visibility window
of the ground station to send payload data
independently of the presence of the AcquisitionHF
task. This is beneficial to free storage space for future
acquisitions.

PERFORMANCE ANALYSIS

A crucial point, when dealing with onboard real-time
scheduling, is the performance in terms of computation
time, that is, given a set of tasks to be scheduled, the
amount of time needed to provide a schedule to the
operation system of a satellite. Since all the different
classes of constraints included in the scheduling
problem can be expressed as different linear
inequalities, the solving time of the scheduler strictly
depends not only on the number of tasks and the length
of the planning horizon, but also on the type of
constraints. To have a point of comparison on the
execution time, another scheduler, with the same
characteristics as the one presented here, has been
constructed using the functions of the Job Problem of
Google OR-Tools7.

A test campaign on Linux desktop environment has
been carried out considering a set of problems with a
different number of tasks to be scheduled (5, 10, and
15) and, for each case, the inclusion of different
combinations of resource constraints (no resource
constraints, binary resources only, multiple resources
only, consumable resource only). Each scenario has
been tested on 7 different problems with a horizon
length of 336 time units to average the performance.

In Figure 3, the average execution time is grouped in
boxplots by the number of tasks (5, 10, and 15) for both
the presented scheduler and the OR-Tools one. From
the plots, it is apparent that the proposed scheduler is
faster than OR-Tools solution with an average
scheduling time of about 0.2, 0.6 and 0.9 seconds for 5,
10 and 15 tasks, respectively. Also, both approaches
show linear complexity in the number of activities.
Note that the execution time includes both the
initialization of the problem and the computation of the

schedule. Both stages are important in the presented
application, as the scheduler must run in real-time and
reschedule online with different tasks and constraints.

Figure 3: Execution times of the two schedulers for
5, 10 and 15 tasks (H = 336)

The substantial difference in performances between the
two schedulers shown in Figure 4 derives especially
from the poor performance of the OR-Tools algorithm
in presence of consumable resources (see Figure 4).
The difference in the averages of the execution time
between the proposed scheduler and OR-Tools grows
with the increasing complexity of the constraints
included in the problem. When resource constraints are
not considered, OR-Tools performs slightly better than
our algorithm (0.6 s against 0.8 s). However, the
proposed scheduler does not suffer from the addition of
resources and, on the contrary, better exploits the
presence of more constraints that reduces the feasible
solution space. Instead, Google OR-Tools suffer from
the inclusion of more complex constraints with
increasing scheduling time required when multiple
resources and, especially, consumable resources are
present. In particular, the required time soar to about 11
s in the latter case, against 0.3 s required by the
proposed scheduler in the same conditions. Table 3
reports the average running time for all considered
cases.

Table 3: Average execution time grouped by the
different resource constraints included

[s] No
resources

Binary
resources

Multiple
resources

Consumable
resources

Proposed 0.8 0.8 0.3 0.3

OR-Tools 0.6 1.1 1.5 11.0

Avramova 7 [35th] Annual
 Small Satellite Conference

Figure 4: Execution times of the two schedulers
grouped by the different classes of resource

constraints in the problem (10 tasks, H = 336)

By investigating the running time of the OR-Tools
version of the scheduler in detail, one can understand
that the bottleneck is constituted by the time needed to
initialize the problem, that is the time needed to declare
variables and constraints, and not by the solving time.
Indeed, the implementation of OR-Tools makes the
addition of resource constraints heavy from a
computational point of view. This is more apparent
with consumable resources since their inequalities must
keep all the information of the past times and, therefore,
they become longer in time.

CONCLUSIONS

This paper presents an online scheduler that can be
integrated inside an onboard autonomy software
framework. The scheduler is specifically developed for
space missions, such as satellite activities, to enable
greater autonomy and take advantage of its benefits.
The approach provides wide modelling capabilities to
cover all the relevant scenarios and accounts for
priorities and precedence among tasks, and different
types of resources. Moreover, it is capable of
rescheduling in response to changes of goals or
unexpected events. Results show that the scheduler can
compute optimal plans that satisfy all constraints with a
competitive running time, which confirms the
capability of the scheduler to be suitable for onboard
real-time scheduling.

References
1. D. Selva, A. Golkar, O. Korobova, I. Lluch i

Cruz, P. Collopy, and O. L. de Weck,
“Distributed Earth Satellite Systems: What Is
Needed to Move Forward?” Journal of Aerospace
Information Systems14:8 (2017), 412-438.

2. ECSS-E-ST-70-11C, “Space Engineering–Space
segment operability", url: https://ecss.nl/standard/
ecss-e-st-70-11c-space-segment-operability/

3. W. Chi, S. Chien, and J. Agrawal, "Scheduling
with complex consumptive resources for a
planetary rover." Proceedings of the
International Conference on Automated Planning
and Scheduling. Vol. 30. 2020.

4. M. Woods, A. Shaw, D. Barnes, D. Price, D.
Long, and D. Pullan. "Autonomous science for an
ExoMars Rover–like mission." Journal of Field
Robotics 26.4 (2009): 358-390.

5. AIKO s.r.l., “MiRAGE: full automation to your
spacecraft mission”, url: https://www.aikospace.
com/#products

6. Chien, Steve, et al. "Onboard autonomy on the
intelligent payload experiment cubesat mission."
Journal of Aerospace Information Systems 14.6
(2017): 307-315.

7. Google OR-Tools - The Job Shop Problem, url:
https://developers.google.com/optimization/sched
uling/job_shop

8. COIN-OR, CBC Solver, url: https://github.com/
coin-or/Cbc

9. W. Chi, “Embedding a Scheduler in Execution
for a Planetary Rover”, ICAPS, vol. 28, no. 1,
Jun. 2018.

https://ecss.nl/standard/%20ecss-e-st-70-11c-space-segment-operability/
https://ecss.nl/standard/%20ecss-e-st-70-11c-space-segment-operability/
https://developers.google.com/optimization/scheduling/job_shop
https://developers.google.com/optimization/scheduling/job_shop
https://github.com/%20coin-or/Cbc
https://github.com/%20coin-or/Cbc

	Innovations in the field of on-board scheduling technologies
	ABSTRACT
	introduction
	Onboard scheduler
	Scheduling problem definition
	Online rescheduling

	Example scenario
	performance analysis
	conclusions
	References

