
Chow 1 35th Annual

 Small Satellite Conference

SSC21-P1-27

Lessons Learned from Development of Web-Based Mission Operations Software

Nathan Chow, Logan Pulley, Michael Lembeck

University of Illinois at Urbana-Champaign – Laboratory for Advanced Space Systems at Illinois

104 S. Wright St., Urbana, Illinois 61801; (703) 226 9277
nwchow2@illinois.edu

ABSTRACT

The Laboratory for Advanced Space Systems at Illinois (LASSI) is responsible for the development of, and mission

operations for, a series of student built CubeSats. The Steven R. Nagel Mission Operations Center (MOC) provides

the facilities and software systems required to track and communicate with the satellites. Mission operations

software has been designed with a flexible and familiar user experience supporting not just traditional workstations

but also mobile devices such as smartphones and tablets. This paper discusses the motivation behind choosing a

web-based architecture for the scalable, full-stack design underlying the MOC software system. Also presented is

the deliberate selection of mainstream languages, tools, and frameworks for containerization and web-based delivery
– a philosophy that enables future enhancements and fosters maintainability. Processes that facilitate student

workflow patterns such as comprehensive code reviews and development operations (DevOps) automation are

presented.

INTRODUCTION

The number of CubeSats launched each year has

continued to increase with the commercial sector

driving much of the growth in the last decade.1

Supporting this growth is decreasing launch costs due

to commercialization and competition, the increase in

commercial of the shelf parts, and the improvement of
technology, such as power and control systems, that

increase the capabilities of CubeSats.2,3 Most missions

utilizing the CubeSat platform are unique in their

diverse objectives and relatively short mission life.

Consequently, the mission operations software that

support these missions must not only be robust to

handle downlinked bus and payload data but also

flexible enough to support the objectives of present and

future CubeSat missions.

The mission operations center (MOC) software system

currently under development within the University of

Illinois at Urbana-Champaign's Aerospace Engineering

Department’s Laboratory for Advanced Space Systems

at Illinois (LASSI) utilizes a web-based application

architecture to meet the unique requirements of

CubeSat mission operations. Earlier mission operations

solutions supporting LASSI CubeSats were

decentralized and dedicated to individual missions. The

new MOC software system is designed with several
primary goals: to incorporate all aspects of mission

operations and control, from commanding to data

visualization and analysis; support for traditional

workstations as well as mobile device like smartphones

and tablets to increase data accessibility; and

maintainability, expandability, and flexibility to

maximize capability and to support evolving

requirements for all present and future LASSI

CubeSats.

This paper discusses the features of web-based

applications that carry out the primary goals of the

MOC software system and presents a high-level

description of the software architecture at its current

stage of development. Also discussed is the

development pipeline which strives to implement parts

of the Agile-like design philosophy for continuous,

rapid, and responsive development.

WEB APPLICATION FEATURES

Expandable and Flexible

LASSI has a number of CubeSats under development,

some of which might potentially be operated

simultaneously. A configurable MOC software system

is required in order to avoid major rewrites for every

mission.

In a web-based application, heavy duty data processing

and storage is executed on a high-performance web

server, while the less resource intensive data

presentation is run on a browser on the user’s machine.4

This separation allows the independent development of

front-end and back-end logic and allows for easier
changes to the user interface and presentation when

required. While the overall data storage method and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/478906253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chow 2 35th Annual

 Small Satellite Conference

associated logic layer are expected to remain largely

static between missions, the front-end and external

applications interacting with and utilizing the data are

dynamic and constantly evolving based on payloads

and customer feedback. Web-based applications neatly
separate the server-side back-end and client-side front-

end operations.

A critical feature of front-end and back-end separation

is a standard data access mechanism. Database access is

performed through a REST API using a HTTP request,

while live data is distributed from server to client

through the WebSocket communications protocol. The

usage of a standard API allows developers of server-
external applications, such as downlink tools, like a

parser or front-end interfaces, to develop their

application without much knowledge of the inner

workings of the server side layers.

Maintainable

Software maintainability is an important consideration
in any large application. Maintenance issues arising

from requirements changes, bugs, and feature additions

contribute to a large portion of development time.5,6 In a

university setting, frequent personal changes to the

MOC software development team can be challenging.

Aspects of a web-based application helps minimize

these problems.

LASSI’s MOC software maximizes usage of

mainstream and open-source languages, tools, and

libraries. It is developed on the popular Django high-

level Python web framework which provides much of

the base code and services needed to run a web server.

Front-end static files are written using the common trio

of JavaScript, HTML, and CSS. These tools should be

familiar to many web-developers, and, because they are

open source, extensive documentation, tutorials, and

discussion are publicly available online.

The separation of layers that makes web-applications

flexible and expandable also makes them maintainable.

It breaks down the application for more straightforward

refactoring, bug tracking, and bug fixing. This also

introduces more opportunities for unit and regression

testing.

Accessible

Due to the prevalence of computer browsers, most

people are accustomed to the look and feel of web

applications. Many modern desktop applications use a

web-based framework for their GUI. The MOC

software system web page uses Bootstrap, a front-end

framework library developed at Twitter, to control a

modern and responsive user interface. It contains a

large library of components designed for intuitive user

interactions with both desktop and mobile browsers in

mind.

Web-based applications also increases the accessibility

of information. Data access and visualization through

the MOC webpage are not restricted to consoles in the

lab. Users with authorized accounts can access satellite

data anywhere they have an internet connection and are

attached to the university VPN. Other than a web

browser, the user does not need to install additional

software on their client computer or mobile device.

This is valuable for student operators who are often

relocating between semester breaks as well as during

the COVID-19 pandemic when much work had to move

remote.

ARCHITECTURE

Server-Side

The primary job of the MOC web server is to handle

incoming telemetry downlink from the parser and

handle WebSocket and HTTP requests from web page

clients. Figure 1 shows a high-level block diagram of

the current MOC server-side software architecture. The

web server is built around the Django web framework.

Models define PostgreSQL database tables and

relationships, described as Python classes in the Django

framework. The Django REST framework is used to

build a web API for handling the HTTP requests from
the parser, client web pages, or other external

applications. Raw telemetry from the downlink chain is

sent to the parser, which makes POST requests to the

web server with timestamped data. The Django

framework processes the POST requests and store the

information in the database. It also pushes telemetry

immediately to the client through the WebSocket

connection. The client web page can also make HTTP

requests for submitting form data or requesting

telemetry stored in the database.

Figure 1: High-level diagram of the server-side

architecture.

Chow 3 35th Annual

 Small Satellite Conference

Client-Side

The client-side web page is the presentation layer and

main interface between LASSI operators and data

downlinked from CubeSats. It supports visualization of

data from user selected satellite, subsystems, and time

range. Data is currently viewable in scatterplot and

table formats. A form page also allows operators to

create alarms and set their trigger range for detecting

and highlighting unexpected values of a subsystem.

The client-side architecture separates functionality into

several layers to improve organization and

maintainability. The UI layer consists of the

functionality describing the user interactive elements.

These include selection dropdowns, forms, tables, and

charts.

The data transfer layer makes HTTP requests and

receives HTTP responses. It also manages WebSocket
connections and handles requests and responses through

the socket. A cache is also located in the data transfer

layer to minimize HTTP requests which are relatively

slow. If a user requests previously requested data, the

data transfer layer does not make a new HTTP request

and instead provides the cached data.

The interface layer connects the UI layer to the data
transfer layer. It formats data from the stored format to

one that a corresponding element, such as a chart or

table, can use.

A publish and subscribe (pub/sub) bus facilitates

communication between the different layers. With this

system, modules do not directly talk to each other and

instead pass information, such as UI events and data

requests, through messages. The pub/sub bus removes
tightly integrated inter-modular communication,

increasing the modularity and scalability of the front-

end architecture.

Figure 2: High-level diagram of the client-side

architecture.

DEVELOPMENT OPERATIONS

Development Pipeline

Development on the MOC software system follows an

Agile-like process. Source control, issue tracking, and

automated CI/CD are primarily executed using GitLab

tools. GitLab’s issue tracking features are used to

manage and track work on new features and bugs.

Every issue receives its own merge request.

Figure 3 shows the typical development process for an

issue. Issues move into code review following the

complimentary and concurrent development and

development testing phases. We introduced this step to

improve overall code health and give more developers a

greater understanding of the larger code base. When

reviewers approve work on an issue and after it is

merged into the development branch, GitLab triggers

the automated CI/CD pipeline process. The pipeline

runs automated tests and builds the images that are
deployed to the development server. After ensuring the

new software version is working in the development

environment, the development branch is copied into the

master branch and the pipeline pushes the images to the

production server. If at any stage an error is found, the

issue moves back into development and the process

restarts.

Our development pipeline evolves as the project grows.

Our initial process involved only development testing.

As the code base and team grew, code review,

automated testing, and linting were introduced to ensure

quality and robustness. Our development pipeline is

now a critical part of the speedy and consistent delivery

of the MOC software system.

Containerization

MOC utilizes Docker to containerize MOC

applications. The platform streamlines the process of

building, deploying, and running applications and

services.7 During the build stage of the CI/CD pipeline,

applications and services that are a part of the MOC

software system are packaged into images and pushed

to either the development or production server Docker

registries. From there, the latest images are pulled,

created into containers, and run.

Chow 4 35th Annual

 Small Satellite Conference

Figure 3: Typical development and CI/CD pipeline.

ROADMAP

Development of the MOC software system is a work in

progress with ongoing development of new features and

bug fixes. While we have not yet implemented the full

intended feature set, the current version is ready to

support operations of LASSI’s upcoming missions. The

infrastructure for handling downlinked telemetry from

the CubeSat bus systems and payloads, as discussed in
the section on server-side architecture, is in place. On

the client-side web page, a data visualizations page for

viewing requested telemetry in scatterplot and table

format is operational.

Ongoing and future work include optimizations on

existing features such as the data visualizations page

and better support for viewing and interaction on

smartphones and tablets. An interface allowing LASSI
operators to send spacecraft commands from the MOC

software system web page is also planned. Work to

support mission-specific requirements will also

continue alongside the development of enhancements

and new features.

CONCLUSION

Building the MOC software system as a web-based

application allows it to be flexible, maintainable, and

accessible. The separation of layers and modular design

eases the process of adding new capability and

refactoring old code. The web page allows data access

to any device with an internet browser and the REST

API gives external applications a simple and standard

way to interact with data.

Our incremental development philosophy means that

the MOC software system is able to support LASSI’s

upcoming missions as simultaneous development

continues on implementing features to place a

centralized, modern, and easy-to-use mission operations

and control solution at the hands of LASSI’s operators.

References

1. Shkolnik, E.L. (2018). On the verge of an

astronomy CubeSat revolution. Nature

Astronomy, 2, 374–378. https://doi.org/10.1038/

s41550-018-0438-8

2. Jones, H.W. (2018). The recent large reduction in
space launch cost. Proceedings of the 48th

International Conference on Environmental

Systems. NASA Technical Reports Server.

https://ntrs.nasa.gov/citations/20200001093

3. Liddle, J.D., Holt, A.P., Jason, S.J., O’Donnell K.

A., Stevens E. J. (2020). Space science with

CubeSats and nanosatellites. Nature Astronomy,

4, 1026–1030. https://doi.org/10.1038/

s41550-020-01247-2

4. Bourne, K.C. (2014). Chapter 2: Design. In K.C.

Bourne (Ed.), Application administrators

handbook: Installing, updating, and

troubleshooting software (pp. 12-19).

ScienceDirect. https://doi.org/10.1016/

B978-0-12-398545-3.00002-9

5. Velmourougan, S., Dhavachelvan, P., Baskaran,

R., Ravikumar, B. (2014). Software development

life cycle model to improve maintainability of
software applications. Proceedings of the 4th

International Conference on Advances in

Computing and Communications (pp. 270-273).

IEEE. https://doi.org/10.1109/ICACC.2014.71

6. Saraiva, J. (2013). A roadmap for software

maintainability measurement. Proceedings of the

35th International Conference on Software

Engineering (pp. 1453-1455). IEEE.

https://doi.org/10.1109/ICSE.2013.6606742

7. Preeth, E. N., Mulerickal, J. P., Paul B., Sastri, Y.

(2015). Evaluation of Docker containers based on

hardware utilization. Proceedings of the

International Conference on Control

Communication & Computing India (pp. 697-

700). IEEE. https://doi.org/10.1109/

ICCC.2015.7432984

